• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一系列由柔性N,N′-雙(3-吡啶甲基)胺構(gòu)筑的螺旋配合物的合成、結(jié)構(gòu)和性質(zhì)

    2015-12-05 10:25:14岳翠敏高東昭王修光
    關(guān)鍵詞:天津師范大學(xué)吡啶甲基

    岳翠敏 高東昭 王修光

    (天津市功能分子結(jié)構(gòu)與性能重點(diǎn)實(shí)驗(yàn)室;無(wú)機(jī)-有機(jī)雜化功能材料化學(xué)省部共建教育部重點(diǎn)實(shí)驗(yàn)室;天津師范大學(xué)化學(xué)學(xué)院,天津300387)

    一系列由柔性N,N′-雙(3-吡啶甲基)胺構(gòu)筑的螺旋配合物的合成、結(jié)構(gòu)和性質(zhì)

    岳翠敏 高東昭*王修光

    (天津市功能分子結(jié)構(gòu)與性能重點(diǎn)實(shí)驗(yàn)室;無(wú)機(jī)-有機(jī)雜化功能材料化學(xué)省部共建教育部重點(diǎn)實(shí)驗(yàn)室;天津師范大學(xué)化學(xué)學(xué)院,天津300387)

    合成和表征了5個(gè)螺旋配位聚合物{[Cu(Hbpma)(H2O)4]2(SO4)3·3.5H2O}n(1)、{[Ni(Hbpma)(H2O)4]4(SO4)6·10.75H2O}n(2)、{[Mn (Hbpma)(H2O)4](SO4)1.5·3H2O}n(3)、{[Zn(Hbpma)(H2O)4]4(SO4)6·4H2O·4CH3OH}n(4)和{[Cu(Hbpma)2(H2O)2](SO4)2·9H2O}n(5),其中bpma代表N,N′-雙(3-吡啶甲基)胺。晶體結(jié)構(gòu)分析表明配合物1~4為一維鏈狀結(jié)構(gòu),配合物5為二維層狀結(jié)構(gòu),其中金屬離子由質(zhì)子化的bpma配體橋連。值得注意的是,采取反-反式構(gòu)象的柔性bpma配體使得配合物1和2為假螺旋鏈結(jié)構(gòu),配合物3和4為螺旋鏈結(jié)構(gòu),配合物5為螺旋層結(jié)構(gòu)。同時(shí)研究了配合物的磁性和熱穩(wěn)定性。

    金屬配合物;N,N′-雙(3-吡啶甲基)胺;螺旋結(jié)構(gòu);磁性;熱穩(wěn)定性

    0Introduction

    Over the past decades,helical structures have received much attention in coordination chemistry and materials chemistry,because helicity is an essence of life and is also important in advanced materials such asopticaldevices,enantiomerseparation,chiral synthesis,ligand exchange,and selective catalysis[1-3]. Onepromisingapproachtoconstructabiological helices is the use of coordination chemistry to direct the assembly of small component molecules into extended helical polymeric materials[4-5].The crucial step is the selection of multifunctional organic ligands containing appropriate coordination sites linked by a spacer with specific positional orientation.On the one hand,the ligands should be ditopic and thus capable of bridging metal atoms in certain directions.On the otherhand,theligandsshouldcontainsteric informationthatcanbeinterpretedbythe arrangement of the bound metal centers,resulting in the formation of helical structures.Up to now,the design of desirable helical structures through the selfassembly of ligands and metal ions has achieved great progress.Agreatdealofhelicalcoordination polymers,such as one-dimensional helices[6-8],twodimensional helical layers[9-11],and three-dimensional frameworks containing helical features[12-13],have been systemically investigated in recent years.As the neutralN-donorligands,1,3-bis(4-pyridyl)propane(bpp) has proven to be a good candidate for the organization of helices because of its length and flexibility,which can assume different conformations such as TT,TG, GG,and GG′(considering the relative orientations of the three CH2groups,T=trans,G=gauche)[14-16].Inspired bytheaforementionedconsiderations,weare interested in exploring various interesting helical structures constructed by another flexible N-donor ligand N,N′-bis(3-pyridylmethyl)amine(bpma)(the imine group could be protonated)(Scheme 1),which hasthesimilarcoordinationabilitiesand conformations with the bpp ligand[17-18].In this paper, we herein report the crystal structures and properties offivedifferenthelicalcoordinationpolymers {[Cu(Hbpma)(H2O)4]2(SO4)3·3.5H2O}n(1),{[Ni(Hbpma) (H2O)4]4(SO4)6·10.75H2O}n(2),{[Mn(Hbpma)(H2O)4] (SO4)1.5·3H2O}n(3),{[Zn(Hbpma)(H2O)4]2(SO4)6·4H2O· 4CH3OH}n(4)and{[Cu(Hbpma)2(H2O)2](SO4)2·9H2O}n(5)bridged by the flexible bpma ligands.

    Scheme 1bpma ligand

    1Experimental

    1.1 Material required and instruments

    All chemicals were of reagent grade and used without purification.The N,N′-bis(3-pyridylmethyl) amine(bpma)ligand was prepared using the same method as for N,N′-bis(2-pyridylmethyl)amine[19].Elemental analyses for carbon,hydrogen and nitrogen were carried out with a Leeman-Labs CE-440 elemental analyzer.IR spectra were taken with a Nicolet Avatar 370 FT-IR spectrometer in the range of 4 000~400 cm-1by KBr pellet technique.The variable temperaturemagneticsusceptibilitymeasurements were carried out with a Quantum Design MPMS-XL-7 magnetometer in the temperature range 2~300 K at a magnetic field of 1 000 Oe.The molar magnetic susceptibility was corrected from the sample holder and diamagnetic contributions of all constituent atoms by using Pascal′s constants.Thermogravimetric analyses (TGA)were performed on a Perkin-Elmer TGAQ 500 thermogravimetric analyzer under flowing N2atmosphere with a heating rate of 5℃·min-1up to 650℃.

