• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多級(jí)結(jié)構(gòu)氧化鋅的構(gòu)筑、形貌調(diào)控及其光催化活性

    2015-12-05 10:25:18全微雷張金敏沈俊海李良超李佳佳
    關(guān)鍵詞:結(jié)構(gòu)

    全微雷 張金敏 沈俊海 李良超 李佳佳

    (浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華321004)

    多級(jí)結(jié)構(gòu)氧化鋅的構(gòu)筑、形貌調(diào)控及其光催化活性

    全微雷 張金敏 沈俊海 李良超*李佳佳

    (浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華321004)

    分別以混合常見(jiàn)二鋅鹽為鋅源,以離子液體和檸檬酸鈉為表面活性劑,在綠色溫和的條件下采用二次沉積法制備出多級(jí)結(jié)構(gòu)氧化鋅。用XRD、IR、SEM、UV-Vis、PL等表征了樣品的組成、結(jié)構(gòu)、形貌、光致發(fā)光性能及光催化性能。探討了表面活性劑、陰離子、溫度等因素對(duì)氧化鋅形貌的影響。結(jié)果表明,由不同表面活性劑所得到樣品的多級(jí)結(jié)構(gòu)有較大的差異。此外,推測(cè)了在多級(jí)結(jié)構(gòu)氧化鋅形成過(guò)程中,陰離子和溫度對(duì)樣品形貌的調(diào)控作用,并對(duì)比了三種典型樣品的光催化性能,其中樣品-1的光催化性能最好。

    氧化鋅;多級(jí)結(jié)構(gòu);形貌調(diào)控;光催化

    0Introduction

    Due to the special microstructure and physicochemical properties,inorganic micro-nano materials with different microscopic sizes and morphologies have been widely applied in optics,electricity,magnetism,biological medicine,catalysis,and other fields[1-4]. Furthermore,with the improvement of application demands,the control on material microscopic morphology has been paid much attention[5-6].As one of the most important semiconductor materials,ZnO has emerged as one of the most promising candidate materials owing to its superior properties and the potential advantage in future electron device[7-10].According to the principle that material properties depend on its structure,researchers have devoted themselvesto the controllable synthesis of materials with different microscopic morphologies and sizes.For example,Ma et al[11]reported three kinds of ZnO with different morphologies and found that they possessed various photocatalytic activities on methyl orange,in which the nanorod-like ZnO has the best photocatalytic activity,the flower-like ZnO is the second,and the nanoparticle ZnO is the worst.In addition,much more different morphologies of ZnO have been reported, such as mesoporous spheres,tubular,four foot shape and fibrous,etc[12-16],in which most researches are about ZnO nanoparticles and nanoplates.However,to the best of our knowledge,there have been no reports onthehierarchicalZnOconstructedbytwo morphologies.

    A lot of micro-nano structure in the nature usuallyshowssomeinconceivablefunction.For example,the micro-nano structure on the surface of lotus leaf makes it have super hydrophobic and selfcleaning function.The micro-nano structure on the leg of water flies makes it walk on the water freely[17].So themicro-nanostructurehasinfinitemystery. However,whether the hierarchical ZnO assembled by micro-nano structure has the unusual photocatalytic activity?It is a pity that the reports associated with the above question are very little,the main reason is that it is very difficult to fabricate the well-defined micro-nano structure and to control its morphology effectively.The Chemical Vapor Deposition(CVD) method has been paid attention owing to its high efficiency[18-19].However,the CVD method needs high temperature and can introduce impurities.There are very few reports[20-22]about the simple fabrication of hierarchical ZnO,especially under the green and mild preparation conditions.

    Besides,in regard to the regulation of ZnO microstructure,the single zinc salt is often used as the zinc source to fabricate ZnO[23-24],and some common surfactants(e.g.CTAB,PVP,etc.)are used as the template agent or structure-directing agent[25-26].However,these surfactants are difficult to be removed completely in the post-processing,which may have negative effect on ZnO performance,due to the reduction in the polarization plane of ZnO.But the ionic liquid(IL)as a kind of green solvent has been applied in the fabrication of inorganic micro-nano materials including ZnO[27-28],which can work as the co-surfactant and be removed easily.

    Thus we choose the mixed zinc salts as the zinc source.Beacuse the anions in zinc salts have various spatial structures and electronegativities,ZnO seed may have different absorption capacities to them,so they can affect the crystal growth to adjust ZnO morphology.On the other hand,the introduction of IL can improve the solubility of inorganics and organics, and IL can play a role as the special surfactant.More importantly,the effect of IL on ZnO morphology can be studied by changing the anion in IL.Herein,we report the ZnO with hierarchical structure by a simple and green secondary deposition method.Based on our previous work[29],it is expected to fabricate the hierarchical ZnO with well-organized micro-nano structures, i.e.,micro-sized ZnO grains are coated by ZnO nanoparticles.In this paper,the precursor solution including the micro-sized ZnO grains is obtained by hydrothermal method.Then the pH value of the precursor solution is adjusted by NaOH solution under the room temperature,the residual Zn2+ions can form ZnO on the surface of micro-sized ZnO grains.As a result,the prepared hierarchical ZnO consists of the micro-sized ZnO grains fabricated by hydrothermal method and the coating layer of nano-sized ZnO particlesobtainedbythesecondarydeposition. Furthermore,someinfluentialfactorsonthe morphology of hierarchical ZnO,such as the kind of anion in zinc salt,surfactants and reaction temperature are studied.In addition,the photocatalytic activity of three kinds of morphological ZnO on methyl orange(MO)is also studied.

    1Experimental

    1.1 Materials

    Zinc acetate(Zn(CH3COO)2·2H2O),Zinc sulfate (ZnSO4·7H2O),Zinc chloride(ZnCl2),Zinc nitrate (Zn(NO3)2·6H2O),NaOH,C3H7NO2,C2H5OH,Sodium citrate(C6H5Na3O7·2H2O)were all of analytical purityprovided by the Shanghai Sinopharm Chemical Reagent Co.,Ltd.and were used as received without further purification.[BMIM]Cl,[BMIM]Br and deionized water were prepared by this laboratory.

    1.2 Sample preparation

    1.2.1 Fabrication of precursor solution

    [BMIM]Cl and[BMIM]Br were synthesized following the literature procedures[30-31].

    The preparation procedure is as follows:1 mmol Zn(CH3COO)2·2H2O and 1 mmol ZnCl2were dispersed in a mixed solution consisting of 30.0 mL deionized water and 2 mmol[BMIM]Br to form white turbid solution.Then 2 mmol alanine was added into the above solution,stirred until a clear solution was obtained.4 mmol NaOH was added into the clear solution under vigorous stirring.A white colloidal turbid liquid was finally obtained and transferred into a Teflon-lined stainless autoclave(volume of 50.0 mL).Then the autoclave was heated and maintained at 150℃for 15 h,the precursor solution was obtained after cooling down the system to room temperature.

