• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水穩(wěn)定的鎂摻雜ZnO量子點(diǎn):一鍋法合成及細(xì)胞成像應(yīng)用

    2015-12-05 10:25:20張立平吳山劉丹萬(wàn)永剛劉道森
    關(guān)鍵詞:吳山劉丹齊齊哈爾

    張立平 吳山 劉丹 萬(wàn)永剛 劉道森

    (1齊齊哈爾醫(yī)學(xué)院醫(yī)學(xué)技術(shù)學(xué)院,齊齊哈爾161006)

    (2齊齊哈爾醫(yī)學(xué)院醫(yī)藥研究中心,齊齊哈爾161006)

    (3齊齊哈爾大學(xué)通信與電子工程學(xué)院,齊齊哈爾161006)

    水穩(wěn)定的鎂摻雜ZnO量子點(diǎn):一鍋法合成及細(xì)胞成像應(yīng)用

    張立平*,1吳山2劉丹2萬(wàn)永剛1劉道森3

    (1齊齊哈爾醫(yī)學(xué)院醫(yī)學(xué)技術(shù)學(xué)院,齊齊哈爾161006)

    (2齊齊哈爾醫(yī)學(xué)院醫(yī)藥研究中心,齊齊哈爾161006)

    (3齊齊哈爾大學(xué)通信與電子工程學(xué)院,齊齊哈爾161006)

    一鍋法合成了鎂摻雜的ZnO量子點(diǎn),利用APTES對(duì)其進(jìn)行表面包覆,并采用XRD、TEM、UV-Vis、PL和FTIR等對(duì)材料進(jìn)行了表征。結(jié)果表明鎂摻雜能明顯增強(qiáng)熒光發(fā)光強(qiáng)度,在合適的摻雜濃度(30%)下其量子產(chǎn)率由11%增加到33%。通過(guò)APTES的表面包覆使鎂摻雜的ZnO量子點(diǎn)具有良好的水溶性和熒光穩(wěn)定性,可用于MCF-7細(xì)胞成像研究。

    ZnO量子點(diǎn);鎂摻雜;APTES包覆;水穩(wěn)定性

    Research onphotoluminescent semiconductor quantum dots(QDs)has received considerable attentions owing to their potential applications as biological labels during the past few decades[1-2].Relevant studies have been focused on“Cd element”containing QDs such as CdSe and CdTe QDs which have high quantum yield and relatively strong photoluminescence(PL)emission.However,such quantum dots are toxictobiologicalsystems.Althoughvarious protectionsemployingZnS,polymers,andothernontoxic shells have been developed,the leakage of Cd ions through the shell and the radicals derived from light irradiation could still be observed[3-8].

    Much attention has been paid to an alternative semiconductor for cell labeling applications since 1998[9].ZnO QDs are ideal candidates since they are nontoxic,less expensive,and chemically stable in air[10-11].However,colloidal ZnO QDs derived by traditional sol-gel routes tend to aggregate or grow due to their high surface energy,resulting in the disappearance of the visible emission[12].At the same time,the quantum yield(QY)of thus prepared ZnO QDs is usually below 10%[13-14].Moreover,conventional ZnO QDs are not stable in water.This instability is related to their surface luminescent mechanism,as water will exchange the organic protecting groups on the ZnO QDs surface attacking the luminescent centers and destroying the centers rapidly[15].Aqueous-stability is necessary for biomedical applications because the majority of bioanalyses require water-stable materials. Therefore,enhancement in stability and PL emission of ZnO QDs is a must for practical applications[11,16-17].

    In this work,a one-pot synthesis approach was developed to fabricate water-stable Magnesium-doped ZnO nanoparticles.The doped quantum dots give strong blue emissions centered on around 491 nm with a relatively high QY of 33%,which is significantly increased compared to the undoped ZnO QDs. In addition,aqueous-stability is achieved by capping the Mg-doped ZnO QDs with APTES.The obtained APTES-capped Mg-doped ZnO QDs exhibit excellent water stability,and the visible emissions are retained. The cell labeling applications are also demonstrated.

    1Experimental

    1.1 Reagents and instruments

    Lithiumhydroxidemonohydrate(LiOH·H2O, 95.0%),Zincacetatedihydrate(Zn(OAc)2·2H2O, 99.0%),Magnesium acetate tetrahydrate(Mg(OAc)2· 4H2O,99.0%),ethanol(absolute,99.7%)and nhexane(97.0%)were purchased from Sinopharm Chemical Reagent Co.,Ltd.(Shanghai,China).(3-aminopropyl)triethoxysilane(APTES,98%pure,Sigma -Aldrich)and ultrapure water(Resistivity at 25℃∶18 MΩ·cm)were used without further purification.

    XRDdatawereobtainedonaBrukerD8 Advance X-ray diffractometer using Cu Kα irradiation at λ=0.154 18 nm.TEM images were recorded on a Hitachi HT 7700 electron instrument.FTIR spectra were recorded in 400~4 000 cm-1on a Nicollet 380 spectrophotometer using a KBr pellet.UV-Vis absorption spectra were obtained using a Shimadzu UV-2550 spectrometer.Photoluminescence(PL)measurements were carried out at room temperature with a Perkin-Elmer LS 55 spectrofluorometer.The cells were observed using a Nikon TI-S-130W inverted fluorescence microscope.The relative quantum yields(QYs) were measured using a solution of Rhodamine 6G in ethanol(QY 95%)as a reference material[18].

