• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多級結(jié)構(gòu)氧化鋅的構(gòu)筑、形貌調(diào)控及其光催化活性

    2015-12-05 10:25:18全微雷張金敏沈俊海李良超李佳佳
    無機化學(xué)學(xué)報 2015年8期
    關(guān)鍵詞:結(jié)構(gòu)

    全微雷 張金敏 沈俊海 李良超 李佳佳

    (浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華321004)

    多級結(jié)構(gòu)氧化鋅的構(gòu)筑、形貌調(diào)控及其光催化活性

    全微雷 張金敏 沈俊海 李良超*李佳佳

    (浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華321004)

    分別以混合常見二鋅鹽為鋅源,以離子液體和檸檬酸鈉為表面活性劑,在綠色溫和的條件下采用二次沉積法制備出多級結(jié)構(gòu)氧化鋅。用XRD、IR、SEM、UV-Vis、PL等表征了樣品的組成、結(jié)構(gòu)、形貌、光致發(fā)光性能及光催化性能。探討了表面活性劑、陰離子、溫度等因素對氧化鋅形貌的影響。結(jié)果表明,由不同表面活性劑所得到樣品的多級結(jié)構(gòu)有較大的差異。此外,推測了在多級結(jié)構(gòu)氧化鋅形成過程中,陰離子和溫度對樣品形貌的調(diào)控作用,并對比了三種典型樣品的光催化性能,其中樣品-1的光催化性能最好。

    氧化鋅;多級結(jié)構(gòu);形貌調(diào)控;光催化

    0Introduction

    Due to the special microstructure and physicochemical properties,inorganic micro-nano materials with different microscopic sizes and morphologies have been widely applied in optics,electricity,magnetism,biological medicine,catalysis,and other fields[1-4]. Furthermore,with the improvement of application demands,the control on material microscopic morphology has been paid much attention[5-6].As one of the most important semiconductor materials,ZnO has emerged as one of the most promising candidate materials owing to its superior properties and the potential advantage in future electron device[7-10].According to the principle that material properties depend on its structure,researchers have devoted themselvesto the controllable synthesis of materials with different microscopic morphologies and sizes.For example,Ma et al[11]reported three kinds of ZnO with different morphologies and found that they possessed various photocatalytic activities on methyl orange,in which the nanorod-like ZnO has the best photocatalytic activity,the flower-like ZnO is the second,and the nanoparticle ZnO is the worst.In addition,much more different morphologies of ZnO have been reported, such as mesoporous spheres,tubular,four foot shape and fibrous,etc[12-16],in which most researches are about ZnO nanoparticles and nanoplates.However,to the best of our knowledge,there have been no reports onthehierarchicalZnOconstructedbytwo morphologies.

    A lot of micro-nano structure in the nature usuallyshowssomeinconceivablefunction.For example,the micro-nano structure on the surface of lotus leaf makes it have super hydrophobic and selfcleaning function.The micro-nano structure on the leg of water flies makes it walk on the water freely[17].So themicro-nanostructurehasinfinitemystery. However,whether the hierarchical ZnO assembled by micro-nano structure has the unusual photocatalytic activity?It is a pity that the reports associated with the above question are very little,the main reason is that it is very difficult to fabricate the well-defined micro-nano structure and to control its morphology effectively.The Chemical Vapor Deposition(CVD) method has been paid attention owing to its high efficiency[18-19].However,the CVD method needs high temperature and can introduce impurities.There are very few reports[20-22]about the simple fabrication of hierarchical ZnO,especially under the green and mild preparation conditions.

    Besides,in regard to the regulation of ZnO microstructure,the single zinc salt is often used as the zinc source to fabricate ZnO[23-24],and some common surfactants(e.g.CTAB,PVP,etc.)are used as the template agent or structure-directing agent[25-26].However,these surfactants are difficult to be removed completely in the post-processing,which may have negative effect on ZnO performance,due to the reduction in the polarization plane of ZnO.But the ionic liquid(IL)as a kind of green solvent has been applied in the fabrication of inorganic micro-nano materials including ZnO[27-28],which can work as the co-surfactant and be removed easily.

    Thus we choose the mixed zinc salts as the zinc source.Beacuse the anions in zinc salts have various spatial structures and electronegativities,ZnO seed may have different absorption capacities to them,so they can affect the crystal growth to adjust ZnO morphology.On the other hand,the introduction of IL can improve the solubility of inorganics and organics, and IL can play a role as the special surfactant.More importantly,the effect of IL on ZnO morphology can be studied by changing the anion in IL.Herein,we report the ZnO with hierarchical structure by a simple and green secondary deposition method.Based on our previous work[29],it is expected to fabricate the hierarchical ZnO with well-organized micro-nano structures, i.e.,micro-sized ZnO grains are coated by ZnO nanoparticles.In this paper,the precursor solution including the micro-sized ZnO grains is obtained by hydrothermal method.Then the pH value of the precursor solution is adjusted by NaOH solution under the room temperature,the residual Zn2+ions can form ZnO on the surface of micro-sized ZnO grains.As a result,the prepared hierarchical ZnO consists of the micro-sized ZnO grains fabricated by hydrothermal method and the coating layer of nano-sized ZnO particlesobtainedbythesecondarydeposition. Furthermore,someinfluentialfactorsonthe morphology of hierarchical ZnO,such as the kind of anion in zinc salt,surfactants and reaction temperature are studied.In addition,the photocatalytic activity of three kinds of morphological ZnO on methyl orange(MO)is also studied.