    1.2.2 Fabrication of the sample-1

    1 mol·L-1NaOH solution was added dropwise into 25 mL of the above precursor solution until the precipitation was formed completely.After filtering, the solid precipitation was washed three times with deionized water and ethanol.Then,the sample-1 was obtained by drying to constant weight under vacuum at 50℃.By changing the zinc salt,surfactants and reaction temperature,other ZnO samples in different morphologies were obtained by the same method.

    1.3 Photocatalytic studies

    Methyl orange(MO)was used as the simulative pollutant to evaluate the photocatalytic activity of the as-prepared samples by standard curve method.In a typical experiment,3 mmol sample-1 was dispersed uniformly in 100 mL MO solution with 12 mg·L-1by ultrasonication.The above mixture was irradiated under UV lamp(3×8 W).3 mL suspension was taken out from the reaction system every 10 min,and immediately centrifuged.The absorbance of centrifugal solution was measured by a UV-Vis spectrophotometer at λmax=465 nm.

    In addition,the influence of ZnO dosage on photocatalytic activity was studied.A certain amount of sample-1 was uniformly dispersed in 100 mL MO solution with 12 mg·L-1by ultrasonication,which was irradiated under UV lamp(3×8 W).After 80 min,the dagradation rate of MO was measured by a UV-Vis spectrophotometer at λmax=465 nm.

    1.4 Characterization

    Thephasestructureofthesamplewas characterized using an X-ray diffractometer(Philips-PW3040/60)with Cu Kα radiation(λ=0.154 18 nm, 10°·min-1,U=40 kV,I=40 mA,Ni filter)in the range of 2θ=10°~80°.The infrared spectrum was recorded on the Nicolet Nexus 670 Fourier transform infrared spectrometer(FTIR)using KBr pellets(scan range of 400~4 000 cm-1).The morphologies and microstructures were observed by a scanning electron microscopy (SEM,Hitachi S-4800,U=5.0 kV).The UV-Vis absorption of MO solution was measured with an ultraviolet -visible spectrophotometer(Shmadzu UV-2501PC).A photoluminescence(PL)spectrum of the sample-1 was recorded in an FL-920 fluorescence spectrophotometer in wavelength of 325 nm.The organic carbon of MO solution was measured by Total Organic Carbon Analyzer(ELEMENTAR Liqui TOCⅡ).

    Fig.1 XRD pattern of the sample-1

    2Results and discussion

    2.1 X-ray diffraction

    The XRD pattern of sample-1 is presented in Fig.1 .The strong and sharp diffraction peaks demonstrate that sample-1 has good crystallization.In addition,all peaks are in agreement with the characteristicpeaks of hexagonal ZnO(PDF-2 No 36-1451),and correspond to(100),(002),(101),(102),(110)and (103)crystal face.No diffraction peaks of impurities are observed,which illustrates that the as-prepared sample-1 is highly pure.

    2.2 FTIR spectra

    Fig.2 shows the FTIR spectra of sample-1.The bands at 435 and 534 cm-1are attributed to Zn-O axial stretching vibration[32].The band at 3 432 cm-1is assigned to-OH stretching vibration,which may be caused by the absorbed H2O on the surface of sample-1.The band at 1 099 cm-1is assigned to C-O stretching vibration.In addition,the weak bands at 1637 and 1 384 cm-1correspond to anti-symmetric and symmetric stretching vibration of COO-,suggesting that the CH3COO-groups are absorbed on the ZnO grain surface and there may be some coordination bonds between the Zn2+and CH3COO-.

    Fig.2 FTIR spectrum of the sample-1

    2.3 Morphology

    The SEM images of sample-1 are shown in Fig.3 . The ZnO particles possess a hierarchical structure with etching decorative pattern,indicating a high surfacearea.Thehigh-resolutionimage(Fig.3 b) clearlyshowsthatthewell-beddedsurfaceof hierarchical ZnO is constructed by nanoparticles of 50~100 nm,and has agglomeration to some extent. Some of these nanoparticles keep spherical morphology, while other shows the irregular morphology due to serious reunion.

    2.3.1 Influenceofsurfactantonthesamplemorphology

    Surfactant can regulate and control the nucleation and assembling of ZnO nanoparticles[33].In addition, due to the changes in spatial structure,solubility and functional groups of surfactants,the special regulating andcontrollingeffectisdifferent.Therefore,to investigate the effect of surfactants(IL and sodium citrate),the kind and dosage of the surfactant are considered.The experimental parameters and sample morphologies are given in Table1 (in section 1.2.2) and Fig.4 ,saparately.

    Fig.3 SEM images of the sample-1

    The morphological differences are evident.For example,sample-2 presents the irregular spherical aggregates formed by nanospheres with 100~150 nm, and the nanospheres are actually assembled by the smaller spherical nanoparticles with 10~20 nm.While the irregular nanospheres convert to the triangulated petals,when the[BMIM]Cl is replaced by 1 mmol sodium citrate.So the flower-like ZnO(sample-3)is well revealed in Fig.4 b,which is constituted by a pistil and some petals with rugged surface due to the adhesion ZnO nanoparticles.Here one can reasonably speculate that the pistils and petals are assembled by ZnOnanoparticlesaccordingtothespecific orientation.Moreover,combining[BMIM]Clwith sodiumcitrateforsample-4,thepreparedZnOpresents multi-foot structure(Fig.4 c).In fact,the ZnO nanoparticles adhere on the surface of every foot,and the cone-like foot end is similar to the strawberry.At last,the ZnO nanospheres(sample-5)with the size of 100~200 nm(Fig.4 d)are obtained without any IL and sodium citrate,their surface is unsmooth due to being covered by the smaller particles.Compared Fig.4 a and 4d,their size and morphology are similar,but the dispersity of the latter(Fig.4 d)is better.