    1.2 Preparation of complex{[Cu(Hbpma)(H2O)4]2(SO4)3·3.5H2O}n(1)

    At room temperature,CuSO4·6H2O(26.8 mg,0.1 mmol)and bpma ligand(19.9 mg,0.1 mmol)were dissolved in 15 mL distilled water with stirring for 1 h and filtered.After the filtrate was allowed to stand at room temperature for one week,blue block crystals suitable for X-ray structure analysis were grown by slow evaporation.Yield:38%based on CuSO4·6H2O. Anal.Calcd.(%)for C24H51Cu2N6O23.50S3:C 28.2;H 5.0; N 8.2;Found(%):C 28.1;H 5.1;N 8.3.IR(KBr disc, cm-1):3 447(br),1 437(m),1 108(m),814(m),617(m).

    1.3 Preparation of complex{[Ni(Hbpma)(H2O)4]4(SO4)6·10.75H2O}n(2)

    The reaction was carried out following a similar procedure as described for complex 1,except that NiSO4·6H2O was used instead of CuSO4·6H2O.Light green block crystals were grown by slow evaporation. Yield:36%based on NiSO4·6H2O.Anal.Calcd.(%) for C48H109.5N12Ni4O50.75S6:C 27.5;H 5.2;N 8.0;Found (%):C 27.5;H 5.1;N 8.1.IR(KBr disc,cm-1):3 222 (br),1 437(m),1 079(m),812(m),618(m).

    1.4 Preparation of complex{[Mn(Hbpma)(H2O)4] (SO4)1.5·3H2O}n(3)

    The reaction was carried out following a similar procedure as described for complex 1,except that MnSO4·6H2O was used instead of CuSO4·6H2O.Colorless block crystals were grown by slow evaporation. Yield:40%based on MnSO4·6H2O.Anal.Calcd.(%) for C12H28MnN3O13S1.50:C 27.4;H 5.3;N 8.0;Found (%):C 27.3;H 5.4;N 7.9.IR(KBr disc,cm-1):3 274 (br),1 436(m),1 117(m),811(m),618(m).

    1.5 Preparation of complex{[Zn(Hbpma)(H2O)4]4(SO4)6·4H2O·4CH3OH}n(4)

    At room temperature,ZnSO4·6H2O(26.9 mg,0.1 mmol)and bpma ligand(19.9 mg,0.1 mmol)were dissolved in the methanol solution(5 mL methanol and 10 mL distilled water)with stirring for 1 h and filtered.The filtrate was allowed to stand at room temperature for one week,whereupon colorless block crystals suitable for X-ray structure analysis were grown by slow evaporation.Yield:34%based on ZnSO4·6H2O.Anal.Calcd.(%)for C52H112N12O48S6Zn4:C 29.3;H 5.3;N 7.9;Found(%):C 29.4;H 5.3;N 7.8. IR(KBr disc,cm-1):3 199(br),1 438(m),1 111(m), 812(m),618(m).

    1.6 Preparation of complex{[Cu(Hbpma)2(H2O)2] (SO4)2·9H2O}n(5)

    The reaction was carried out following a similar procedure as described for complex 4,except that CuSO4·6H2O was used instead of ZnSO4·6H2O.Blue block crystals were grown by slow evaporation.Yield: 31%based on CuSO4·6H2O.Anal.Calcd.(%)for C24H50N6O19S2Cu:C 33.7;H 5.9;N 9.8;Found(%):C 33.6;H 6.0;N 9.9.IR(KBr disc,cm-1):3 435(br), 1 437(m),1 112(m),812(m),618(m).

    1.7 Crystallographic data collection and structure determination

    The X-ray diffraction measurements of complexes 1,4 and 5 were collected with a Bruker CCD area detector diffractometer equipped with a graphitemonochromatic Mo Kα radiation source(λ=0.071 073 nm),while those of complexes 2 and 3 were detained with a Bruker APEX-ⅡCCD diffractometer.The empirical adsorption corrections by SADABS were carried out[20].The structures were solved by direct methods using the SHELXS-97 program[21]and refined with SHELXL-97[21]by full-matrix least-squares techniques on F2.All non-hydrogen atoms were refined anisotropically.All the hydrogen atoms except for some water molecules were generated geometrically and refined isotropically using the riding model.Some free sulfateanionsandsolvatedwatermoleculesare disordered.Crystallographic data and experimental details for structural analyses are summarized in Table1 and 2.Selected bond lengths and angles are listed in Table3 ~7.

    CCDC:966929,1;966932,2;966930,3;966931, 4;1054736,5.

    Table1 Crystal data and structure refinements for complexes 1 and 2

    Continued Table1

    Table2 Crystal data and structure refinements for complexes 3,4 and 5

    Table3 Selected bond lengths(nm)and angles(°)for complex 1

    Continued Table2

    Table4 Selected bond lengths(nm)and angles(°)for complex 2

    Table5 Selected bond lengths(nm)and angles(°)for complex 3

    Table6 Selected bond lengths(nm)and angles(°)for complex 4

    Table7 Selected bond lengths(nm)and angles(°)for complex 5

    Fig.1 View of the coordination environment of the Cu(Ⅱ)centers in complex 1 with limited numbering scheme