    1Experimental

    1.1 Materials

    Zinc acetate(Zn(CH3COO)2·2H2O),Zinc sulfate (ZnSO4·7H2O),Zinc chloride(ZnCl2),Zinc nitrate (Zn(NO3)2·6H2O),NaOH,C3H7NO2,C2H5OH,Sodium citrate(C6H5Na3O7·2H2O)were all of analytical purityprovided by the Shanghai Sinopharm Chemical Reagent Co.,Ltd.and were used as received without further purification.[BMIM]Cl,[BMIM]Br and deionized water were prepared by this laboratory.

    1.2 Sample preparation

    1.2.1 Fabrication of precursor solution

    [BMIM]Cl and[BMIM]Br were synthesized following the literature procedures[30-31].

    The preparation procedure is as follows:1 mmol Zn(CH3COO)2·2H2O and 1 mmol ZnCl2were dispersed in a mixed solution consisting of 30.0 mL deionized water and 2 mmol[BMIM]Br to form white turbid solution.Then 2 mmol alanine was added into the above solution,stirred until a clear solution was obtained.4 mmol NaOH was added into the clear solution under vigorous stirring.A white colloidal turbid liquid was finally obtained and transferred into a Teflon-lined stainless autoclave(volume of 50.0 mL).Then the autoclave was heated and maintained at 150℃for 15 h,the precursor solution was obtained after cooling down the system to room temperature.

    1.2.2 Fabrication of the sample-1

    1 mol·L-1NaOH solution was added dropwise into 25 mL of the above precursor solution until the precipitation was formed completely.After filtering, the solid precipitation was washed three times with deionized water and ethanol.Then,the sample-1 was obtained by drying to constant weight under vacuum at 50℃.By changing the zinc salt,surfactants and reaction temperature,other ZnO samples in different morphologies were obtained by the same method.

    1.3 Photocatalytic studies

    Methyl orange(MO)was used as the simulative pollutant to evaluate the photocatalytic activity of the as-prepared samples by standard curve method.In a typical experiment,3 mmol sample-1 was dispersed uniformly in 100 mL MO solution with 12 mg·L-1by ultrasonication.The above mixture was irradiated under UV lamp(3×8 W).3 mL suspension was taken out from the reaction system every 10 min,and immediately centrifuged.The absorbance of centrifugal solution was measured by a UV-Vis spectrophotometer at λmax=465 nm.

    In addition,the influence of ZnO dosage on photocatalytic activity was studied.A certain amount of sample-1 was uniformly dispersed in 100 mL MO solution with 12 mg·L-1by ultrasonication,which was irradiated under UV lamp(3×8 W).After 80 min,the dagradation rate of MO was measured by a UV-Vis spectrophotometer at λmax=465 nm.

    1.4 Characterization

    Thephasestructureofthesamplewas characterized using an X-ray diffractometer(Philips-PW3040/60)with Cu Kα radiation(λ=0.154 18 nm, 10°·min-1,U=40 kV,I=40 mA,Ni filter)in the range of 2θ=10°~80°.The infrared spectrum was recorded on the Nicolet Nexus 670 Fourier transform infrared spectrometer(FTIR)using KBr pellets(scan range of 400~4 000 cm-1).The morphologies and microstructures were observed by a scanning electron microscopy (SEM,Hitachi S-4800,U=5.0 kV).The UV-Vis absorption of MO solution was measured with an ultraviolet -visible spectrophotometer(Shmadzu UV-2501PC).A photoluminescence(PL)spectrum of the sample-1 was recorded in an FL-920 fluorescence spectrophotometer in wavelength of 325 nm.The organic carbon of MO solution was measured by Total Organic Carbon Analyzer(ELEMENTAR Liqui TOCⅡ).

    Fig.1 XRD pattern of the sample-1

    2Results and discussion

    2.1 X-ray diffraction

    The XRD pattern of sample-1 is presented in Fig.1 .The strong and sharp diffraction peaks demonstrate that sample-1 has good crystallization.In addition,all peaks are in agreement with the characteristicpeaks of hexagonal ZnO(PDF-2 No 36-1451),and correspond to(100),(002),(101),(102),(110)and (103)crystal face.No diffraction peaks of impurities are observed,which illustrates that the as-prepared sample-1 is highly pure.

    2.2 FTIR spectra

    Fig.2 shows the FTIR spectra of sample-1.The bands at 435 and 534 cm-1are attributed to Zn-O axial stretching vibration[32].The band at 3 432 cm-1is assigned to-OH stretching vibration,which may be caused by the absorbed H2O on the surface of sample-1.The band at 1 099 cm-1is assigned to C-O stretching vibration.In addition,the weak bands at 1637 and 1 384 cm-1correspond to anti-symmetric and symmetric stretching vibration of COO-,suggesting that the CH3COO-groups are absorbed on the ZnO grain surface and there may be some coordination bonds between the Zn2+and CH3COO-.

    Fig.2 FTIR spectrum of the sample-1

    2.3 Morphology

    The SEM images of sample-1 are shown in Fig.3 . The ZnO particles possess a hierarchical structure with etching decorative pattern,indicating a high surfacearea.Thehigh-resolutionimage(Fig.3 b) clearlyshowsthatthewell-beddedsurfaceof hierarchical ZnO is constructed by nanoparticles of 50~100 nm,and has agglomeration to some extent. Some of these nanoparticles keep spherical morphology, while other shows the irregular morphology due to serious reunion.

    2.3.1 Influenceofsurfactantonthesamplemorphology

    Surfactant can regulate and control the nucleation and assembling of ZnO nanoparticles[33].In addition, due to the changes in spatial structure,solubility and functional groups of surfactants,the special regulating andcontrollingeffectisdifferent.Therefore,to investigate the effect of surfactants(IL and sodium citrate),the kind and dosage of the surfactant are considered.The experimental parameters and sample morphologies are given in Table1 (in section 1.2.2) and Fig.4 ,saparately.