    1.2 Synthesis of undoped ZnO QDs

    ZnO QDs were prepared through a precipitation method by using LiOH as the precipitation agent in ethanol.In general,0.25 mmol of Zinc acetate was dissolved in 15 mL of ethanol.The mixture was refluxed at 40℃for 1 h under continuous stirring under atmospheric conditions.Meanwhile,0.5 mmol of LiOH was dissolved in 10 mL of ethanol for 20 min under ultrasonic vibration.Afterwards,the LiOH/ ethanol solution was then added to the zinc acetate/ ethanol solution.After the mixture was refluxed at 40℃for 1 h under continuous stirring under atmospheric conditions,stable ZnO QDs were formed in the solution(sample A).Then 40 mL APTES was added to the solution under magnetic stirring at room temperature for 1 h to ensure adequate dispersion. Subsequently,0.5 mL of ammonia was added slowly to the solution for 1 h with continuous stirring.Then APTES capped ZnO QDs were first washed using nhexane(1∶4,V/V)and then washed using ethanol three times to remove the unreacted molecules.The final particles were collected by centrifugation(5 000 r· min-1)for 5 min and re-dispersed in deion-ized water for further characterization.

    1.3 Synthesis of Mg-doped ZnO QDs

    To prepare Mg-doped ZnO QDs,a given amount of Magnesium acetate and Zinc acetate were refluxedat 40℃for 1 h under continuous stirring and atmospheric conditions,and the followed procedures were similar to the undoped ZnO QDs.The molar ratio of Magnesium and Zinc was from 10%to 40%,and the amount of LiOH remained unchanged.Finally,Mgdoped ZnO QDs with different molar ratios of Mg-10%,20%,30%,40%(denoted by B,C,D and E) were synthesized.Then,Mg-doped ZnO QDs(B~D) were capped by APTES,and the followed procedures were similar to the un-doped ZnO QDs.

    1.4 Cell labeling

    MCF-7 cells were placed in a 24-well plate and incubated at 37℃in 5%CO2in air.After 24 h,10 μL of APTES-capped Mg-doped ZnO QDs at 20 μg· mL-1was injected into each well.The particles were then incubated for 24 h at pH value of 7.4.After incubation,the cells were observed using a Nikon TIS-130W inverted fluorescence microscope[16].

    Fig.1 XRD patterns of un-doped ZnO QDs and Mg-doped ZnO QDs

    Table1 Comparison of parameters for different Mg-doped ZnO QDs

    2Results and discussion

    2.1 XRD analysis

    The XRD patterns of un-doped ZnO QDs and Mg-doped ZnO QDs with 10%,20%,30%and 40% are shown in Fig.1 .Meanwhile,inductively coupled plasma(ICP)results are shown in Table1 .The crystallographic phases of samples are all in good agreement with that in PDF No.36-1451,indicating the hexagonal wurtzite structure with space group P63mc.On the other hand,the XRD patterns of Mgdoped ZnO QDs with different molar ratios(B~E) show that there is no phase corresponding to MgO.We can thus preliminarily deduce that Mg2+ions have been incorporated into the ZnO system.Further,broad XRD peaks suggest formation of nanosized particles in all the samples.By using the Debey Scherrer formula, the average size of ZnO QDs is estimated to be around 2.7,2.5,2.4,2.2 and 2.1 nm for samples A~E,respectively.The XRD patterns reveal that the grainsizeisinverselypropor-tionaltotheMg concentration.Besides,the peaks of un-doped ZnO QDs are sharper than Mg-doped ZnO QDs,The incorporation of Mg deteriorates the crystallinity of ZnO QDs and reduces the size of ZnO QDs due to the difference in ion radius between Zn2+(0.074 nm)and Mg2+(0.072 nm).Literature results[19-20]suggest that the reduction of the ZnO particle size always is a good way for improvement of the quantum yield.One is the increaseoftherelativeconcentrationofsurface defects compared to bulk lattice sites,which thus increases the probability of trapping electrons or holes on the ZnO surface.The other is the reduction of the distance between shallow traps and deep traps,which thus facilitates electron or hole transfer.Hence,the reduction of the ZnO QDs particle size is achieved by themagnesiumdopingwhichcanalsoincreaseeffectively the quantum yield of ZnO QDs(Table1 ).

    2.2 FTIR spectra

    IR spectroscopy was employed to find the exact location of the Mg2+ions in the ZnO QDs.If Mg2+ions are outside the ZnO,the MgO hydrates should exhibit their characteristic Mg-OH IR vibrations at about 3 700 cm-1[21-22].As shown in Fig.2 (a),no bands at around 3 700 cm-1are observeed in the Mg-doped ZnO QDs.Therefore,the IR analysis rules out the presence of hydrated MgO in the final products.The most important information in Fig.2 (b)is found in the region below 1 100 cm-1,which is not affected by the water content and illustrates the presence of internal metal-oxygen interactions.The vibration of 1 049 cm-1indicates the formation of Zn-O-Si bond,and the vibration shifts to higher frequency at 1 024 cm-1after incorporation of Mg2+ions.In addition,the Zn-O vibration is located at 458 cm-1,and it shifts to lower frequency at 484 cm-1which is ascribed to the doping with Mg2+ions,because Mg atom is more active and easier to lose outer electrons than Zn atom.Thus,Mg serves as an electron donating group to ZnO,and makes Zn-O vibration shift to lower frequency in IR spectra.The above information indicates the formation of Mg-O-Zn bond.It can thus be deduced that at least a part of Mg2+ions have been incorporated into the ZnO lattice by substituting Zn2+ions.