    2Results and discussion

    2.1 Crystal structures of complexes 1 and 2

    The X-ray crystal structure analyses reveal that complexes{[Cu(Hbpma)(H2O)4]2(SO4)3·3.5H2O}n(1)and {[Ni(Hbpma)(H2O)4]4(SO4)6·10.75H2O}n(2)are composed of one-dimensional chains bridged by flexible bpma ligands,free sulfate anions and solvated water molecules.In the coordination environments as depicted in Fig.1 and Fig.S1,there are crystallographically two unique Cu(Ⅱ)centers for complex 1 and four unique Ni(Ⅱ)centers for complex 2 in the asymmetric units, which result in one independent chain for complex 1 and three independent chains for complex 2.In two complexes,all metal ions display the same sixcoordinated distorted octahedral coordination geometries with only different bond lengths and angles coordinated by four water oxygen atoms and two pyridine nitrogen atoms of two different bpma ligands.The M-O bond distances fall in the range of 0.198 8(6)~0.247 6(3)nm,while the M-N bond lengths vary from 0.202 4(3)to 0.212 9(6)nm,respectively.Meanwhile, the imine groups of bpma ligands are all protonated adopting the trans-trans conformation and each bpma ligand bridges two metal ions into a one-dimensional chain structure as shown in Fig.2 and Fig.S2.It should be noted that all bpma ligands spiral around the axis composed of the metal ions,thus the onedimensional chain should be described as a pseudohelical structure.Along the chains,the intrachain distances between the successive metalions fall in the range of 1.207 98(10)~1.241 3(1)nm similar to the literature results[22].The packing of complexes 1 and 2 gives the similar 3D supramolecular framework and the sulfate anions occupy the voids between the 1D chains as shown in Fig.3 .

    Fig.2 A perspective view of the one-dimensional pseudo-helical chain structure in complex 1

    Fig.3 View of the 3D supramolecular framework of complex 1

    2.2 Crystal structures of complexes 3 and 4

    Complexes{[Mn(Hbpma)(H2O)4](SO4)1.5·3H2O}n(3) and{[Zn(Hbpma)(H2O)4]4(SO4)6·4H2O·4CH3OH}n(4) also consists of one-dimensional chains bridged by flexible bpma ligands,free sulfate anions and solvated molecules.In the coordination environments as depicted in Fig.4 and Fig.S3,there are crystallographically only one unique Mn(Ⅱ)and Zn(Ⅱ)center in the asymmetric units.In two complexes,the metal ions display the same six-coordinated distorted octahedral coordination geometries with only different bond lengths and angles provided by four water oxygen atoms and two pyridine nitrogen atoms of two different bpma ligands.The MO bond distances fall in the range of 0.207 64(18)~0.217 51(17)nm,while the M-N bond lengths vary from 0.217 6(2)to 0.229 66(19)nm,respectively. Furthermore,the imine groups of bpma ligands are all protonated assuming the trans-trans conformation and each bpma ligand bridges two metal ions into a onedimensional chain structure as shown in Fig.5 and Fig.S4.It is noteworthy that both the bpma ligands and the metal ions spiral around a 21-axis,thus the one-dimensional chain should be described as a single -stranded helical structure.Along the helical chains, the helical pitchs are 1.245 73(6)nm for complex 3 and 1.233 09(24)nm for complex 4 corresponding to the c axis.

    Fig.4 View of the coordination environment of the Mn(Ⅱ)center in complex 3 with limited numbering scheme

    Fig.5 A perspective view of the one-dimensional helical chain structure along the c axis in complex 3

    2.3 Crystal structure of complex 5

    The X-ray crystal structure analyses reveal that complex{[Cu(Hbpma)2(H2O)2](SO4)2·9H2O}n(5)is composedoftwo-dimensionallayersbridgedby flexible bpma ligands,free sulfate anions and lattice water molecules.In the coordination environment as shown in Fig.6 ,there is crystallographically oneindependent Cu(Ⅱ)center in a distorted six-coordinated octahedral geometry.Four nitrogen atoms from four different protonated bpma ligands form the equatorial plane of the Cu(Ⅱ)ion,while two water ligands occupy the apical positions.In the complex,the Cu-N bond distances vary from 0.202 1(4)to 0.203 6(4)nm and the Cu-O bond lengthsare0.243 5(4)and 0.248 6(4)nm,respectively.Meantime,each bpma ligand binds two Cu(Ⅱ)ions leading to a two-dimensional layer as illustrated in Fig.7 .It is noteworthy that the bpma ligands in the trans-trans conformation form the polymeric helical chains propagating along the crystallographic b axis with a helical pitch of 1.303 52(13) nm.Therefore,the 2D sheet can be described as an achiral helical tubular layer in which the left and right helical chains appear alternatively as shown in Fig.7 .

    Fig.6 View of the coordination environment of the Cu(Ⅱ)center in complex 5 with limited numbering scheme

    Fig.7 A perspective view of the two-dimensional helical layer structure parallel to the ab plane in complex 5