    Fig.3 SEM images of the sample-1

    The morphological differences are evident.For example,sample-2 presents the irregular spherical aggregates formed by nanospheres with 100~150 nm, and the nanospheres are actually assembled by the smaller spherical nanoparticles with 10~20 nm.While the irregular nanospheres convert to the triangulated petals,when the[BMIM]Cl is replaced by 1 mmol sodium citrate.So the flower-like ZnO(sample-3)is well revealed in Fig.4 b,which is constituted by a pistil and some petals with rugged surface due to the adhesion ZnO nanoparticles.Here one can reasonably speculate that the pistils and petals are assembled by ZnOnanoparticlesaccordingtothespecific orientation.Moreover,combining[BMIM]Clwith sodiumcitrateforsample-4,thepreparedZnOpresents multi-foot structure(Fig.4 c).In fact,the ZnO nanoparticles adhere on the surface of every foot,and the cone-like foot end is similar to the strawberry.At last,the ZnO nanospheres(sample-5)with the size of 100~200 nm(Fig.4 d)are obtained without any IL and sodium citrate,their surface is unsmooth due to being covered by the smaller particles.Compared Fig.4 a and 4d,their size and morphology are similar,but the dispersity of the latter(Fig.4 d)is better.

    Fig.4 Effect of surfactants on ZnO sample morphology

    The above results indicate that the surfactant plays a critical role in the formation process of hierarchical ZnO.No matter what the molar ratio of ILs to sodium citrate is,the minimum basic unit of all obtainedsamplesisnanoparticles.However,the fundamentaldifferenceamongaboveas-obtained samples attributes to the interaction forces among nanoparticles,leadingtodifferentorientationsof nanoparticles in the process of self-assembly,which illustrates that IL and sodium citrate have some influence on self-assembly kinetics of nanoparticles, or have the specific effect as template,structure orientedagentorbothontheassemblingof nanoparticles.The hierarchical structure of sample-1 hasthebiggestsizeandthemostcomplicated morphology.By contrast,sample-5 prepared without any surfactant is the smallest in the size,and it presents simple spherical structure,which is the most common morphology caused by nanoparticles reunion. In addition,comparing sample-3 and sample-4,the arrangeorientationofnanoparticlesdisappears completely,because of the replacement of[BMIM]Br by[BMIM]Cl.Thus,it can be concluded that the auxiliary effect of[BMIM]Cl on nanoparticle assembly is poorer than that of[BMIM]Br.It may because that the Cl-has a larger electronegativity and a smaller ionic radius compared with that of Br-,i.e.,Cl-has a weaker ability of donating electrons.However,the introductionofsodiumcitrateishelpfulfor nanoparticles to arrange orderly(Fig.4 b),and the effect of sodium citrate as the template agent(or structure oriented agent)is much better compared with that of[BMIM]Br.It is because that CH3COO-is more easily to combine with Zn2+as confirmed by FTIR.Moreover,when[BMIM]Cl is substituted for [BMIM]Br,thetemplateeffectofsodiumcitrate becomes weakened drastically,which also proves that [BMIM]Cl cannot work as the template.In addition, Cl-with a big electronegativity also weakens the template effect of sodium citrate.To sum up,the template effect of sodium citrate is the best,while that of the[BMIM]Cl is the worst among three surfactants in terms of constructing hierarchical ZnO.

    2.3.2 Influence of zinc source on the sample morphology

    Only the zinc source is changed in the following experiments.The precursor solutions with different mixed zinc salts are designed as shown in Table1 .

    Table1 Experimental parameters for different sample

    Fig.5 SEM images of ZnO samples prepared with different zinc sources

    The ZnO morphologies and structures prepared by different zinc sources are shown in Fig.5 .The ZnO morphologies and structures are closely related to thezinc source.When the mixture of zinc acetate and zinc sulfate is used as the zinc source,sample-6 formedbyquasi-sphericalnanoparticlespresents inhomogenous size and irregular morphology(Fig.5 a). It can be seen from the high-resolution image(Fig.5 b) that the hierarchical structure of sample-6 is constituted by nanoparticles,and the cusp emissions are outward in the scattering form.Nevertheless,the obtained hierarchical structure of sample-7 is the agglomerate by multiple chains(Fig.5 c and 5d),whose surface is unsmooth due tothenanoparticlesassembly.In addition,the flake-like morphology of sample-8 can be found in Fig.5 e and 5f,when the mixed zinc salts are zinc chloride and zinc nitrate.The high-resolution image(Fig.5 f)ofsample-8showsthedisorder hierarchical structure with wheatear-like or flowervine morphology,some of which possess complicated structure arranged closely by the nanoflakes,while others have orderly structure arranged loosely by nanoflakes.The SEM images of sample-9 prepared by zinc chloride and zinc sulfate(Fig.5 g and 5h)show some flower patterns attached by some short chains. The surface of flower patterns is rough and the shape of flower patterns is different.The high-resolution image(Fig.5 h)shows that the hierarchical structure of sample-9issimilartocarvedpetal,andmany nanoparticles adhere well on the surface of sample-9.