    Fig.2 FTIR spectra of un-doped ZnO QDs and Mg-doped ZnO QDs(a),and FTIR spectra of partial enlargement(b)

    At the same time,IR results of APTES and APTES-capped Mg-doped ZnO QDs in Fig.3 clearly indicate the presence of APTES.The broad absorption band at about 3 410 cm-1could be attributed to the stretching vibration of N-H and O-H.The band at about 2 933 cm-1is typical of C-H stretching vibration. The bands at about 1 577 and 1 506 cm-1are attributed to the bending vibration of N-H,while the bands at about 1 387 and 1 330 cm-1are due to the bending vibration of C-H.As expected,the APTES-capped Mg-doped ZnO QDs are soluble in water.The solubility may be attributed to the exposed hydrophilic groups(-NH2,-OH)that make the surface of the nanocrystals hydrophilic.

    Fig.3 FTIR spectra of APTES and APTES-capped Mg-doped ZnO QDs

    2.3 UV-Vis spectra

    Fig.4 shows the normalized absorption spectra(a) and corresponding calculated band gap(b)of samples A~E,in which the band gap is estimated from the UV-Vis absorption spectra in Fig.S1.It can be clearly seen that the absorption edge exhibits a blue shift and the band gap increases with increasing in Mg doping.The average diameter of the ZnO nanoparticles can be calculated on the basis of absorption data by using Meulenkamp′s method,these results are in accordance with those obtained by employing the Debye-Scherer formula.The particle diameter decreases from 2.7 nm(0%)to 2.2 nm(40%)with increase in Mg doping,which can be ascribed to the strong interaction between the surface oxides of Zn2+and Mg2+and the quantum size effect.At the same time,Fig.4 shows that the presence of Mg2+ions plays two roles. One aspect is the control of the size of ZnO QDs,and another is the control of the number of surface defects. When the doping concentration is lower(〈20%),Mg2+ions serve to limit the growth of the size of ZnO QDs and increase the number of surface defects.But when the doping concentration is higher(〉20%),Mg2+ions serve to control the number of surface defects.

    Fig.4 (a)Normalized absorption spectra(path length 10 mm)and(b)corresponding calculated band gap of the samples A~E

    2.4 PL spectra

    Fig.5 shows the PL spectra and digital photographs of samples A~E.From the PL spectra(Fig.5 (a)),we can see that the emissions of A~E are 501, 495,492,491 and 491 nm,respectively.At the same time,the intensity of the maximum emission is enhanced remarkably,which may be attributed to the increasing concentration of defects.The quantum yields with different Mg contents are 11%,22%,28%, 33%and 29%,respectively(Table1 ).The QY of the quantum dots first increases and then decreases with increase in Mg loading.When the molar ratio of Mg is 30%,the QY value reaches the highest value.This trend agrees with the results of PL emissions.

    Fig.5 (a)PL spectra(excitation wavelengths of A~E are 336 nm,326 nm,323 nm,322 nm,321 nm,slit width 10 nm), (b)digital photographs of un-doped ZnO QDs and Mg-doped ZnO QDs under UV light(UV@302 nm)

    The PL spectra versus storage time under room temperature for unmodified and APTES-capped ZnO QDs are shown in Fig.6 .For unmodified ZnO QDs (sample A),the emission intensity is sharply decayed. In contrast,APTES-capped ZnO QDs(sample B~D), the emission intensity still remains unchanged after 14 days.These clearly indicate that capping of thesurface with APTES can effectively improve the water stability of ZnO QDs.

    Fig.6 PL spectra versus storage time under room temperature for unmodified ZnO QDs(A) (excitation wavelength of 328 nm)and APTES-capped ZnO QDs(B~D)(excitation wavelength of 338 nm)

    2.5 TEM analysis

    The TEM images(Fig.7 )illustrate that the diameters of undoped ZnO QDs and Mg-doped ZnO QDs are about 2.5 nm,which are in agreement with the diameters calculated from the UV/Vis data.As shown in Fig.7 ,the size of ZnO QDs becomes slightly smaller as the Mg2+doping amount increases.The decrease in the particle size is mainly attributed to the formation of Mg-O-Zn bonds on the surface of the doped samples.At the same time,Fig.7 (f)illustrate that the diameters of APTES-capped ZnO QDs(9.0 nm)much larger than those of ZnO QDs without APTES capping(2.5 nm).APTES has effectively capped on the surface of ZnO QDs and improves the stability of the fluorescence in aqueous solution.

    Fig.7 TEM images of(a)un-doped ZnO QDs and(b~e) Mg-doped ZnO QDs;Percentage of Mg(b) 10mol%,(c)20mol%(c)30mol%and(d) 40mol%;TEM images of(f)APTES-capped 30% Mg-doped ZnO QDs

    2.6 Cell labeling

    Fig.8 showsdifferentialinterferencecontrast (DIC)picture and fluorescent image of MCF-7 cells incubated with APTES-capped ZnO QDs.As shown in Fig.8 (b),the yellow emission from the cells is clearly observed under fluorecent micoscope,indicating that APTES-capped ZnO QDs have been successfully attached onto or penetrate into the cells.