    Fig.8 Plots of χMT(○)and(+)versus T for complex 1

    2.4 Magnetic properties

    The variable temperature magnetic susceptibilities of complexes 1,3 and 5 were measured and plots of χMT andversus T are shown in Fig.8 ~10,where χMis the magnetic susceptibility per[Cu(Hbpma)(H2O)4]2(SO4)3·3.5H2O unit for complex 1,per[Mn(Hbpma) (H2O)4](SO4)1.5·3H2Ounitforcomplex 3andper [Cu(Hbpma)2(H2O)2](SO4)2·9H2O unit for complex 5. For complex 1,the χMT value at room temperature is 0.740 cm3·K·mol-1,which is a little lower than the spin-only value(0.750 cm3·K·mol-1)expected for two uncorrelated Cu(Ⅱ)centers(S=1/2).For complex 3,the χMT value at room temperature is 4.310 cm3·K·mol-1, which is a little lower than the spin-only value(4.375 cm3·K·mol-1)expected for one high-spin Mn(Ⅱ)center (S=5/2).For complex 5,the χMT value at room temperature is 0.379 cm3·K·mol-1,which is close to the spin-only value(0.375 cm3·K·mol-1)expected for one uncorrelated Cu(Ⅱ)center(S=1/2).On lowering the temperature,the χMT values of three complexes decrease continuously,reaching 0.168 cm3·K·mol-1for complex 1,4.088 cm3·K·mol-1for complex 3 and 0.026 cm3·K·mol-1for complex 5 at 2 K.From the plots ofagainst T,the curves of three complexes follow the Curie-Weiss law χM=C/(T-θ),with fittedparameters θ=-8.70 K and C=0.76 cm3·K·mol-1for complex 1,θ=-0.92 K and C=4.30 cm3·K·mol-1for complex 3 and θ=-25.53 K and C=0.42 cm3·K·mol-1forcomplex5,indicatingthatantiferromagnetic exchange interactions are predominant in three cases. In the crystal structures,the distances between two adjacent Cu(Ⅱ)or Mn(Ⅱ)centers are over 1.1 nm mediated by bpma bridges,so there should be weak antiferromagnetic interactions in three complexes.

    Fig.9 Plots of χMT(○)and(+)versus T for complex 3

    Fig.1 0Plots of χMT(○)and(+)versus T for complex 5

    2.5 Thermal behavior

    All the synthesized complexes are air stable. Thermogravimetric analysis(TGA)was carried out in the interest of studying the thermal stability of these helical structure materials and the TGA curves are provided in Fig.1 1.The weight loss curves of five complexes are found to be similar exhibiting a twostep weight loss process.The first step of weight loss in the range of 20~200℃should be corresponding to the partly loss of the free or coordinated water molecules.At about 200℃,five complexes show the weight loss of 7.02%to 19.66%,less than the calculated values(12.02%to 23.98%).Over the range of 200~500℃,the sharp weight loss may be due to the decomposition of the complexes.

    Fig.1 1TGA curves for complexes 1~5

    3Conclusions

    In summary,five helical structure complexes constructed by flexible bpma ligands were synthesized and structurally characterized in which all protonated bpma ligands assume the trans-trans conformation. Complexes 1 and 2 show the pseudo-helical chain structures and complexes 3 and 4 exhibit the singlestranded helical chain structures,whereas complex 5 has an achiral helical tubular layer network.These results are beneficial to form more novel helical structures.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Leong W L,Vittal J J.Chem.Rev.,2011,111:688-764

    [2]Li C P,Guo J,Du M.Inorg.Chem.Commun.,2013,38:70-73

    [3]Chamayou A C,Makhloufi G,Nafie L A,et al.Inorg.Chem., 2015,54:2193-2203

    [4]Lin M J,Jouaiti A,Kyritsakas N,et al.Chem.Commun.,2010, 46:115-117

    [5]He J H,Chen H Y,Xiao D R,et al.CrystEngComm,2011, 13:4841-4845

    [6]Xiao D R,Li Y G,Wang E B,et al.Inorg.Chem.,2007,46: 4158-4166

    [7]Xin R,Yu X Y,Gao W P,et al.Inorg.Chem.Commun.,2013,35:38-41

    [8]SONG Shuang(宋爽),CHA Yu-E(查玉娥),WANG Yu-Feng (王育豐),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2014,30(6):1234-1242

    [9]Cao X Y,Li Z J,Zhang J,et al.CrystEngComm,2008,10: 1345-1349

    [10]Han L,Zhou Y,Zhao W N,et al.Cryst.Growth Des.,2009, 9:660-662

    [11]Li Z Z,Du L,Zhang X Z,et al.Inorg.Chem.Commun., 2014,45:20-24

    [12]Yuan G Z,Zhu C F,Liu Y,et al.J.Am.Chem.Soc.,2009, 131:10452-10460

    [13]Huang F P,Li H Y,Tian J L,et al.Cryst.Growth Des., 2009,9:3191-3196

    [14]Zhang J,Chen Y B,Chen S M,et al.Inorg.Chem.,2006,45: 3161-3163

    [15]Luan X J,Cai X H,Wang Y Y,et al.Chem.Eur.J.,2006,12: 6281-6289

    [16]Sun X L,Wang Z J,Zang S Q,et al.Cryst.Growth Des., 2012,12:4431-4440

    [17]Cui Z H,Wang S S,Wang X G,et al.Z.Anorg.Allg.Chem., 2012,638:669-674

    [18]Wang S S,Xi P M,Wang X G,et al.Transition Met.Chem., 2013,38:105-112

    [19]Larsen S,Michelsen K,Pedersen E.Acta Chem.Scand.Ser. A,1986,40:63-76

    [20]Sheldrick G M.SADABS 2.05,University of G?ttingen, Germany,2000.

    [21]Sheldrick G M.Acta Crystallogr.Sect.A,2008,64:112-122

    [22]CUI Zhi-Hua(崔志華),WANG Si-Si(王思思),WANG Xiu-Guang(王修光),et al.Chinese J.Struct.Chem.(結(jié)構(gòu)化學(xué)), 2012,31(6):769-776

    Syntheses,Crystal Structures and Properties of a Series of Helical Complexes Constructed by Flexible N,N′-Bis(3-pyridylmethyl)amine

    YUE Cui-MinGAO Dong-Zhao*WANG Xiu-Guang
    (Tianjin Key Laboratory of Structure and Performance for Functional Molecules;Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry,Ministry of Education;College of Chemistry,Tianjin Normal University,Tianjin 300387,China)