    It can be concluded that the samples prepared by altering zinc source are different in morphology. Although the samples are hierarchical structure assembled by nanoparticles,their assembling processes are not the same,which is mainly decided by the anion in zinc salts.Throughout Fig.5 ,only sample-8 is not assembled by nanoparticles,i.e.,Cl-and NO3-can directlyaffectthegrowthofZnOparticles.In addition,it can be found by comparing Fig.5 d with 5h that the two samples have well-organized hierarchical structures.It may be because that one crystal face of ZnO seed has a weaker absorption capacity to Cl-or NO3-,leading to the seed growth along this crystal face to form the regular grain,i.e.,Cl-makes grain grow into the chain-like structure,while NO3-makes grain grow into the flake-like structure,which may be related to anionic spatial structure and electronegativity.Interestingly,the morphology of sample-9 shown in Fig.5 g is very similar to that of sample-1(Fig.3 ), indicating that the effect of SO42-and CH3COO-as the template is similar.Maybe it is because that the two anions all have larger volume and possess the threedimensional structure,so that ZnO seed has weaker absorption on them.In addition,their larger volume may be propitious to assist the construction of the well-organized hierarchical structure.

    2.3.3 Influence of temperature on the sample morphology

    Tostudytheeffectoftemperatureonthe morphologyoffinalsample,experimentsare respectively carried out at 120 and 180℃under invariability of other conditions.

    When the reaction temperature of the precursor solution is 120℃,the morphologies of the obtained sample-10 are shown in Fig.6 a and 6b.It can be observed from Fig.6 a that the sample-10 is thin flakelike agglomerates with irregular shape and rough surface.As shown in the high-resolution(Fig.6 b), theseagglomerateshavethedisorderedstructure constituted by nanoflakes with irregular shape.Some of nanoflakes are wide and short,on the contrary, others are narrow and long.On the whole,these nanoflakes are similar to the fallen leaves stacking in a mess.The nanoflake-like morphology disappears generally when the reaction temperature increases to 180℃,while the as-prepared sample-11 appears to bethemixedstructurecomposingtheirregular nanorods and nanoparticles aggregates(Fig.6 c and 6d),and the nanoparticles of 60~100 nm attach to the nanorod surface or fill in the interspace among the nanorods.It can also be found from Fig.6 d that the nanorodsstackirregularlyandtheirsurfaceis unsmooth.

    From the above results,it can be learned that the structure unit of sample-10 presents the flake-like morphology at 120℃.While sample-11 has two structure units including the nanorods and nanoparticles at 180℃.Compared with sample-1(prepared at 150℃),the samples prepared at 120 and 180℃haveno obvious hierarchical structure.So,the temperature plays an important role in the formation process of hierarchicalZnO.Thepossiblereasonsofthis morphological difference are as follows.Firstly,the temperaturehasagreatinfluenceonthegrain nucleation and growth rate.The nucleation rate of grain is faster than its growth rate if the temperature is too low,so the obtained grain is usually irregular under this case.On the contrast,the growth rate of grainisfasterthanitsnucleationrateifthe temperatureishighenough,whichisalso disadvantageous to form the regular grains.When the growth rate of grain is faster than the diffusion rate of ions,the nonuniform distribution of concentration has anenormouseffectontheregularityofgrains. Secondly,hierarchical structure is usually assembled by small structure unit,while the assembly process needs the driving force.Hence,temperature can provide the driving force for grain assembly.But a too high temperature can dramatically enhance the Brown movement of particles,which would hinder the selfassembly of grains.On the contrary,a too low temperature can not provide enough driving force for grains assembly,which often leads to the incomplete assembly and forms disorder structure.In addition, the nano-flake is one dimensional,while the nano-rod is three dimensional in structure.So,with the increase of space dimension,the driving force needed for selfassemblyisbecominggreaterandgreater.In conclusion,sample-10preparedunderlow temperature(120℃)presents a flake-like morphology due to lack of driving force(Fig.6 a and 6b).However, owing to the enhanced Brown effect,some parts of ZnO grains form rod-like structure(Fig.6 c and 6d)at high temperature(180℃).

    Fig.6 SEM images of ZnO samples prepared under different reaction temperature

    2.4 Optical properties

    Fig.7 a presents the UV-Vis spectrum of the aspreparedsample-1.Comparedwithcharacteristic absorption of common ZnO(373 nm),the main absorption peak at 368 nm in Fig.7 a shows some blue shift.It may be due to the nano-effect of nanoparticles on the surface of hierarchical ZnO,or the interaction between Zn2+and CH3COO-absorbed by the ZnO grains making the 3d valence electrons of Zn2+transfer easily to the π*orbital of CH3COO-.Fig.7 b shows the PL spectrum of sample-1 with the excitation wavelengthof 325 nm at room temperature.The PL spectrum possesses two emission bands,i.e.one is the narrow UV emission at about 320 nm corresponding to the electronic radiative transition from conduction band to valence band,and the other is a strong and broad emissionbandlocatedinthenearUVregion. Furthermore,the strong double bands in 375~450 nm are the blue emission of ZnO in the visible region, one of which corresponds to the red shift and the other is the blue shift relative to central transition frequency,it may be due to the emission of excitonic recombination or the ZnO crystal defect caused by the excess OH-in the process of adding NaOH dropwise. The weak green emission at 490 nm may be caused by the electronic transition from the low energy level to valence band.Compared with the conventional ZnO nanocrystals,allemissionpeaksexhibitthe phenomenon of blue shift to some extent.It may be becausethattheparticlesconstructingthe hierarchical structure belong to nano size,leading to that the emission peak position moves to the short wavelength,whichprovidesguaranteeforthe improvement of photocatalytic activity.