    Fig.4 Effect of surfactants on ZnO sample morphology

    The above results indicate that the surfactant plays a critical role in the formation process of hierarchical ZnO.No matter what the molar ratio of ILs to sodium citrate is,the minimum basic unit of all obtainedsamplesisnanoparticles.However,the fundamentaldifferenceamongaboveas-obtained samples attributes to the interaction forces among nanoparticles,leadingtodifferentorientationsof nanoparticles in the process of self-assembly,which illustrates that IL and sodium citrate have some influence on self-assembly kinetics of nanoparticles, or have the specific effect as template,structure orientedagentorbothontheassemblingof nanoparticles.The hierarchical structure of sample-1 hasthebiggestsizeandthemostcomplicated morphology.By contrast,sample-5 prepared without any surfactant is the smallest in the size,and it presents simple spherical structure,which is the most common morphology caused by nanoparticles reunion. In addition,comparing sample-3 and sample-4,the arrangeorientationofnanoparticlesdisappears completely,because of the replacement of[BMIM]Br by[BMIM]Cl.Thus,it can be concluded that the auxiliary effect of[BMIM]Cl on nanoparticle assembly is poorer than that of[BMIM]Br.It may because that the Cl-has a larger electronegativity and a smaller ionic radius compared with that of Br-,i.e.,Cl-has a weaker ability of donating electrons.However,the introductionofsodiumcitrateishelpfulfor nanoparticles to arrange orderly(Fig.4 b),and the effect of sodium citrate as the template agent(or structure oriented agent)is much better compared with that of[BMIM]Br.It is because that CH3COO-is more easily to combine with Zn2+as confirmed by FTIR.Moreover,when[BMIM]Cl is substituted for [BMIM]Br,thetemplateeffectofsodiumcitrate becomes weakened drastically,which also proves that [BMIM]Cl cannot work as the template.In addition, Cl-with a big electronegativity also weakens the template effect of sodium citrate.To sum up,the template effect of sodium citrate is the best,while that of the[BMIM]Cl is the worst among three surfactants in terms of constructing hierarchical ZnO.

    2.3.2 Influence of zinc source on the sample morphology

    Only the zinc source is changed in the following experiments.The precursor solutions with different mixed zinc salts are designed as shown in Table1 .

    Table1 Experimental parameters for different sample

    Fig.5 SEM images of ZnO samples prepared with different zinc sources

    The ZnO morphologies and structures prepared by different zinc sources are shown in Fig.5 .The ZnO morphologies and structures are closely related to thezinc source.When the mixture of zinc acetate and zinc sulfate is used as the zinc source,sample-6 formedbyquasi-sphericalnanoparticlespresents inhomogenous size and irregular morphology(Fig.5 a). It can be seen from the high-resolution image(Fig.5 b) that the hierarchical structure of sample-6 is constituted by nanoparticles,and the cusp emissions are outward in the scattering form.Nevertheless,the obtained hierarchical structure of sample-7 is the agglomerate by multiple chains(Fig.5 c and 5d),whose surface is unsmooth due tothenanoparticlesassembly.In addition,the flake-like morphology of sample-8 can be found in Fig.5 e and 5f,when the mixed zinc salts are zinc chloride and zinc nitrate.The high-resolution image(Fig.5 f)ofsample-8showsthedisorder hierarchical structure with wheatear-like or flowervine morphology,some of which possess complicated structure arranged closely by the nanoflakes,while others have orderly structure arranged loosely by nanoflakes.The SEM images of sample-9 prepared by zinc chloride and zinc sulfate(Fig.5 g and 5h)show some flower patterns attached by some short chains. The surface of flower patterns is rough and the shape of flower patterns is different.The high-resolution image(Fig.5 h)shows that the hierarchical structure of sample-9issimilartocarvedpetal,andmany nanoparticles adhere well on the surface of sample-9.

    It can be concluded that the samples prepared by altering zinc source are different in morphology. Although the samples are hierarchical structure assembled by nanoparticles,their assembling processes are not the same,which is mainly decided by the anion in zinc salts.Throughout Fig.5 ,only sample-8 is not assembled by nanoparticles,i.e.,Cl-and NO3-can directlyaffectthegrowthofZnOparticles.In addition,it can be found by comparing Fig.5 d with 5h that the two samples have well-organized hierarchical structures.It may be because that one crystal face of ZnO seed has a weaker absorption capacity to Cl-or NO3-,leading to the seed growth along this crystal face to form the regular grain,i.e.,Cl-makes grain grow into the chain-like structure,while NO3-makes grain grow into the flake-like structure,which may be related to anionic spatial structure and electronegativity.Interestingly,the morphology of sample-9 shown in Fig.5 g is very similar to that of sample-1(Fig.3 ), indicating that the effect of SO42-and CH3COO-as the template is similar.Maybe it is because that the two anions all have larger volume and possess the threedimensional structure,so that ZnO seed has weaker absorption on them.In addition,their larger volume may be propitious to assist the construction of the well-organized hierarchical structure.

    2.3.3 Influence of temperature on the sample morphology

    Tostudytheeffectoftemperatureonthe morphologyoffinalsample,experimentsare respectively carried out at 120 and 180℃under invariability of other conditions.

    When the reaction temperature of the precursor solution is 120℃,the morphologies of the obtained sample-10 are shown in Fig.6 a and 6b.It can be observed from Fig.6 a that the sample-10 is thin flakelike agglomerates with irregular shape and rough surface.As shown in the high-resolution(Fig.6 b), theseagglomerateshavethedisorderedstructure constituted by nanoflakes with irregular shape.Some of nanoflakes are wide and short,on the contrary, others are narrow and long.On the whole,these nanoflakes are similar to the fallen leaves stacking in a mess.The nanoflake-like morphology disappears generally when the reaction temperature increases to 180℃,while the as-prepared sample-11 appears to bethemixedstructurecomposingtheirregular nanorods and nanoparticles aggregates(Fig.6 c and 6d),and the nanoparticles of 60~100 nm attach to the nanorod surface or fill in the interspace among the nanorods.It can also be found from Fig.6 d that the nanorodsstackirregularlyandtheirsurfaceis unsmooth.

    From the above results,it can be learned that the structure unit of sample-10 presents the flake-like morphology at 120℃.While sample-11 has two structure units including the nanorods and nanoparticles at 180℃.Compared with sample-1(prepared at 150℃),the samples prepared at 120 and 180℃haveno obvious hierarchical structure.So,the temperature plays an important role in the formation process of hierarchicalZnO.Thepossiblereasonsofthis morphological difference are as follows.Firstly,the temperaturehasagreatinfluenceonthegrain nucleation and growth rate.The nucleation rate of grain is faster than its growth rate if the temperature is too low,so the obtained grain is usually irregular under this case.On the contrast,the growth rate of grainisfasterthanitsnucleationrateifthe temperatureishighenough,whichisalso disadvantageous to form the regular grains.When the growth rate of grain is faster than the diffusion rate of ions,the nonuniform distribution of concentration has anenormouseffectontheregularityofgrains. Secondly,hierarchical structure is usually assembled by small structure unit,while the assembly process needs the driving force.Hence,temperature can provide the driving force for grain assembly.But a too high temperature can dramatically enhance the Brown movement of particles,which would hinder the selfassembly of grains.On the contrary,a too low temperature can not provide enough driving force for grains assembly,which often leads to the incomplete assembly and forms disorder structure.In addition, the nano-flake is one dimensional,while the nano-rod is three dimensional in structure.So,with the increase of space dimension,the driving force needed for selfassemblyisbecominggreaterandgreater.In conclusion,sample-10preparedunderlow temperature(120℃)presents a flake-like morphology due to lack of driving force(Fig.6 a and 6b).However, owing to the enhanced Brown effect,some parts of ZnO grains form rod-like structure(Fig.6 c and 6d)at high temperature(180℃).