    Five helical coordination polymers{[Cu(Hbpma)(H2O)4]2(SO4)3·3.5H2O}n(1),{[Ni(Hbpma)(H2O)4]4(SO4)6· 10.75H2O}n(2),{[Mn(Hbpma)(H2O)4](SO4)1.5·3H2O}n(3),{[Zn(Hbpma)(H2O)4]4(SO4)6·4H2O·4CH3OH}n(4)and{[Cu (Hbpma)2(H2O)2](SO4)2·9H2O}n(5)(bpma=N,N′-bis(3-pyridylmethyl)amine)were synthesized and structurally characterized.The single-crystal X-ray analyses indicate that complexes 1~4 crystallize in the one-dimensional chain structures and complex 5 shows the two-dimensional layer structure,in which the metal ions are bridged by the protonated bpma ligands.It is noted that the flexible bpma ligands with the trans-trans conformation lead to the pseudo-helical chains for complexes 1~2,the helical chains for complexes 3~4 and a helical layer for complex 5. The magnetic properties and the thermal behavior are investigated.CCDC:966929,1;966932,2;966930,3; 966931,4;1054736,5.

    metal complex;N,N′-bis(3-pyridylmethyl)amine;helical structure;magnetic property;thermal behavior

    O614.121;O614.24+1;O614.71+1;O614.81+3

    A

    1001-4861(2015)08-1609-10

    10.11862/CJIC.2015.213

    2015-04-13。收修改稿日期:2015-05-28。

    *通訊聯(lián)系人。E-mail:tjgaodz@sina.com

    猜你喜歡
    天津師范大學(xué)吡啶甲基
    “不速之客”
    UIO-66熱解ZrO2負(fù)載CoMoS對(duì)4-甲基酚的加氫脫氧性能
    分子催化(2022年1期)2022-11-02 07:10:56
    天津師范大學(xué)美術(shù)與設(shè)計(jì)學(xué)院作品選登
    1,2,4-三甲基苯氧化制備2,3,5-三甲基苯醌的技術(shù)進(jìn)展
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    An Experimental Study of Tone and Tone Sandhi in the New School of Nanjing Dialect
    勘 誤
    蘭花
    今日農(nóng)業(yè)(2019年11期)2019-08-13 00:49:02
    聚甲基亞膦酸雙酚A酯阻燃劑的合成及其應(yīng)用
    日韩欧美 国产精品| 精品久久久久久久久av| 99久久九九国产精品国产免费| 国产精品久久久久久久久免| 国产精品精品国产色婷婷| 99久久精品热视频| 欧美成人免费av一区二区三区| 欧美日本亚洲视频在线播放| 午夜激情欧美在线| av天堂在线播放| 99热全是精品| 97人妻精品一区二区三区麻豆| 国产精品美女特级片免费视频播放器| ponron亚洲| 久久精品夜色国产| 人人妻人人澡欧美一区二区| 色视频www国产| 亚洲精品成人久久久久久| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影| 日本三级黄在线观看| 精品一区二区免费观看| 真实男女啪啪啪动态图| 国产国拍精品亚洲av在线观看| av专区在线播放| 舔av片在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产黄片视频在线免费观看| 黄色一级大片看看| 能在线免费看毛片的网站| 三级男女做爰猛烈吃奶摸视频| 亚洲精品国产av成人精品| 亚洲一区二区三区色噜噜| 熟女人妻精品中文字幕| 自拍偷自拍亚洲精品老妇| 中出人妻视频一区二区| 色噜噜av男人的天堂激情| 一级毛片我不卡| 日韩在线高清观看一区二区三区| 麻豆国产97在线/欧美| 国产精品不卡视频一区二区| 我要搜黄色片| 国产精品一区二区在线观看99 | 99热网站在线观看| 成人美女网站在线观看视频| 天堂√8在线中文| 91狼人影院| 亚洲高清免费不卡视频| 不卡一级毛片| 久久99热6这里只有精品| 欧美bdsm另类| 级片在线观看| 男女边吃奶边做爰视频| 国产午夜精品论理片| 