    According to literature[34],the photoluminescence property of ZnO nanoparticle associates with the oxgen vacancies and defects on ZnO surface.In the processofphotoluminescence,superficialoxgen vacanciesanddefectscanmakephotogenerated electron to form the free exciton or bound exciton, leadingtoemittingfluorescence.Themorethe superficial oxgen vacancies and the more defects,the highter the intensity of fluorescence will be.The representativeZnOownsthestrongandbroad emission band in the range of 375~550 nm as shown in Fig.7 b,suggesting that hierarchical ZnO possesses more superficial oxgen vacancies and defects.However, the superficial oxgen vacancies and defects can make a large contribution to photocatalytic activity,because they can capture photogenerated electron to improve the efficiency of photoinduced charge separation.

    Fig.7 (a)UV-Vis diffuse reflectance spectrum and(b)PL spectrum of the sample-1

    2.5 Evaluation of photocatalytic activity

    By experiments,the standard curve equation of MO solution is A=0.074 2c+0.042 8(R2=0.999 8,A/ (mg·L-1)is the solution absorbance,c/(mol·L-1)is the solution concentration).The relative absorbance(A/A0) of solution is considered as 1,of which MO concentration is about 12.9 mg·L-1.In order to reach the adsorption-desorption equilibrium between the catalyst and MO,the mixed solutions including ZnO and MO have been stirred in the dark for 1 h.And C/C0values corresponding to 0 min in Fig.8 are all slightly less than 1,indicating that the three different ZnO samples have a weak absorption on MO.In the photocatalytic experiments,three kinds of as-prepared ZnO samples used as the catalyst are sample-1,sample-2,and sample-10 separately.

    Fig.8 shows the photocatalytic activity of three different morphological ZnO samples on MO solution (12.9 mg·L-1)under UV irradiation.The C/C0values of all samples decrease with increasing time(Fig.8 ). Obviously,thedegradationrateofallsamples declines gradually,and compared with sample-2 andsample-10,the degradation rate of sample-1 is the fastest.Especially,when the irradiation time is up to 100 min,only the C/C0value of sample-1 reduces to below 0.05,proving that the MO has been degraded almost completely.By contrast,the C/C0value of sample-1 is the minimum under the same irradiation time among three samples,and the photocatalytic activity of sample is the best in the whole process of photocatalyticdegradation.Inaddition,thetotal organic carbon(w)of MO soultion degraded under sample-1 is shown in Table2 and the relational expression is

    Fig.8 Photocatalytic activity of three different ZnO samples

    Table2 Total content of organic carbon of MO soultion

    Fig.9 (a)Photocatalytic activity under different the sample-1 dosages and(b)Reusability of the sample-1 evaluated for five cycles

    The w displays a dramatic variation as seen from Table2 ,incidating the effective photocatalyitc activity of sample-1.Besides,the decrement of carbon(η= 82%)is lower than the degradation rate(95%)of MO, which suggests that there are many intermediate products in the photocatalytic degradation.

    It may be the hierarchical structure of sample-1 that improves the photocatalytic activity of ZnO,due to sample-2 and sample-10 without obvious hierarchical structure.So,the photocatalytic activity is closely associated with the microstructure and morphology of the catalyst.

    The influence of ZnO dosage on photocatalytic activity is shown in Fig.9 a.The degradation rate of MO rises generally as the increase of ZnO dosage,but the change in degradation rate is becoming slow.It may be because that when the ZnO dosage is too high,it can lead to the light scattering effect,reducing the light absorption rate of solution[35].In addition,the inhomogenousdispersityofZnOhasalsosome influence on the photocatalytic activity.

    To evaluate the reusability of sample-1,recycled experiments about the photocatalytic dagradation of MO have been performed.The photocatalytic activity of sample-1 is decreased to some extent after each recycle,while it still keeps above 90%after five recycles as shown in Fig.9 b,suggesting that sample-1 presents excellent photocatalytic stability.

    3Conclusions

    The hierarchical ZnO assembled by nanoparticles was prepared via a secondary deposition method by using the precursor solution including two zinc salts, IL and alanine as the raw materials,and the sodium hydroxideasprecipitant.Theas-preparedZnO samplesarehexagonalasevidencedbyXRD characterization.The kind of anion and temperature plays a vital role in constructing the morphology of hierarchical structure.The combination of anion has a great influence on the sample morphology,in which Cl-andhave the directing effect on the seed growth,but theand CH3COO-can play the role of the template in auxiliary constructing the hierarchical structure.In addition,IL and sodium citrate working as surfactant provide an assisted function for oriented growth of ZnO grain.Moreover,sample-1 presents a strong and broad absorption,and possesses a good emission performance in the UV and near UV region as seen from the UV-Vis and PL spectrum.The photocatalytic results indicate that the photocatalytic activity of three different morphological ZnO samples is different,among which sample-1 is the best.The photocatalytic activity of ZnO is closely related to the microstructure and morphology of ZnO.

    [1]WANG Xin(汪信),LU Lu-De(陸路德).Chinese J.Inorg. Chem.(無機化學(xué)學(xué)報),2000,16(2):213-217

    [2]Ren Y,Ma Z,Bruce P G.Chem.Soc.Rev.,2012,41(14): 4909-4927

    [3]Lee K R,Lee J H,Yoo H I.J.Eur.Ceram.Soc.,2014,34 (10):2363-2370

    [4]ZHENG Zhen-Miao(鄭貞苗),TANG Xin-Cun(唐新村), WANG Yang(汪洋),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2015,31(4):731-738

    [5]Yuan C Z,Wu H B,Xie Y,et al.Angew.Chem.Int.Ed., 2014,53(6):1488-1504

    [6]XU De-Kang(徐德康),LIU Chu-Feng(劉楚楓),YAN Jia-Wei (閻佳薇),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報), 2015,31(4):689-695

    [7]WANG Xin-Juan(王新娟),XIAO Yang(肖洋),XU Fei(徐斐), et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2014,30(8): 1821-1826