    Fig.6 SEM images of ZnO samples prepared under different reaction temperature

    2.4 Optical properties

    Fig.7 a presents the UV-Vis spectrum of the aspreparedsample-1.Comparedwithcharacteristic absorption of common ZnO(373 nm),the main absorption peak at 368 nm in Fig.7 a shows some blue shift.It may be due to the nano-effect of nanoparticles on the surface of hierarchical ZnO,or the interaction between Zn2+and CH3COO-absorbed by the ZnO grains making the 3d valence electrons of Zn2+transfer easily to the π*orbital of CH3COO-.Fig.7 b shows the PL spectrum of sample-1 with the excitation wavelengthof 325 nm at room temperature.The PL spectrum possesses two emission bands,i.e.one is the narrow UV emission at about 320 nm corresponding to the electronic radiative transition from conduction band to valence band,and the other is a strong and broad emissionbandlocatedinthenearUVregion. Furthermore,the strong double bands in 375~450 nm are the blue emission of ZnO in the visible region, one of which corresponds to the red shift and the other is the blue shift relative to central transition frequency,it may be due to the emission of excitonic recombination or the ZnO crystal defect caused by the excess OH-in the process of adding NaOH dropwise. The weak green emission at 490 nm may be caused by the electronic transition from the low energy level to valence band.Compared with the conventional ZnO nanocrystals,allemissionpeaksexhibitthe phenomenon of blue shift to some extent.It may be becausethattheparticlesconstructingthe hierarchical structure belong to nano size,leading to that the emission peak position moves to the short wavelength,whichprovidesguaranteeforthe improvement of photocatalytic activity.

    According to literature[34],the photoluminescence property of ZnO nanoparticle associates with the oxgen vacancies and defects on ZnO surface.In the processofphotoluminescence,superficialoxgen vacanciesanddefectscanmakephotogenerated electron to form the free exciton or bound exciton, leadingtoemittingfluorescence.Themorethe superficial oxgen vacancies and the more defects,the highter the intensity of fluorescence will be.The representativeZnOownsthestrongandbroad emission band in the range of 375~550 nm as shown in Fig.7 b,suggesting that hierarchical ZnO possesses more superficial oxgen vacancies and defects.However, the superficial oxgen vacancies and defects can make a large contribution to photocatalytic activity,because they can capture photogenerated electron to improve the efficiency of photoinduced charge separation.

    Fig.7 (a)UV-Vis diffuse reflectance spectrum and(b)PL spectrum of the sample-1

    2.5 Evaluation of photocatalytic activity

    By experiments,the standard curve equation of MO solution is A=0.074 2c+0.042 8(R2=0.999 8,A/ (mg·L-1)is the solution absorbance,c/(mol·L-1)is the solution concentration).The relative absorbance(A/A0) of solution is considered as 1,of which MO concentration is about 12.9 mg·L-1.In order to reach the adsorption-desorption equilibrium between the catalyst and MO,the mixed solutions including ZnO and MO have been stirred in the dark for 1 h.And C/C0values corresponding to 0 min in Fig.8 are all slightly less than 1,indicating that the three different ZnO samples have a weak absorption on MO.In the photocatalytic experiments,three kinds of as-prepared ZnO samples used as the catalyst are sample-1,sample-2,and sample-10 separately.

    Fig.8 shows the photocatalytic activity of three different morphological ZnO samples on MO solution (12.9 mg·L-1)under UV irradiation.The C/C0values of all samples decrease with increasing time(Fig.8 ). Obviously,thedegradationrateofallsamples declines gradually,and compared with sample-2 andsample-10,the degradation rate of sample-1 is the fastest.Especially,when the irradiation time is up to 100 min,only the C/C0value of sample-1 reduces to below 0.05,proving that the MO has been degraded almost completely.By contrast,the C/C0value of sample-1 is the minimum under the same irradiation time among three samples,and the photocatalytic activity of sample is the best in the whole process of photocatalyticdegradation.Inaddition,thetotal organic carbon(w)of MO soultion degraded under sample-1 is shown in Table2 and the relational expression is

    Fig.8 Photocatalytic activity of three different ZnO samples

    Table2 Total content of organic carbon of MO soultion

    Fig.9 (a)Photocatalytic activity under different the sample-1 dosages and(b)Reusability of the sample-1 evaluated for five cycles

    The w displays a dramatic variation as seen from Table2 ,incidating the effective photocatalyitc activity of sample-1.Besides,the decrement of carbon(η= 82%)is lower than the degradation rate(95%)of MO, which suggests that there are many intermediate products in the photocatalytic degradation.

    It may be the hierarchical structure of sample-1 that improves the photocatalytic activity of ZnO,due to sample-2 and sample-10 without obvious hierarchical structure.So,the photocatalytic activity is closely associated with the microstructure and morphology of the catalyst.

    The influence of ZnO dosage on photocatalytic activity is shown in Fig.9 a.The degradation rate of MO rises generally as the increase of ZnO dosage,but the change in degradation rate is becoming slow.It may be because that when the ZnO dosage is too high,it can lead to the light scattering effect,reducing the light absorption rate of solution[35].In addition,the inhomogenousdispersityofZnOhasalsosome influence on the photocatalytic activity.

    To evaluate the reusability of sample-1,recycled experiments about the photocatalytic dagradation of MO have been performed.The photocatalytic activity of sample-1 is decreased to some extent after each recycle,while it still keeps above 90%after five recycles as shown in Fig.9 b,suggesting that sample-1 presents excellent photocatalytic stability.

    3Conclusions

    The hierarchical ZnO assembled by nanoparticles was prepared via a secondary deposition method by using the precursor solution including two zinc salts, IL and alanine as the raw materials,and the sodium hydroxideasprecipitant.Theas-preparedZnO samplesarehexagonalasevidencedbyXRD characterization.The kind of anion and temperature plays a vital role in constructing the morphology of hierarchical structure.The combination of anion has a great influence on the sample morphology,in which Cl-andhave the directing effect on the seed growth,but theand CH3COO-can play the role of the template in auxiliary constructing the hierarchical structure.In addition,IL and sodium citrate working as surfactant provide an assisted function for oriented growth of ZnO grain.Moreover,sample-1 presents a strong and broad absorption,and possesses a good emission performance in the UV and near UV region as seen from the UV-Vis and PL spectrum.The photocatalytic results indicate that the photocatalytic activity of three different morphological ZnO samples is different,among which sample-1 is the best.The photocatalytic activity of ZnO is closely related to the microstructure and morphology of ZnO.