    Fig.8 Differential interference contrast(DIC)picture(a) and the fluorescent image of cells labeled(b)

    3Conclusions

    Mg-doped ZnO QDs have been synthesized by a modified sol-gel method.The photoluminescence of Mg-dopedquantumdotshasbeensignificantly enhanced,andthequantumyieldofMg-doped quantum dots is dramatically increased from 11%for un-doped ZnO QDs to a high level of about 33%at Mg doping content of 30%.At the same time,watersolubleMg-dopedZnOQDswithstrongyellow emission may be obtained by capping with APTES. The photoluminescence is stable and strong during storage in water for extended periods of time.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Alivisatos A P.Science,1996,271:933-937

    [2]Peng X G,Manna L,Yang W D,et al.Nature,2000,404:59-61

    [3]Hines M A,Sionnest P J G.Phys.Chem.,1996,100:468-471

    [4]Wood A,Giersig M,Hilgendorff M,et al.Aust.J.Chem., 2003,56:1051-1057

    [5]Qu L H,Peng X G.J.Am.Chem.Soc.,2002,124:2049-2055

    [6]Derfus A M,Chan W C W,Bhatia S N.Nano Lett.,2004,4: 11-18

    [7]Jamieson T,Bakhshi R,Petrova D,et al.Biomaterials,2007, 28:4717-4732

    [8]Zhang P,Liu W G.Biomaterials,2010,31:3087-3094

    [9]Meulenkamp E A.J.Phys.Chem.B,1998,102:5566-5572

    [10]Xiong H M,Wang Z D,Liu D P,et al.Adv.Funct.Mater., 2005,15:1751-1756

    [11]Xiong H M,Xu Y,Ren Q G,et al.J.Am.Chem.Soc.,2008, 130:7522-7523

    [12]Rakshit S,Vasudevan S.ACS Nano,2008,2:1473-1479

    [13]Bera D,Qian L,Sabui S,et al.Opt.Mater.,2008,30:1233-1239

    [14]Xiong H M,Liu D P,Xia Y Y,et al.Chem.Mater.,2005, 17:3062-3064

    [15]Jana N R,Yu H,Ali E M,et al.Chem.Commun.,2007,14: 1406-1408

    [16]Tang X S,Choo E S G,Li L,et al.Chem.Mater.,2010,22: 3383-3388

    [17]Patra M K,Manoth M,Singh V K,et al.J.Lumin.,2009, 129:320-324

    [18]Xiong H M,Dmitry G S,Helmuth M,et al.Angew.Chem. Int.Ed.,2009,48:2727-2731

    [19]Liu D P,Li G D,Su Y,et al.Angew.Chem.Int.Ed.,2006, 45:7370-7373

    [20]Wang Y S,Thomas P J,Brien P O.J.Phys.Chem.B,2006, 110:4099-4101

    [21]Wang W,Qiao X,Chen J.J.Am.Ceram.Soc.,2008,91: 1697-1699

    [22]Kumar A,Kumar J.Solid State Commun.,2008,147:405-408

    Water-Stable Magnesium-Doped ZnO Quantum Dots: One-Pot Synthesis and Cell Labeling Applications

    ZHANG Li-Ping*,1WU Shan2LIU Dan2WAN Yong-Gang1LIU Dao-Sen3
    (1College of Medical Technology,Qiqihar Medical University,Qiqihar,Heilongjiang 161006,China)
    (2Research Institute of Medicine&Pharmacy,Qiqihar Medical University,Qiqihar,Heilongjiang 161006,China) (3Communication and Electronic Engineering Institute,Qiqihar University,Qiqihar,Heilongjiang 161006,China)

    A one-pot method was developed for synthesizing Magnesium-doped ZnO quantum dots(QDs)capped with(3-aminopropyl)triethoxysilane(APTES).The as-prepared quantum dots were characterized by XRD,TEM, UV-Vis,FL(fluorescent spectroscopy)and FTIR.The results show that the Mg-doped quantum dots exhibit greatly enhanced luminescent property and their quantum yield is increased from 11%for un-doped ZnO QDs to 33%for Mg-doped ZnO QDs at Mg-doping content of 30%.In addition,aqueous-stability is achieved by capping the Mg-doped ZnO QDs with APTES.The obtained APTES-capped Mg-doped ZnO QDs exhibit excellent water stability and retain visible emissions.The APTES-capped Mg-doped ZnO QDs demonstrate promising applications in MCF-7 cell labeling.