    [8]Sharma R K,Ghose R.Ceram.Int.,2015,41(1):967-975

    [9]Nevosad A,Hofstatter M,Supancic P,et al.J.Eur.Ceram. Soc.,2014,34(8):1963-1970

    [10]Qiu Z W,Yang X P,Han J,et al.J.Am.Ceram.Soc.,2014,97 (7):2177-2184

    [11]Ma S S,Li P,Lu C P,et al.J.Hazard.Mater.,2011,192(2): 730-740

    [12]Cho S,Kim S,Jung D W,et al.Nanoscale,2011,3(9):3841-3848

    [13]Deng S Z,Fan H M,Wang M,et al.ACS Nano,2010,4(1): 495-505

    [14]Li H F,Huang Y H,Zhang Y,et al.Cryst.Growth Des., 2009,9(4):1863-1868

    [15]Shang T M,Sun J H,Zhou Q F,et al.Cryst.Res.Technol., 2007,42(10):1002-1006

    [16]Sangkhaprom N,Supaphol P,Pavarajarm V.Ceram.Int., 2010,36(1):357-363

    [17]Gao X F,Jiang L.Nature,2004,432(7013):36-36

    [18]Lao JY,WenJG,RenZF.NanoLett.,2002,2(11):1287-1291 [19]Yang Y H,Wang B,Yang G W.Cryst.Growth Des.,2007,7 (7):1242-1245

    [20]Liu H,Li M,Wei Y,et al.Mater.Lett.,2014,137:300-303

    [21]Huang Q,Cun T,Zuo W,et al.Appl.Surf.Sci.,2015,332: 581-590

    [22]Shi R,Song X,Li J,et al.Mater.Chem.Phys.,2015,156:61 -68

    [23]Chang G J,Lin S Y,Wu J J.Nanoscale,2014,6(3):1329-1334

    [24]Kokotov M,Bar-Nachum S,Edri E,et al.J.Am.Chem.Soc., 2009,132(1):309-314

    [25]Mclaren A,Valdes-Solis T,Li G,et al.J.Am.Chem.Soc., 2009,131(35):12540-12541

    [26]Xu S,Wang Z L.Nano Res.,2011,4(11):1013-1098

    [27]Zhou X,Xie Z X,Jiang Z Y,et al.Chem.Commun.,2005, 44:5572-5574

    [28]Wang L,Chang L X,Wei L Q,et al.J.Mater.Chem.,2011, 21(39):15732-15740

    [29]SHEN Jun-Hai(沈俊海),LI Jia-Jia(李佳佳),LI Liang-Chao (李良超),et al.Chem.J.Chinese Universites(高等學(xué)校化學(xué)學(xué)報),2014,35(6):1135-1141

    [30]Huddleston J G,Willauer H D.Chem.Commun.,1998,16: 1765-1766

    [31]Brindaban C R,Subhash B.Org.Lett.,2005,7(14):3049-3052

    [32]Fernandes D M,Silva R,Hechenleitner A A,et al.Mater. Chem.Phys.,2009,115(1):110-115

    [33]Xing R M,Zhu J H,Liu Q W,et al.Chem.Res.,2012,23 (5):57-60

    [34]JING Li-Qiang(井立強),YUAN Fu-Long(袁福龍),HOU Hai-Ou(侯海鷗),et al.Sci.China Ser.B:Chem.(中國科學(xué)B輯:化學(xué)),2004,34(4):310-314

    [35]HOU Chun-Yan(侯春燕).Thesis for the Master of Dalian Maritime University(大連海事大學(xué)碩士論文).2006.

    Hierarchical ZnO:Architecture,Morphological Control and Photocatalytic Activity

    QUAN Wei-LeiZHANG Jin-MinSHEN Jun-HaiLI Liang-Chao*LI Jia-Jia
    (College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    Under the green and mild conditions,the hierarchical ZnO was fabricated by the secondary deposition with mixed two zinc salts(zinc source),ionic liquid(surfactant).The composition,structure,morphology, photoluminescence properties and photocatalytic activity of samples were characterized by XRD,IR,SEM,UVVis and PL,respectively.The influential factors on sample morphology,such as surfactant,the kind of anion and temperature,were discussed.The results indicate that surfactant has a significant regulation on the morphologies of as-prepared ZnO samples.Furthermore,the anion and temperature also play a critical role in the crystal structure and morphology of ZnO.In addition,all of as-prepared hierarchical ZnO show an excellent photocatalytic activity on methyl orange under UV lamp,where the sample-1 is slightly better than others.