    [1]WANG Xin(汪信),LU Lu-De(陸路德).Chinese J.Inorg. Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2000,16(2):213-217

    [2]Ren Y,Ma Z,Bruce P G.Chem.Soc.Rev.,2012,41(14): 4909-4927

    [3]Lee K R,Lee J H,Yoo H I.J.Eur.Ceram.Soc.,2014,34 (10):2363-2370

    [4]ZHENG Zhen-Miao(鄭貞苗),TANG Xin-Cun(唐新村), WANG Yang(汪洋),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2015,31(4):731-738

    [5]Yuan C Z,Wu H B,Xie Y,et al.Angew.Chem.Int.Ed., 2014,53(6):1488-1504

    [6]XU De-Kang(徐德康),LIU Chu-Feng(劉楚楓),YAN Jia-Wei (閻佳薇),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2015,31(4):689-695

    [7]WANG Xin-Juan(王新娟),XIAO Yang(肖洋),XU Fei(徐斐), et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2014,30(8): 1821-1826

    [8]Sharma R K,Ghose R.Ceram.Int.,2015,41(1):967-975

    [9]Nevosad A,Hofstatter M,Supancic P,et al.J.Eur.Ceram. Soc.,2014,34(8):1963-1970

    [10]Qiu Z W,Yang X P,Han J,et al.J.Am.Ceram.Soc.,2014,97 (7):2177-2184

    [11]Ma S S,Li P,Lu C P,et al.J.Hazard.Mater.,2011,192(2): 730-740

    [12]Cho S,Kim S,Jung D W,et al.Nanoscale,2011,3(9):3841-3848

    [13]Deng S Z,Fan H M,Wang M,et al.ACS Nano,2010,4(1): 495-505

    [14]Li H F,Huang Y H,Zhang Y,et al.Cryst.Growth Des., 2009,9(4):1863-1868

    [15]Shang T M,Sun J H,Zhou Q F,et al.Cryst.Res.Technol., 2007,42(10):1002-1006

    [16]Sangkhaprom N,Supaphol P,Pavarajarm V.Ceram.Int., 2010,36(1):357-363

    [17]Gao X F,Jiang L.Nature,2004,432(7013):36-36

    [18]Lao JY,WenJG,RenZF.NanoLett.,2002,2(11):1287-1291 [19]Yang Y H,Wang B,Yang G W.Cryst.Growth Des.,2007,7 (7):1242-1245

    [20]Liu H,Li M,Wei Y,et al.Mater.Lett.,2014,137:300-303

    [21]Huang Q,Cun T,Zuo W,et al.Appl.Surf.Sci.,2015,332: 581-590

    [22]Shi R,Song X,Li J,et al.Mater.Chem.Phys.,2015,156:61 -68

    [23]Chang G J,Lin S Y,Wu J J.Nanoscale,2014,6(3):1329-1334

    [24]Kokotov M,Bar-Nachum S,Edri E,et al.J.Am.Chem.Soc., 2009,132(1):309-314

    [25]Mclaren A,Valdes-Solis T,Li G,et al.J.Am.Chem.Soc., 2009,131(35):12540-12541

    [26]Xu S,Wang Z L.Nano Res.,2011,4(11):1013-1098

    [27]Zhou X,Xie Z X,Jiang Z Y,et al.Chem.Commun.,2005, 44:5572-5574

    [28]Wang L,Chang L X,Wei L Q,et al.J.Mater.Chem.,2011, 21(39):15732-15740

    [29]SHEN Jun-Hai(沈俊海),LI Jia-Jia(李佳佳),LI Liang-Chao (李良超),et al.Chem.J.Chinese Universites(高等學(xué)?;瘜W(xué)學(xué)報(bào)),2014,35(6):1135-1141

    [30]Huddleston J G,Willauer H D.Chem.Commun.,1998,16: 1765-1766

    [31]Brindaban C R,Subhash B.Org.Lett.,2005,7(14):3049-3052

    [32]Fernandes D M,Silva R,Hechenleitner A A,et al.Mater. Chem.Phys.,2009,115(1):110-115

    [33]Xing R M,Zhu J H,Liu Q W,et al.Chem.Res.,2012,23 (5):57-60

    [34]JING Li-Qiang(井立強(qiáng)),YUAN Fu-Long(袁福龍),HOU Hai-Ou(侯海鷗),et al.Sci.China Ser.B:Chem.(中國(guó)科學(xué)B輯:化學(xué)),2004,34(4):310-314

    [35]HOU Chun-Yan(侯春燕).Thesis for the Master of Dalian Maritime University(大連海事大學(xué)碩士論文).2006.

    Hierarchical ZnO:Architecture,Morphological Control and Photocatalytic Activity

    QUAN Wei-LeiZHANG Jin-MinSHEN Jun-HaiLI Liang-Chao*LI Jia-Jia
    (College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    Under the green and mild conditions,the hierarchical ZnO was fabricated by the secondary deposition with mixed two zinc salts(zinc source),ionic liquid(surfactant).The composition,structure,morphology, photoluminescence properties and photocatalytic activity of samples were characterized by XRD,IR,SEM,UVVis and PL,respectively.The influential factors on sample morphology,such as surfactant,the kind of anion and temperature,were discussed.The results indicate that surfactant has a significant regulation on the morphologies of as-prepared ZnO samples.Furthermore,the anion and temperature also play a critical role in the crystal structure and morphology of ZnO.In addition,all of as-prepared hierarchical ZnO show an excellent photocatalytic activity on methyl orange under UV lamp,where the sample-1 is slightly better than others.

    ZnO;hierarchical structure;morphological control;photocatalysis

    O614.24+1

    A

    1001-4861(2015)08-1626-11

    10.11862/CJIC.2015.212

    2015-04-21。收修改稿日期:2015-06-29。

    國(guó)家自然科學(xué)基金(No.21071125)和浙江省大學(xué)生科技創(chuàng)新計(jì)劃(No.2014R404056)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:sky52@zjnu.cn;會(huì)員登記號(hào):S06N6780M1401。