亚洲五月天丁香| 男的添女的下面高潮视频| 亚洲精品456在线播放app| 精品一区二区免费观看| 国产伦精品一区二区三区四那| 超碰av人人做人人爽久久| 日本成人三级电影网站| 亚洲成人久久爱视频| 哪个播放器可以免费观看大片| 一本精品99久久精品77| 国产伦精品一区二区三区视频9| 亚洲三级黄色毛片| 深爱激情五月婷婷| 在线观看免费视频日本深夜| 久久精品夜色国产| 日韩制服骚丝袜av| 小蜜桃在线观看免费完整版高清| 一区二区三区四区激情视频 | 最近视频中文字幕2019在线8| 亚洲av二区三区四区| 国产美女午夜福利| 精品国产三级普通话版| 99热精品在线国产| 卡戴珊不雅视频在线播放| 日韩欧美 国产精品| 亚洲第一区二区三区不卡| 亚洲在久久综合| 成人欧美大片| 亚洲第一电影网av| 性欧美人与动物交配| 亚洲欧美精品综合久久99| 亚洲欧洲日产国产| 亚洲成人av在线免费| 久久99热6这里只有精品| 国产精品一区二区三区四区久久| 国产激情偷乱视频一区二区| 免费人成视频x8x8入口观看| ponron亚洲| 欧美高清性xxxxhd video| 久久久久久国产a免费观看| 日本黄色视频三级网站网址| 天天躁夜夜躁狠狠久久av| 亚洲人成网站在线播放欧美日韩| 久久亚洲国产成人精品v| 亚洲在线观看片| 九九爱精品视频在线观看| 麻豆av噜噜一区二区三区| 亚洲av免费在线观看| 一个人看的www免费观看视频| 又爽又黄无遮挡网站| 97在线视频观看| 免费观看在线日韩| 亚洲国产精品国产精品| 亚洲七黄色美女视频| 男人舔奶头视频| 久久久久久久亚洲中文字幕| 一个人观看的视频www高清免费观看| 美女脱内裤让男人舔精品视频 | 国产成年人精品一区二区| 亚洲无线观看免费| 国产精品一区www在线观看| av免费在线看不卡| 两性午夜刺激爽爽歪歪视频在线观看| 久99久视频精品免费| 五月玫瑰六月丁香| 欧美日韩综合久久久久久| 久久久国产成人精品二区| 久久精品综合一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 人妻系列 视频| 麻豆国产97在线/欧美| 亚洲欧美精品自产自拍| 直男gayav资源| 免费搜索国产男女视频| 久久国产乱子免费精品| 中国美白少妇内射xxxbb| 国产真实乱freesex| 美女黄网站色视频| 网址你懂的国产日韩在线| 免费看日本二区| 成人漫画全彩无遮挡| 亚洲精品乱码久久久久久按摩| 国产高清三级在线| 亚洲精品成人久久久久久| 99精品在免费线老司机午夜| 99riav亚洲国产免费| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久久久成人| 99热这里只有是精品在线观看| a级毛片免费高清观看在线播放| 99久久久亚洲精品蜜臀av| 国产在线精品亚洲第一网站| 能在线免费看毛片的网站| 国产蜜桃级精品一区二区三区| 色综合色国产| 嘟嘟电影网在线观看| 国产精品女同一区二区软件| 日产精品乱码卡一卡2卡三| a级一级毛片免费在线观看| 简卡轻食公司| 少妇的逼好多水| 欧美精品一区二区大全| 大又大粗又爽又黄少妇毛片口| 毛片女人毛片| av又黄又爽大尺度在线免费看 | 乱系列少妇在线播放| 男女边吃奶边做爰视频| 日韩人妻高清精品专区| 免费人成在线观看视频色| 成人性生交大片免费视频hd| 国产精品一区二区三区四区久久| 国产极品精品免费视频能看的| 乱码一卡2卡4卡精品| 男人的好看免费观看在线视频| 91麻豆精品激情在线观看国产| 你懂的网址亚洲精品在线观看 | 韩国av在线不卡| 我要搜黄色片| 日韩精品有码人妻一区| 欧美最新免费一区二区三区| 精品久久久久久久久久久久久| 高清毛片免费观看视频网站| 久久久久久久久久黄片| 寂寞人妻少妇视频99o| 亚洲三级黄色毛片| 乱系列少妇在线播放| 九九热线精品视视频播放| 国产精品精品国产色婷婷| 欧美激情在线99| 中国美女看黄片| 18禁在线无遮挡免费观看视频| 一边摸一边抽搐一进一小说| 插阴视频在线观看视频| 免费看美女性在线毛片视频| 久久这里只有精品中国| 国产熟女欧美一区二区| 国产激情偷乱视频一区二区| 美女高潮的动态| 一个人观看的视频www高清免费观看| 高清日韩中文字幕在线| 麻豆久久精品国产亚洲av| 日韩大尺度精品在线看网址| 成人性生交大片免费视频hd| 中文字幕熟女人妻在线| 又粗又硬又长又爽又黄的视频 | 麻豆成人午夜福利视频| 熟女人妻精品中文字幕| 久久精品国产亚洲网站| 91精品国产九色| 尤物成人国产欧美一区二区三区| 国产成人a区在线观看| 国产精品一二三区在线看| 少妇猛男粗大的猛烈进出视频 | 91久久精品电影网| 日韩国内少妇激情av| 亚洲天堂国产精品一区在线| 一进一出抽搐动态| 日日干狠狠操夜夜爽| 国产精品一区二区三区四区久久| 99国产极品粉嫩在线观看| 亚洲色图av天堂| 成人一区二区视频在线观看| 女人被狂操c到高潮| 性色avwww在线观看| 国产精品嫩草影院av在线观看| av又黄又爽大尺度在线免费看 | 中出人妻视频一区二区| 禁无遮挡网站| 欧美日韩乱码在线| 国产私拍福利视频在线观看| 国产极品天堂在线| 欧美最新免费一区二区三区| 天堂av国产一区二区熟女人妻| 中文字幕制服av| 乱系列少妇在线播放| 少妇猛男粗大的猛烈进出视频 | 午夜福利在线观看免费完整高清在 | kizo精华| 午夜久久久久精精品| 一级黄片播放器| 日韩高清综合在线| 免费大片18禁| 亚洲18禁久久av| 国产午夜精品久久久久久一区二区三区| 在线a可以看的网站| 欧美日本视频| 直男gayav资源| 国产精品一二三区在线看| 日本一二三区视频观看| 日本免费a在线| 爱豆传媒免费全集在线观看| 欧美日韩在线观看h| 国内精品美女久久久久久| 久久鲁丝午夜福利片| 国产在线男女| 国产又黄又爽又无遮挡在线| 久久精品久久久久久久性| 一本久久精品| 一夜夜www| 久久久精品94久久精品| 丰满的人妻完整版| 亚洲精品日韩av片在线观看| 1000部很黄的大片| .