    ZnO quantum dots;magnesium-doped;APTES-capped;aqueous-stability

    O611.4

    A

    1001-4861(2015)08-1644-07

    10.11862/CJIC.2015.218

    2015-05-04。收修改稿日期:2015-07-01。

    黑龍江省教育廳科學(xué)技術(shù)研究基金(No.12541910)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:zhangliping@qmu.edu.cn,Tel:0452-2663153

    猜你喜歡
    吳山劉丹齊齊哈爾
    齊齊哈爾老年大學(xué)校歌
    齊齊哈爾地區(qū)一例鵝圓環(huán)病毒的PCR診斷
    離不開(kāi)的對(duì)手
    大漠三月
    金秋(2019年18期)2019-12-19 09:11:30
    The benefits and drawbacks of AI
    名落孫山
    A Study of Blended-teaching Model in Medical English
    高中數(shù)學(xué)新型課堂教學(xué)探析
    祖國(guó)(2017年19期)2017-11-23 22:19:02
    On Teaching Modes of English Reading for Higher Vocational Education
    煙 鬼
    国产一区有黄有色的免费视频| 亚洲色图 男人天堂 中文字幕| 97在线人人人人妻| 999精品在线视频| av线在线观看网站| 亚洲欧美日韩另类电影网站| 久久婷婷成人综合色麻豆| 日韩免费高清中文字幕av| 国产精品免费视频内射| 精品少妇一区二区三区视频日本电影| 久久久久久人人人人人| 欧美av亚洲av综合av国产av| 午夜福利一区二区在线看| 久久天堂一区二区三区四区| 免费在线观看完整版高清| 少妇裸体淫交视频免费看高清 | 免费少妇av软件| 国产淫语在线视频| 色综合婷婷激情| 成年人午夜在线观看视频| 一边摸一边做爽爽视频免费| 不卡一级毛片| 99re在线观看精品视频| 国产av一区二区精品久久| 日韩欧美一区二区三区在线观看 | 精品亚洲成a人片在线观看| 巨乳人妻的诱惑在线观看| 国产在线观看jvid| 免费黄频网站在线观看国产| 亚洲第一青青草原| 色94色欧美一区二区| 亚洲av电影在线进入| cao死你这个sao货| 免费观看a级毛片全部| 极品教师在线免费播放| 久久国产精品男人的天堂亚洲| 欧美人与性动交α欧美软件| 欧美中文综合在线视频| 久久精品亚洲av国产电影网| 啦啦啦 在线观看视频| 精品人妻1区二区| a级毛片黄视频| 欧美久久黑人一区二区| 国产极品粉嫩免费观看在线| 国产有黄有色有爽视频| 成年动漫av网址| 香蕉丝袜av| 夜夜爽天天搞| 中文字幕人妻丝袜制服| 中亚洲国语对白在线视频| 中文字幕人妻熟女乱码| 亚洲成a人片在线一区二区| 在线播放国产精品三级| 国产日韩一区二区三区精品不卡| 9色porny在线观看| 国产片内射在线| 91精品国产国语对白视频| 国产老妇伦熟女老妇高清| 国产日韩欧美视频二区| 三上悠亚av全集在线观看| 99re在线观看精品视频| 久热这里只有精品99| 成人免费观看视频高清| 一级片免费观看大全| 十八禁人妻一区二区| 免费在线观看黄色视频的| 国产97色在线日韩免费| www.熟女人妻精品国产| 男男h啪啪无遮挡| 中文字幕精品免费在线观看视频| 亚洲欧美激情在线| 久久精品国产a三级三级三级| 亚洲国产毛片av蜜桃av| 亚洲视频免费观看视频| 99国产精品免费福利视频| 久久人妻熟女aⅴ| 亚洲av国产av综合av卡| 日本一区二区免费在线视频| 久久久国产一区二区| 国产av国产精品国产| 一区二区三区乱码不卡18| 亚洲欧美激情在线| 欧美av亚洲av综合av国产av| 在线天堂中文资源库| 亚洲av欧美aⅴ国产| 日本wwww免费看| netflix在线观看网站| 国产男靠女视频免费网站| 精品久久久久久久毛片微露脸| 国产成人av教育| 一区二区三区国产精品乱码| 精品亚洲成a人片在线观看| 99国产综合亚洲精品| 日韩中文字幕视频在线看片| 欧美人与性动交α欧美软件| 久久中文看片网| 汤姆久久久久久久影院中文字幕| 真人做人爱边吃奶动态| 午夜免费成人在线视频| 天天操日日干夜夜撸| 2018国产大陆天天弄谢| 国产亚洲av高清不卡| 欧美黄色片欧美黄色片| 极品人妻少妇av视频| 又黄又粗又硬又大视频| 亚洲视频免费观看视频| 日本一区二区免费在线视频| 美女国产高潮福利片在线看| 午夜福利,免费看| 亚洲熟女精品中文字幕| 国产成人免费无遮挡视频| 亚洲伊人色综图| 国产亚洲精品久久久久5区| 成年女人毛片免费观看观看9 | 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美| 