    猜你喜歡
    結(jié)構(gòu)
    DNA結(jié)構(gòu)的發(fā)現(xiàn)
    《形而上學(xué)》△卷的結(jié)構(gòu)和位置
    論結(jié)構(gòu)
    新型平衡塊結(jié)構(gòu)的應(yīng)用
    模具制造(2019年3期)2019-06-06 02:10:54
    循環(huán)結(jié)構(gòu)謹(jǐn)防“死循環(huán)”
    論《日出》的結(jié)構(gòu)
    縱向結(jié)構(gòu)
    縱向結(jié)構(gòu)
    我國(guó)社會(huì)結(jié)構(gòu)的重建
    人間(2015年21期)2015-03-11 15:23:21
    創(chuàng)新治理結(jié)構(gòu)促進(jìn)中小企業(yè)持續(xù)成長(zhǎng)
    国产成人精品在线电影| 免费女性裸体啪啪无遮挡网站| 精品电影一区二区在线| 国产乱人伦免费视频| av电影中文网址| 精品卡一卡二卡四卡免费| 精品国产乱子伦一区二区三区| www.精华液| 国产成人啪精品午夜网站| 成熟少妇高潮喷水视频| 国产成人一区二区三区免费视频网站| 久久久久九九精品影院| 久久久久国内视频| cao死你这个sao货| 露出奶头的视频| 亚洲精品中文字幕一二三四区| 无遮挡黄片免费观看| 久久人人97超碰香蕉20202| 99久久久亚洲精品蜜臀av| 欧美亚洲日本最大视频资源| 久久国产精品影院| 欧美性长视频在线观看| 午夜日韩欧美国产| xxxhd国产人妻xxx| 日韩大尺度精品在线看网址 | 大码成人一级视频| 少妇的丰满在线观看| 老司机午夜福利在线观看视频| 中出人妻视频一区二区| 最新在线观看一区二区三区| 亚洲免费av在线视频| 国产区一区二久久| 黄色片一级片一级黄色片| 免费在线观看黄色视频的| 成年人黄色毛片网站| 中文字幕人妻熟女乱码| 亚洲一卡2卡3卡4卡5卡精品中文| 这个男人来自地球电影免费观看| 亚洲一码二码三码区别大吗| 男女下面插进去视频免费观看| 嫩草影院精品99| 90打野战视频偷拍视频| 天天添夜夜摸| 91av网站免费观看| 天天添夜夜摸| 最近最新中文字幕大全免费视频| 久久亚洲真实| 久久久久国内视频| 制服诱惑二区| 国产精品美女特级片免费视频播放器 | 亚洲人成77777在线视频| 久久久久久大精品| 俄罗斯特黄特色一大片| 免费观看人在逋| 久久人妻熟女aⅴ| 黄频高清免费视频| 亚洲av第一区精品v没综合| 亚洲五月天丁香| 亚洲人成电影观看| 男人的好看免费观看在线视频 | videosex国产| 国产精品九九99| 国产精品日韩av在线免费观看 | 国产三级黄色录像| 亚洲精品美女久久av网站| 99国产精品免费福利视频| 日韩欧美一区二区三区在线观看| 国产蜜桃级精品一区二区三区| 欧美老熟妇乱子伦牲交| 人人妻人人爽人人添夜夜欢视频| 欧美黑人欧美精品刺激| 国产成年人精品一区二区 | 欧美另类亚洲清纯唯美| 校园春色视频在线观看| 色尼玛亚洲综合影院| 久久久久久久久免费视频了| 久久国产亚洲av麻豆专区| 午夜福利影视在线免费观看| 欧美日韩瑟瑟在线播放| 欧美精品亚洲一区二区| 热re99久久精品国产66热6| 色哟哟哟哟哟哟| 久久久久久人人人人人| 人人妻,人人澡人人爽秒播| 巨乳人妻的诱惑在线观看| 久久亚洲精品不卡| 国产精品一区二区三区四区久久 | 国产精品秋霞免费鲁丝片| 中文字幕色久视频| xxxhd国产人妻xxx| 欧美大码av| 亚洲在线自拍视频| 久久青草综合色| 好看av亚洲va欧美ⅴa在| 色老头精品视频在线观看| 久久精品91蜜桃| 老熟妇仑乱视频hdxx| 国产亚洲精品第一综合不卡| 国产xxxxx性猛交| avwww免费| 午夜免费观看网址| 99在线人妻在线中文字幕| 久久中文字幕人妻熟女| 大型av网站在线播放| 丝袜人妻中文字幕| 青草久久国产| 久久久久久亚洲精品国产蜜桃av| 国产精品久久电影中文字幕| 久久人人97超碰香蕉20202| 亚洲第一av免费看| 美女高潮喷水抽搐中文字幕| 国产免费现黄频在线看| 一个人观看的视频www高清免费观看 | 国产一区二区三区综合在线观看| 久久中文字幕一级| 色精品久久人妻99蜜桃| 中文字幕人妻熟女乱码| av网站在线播放免费| 高潮久久久久久久久久久不卡| 欧美乱色亚洲激情| 国产精品乱码一区二三区的特点 | 亚洲欧美精品综合一区二区三区| 欧美亚洲日本最大视频资源| 国产三级在线视频| 丰满的人妻完整版| 午夜福利免费观看在线| 老鸭窝网址在线观看| 国产精品秋霞免费鲁丝片| 欧美成人免费av一区二区三区| 免费在线观看日本一区| 日韩国内少妇激情av| 一级黄色大片毛片| 嫩草影视91久久| 天天影视国产精品| 亚洲激情在线av| 日韩视频一区二区在线观看| 1024视频免费在线观看| 性少妇av在线| 欧美大码av| 高清欧美精品videossex| 黑人巨大精品欧美一区二区mp4| 亚洲伊人色综图| 午夜福利一区二区在线看| 亚洲熟妇中文字幕五十中出 | 亚洲中文日韩欧美视频| 黑人巨大精品欧美一区二区mp4| 亚洲精品一区av在线观看| 国产精品二区激情视频| 51午夜福利影视在线观看| 国产精华一区二区三区| 亚洲免费av在线视频| 久久久久久久久免费视频了| av电影中文网址| 精品一区二区三区视频在线观看免费 | 变态另类成人亚洲欧美熟女 | 天天躁夜夜躁狠狠躁躁| 亚洲国产精品sss在线观看 | www.www免费av| 别揉我奶头~嗯~啊~动态视频| 久久久国产一区二区| 国产精品野战在线观看 | 亚洲九九香蕉| 中文欧美无线码| 亚洲avbb在线观看| 免费观看精品视频网站| 亚洲欧美一区二区三区久久| 夜夜看夜夜爽夜夜摸 | 久久久久久久午夜电影 | 亚洲一区二区三区不卡视频| 一边摸一边做爽爽视频免费| 欧美日本亚洲视频在线播放| 亚洲精品美女久久久久99蜜臀| 久久99一区二区三区| 欧美乱妇无乱码| 精品午夜福利视频在线观看一区| 亚洲 欧美一区二区三区| 老熟妇乱子伦视频在线观看| 国产高清视频在线播放一区| 国产一区在线观看成人免费| 午夜福利免费观看在线| 男人的好看免费观看在线视频 | 亚洲人成伊人成综合网2020| 免费久久久久久久精品成人欧美视频| 天堂影院成人在线观看| 