    ZnO;hierarchical structure;morphological control;photocatalysis

    O614.24+1

    A

    1001-4861(2015)08-1626-11

    10.11862/CJIC.2015.212

    2015-04-21。收修改稿日期:2015-06-29。

    國家自然科學(xué)基金(No.21071125)和浙江省大學(xué)生科技創(chuàng)新計劃(No.2014R404056)資助項目。

    *通訊聯(lián)系人。E-mail:sky52@zjnu.cn;會員登記號:S06N6780M1401。

    猜你喜歡
    結(jié)構(gòu)
    DNA結(jié)構(gòu)的發(fā)現(xiàn)
    《形而上學(xué)》△卷的結(jié)構(gòu)和位置
    論結(jié)構(gòu)
    中華詩詞(2019年7期)2019-11-25 01:43:04
    新型平衡塊結(jié)構(gòu)的應(yīng)用
    模具制造(2019年3期)2019-06-06 02:10:54
    循環(huán)結(jié)構(gòu)謹(jǐn)防“死循環(huán)”
    論《日出》的結(jié)構(gòu)
    縱向結(jié)構(gòu)
    縱向結(jié)構(gòu)
    我國社會結(jié)構(gòu)的重建
    人間(2015年21期)2015-03-11 15:23:21
    創(chuàng)新治理結(jié)構(gòu)促進中小企業(yè)持續(xù)成長
    亚洲成人免费电影在线观看| 亚洲av第一区精品v没综合| 欧美色视频一区免费| 国内久久婷婷六月综合欲色啪| 韩国av一区二区三区四区| 真人做人爱边吃奶动态| netflix在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 久久久久久久久免费视频了| 国产精品亚洲一级av第二区| 久久婷婷人人爽人人干人人爱| 欧美日韩乱码在线| 久久久久国产一级毛片高清牌| 国产1区2区3区精品| 国产一级毛片七仙女欲春2| 国产精品久久久人人做人人爽| 久久人妻福利社区极品人妻图片| 最新在线观看一区二区三区| 欧美日本视频| 亚洲美女黄片视频| 天天添夜夜摸| 久久久国产成人精品二区| 看黄色毛片网站| 人妻夜夜爽99麻豆av| 亚洲激情在线av| 久久亚洲真实| 人妻久久中文字幕网| 国产亚洲精品一区二区www| 午夜视频精品福利| 欧美一区二区国产精品久久精品 | 高清在线国产一区| 国产精品98久久久久久宅男小说| 国产精品av视频在线免费观看| 男女之事视频高清在线观看| 欧美极品一区二区三区四区| 激情在线观看视频在线高清| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 老司机午夜福利在线观看视频| 国产伦在线观看视频一区| 国产精品影院久久| 制服丝袜大香蕉在线| 99久久精品国产亚洲精品| 亚洲av成人一区二区三| 日韩欧美精品v在线| 成在线人永久免费视频| 首页视频小说图片口味搜索| 欧美日韩瑟瑟在线播放| 久久这里只有精品中国| 亚洲黑人精品在线| xxx96com| 此物有八面人人有两片| 精品国产乱码久久久久久男人| 欧美色欧美亚洲另类二区| 黑人操中国人逼视频| 伊人久久大香线蕉亚洲五| 久久久国产精品麻豆| 国产成人aa在线观看| 亚洲国产欧美网| 久久婷婷成人综合色麻豆| 亚洲男人天堂网一区| 久久精品成人免费网站| 久久久久久久久免费视频了| 大型黄色视频在线免费观看| 亚洲国产欧美人成| 国产日本99.免费观看| 人人妻人人看人人澡| 人人妻,人人澡人人爽秒播| 90打野战视频偷拍视频| www国产在线视频色| 亚洲自偷自拍图片 自拍| 午夜影院日韩av| 一个人免费在线观看的高清视频| 免费看日本二区| 免费在线观看视频国产中文字幕亚洲| 欧美黑人精品巨大| 一本久久中文字幕| 国产探花在线观看一区二区| 神马国产精品三级电影在线观看 | 国内精品一区二区在线观看| 欧美午夜高清在线| 午夜精品久久久久久毛片777| 看免费av毛片| 精品电影一区二区在线| 免费看美女性在线毛片视频| 亚洲男人的天堂狠狠| 亚洲av五月六月丁香网| 亚洲精品久久成人aⅴ小说| 国内毛片毛片毛片毛片毛片| 嫁个100分男人电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 黄色a级毛片大全视频| 在线观看免费视频日本深夜| 九色成人免费人妻av| 别揉我奶头~嗯~啊~动态视频| 脱女人内裤的视频| 97碰自拍视频| 成在线人永久免费视频| 欧美国产日韩亚洲一区| 久久久久久免费高清国产稀缺| 波多野结衣高清作品| 亚洲欧美日韩高清专用| 亚洲午夜理论影院| 欧美黑人精品巨大| 欧美日韩福利视频一区二区| 中文字幕高清在线视频| 一边摸一边做爽爽视频免费| 婷婷精品国产亚洲av在线| 亚洲片人在线观看| 天天添夜夜摸| 免费在线观看黄色视频的| 日本一本二区三区精品| 亚洲自偷自拍图片 自拍| 亚洲人成网站在线播放欧美日韩| 波多野结衣高清无吗| 午夜免费观看网址| 男女之事视频高清在线观看| 日韩有码中文字幕| 最近最新中文字幕大全电影3| 久久精品亚洲精品国产色婷小说| 久久久久久免费高清国产稀缺| 巨乳人妻的诱惑在线观看| 天堂动漫精品| 国产成人精品久久二区二区91| 久久久精品国产亚洲av高清涩受| 亚洲人成网站高清观看| 国产精品98久久久久久宅男小说| 国产精品九九99| 免费在线观看成人毛片| 国产精品98久久久久久宅男小说| 视频区欧美日本亚洲| 国产视频内射| 欧美日韩瑟瑟在线播放| 国产黄a三级三级三级人| 精品无人区乱码1区二区| 