亚洲九九香蕉| 中文字幕最新亚洲高清| 另类精品久久| 女人久久www免费人成看片| 精品国产一区二区久久| 五月天丁香电影| 一区二区日韩欧美中文字幕| av福利片在线| 99久久99久久久精品蜜桃| 在线观看人妻少妇| 久久性视频一级片| 天天躁日日躁夜夜躁夜夜| 国产精品麻豆人妻色哟哟久久| 国产成人精品久久二区二区91| 国产成人啪精品午夜网站| 亚洲五月色婷婷综合| 国产精品二区激情视频| 中文字幕人妻熟女乱码| 香蕉久久夜色| 久热这里只有精品99| 久久九九热精品免费| 中文字幕av电影在线播放| 日本五十路高清| 亚洲av第一区精品v没综合| √禁漫天堂资源中文www| 少妇 在线观看| 亚洲第一青青草原| 首页视频小说图片口味搜索| 精品国产亚洲在线| 精品国产一区二区三区久久久樱花| 老司机午夜福利在线观看视频 | 黄色视频,在线免费观看| 成年女人毛片免费观看观看9 | 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 精品少妇内射三级| 一进一出好大好爽视频| 精品国产一区二区久久| 麻豆成人av在线观看| 1024香蕉在线观看| 极品人妻少妇av视频| 757午夜福利合集在线观看| 日韩欧美一区二区三区在线观看 | 最新在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 黄片小视频在线播放| 99热国产这里只有精品6| 一本综合久久免费| 一进一出好大好爽视频| 夜夜夜夜夜久久久久| 色老头精品视频在线观看| 久久av网站| 咕卡用的链子| 午夜福利欧美成人| 18禁黄网站禁片午夜丰满| netflix在线观看网站| h视频一区二区三区| 久久精品亚洲av国产电影网| 老司机深夜福利视频在线观看| 少妇被粗大的猛进出69影院| 国产97色在线日韩免费| 老司机在亚洲福利影院| 国产精品自产拍在线观看55亚洲 | 亚洲五月色婷婷综合| 国产三级黄色录像| svipshipincom国产片| 婷婷成人精品国产| 高清黄色对白视频在线免费看| 国产aⅴ精品一区二区三区波| www.自偷自拍.com| 这个男人来自地球电影免费观看| 亚洲专区字幕在线| 免费在线观看完整版高清| e午夜精品久久久久久久| av免费在线观看网站| 十八禁网站免费在线| 亚洲成a人片在线一区二区| 黄色成人免费大全| 亚洲九九香蕉| 日日夜夜操网爽| 午夜福利欧美成人| 黄色片一级片一级黄色片| 激情在线观看视频在线高清 | 成人黄色视频免费在线看| netflix在线观看网站| 久久精品国产亚洲av香蕉五月 | 国产成人精品久久二区二区免费| 91麻豆精品激情在线观看国产 | 操出白浆在线播放| 国产日韩欧美视频二区| 精品免费久久久久久久清纯 | 动漫黄色视频在线观看| 久久中文字幕一级| 亚洲精品av麻豆狂野| 国产又色又爽无遮挡免费看| 菩萨蛮人人尽说江南好唐韦庄| 黄色成人免费大全| 少妇裸体淫交视频免费看高清 | 亚洲色图 男人天堂 中文字幕| 老司机深夜福利视频在线观看| 99精品欧美一区二区三区四区| 国产精品秋霞免费鲁丝片| 黄色成人免费大全| 男女免费视频国产| 亚洲国产欧美网| 欧美变态另类bdsm刘玥| 中文字幕色久视频| 91字幕亚洲| 电影成人av| 色播在线永久视频| 99国产精品免费福利视频| 亚洲国产欧美在线一区| 欧美亚洲日本最大视频资源| 少妇裸体淫交视频免费看高清 | 久久精品亚洲av国产电影网| 一边摸一边抽搐一进一出视频| 国产三级黄色录像| 亚洲欧洲精品一区二区精品久久久| 乱人伦中国视频| 最新的欧美精品一区二区| 一本综合久久免费| 露出奶头的视频| 黄色丝袜av网址大全| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区精品| 欧美日韩精品网址| 免费女性裸体啪啪无遮挡网站| 一级毛片女人18水好多| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 日韩免费av在线播放| 色精品久久人妻99蜜桃| 国产精品国产高清国产av | bbb黄色大片| 一级a爱视频在线免费观看| 一个人免费在线观看的高清视频| 成人影院久久| 成年动漫av网址| 极品人妻少妇av视频| 在线观看www视频免费| 免费女性裸体啪啪无遮挡网站| 国产av国产精品国产| 欧美变态另类bdsm刘玥| 美女扒开内裤让男人捅视频| 无遮挡黄片免费观看| 一区在线观看完整版| 一级a爱视频在线免费观看| 久久中文字幕一级| 黑人操中国人逼视频| 人妻一区二区av| 欧美一级毛片孕妇| 天天躁夜夜躁狠狠躁躁| 国产熟女午夜一区二区三区| 精品一区二区三区视频在线观看免费 | 热99re8久久精品国产| 亚洲五月色婷婷综合| 亚洲精品中文字幕一二三四区 | 欧美精品一区二区大全| 热99国产精品久久久久久7| 五月开心婷婷网| 多毛熟女@视频| 十八禁高潮呻吟视频| 欧美精品一区二区免费开放| 一边摸一边做爽爽视频免费| 亚洲精品自拍成人| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 脱女人内裤的视频| 国产在线视频一区二区| 一级毛片女人18水好多| 十八禁网站免费在线| www.