亚洲av成人一区二区三| 一级黄色大片毛片| 亚洲欧美日韩无卡精品| 天堂动漫精品| 久久人妻熟女aⅴ| 热99re8久久精品国产| 成年女人毛片免费观看观看9| 老司机福利观看| 久久久久精品国产欧美久久久| 在线观看舔阴道视频| 超碰97精品在线观看| 天天影视国产精品| 亚洲精品美女久久久久99蜜臀| 久久人妻熟女aⅴ| 99香蕉大伊视频| 性少妇av在线| 9色porny在线观看| 757午夜福利合集在线观看| ponron亚洲| 一区福利在线观看| 极品教师在线免费播放| 久久性视频一级片| 性少妇av在线| 国产激情欧美一区二区| 亚洲一区中文字幕在线| 18禁观看日本| 满18在线观看网站| 午夜精品久久久久久毛片777| 精品久久久久久成人av| 亚洲午夜理论影院| 999久久久精品免费观看国产| 国产又爽黄色视频| 欧美日本中文国产一区发布| 精品福利永久在线观看| 操美女的视频在线观看| 黄色a级毛片大全视频| 色老头精品视频在线观看| 日本五十路高清| 一个人免费在线观看的高清视频| 午夜免费激情av| 午夜成年电影在线免费观看| 亚洲午夜精品一区,二区,三区| 午夜两性在线视频| 久久人人97超碰香蕉20202| 99热只有精品国产| 黄频高清免费视频| 国产国语露脸激情在线看| 制服人妻中文乱码| 女性被躁到高潮视频| 99久久久亚洲精品蜜臀av| 18禁国产床啪视频网站| 99国产精品一区二区蜜桃av| 亚洲成a人片在线一区二区| 亚洲色图综合在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品香港三级国产av潘金莲| 少妇裸体淫交视频免费看高清 | 91麻豆精品激情在线观看国产 | 久久国产亚洲av麻豆专区| 亚洲专区国产一区二区| 97碰自拍视频| 亚洲精品粉嫩美女一区| 两性夫妻黄色片| 亚洲精品国产色婷婷电影| 久久精品亚洲熟妇少妇任你| 成人国产一区最新在线观看| 99精品欧美一区二区三区四区| 久久亚洲真实| 性少妇av在线| 女人爽到高潮嗷嗷叫在线视频| 成人国产一区最新在线观看| 99在线人妻在线中文字幕| 午夜福利在线观看吧| 成人国语在线视频| 中文字幕高清在线视频| 午夜视频精品福利| 精品乱码久久久久久99久播| www.www免费av| 亚洲国产中文字幕在线视频| 国产精品永久免费网站| 精品久久久久久久久久免费视频 | 国产精品乱码一区二三区的特点 | 嫩草影视91久久| 1024香蕉在线观看| 99精国产麻豆久久婷婷| 国产av又大| 久久久久精品国产欧美久久久| 日韩精品中文字幕看吧| 最好的美女福利视频网| 欧美日韩中文字幕国产精品一区二区三区 | 午夜激情av网站| 精品久久久久久,| 香蕉丝袜av| 操美女的视频在线观看| 在线观看舔阴道视频| 超碰97精品在线观看| 91精品三级在线观看| 日韩高清综合在线| 亚洲国产中文字幕在线视频| 欧美激情久久久久久爽电影 | 欧美日本亚洲视频在线播放| 19禁男女啪啪无遮挡网站| 成年人黄色毛片网站| svipshipincom国产片| 在线十欧美十亚洲十日本专区| 天天影视国产精品| 久久人妻熟女aⅴ| 最新在线观看一区二区三区| 9191精品国产免费久久| 嫩草影视91久久| av有码第一页| 操出白浆在线播放| av国产精品久久久久影院| 侵犯人妻中文字幕一二三四区| 精品一品国产午夜福利视频| 这个男人来自地球电影免费观看| 国产激情久久老熟女| 亚洲国产精品合色在线| 成人三级黄色视频| 国产亚洲精品久久久久5区| 国产有黄有色有爽视频| 国产成+人综合+亚洲专区| 99re在线观看精品视频| 极品人妻少妇av视频| 成年版毛片免费区| av国产精品久久久久影院| 热99国产精品久久久久久7| 亚洲全国av大片| videosex国产| 国产97色在线日韩免费| 在线观看舔阴道视频| 亚洲成人免费av在线播放| 久久中文字幕一级| 国产97色在线日韩免费| 国产精品久久久久成人av| av在线播放免费不卡| 久久国产精品男人的天堂亚洲| 国产精品日韩av在线免费观看 | 中文字幕人妻熟女乱码| 黄色毛片三级朝国网站| 999久久久国产精品视频| 国产成人精品在线电影| av片东京热男人的天堂| 男男h啪啪无遮挡| 国产欧美日韩一区二区三区在线| 久久久水蜜桃国产精品网| 久久午夜亚洲精品久久| 啦啦啦在线免费观看视频4| 亚洲专区中文字幕在线| 99国产综合亚洲精品| 操美女的视频在线观看| 看黄色毛片网站| 乱人伦中国视频| 久久中文字幕一级| 欧美中文日本在线观看视频| 女性被躁到高潮视频| 一进一出好大好爽视频| 亚洲五月婷婷丁香| 黑人欧美特级aaaaaa片| 亚洲全国av大片| 少妇裸体淫交视频免费看高清 | 18禁美女被吸乳视频| 精品午夜福利视频在线观看一区| 激情在线观看视频在线高清| 日本欧美视频一区| 亚洲五月天丁香| 成人影院久久| 国产精品综合久久久久久久免费 | 99久久久亚洲精品蜜臀av| 久久久水蜜桃国产精品网| 国产精品秋霞免费鲁丝片| 亚洲一区二区三区不卡视频| 一区二区日韩欧美中文字幕| 母亲3免费完整高清在线观看| 日本三级黄在线观看| 国产成人欧美| 露出奶头的视频| 自拍欧美九色日韩亚洲蝌蚪91| 日韩国内少妇激情av| avwww免费| 欧美成狂野欧美在线观看| 热re99久久国产66热| 亚洲自拍偷在线| 国产成人精品久久二区二区91| 国产精品永久免费网站| 曰老女人黄片| 88av欧美| 亚洲欧美激情综合另类| 在线十欧美十亚洲十日本专区| 免费av毛片视频| 国产精品成人在线| 丁香六月欧美| 女人高潮潮喷娇喘18禁视频| 满18在线观看网站| 人人澡人人妻人| 女人高潮潮喷娇喘18禁视频| 欧美在线一区亚洲| 国产精品一区二区免费欧美| 日韩欧美国产一区二区入口| 中亚洲国语对白在线视频| xxxhd国产人妻xxx| 亚洲精品在线观看二区| 91av网站免费观看| 成熟少妇高潮喷水视频| 日韩中文字幕欧美一区二区| 国产三级黄色录像| 精品无人区乱码1区二区| 午夜激情av网站| 99在线人妻在线中文字幕| 成人国语在线视频| 女同久久另类99精品国产91| 在线天堂中文资源库| 国产区一区二久久| 欧美精品亚洲一区二区| 日韩欧美三级三区| 一进一出抽搐动态| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产亚洲av香蕉五月| 亚洲五月婷婷丁香| 丝袜美足系列| 国产一区在线观看成人免费| 香蕉国产在线看| 中文字幕av电影在线播放| 无遮挡黄片免费观看| 日韩av在线大香蕉| 免费观看精品视频网站| 新久久久久国产一级毛片| 日本免费a在线| xxx96com| 91成人精品电影| 午夜免费激情av| 在线观看舔阴道视频| 国产高清激情床上av| 久久性视频一级片| 色播在线永久视频| 国产精品久久久人人做人人爽| 三级毛片av免费| 国产成+人综合+亚洲专区| 在线永久观看黄色视频| 国产色视频综合| 午夜91福利影院| 深夜精品福利| 女人精品久久久久毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 热99国产精品久久久久久7| 国产一区二区在线av高清观看| 熟女少妇亚洲综合色aaa.