国产精品久久| 亚洲在久久综合| 少妇的逼水好多| 男女那种视频在线观看| 国产v大片淫在线免费观看| 欧美xxxx性猛交bbbb| 春色校园在线视频观看| 亚洲欧美日韩卡通动漫| 最近视频中文字幕2019在线8| av又黄又爽大尺度在线免费看 | 国产在视频线在精品| 国产v大片淫在线免费观看| 热99re8久久精品国产| 卡戴珊不雅视频在线播放| 一级二级三级毛片免费看| 国产男人的电影天堂91| 亚洲四区av| 日韩一区二区视频免费看| 国产精品一区二区性色av| 久久精品影院6| 51国产日韩欧美| 国内精品宾馆在线| 六月丁香七月| av在线播放精品| 久久综合国产亚洲精品| 色综合站精品国产| 亚洲av成人av| 美女黄网站色视频| 久久99热这里只有精品18| 国产 一区精品| 久久99精品国语久久久| 91久久精品电影网| 国产午夜福利久久久久久| 三级男女做爰猛烈吃奶摸视频| 看免费成人av毛片| 国产探花极品一区二区| 亚洲无线观看免费| 欧美日本视频| 97超碰精品成人国产| 免费一级毛片在线播放高清视频| 丝袜喷水一区| 男女那种视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品久久男人天堂| 国产乱人偷精品视频| 天堂中文最新版在线下载 | 黄色一级大片看看| 国产极品天堂在线| 舔av片在线| 亚洲七黄色美女视频| 夫妻性生交免费视频一级片| 亚洲经典国产精华液单| 免费av不卡在线播放| 变态另类成人亚洲欧美熟女| 国产精品.久久久| 婷婷精品国产亚洲av| 亚洲成人av在线免费| 在线观看免费视频日本深夜| 在线天堂最新版资源| 久久精品91蜜桃| 人妻夜夜爽99麻豆av| 91久久精品电影网| 神马国产精品三级电影在线观看| 午夜亚洲福利在线播放| 校园春色视频在线观看| 久久久久免费精品人妻一区二区| 91久久精品电影网| 亚洲av免费在线观看| 亚洲高清免费不卡视频| 晚上一个人看的免费电影| 国产伦一二天堂av在线观看| av免费观看日本| 日韩三级伦理在线观看| 国产精品日韩av在线免费观看| 成人特级av手机在线观看| 一个人免费在线观看电影| 久久韩国三级中文字幕| 夜夜爽天天搞| 日本一二三区视频观看| 亚洲国产精品成人久久小说 | 国产白丝娇喘喷水9色精品| 国产老妇女一区| 我的老师免费观看完整版| 国产三级中文精品| 精品人妻视频免费看| 成人国产麻豆网| 99热只有精品国产| 国产一区二区在线av高清观看| 日韩强制内射视频| 欧美日韩乱码在线| 夜夜爽天天搞| 亚洲av免费高清在线观看| 少妇人妻精品综合一区二区 | 久久久a久久爽久久v久久| 成人一区二区视频在线观看| 亚洲精华国产精华液的使用体验 | 国产成年人精品一区二区| 久久久久久久午夜电影| 日本av手机在线免费观看| 嫩草影院入口| 99在线视频只有这里精品首页| 51国产日韩欧美| 女的被弄到高潮叫床怎么办| 日韩欧美国产在线观看| 99热精品在线国产| 特级一级黄色大片| av天堂中文字幕网| 欧美精品一区二区大全| 欧美日韩在线观看h| 久久婷婷人人爽人人干人人爱| 亚洲18禁久久av| 99九九线精品视频在线观看视频| 免费搜索国产男女视频| 久久久色成人| 久久久国产成人精品二区| 亚洲国产精品国产精品| 99久久精品一区二区三区| 日本熟妇午夜| 国产一级毛片七仙女欲春2| 亚洲真实伦在线观看| 国产精品av视频在线免费观看| 国产av不卡久久| 一夜夜www| 日本欧美国产在线视频| 性欧美人与动物交配| 国产 一区 欧美 日韩| 97超碰精品成人国产| av福利片在线观看| 久久精品人妻少妇| 久久精品国产自在天天线| 久久精品影院6| 岛国在线免费视频观看| 99在线视频只有这里精品首页| 免费看日本二区| 黄色欧美视频在线观看| 亚洲精华国产精华液的使用体验 | 欧美一区二区国产精品久久精品| 69人妻影院| 能在线免费观看的黄片| 精品久久久久久成人av| 成人一区二区视频在线观看| 国产精品国产高清国产av| 成人毛片60女人毛片免费| www日本黄色视频网| 国产亚洲91精品色在线| 成人午夜高清在线视频| 1024手机看黄色片| 成人亚洲精品av一区二区| 美女被艹到高潮喷水动态| 人人妻人人澡人人爽人人夜夜 | 亚洲精品影视一区二区三区av| 国产中年淑女户外野战色| 成年av动漫网址| 国产在线男女| 国产亚洲精品久久久久久毛片| 村上凉子中文字幕在线| 深夜精品福利| 欧美极品一区二区三区四区| 国产av麻豆久久久久久久| 一个人看的www免费观看视频| 边亲边吃奶的免费视频| 久久婷婷人人爽人人干人人爱| 中国国产av一级| 精品欧美国产一区二区三| 免费看av在线观看网站| 乱码一卡2卡4卡精品| 特级一级黄色大片| 欧美一区二区精品小视频在线| 