熟女人妻精品国产| 午夜福利一区二区在线看| 亚洲第一欧美日韩一区二区三区 | 免费人妻精品一区二区三区视频| 国产精品一区二区精品视频观看| 满18在线观看网站| 女性被躁到高潮视频| 露出奶头的视频| 久久99热这里只频精品6学生| 久久久欧美国产精品| 国产单亲对白刺激| 国产精品麻豆人妻色哟哟久久| 久久久精品国产亚洲av高清涩受| 午夜精品国产一区二区电影| 最黄视频免费看| 女同久久另类99精品国产91| 丝袜人妻中文字幕| 亚洲欧美激情在线| 嫁个100分男人电影在线观看| 岛国在线观看网站| 国产免费福利视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产精品麻豆| 一级毛片女人18水好多| 久久久久精品人妻al黑| 啦啦啦中文免费视频观看日本| a级片在线免费高清观看视频| 午夜激情久久久久久久| 国产淫语在线视频| 国产成人啪精品午夜网站| 国产日韩欧美在线精品| 别揉我奶头~嗯~啊~动态视频| 一级a爱视频在线免费观看| 一夜夜www| 咕卡用的链子| 精品国产乱码久久久久久男人| 国产免费视频播放在线视频| 亚洲av日韩精品久久久久久密| 日本av手机在线免费观看| 久久久欧美国产精品| 法律面前人人平等表现在哪些方面| tube8黄色片| 极品人妻少妇av视频| 999久久久国产精品视频| 香蕉国产在线看| 在线观看舔阴道视频| 一二三四社区在线视频社区8| 精品第一国产精品| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 人妻一区二区av| 91大片在线观看| 日韩精品免费视频一区二区三区| 两人在一起打扑克的视频| 午夜精品国产一区二区电影| 无人区码免费观看不卡 | 成人国产av品久久久| 国产欧美日韩一区二区精品| 黄色 视频免费看| 制服诱惑二区| 国产高清视频在线播放一区| 日韩有码中文字幕| 欧美日韩黄片免| 桃红色精品国产亚洲av| 亚洲成人免费电影在线观看| 国产精品偷伦视频观看了| 日韩一区二区三区影片| 久久精品成人免费网站| 97人妻天天添夜夜摸| 人成视频在线观看免费观看| 国产精品98久久久久久宅男小说| 一级,二级,三级黄色视频| 老熟妇乱子伦视频在线观看| 男女下面插进去视频免费观看| 五月天丁香电影| 高清黄色对白视频在线免费看| 超碰成人久久| 夜夜爽天天搞| 国产日韩欧美视频二区| tocl精华| 国产欧美日韩一区二区三区在线| 极品人妻少妇av视频| 亚洲伊人色综图| 日本撒尿小便嘘嘘汇集6| 黑人巨大精品欧美一区二区蜜桃| 亚洲免费av在线视频| 色在线成人网| 亚洲精品国产一区二区精华液| 精品一区二区三卡| 午夜成年电影在线免费观看| 18禁国产床啪视频网站| 亚洲精品久久午夜乱码| 国产免费现黄频在线看| 无限看片的www在线观看| 免费女性裸体啪啪无遮挡网站| 不卡av一区二区三区| 久久99一区二区三区| 激情在线观看视频在线高清 | www.精华液| 国产精品香港三级国产av潘金莲| 国产精品 欧美亚洲| 一区二区日韩欧美中文字幕| 最近最新中文字幕大全电影3 | 国产有黄有色有爽视频| 欧美激情久久久久久爽电影 | 自线自在国产av| 99热国产这里只有精品6| 久久人人97超碰香蕉20202| 国产麻豆69| 在线观看人妻少妇| 国产男女内射视频| 欧美午夜高清在线| 淫妇啪啪啪对白视频| 99re6热这里在线精品视频| 色视频在线一区二区三区| 高清视频免费观看一区二区| 91精品国产国语对白视频| 精品久久久久久久毛片微露脸| 在线观看舔阴道视频| 免费观看人在逋| 国产老妇伦熟女老妇高清| 国产精品 国内视频| 精品少妇一区二区三区视频日本电影| 亚洲色图 男人天堂 中文字幕| 中文字幕制服av| 久久这里只有精品19| 色在线成人网| √禁漫天堂资源中文www| 国产91精品成人一区二区三区 | 狠狠婷婷综合久久久久久88av| 中文字幕精品免费在线观看视频| 母亲3免费完整高清在线观看| 在线观看66精品国产| 久久精品亚洲av国产电影网| 大型黄色视频在线免费观看| 桃花免费在线播放| 精品视频人人做人人爽| 中文字幕最新亚洲高清| 国产精品九九99| 在线观看舔阴道视频| 亚洲精品中文字幕一二三四区 | 操出白浆在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 免费av中文字幕在线| 亚洲av美国av| 免费一级毛片在线播放高清视频 | 一二三四在线观看免费中文在| 国产黄频视频在线观看| 亚洲全国av大片| 亚洲免费av在线视频| 国产不卡一卡二| 久久ye,这里只有精品| 日本精品一区二区三区蜜桃| 美女福利国产在线| 国产伦人伦偷精品视频| 在线观看免费视频网站a站| 后天国语完整版免费观看| 久久久久久久国产电影| 国产单亲对白刺激| 蜜桃在线观看..