| 999久久久精品免费观看国产| 久久久精品欧美日韩精品| xxx96com| 波多野结衣av一区二区av| www.www免费av| 好看av亚洲va欧美ⅴa在| 国产主播在线观看一区二区| 日本wwww免费看| 久久国产精品影院| 99精国产麻豆久久婷婷| 国产精品一区二区在线不卡| 日韩免费av在线播放| 久久精品国产亚洲av高清一级| 看免费av毛片| 丁香欧美五月| 久久性视频一级片| 亚洲一区二区三区不卡视频| 国产精品免费一区二区三区在线| 日本一区二区免费在线视频| 亚洲精品成人av观看孕妇| av在线天堂中文字幕 | 久久久久国产精品人妻aⅴ院| 一二三四社区在线视频社区8| 91在线观看av| 狠狠狠狠99中文字幕| 亚洲精品久久午夜乱码| av在线播放免费不卡| 老司机午夜十八禁免费视频| 日韩精品中文字幕看吧| 国产免费现黄频在线看| www.熟女人妻精品国产| av中文乱码字幕在线| 中文字幕人妻熟女乱码| 曰老女人黄片| 亚洲九九香蕉| 一级毛片女人18水好多| av视频免费观看在线观看| 桃色一区二区三区在线观看| 亚洲成人免费电影在线观看| 黄频高清免费视频| 成人精品一区二区免费| 丰满的人妻完整版| 大码成人一级视频| 亚洲 欧美 日韩 在线 免费| 香蕉丝袜av| 真人做人爱边吃奶动态| 1024香蕉在线观看| 欧美成人免费av一区二区三区| 亚洲伊人色综图| 欧美乱妇无乱码| 老熟妇乱子伦视频在线观看| 一个人免费在线观看的高清视频| 正在播放国产对白刺激| 亚洲国产毛片av蜜桃av| 18禁黄网站禁片午夜丰满| 欧美成人午夜精品| 亚洲成av片中文字幕在线观看| 亚洲国产中文字幕在线视频| 人人妻,人人澡人人爽秒播| tocl精华| 麻豆成人av在线观看| 99国产综合亚洲精品| 日日夜夜操网爽| 久久精品国产清高在天天线| 精品日产1卡2卡| 国产精品影院久久| 波多野结衣一区麻豆| 久久国产精品影院| 18禁美女被吸乳视频| 99久久99久久久精品蜜桃| 99在线人妻在线中文字幕| 正在播放国产对白刺激| 久久狼人影院| 欧美中文日本在线观看视频| 亚洲 国产 在线| 后天国语完整版免费观看| 在线观看免费视频日本深夜| 狠狠狠狠99中文字幕| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| 精品久久久久久成人av| 久久人人精品亚洲av| 欧美色视频一区免费| 国产精品98久久久久久宅男小说| 国产精品九九99| 欧美久久黑人一区二区| 午夜福利一区二区在线看| www国产在线视频色| 97碰自拍视频| 日韩av在线大香蕉| 高清欧美精品videossex| 亚洲中文av在线| 免费在线观看日本一区| 另类亚洲欧美激情| 亚洲一区高清亚洲精品| 精品电影一区二区在线| 国产欧美日韩一区二区精品| av免费在线观看网站| 天堂中文最新版在线下载| 欧美日韩国产mv在线观看视频| 国产一区二区激情短视频| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| 精品久久久久久电影网| 亚洲精品国产区一区二| 高清毛片免费观看视频网站 | 久久人人97超碰香蕉20202| 波多野结衣一区麻豆| 丰满饥渴人妻一区二区三| 精品福利永久在线观看| 美国免费a级毛片| 色综合站精品国产| 亚洲 欧美一区二区三区| 亚洲精品美女久久久久99蜜臀| 丰满迷人的少妇在线观看| 国产成年人精品一区二区 | 在线观看一区二区三区| 久久久国产一区二区| 在线观看一区二区三区| 欧美中文日本在线观看视频| 91字幕亚洲| av福利片在线| 麻豆成人av在线观看| 久久精品91无色码中文字幕| 国产精品乱码一区二三区的特点 | videosex国产| av国产精品久久久久影院| 久久精品影院6| 夜夜躁狠狠躁天天躁| av欧美777| 成熟少妇高潮喷水视频| 久久国产乱子伦精品免费另类| 成人国语在线视频| 97碰自拍视频| 久久久精品国产亚洲av高清涩受| 久久久久久人人人人人| 亚洲色图 男人天堂 中文字幕| 国产视频一区二区在线看| 青草久久国产| 黑人巨大精品欧美一区二区mp4| 一个人观看的视频www高清免费观看 | 亚洲欧美日韩另类电影网站| 交换朋友夫妻互换小说| 女人爽到高潮嗷嗷叫在线视频| 99国产综合亚洲精品| 看黄色毛片网站| 露出奶头的视频| 在线观看舔阴道视频| 丝袜美腿诱惑在线| netflix在线观看网站| 88av欧美| 99精品在免费线老司机午夜| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 免费高清视频大片| 亚洲色图综合在线观看| 国产精品日韩av在线免费观看 | 中文字幕最新亚洲高清| av视频免费观看在线观看| 伦理电影免费视频| 99热只有精品国产| 最新美女视频免费是黄的| 人人妻人人爽人人添夜夜欢视频| 欧美最黄视频在线播放免费 | 国产国语露脸激情在线看| 身体一侧抽搐| 亚洲人成电影免费在线| 每晚都被弄得嗷嗷叫到高潮| 久久这里只有精品19| av天堂在线播放| 两人在一起打扑克的视频| 亚洲成人精品中文字幕电影 | 欧美最黄视频在线播放免费 | 制服诱惑二区| 一级a爱视频在线免费观看| 国产精品久久视频播放| 久久香蕉精品热| 欧美日韩一级在线毛片| 国产欧美日韩一区二区三区在线| 热99re8久久精品国产| 天天躁夜夜躁狠狠躁躁| 亚洲成a人片在线一区二区| 亚洲国产精品999在线| 色尼玛亚洲综合影院|