久久99热这里只有精品18| 嫩草影院精品99| 麻豆成人午夜福利视频| 内地一区二区视频在线| 国产伦在线观看视频一区| 国产高潮美女av| 国产精品久久久久久精品电影| 成人漫画全彩无遮挡| 国产人妻一区二区三区在| 午夜久久久久精精品| 亚洲欧美日韩东京热| 日韩精品青青久久久久久| 五月玫瑰六月丁香| 男女视频在线观看网站免费| 99热6这里只有精品| 精品久久久久久久久久免费视频| 白带黄色成豆腐渣| 久久99蜜桃精品久久| 亚洲欧洲日产国产| 老司机影院成人| 天堂影院成人在线观看| 久久久久国产网址| 日产精品乱码卡一卡2卡三| 少妇猛男粗大的猛烈进出视频 | 国产又黄又爽又无遮挡在线| 日韩一本色道免费dvd| 我要搜黄色片| 尤物成人国产欧美一区二区三区| 在线观看66精品国产| www日本黄色视频网| a级毛片免费高清观看在线播放| 一级黄片播放器| 婷婷精品国产亚洲av| 波多野结衣高清作品| 干丝袜人妻中文字幕| 一个人看的www免费观看视频| 国产精品人妻久久久影院| 欧美成人一区二区免费高清观看| 中文字幕免费在线视频6| 免费看光身美女| 3wmmmm亚洲av在线观看| 一个人免费在线观看电影| 青春草国产在线视频 | 婷婷精品国产亚洲av| 最新中文字幕久久久久| 成人午夜高清在线视频| 亚洲av电影不卡..在线观看| 国产免费男女视频| 村上凉子中文字幕在线| 综合色丁香网| 男人狂女人下面高潮的视频| 色5月婷婷丁香| 深夜a级毛片| 亚洲av第一区精品v没综合| 成年免费大片在线观看| 国产伦一二天堂av在线观看| 亚洲真实伦在线观看| 黄色视频,在线免费观看| 夜夜夜夜夜久久久久| 色5月婷婷丁香| 国产精品无大码| av视频在线观看入口| 欧美极品一区二区三区四区| 黄色配什么色好看| 国产精品av视频在线免费观看| 男女视频在线观看网站免费| 国产久久久一区二区三区| 国产精品1区2区在线观看.| 久久精品国产亚洲av香蕉五月| 亚洲五月天丁香| 又黄又爽又刺激的免费视频.| 精品熟女少妇av免费看| 五月玫瑰六月丁香| 最近2019中文字幕mv第一页| 亚洲av中文字字幕乱码综合| 久久久午夜欧美精品| 日韩成人av中文字幕在线观看| 如何舔出高潮| 色综合色国产| 国产精品免费一区二区三区在线| 禁无遮挡网站| 国产精品电影一区二区三区| 神马国产精品三级电影在线观看| 国产精品精品国产色婷婷| 成人二区视频| 女同久久另类99精品国产91| 美女黄网站色视频| 国产精品美女特级片免费视频播放器| 波多野结衣巨乳人妻| 日本与韩国留学比较| 岛国在线免费视频观看| 国产在视频线在精品| 身体一侧抽搐| 97在线视频观看| 如何舔出高潮| 插逼视频在线观看| 欧美一区二区国产精品久久精品| 亚洲成a人片在线一区二区| 少妇熟女aⅴ在线视频| 亚洲欧洲国产日韩| 亚洲自拍偷在线| 一区二区三区四区激情视频 | 欧美又色又爽又黄视频| 天美传媒精品一区二区| 国产精品永久免费网站| 国语自产精品视频在线第100页| 日韩欧美三级三区| 国产日本99.免费观看| 成人永久免费在线观看视频| 国内揄拍国产精品人妻在线| 一本一本综合久久| 亚洲国产日韩欧美精品在线观看| 久久精品国产自在天天线| 精品欧美国产一区二区三| 日韩成人伦理影院| 五月伊人婷婷丁香| 一本一本综合久久| 亚洲无线观看免费| 精品一区二区免费观看| 麻豆成人午夜福利视频| 国产精品99久久久久久久久| 一区福利在线观看| 国产淫片久久久久久久久| 日韩成人伦理影院| 国产私拍福利视频在线观看| 国产黄色视频一区二区在线观看 | 老女人水多毛片| 自拍偷自拍亚洲精品老妇| 69人妻影院| 午夜久久久久精精品| 最好的美女福利视频网| 97热精品久久久久久| 可以在线观看毛片的网站| 久久精品国产自在天天线| 久久久久网色| h日本视频在线播放| 国产精品日韩av在线免费观看| 蜜桃久久精品国产亚洲av| 国产精品综合久久久久久久免费| 一区二区三区四区激情视频 | 久久精品国产自在天天线| 国产老妇伦熟女老妇高清| 看免费成人av毛片| 亚洲内射少妇av| 久久精品国产鲁丝片午夜精品| 日韩精品青青久久久久久| 欧美xxxx黑人xx丫x性爽| 亚洲成av人片在线播放无| 色吧在线观看| 成熟少妇高潮喷水视频| 国产女主播在线喷水免费视频网站 | 国产精品日韩av在线免费观看| 99久久人妻综合| 只有这里有精品99| 在现免费观看毛片| 网址你懂的国产日韩在线| 亚洲精品国产成人久久av| 国产色爽女视频免费观看| 亚洲成人中文字幕在线播放| 国产真实乱freesex| 在线观看免费视频日本深夜| 欧美一区二区亚洲| 国产伦精品一区二区三区四那| 九九久久精品国产亚洲av麻豆| 日韩一区二区三区影片| 99久久久亚洲精品蜜臀av| 亚洲婷婷狠狠爱综合网| 免费看光身美女| 国国产精品蜜臀av免费| 亚洲第一电影网av| 国产真实伦视频高清在线观看| 亚洲欧美中文字幕日韩二区| 九九在线视频观看精品| 69人妻影院| 亚洲,欧美,日韩| 一边亲一边摸免费视频| av黄色大香蕉| 亚洲欧美成人综合另类久久久 | 99九九线精品视频在线观看视频| 精品久久久噜噜| 国产精品免费一区二区三区在线| 嘟嘟电影网在线观看| 2021天堂中文幕一二区在线观| 国产淫片久久久久久久久| 日本黄色视频三级网站网址| 两个人视频免费观看高清| 99久久精品一区二区三区| 国产精品一及| 蜜桃久久精品国产亚洲av| 五月伊人婷婷丁香|