| 免费在线观看日本一区| 极品教师在线免费播放| 国产精品一区二区精品视频观看| 后天国语完整版免费观看| 久久精品国产a三级三级三级| 成年女人毛片免费观看观看9 | 欧美日韩中文字幕国产精品一区二区三区 | 好男人电影高清在线观看| 日本撒尿小便嘘嘘汇集6| 女人高潮潮喷娇喘18禁视频| av网站在线播放免费| 亚洲视频免费观看视频| 啦啦啦在线免费观看视频4| 久久国产精品大桥未久av| 欧美激情久久久久久爽电影 | 99久久人妻综合| 777米奇影视久久| a级片在线免费高清观看视频| 亚洲精品av麻豆狂野| 大香蕉久久网| 男男h啪啪无遮挡| 国产免费现黄频在线看| 色播在线永久视频| 成人亚洲精品一区在线观看| 精品欧美一区二区三区在线| 亚洲 国产 在线| 亚洲熟女精品中文字幕| 另类精品久久| 如日韩欧美国产精品一区二区三区| 中文亚洲av片在线观看爽 | 亚洲美女黄片视频| 亚洲伊人久久精品综合| 日韩制服丝袜自拍偷拍| 在线观看免费午夜福利视频| 蜜桃国产av成人99| 国产精品偷伦视频观看了| 久久国产精品影院| 国产成人精品久久二区二区91| 咕卡用的链子| 国产精品自产拍在线观看55亚洲 | www日本在线高清视频| 午夜福利免费观看在线| 看免费av毛片| 人人妻人人爽人人添夜夜欢视频| 久久久久精品国产欧美久久久| 国产日韩欧美视频二区| 交换朋友夫妻互换小说| 亚洲专区字幕在线| 欧美日韩亚洲综合一区二区三区_| 搡老熟女国产l中国老女人| 精品久久久久久久毛片微露脸| 少妇猛男粗大的猛烈进出视频| 国产一区二区三区综合在线观看| 天堂8中文在线网| 国产主播在线观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 午夜福利乱码中文字幕| 亚洲综合色网址| 精品一区二区三卡| www.熟女人妻精品国产| 久久天堂一区二区三区四区| 丰满迷人的少妇在线观看| 久久av网站| 午夜免费鲁丝| 日本黄色日本黄色录像| 50天的宝宝边吃奶边哭怎么回事| 男女无遮挡免费网站观看| 色综合欧美亚洲国产小说| 免费黄频网站在线观看国产| 久久午夜亚洲精品久久| 中文亚洲av片在线观看爽 | 在线观看免费午夜福利视频| 久久久久久久大尺度免费视频| 波多野结衣一区麻豆| 丝袜在线中文字幕| 亚洲五月婷婷丁香| 中文亚洲av片在线观看爽 | 亚洲国产av新网站| 大型黄色视频在线免费观看| 色婷婷av一区二区三区视频| 在线观看一区二区三区激情| 国产男女内射视频| 久久精品熟女亚洲av麻豆精品| av又黄又爽大尺度在线免费看| h视频一区二区三区| 夫妻午夜视频| 国产免费av片在线观看野外av| 丰满人妻熟妇乱又伦精品不卡| 日本黄色日本黄色录像| 丰满少妇做爰视频| 人人妻人人爽人人添夜夜欢视频| 黄色毛片三级朝国网站| 亚洲成av片中文字幕在线观看| 天堂8中文在线网| 亚洲av日韩精品久久久久久密| 国产成+人综合+亚洲专区| 精品免费久久久久久久清纯 | 欧美日韩黄片免| 国产精品美女特级片免费视频播放器 | 欧美国产精品va在线观看不卡| 黑丝袜美女国产一区| 超碰成人久久| 欧美日韩亚洲综合一区二区三区_| 国产成人精品久久二区二区免费| 午夜福利在线免费观看网站| 女人爽到高潮嗷嗷叫在线视频| 一夜夜www| 老熟妇乱子伦视频在线观看| av超薄肉色丝袜交足视频| 麻豆乱淫一区二区| 欧美人与性动交α欧美精品济南到| 另类精品久久| 久久精品91无色码中文字幕| av免费在线观看网站| 久久中文字幕一级| 老司机深夜福利视频在线观看| 一个人免费在线观看的高清视频| 一级毛片精品| 日本精品一区二区三区蜜桃| 日韩中文字幕视频在线看片| 国产精品久久久av美女十八| 最新在线观看一区二区三区| 波多野结衣av一区二区av| 欧美一级毛片孕妇| 日韩欧美一区二区三区在线观看 | 日本wwww免费看| 亚洲美女黄片视频| 国产亚洲欧美精品永久| 日韩欧美一区二区三区在线观看 | 首页视频小说图片口味搜索| avwww免费| 黄色丝袜av网址大全| 久久av网站| 天堂8中文在线网| av有码第一页| 欧美 亚洲 国产 日韩一| 久久精品91无色码中文字幕| 动漫黄色视频在线观看| 一进一出抽搐动态| 久久久国产欧美日韩av| 午夜激情久久久久久久| 国产av一区二区精品久久| 人人妻人人添人人爽欧美一区卜| 国产在线免费精品| 天天躁日日躁夜夜躁夜夜| 男女免费视频国产| 麻豆成人av在线观看| av福利片在线| 精品一区二区三卡| 国产精品一区二区在线不卡| 老汉色av国产亚洲站长工具| av国产精品久久久久影院| 久久精品人人爽人人爽视色| 免费在线观看视频国产中文字幕亚洲| 男女下面插进去视频免费观看| 精品国产亚洲在线| 99久久国产精品久久久| 亚洲第一av免费看| 91大片在线观看| 91成年电影在线观看| 色婷婷久久久亚洲欧美| av超薄肉色丝袜交足视频| 婷婷成人精品国产| 色婷婷av一区二区三区视频| av欧美777| 亚洲欧美日韩高清在线视频 | 午夜福利视频精品| 免费女性裸体啪啪无遮挡网站|