超碰成人久久| 国产成人系列免费观看| 久久久国产精品麻豆| 久久久久久久精品吃奶| a在线观看视频网站| 欧美另类亚洲清纯唯美| 一边摸一边做爽爽视频免费| 欧美性猛交╳xxx乱大交人| 精品久久蜜臀av无| 国产精品99久久99久久久不卡| 免费电影在线观看免费观看| aaaaa片日本免费| 99国产精品一区二区三区| 国产主播在线观看一区二区| 在线观看日韩欧美| 又黄又爽又免费观看的视频| 长腿黑丝高跟| 成人国语在线视频| 精品国产亚洲在线| 在线观看美女被高潮喷水网站 | 伊人久久大香线蕉亚洲五| 18禁美女被吸乳视频| 99热这里只有精品一区 | 欧美又色又爽又黄视频| 午夜福利在线观看吧| 精品国产乱子伦一区二区三区| 欧美+亚洲+日韩+国产| 两个人视频免费观看高清| 国产av一区在线观看免费| 久久久久久人人人人人| 亚洲欧美一区二区三区黑人| 国产探花在线观看一区二区| 国产主播在线观看一区二区| 亚洲人成电影免费在线| 亚洲自偷自拍图片 自拍| 91麻豆精品激情在线观看国产| 久久久国产成人免费| 欧美乱色亚洲激情| 国产精品,欧美在线| 午夜激情福利司机影院| 麻豆成人av在线观看| 久久精品综合一区二区三区| 午夜久久久久精精品| 午夜福利高清视频| 最近最新免费中文字幕在线| 一级毛片高清免费大全| 国产一区二区在线观看日韩 | 亚洲18禁久久av| 免费在线观看亚洲国产| 国产99白浆流出| 欧美日韩亚洲综合一区二区三区_| 亚洲国产精品久久男人天堂| 欧美又色又爽又黄视频| 成年人黄色毛片网站| netflix在线观看网站| 国产蜜桃级精品一区二区三区| 欧美日韩福利视频一区二区| 国产乱人伦免费视频| 十八禁网站免费在线| 美女高潮喷水抽搐中文字幕| 在线看三级毛片| 日本成人三级电影网站| 在线观看美女被高潮喷水网站 | 村上凉子中文字幕在线| 成年人黄色毛片网站| 国产免费男女视频| 黄色视频不卡| 亚洲国产中文字幕在线视频| 国产精品综合久久久久久久免费| a级毛片在线看网站| 一级毛片精品| 国产精品久久久久久精品电影| 日韩有码中文字幕| 一区二区三区激情视频| 久久久久久国产a免费观看| 高清毛片免费观看视频网站| 成人国语在线视频| 欧美 亚洲 国产 日韩一| 国产91精品成人一区二区三区| bbb黄色大片| 成人国产综合亚洲| 亚洲av电影在线进入| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人澡欧美一区二区| 欧美色视频一区免费| 欧美性长视频在线观看| 亚洲av电影在线进入| 中文字幕最新亚洲高清| 久久久久亚洲av毛片大全| a级毛片在线看网站| 亚洲国产欧美网| 亚洲激情在线av| 久久久久久亚洲精品国产蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 欧美成人一区二区免费高清观看 | 可以在线观看毛片的网站| 成人国产一区最新在线观看| 久久亚洲真实| 天天一区二区日本电影三级| 视频区欧美日本亚洲| 精品久久久久久久久久久久久| 又粗又爽又猛毛片免费看| av超薄肉色丝袜交足视频| 麻豆一二三区av精品| 久久亚洲精品不卡| 首页视频小说图片口味搜索| 波多野结衣高清无吗| 桃红色精品国产亚洲av| av免费在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| 最近最新中文字幕大全电影3| 欧美av亚洲av综合av国产av| 一进一出抽搐动态| av免费在线观看网站| 免费在线观看完整版高清| 午夜免费激情av| 亚洲成av人片在线播放无| 国产私拍福利视频在线观看| 成熟少妇高潮喷水视频| 天天躁狠狠躁夜夜躁狠狠躁| 久9热在线精品视频| 国产精品一区二区三区四区免费观看 | 国产精品免费视频内射| 久久中文字幕一级| 精品久久久久久久人妻蜜臀av| 午夜a级毛片| 国产日本99.免费观看| 欧美日韩黄片免| 老鸭窝网址在线观看| 欧美乱码精品一区二区三区| 亚洲av美国av| 国产精品永久免费网站| 亚洲欧美日韩无卡精品| 精品一区二区三区四区五区乱码| 人妻夜夜爽99麻豆av| 亚洲五月天丁香| 91九色精品人成在线观看| 美女高潮喷水抽搐中文字幕| 午夜久久久久精精品| 巨乳人妻的诱惑在线观看| 久久久精品国产亚洲av高清涩受| 午夜福利高清视频| 麻豆成人午夜福利视频| 国产亚洲av高清不卡| 黄频高清免费视频| 黑人操中国人逼视频| 久久中文看片网| 久久久国产成人免费| 国产亚洲精品综合一区在线观看 | 日本a在线网址| 亚洲国产精品久久男人天堂| 一边摸一边做爽爽视频免费| 99精品欧美一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 亚洲午夜理论影院| 精品久久久久久,| 日韩av在线大香蕉| 正在播放国产对白刺激| 亚洲中文字幕一区二区三区有码在线看 | 国产精品影院久久| 一夜夜www| 亚洲第一电影网av| 中文亚洲av片在线观看爽| 19禁男女啪啪无遮挡网站| 欧美一级毛片孕妇| 午夜免费成人在线视频| bbb黄色大片| 亚洲中文字幕一区二区三区有码在线看 | 欧美成人性av电影在线观看| 亚洲欧洲精品一区二区精品久久久| 嫩草影视91久久| 两个人视频免费观看高清| 最近最新中文字幕大全电影3| 日本五十路高清| 少妇裸体淫交视频免费看高清 | 国产精品免费视频内射| 国产欧美日韩精品亚洲av| 成熟少妇高潮喷水视频| 精品电影一区二区在线| 亚洲无线在线观看| 黄色片一级片一级黄色片| 精品福利观看| 麻豆国产97在线/欧美 | 婷婷精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 国产69精品久久久久777片 | 国产精品综合久久久久久久免费| 舔av片在线| 欧美中文综合在线视频| av中文乱码字幕在线| 亚洲人成电影免费在线| 好男人电影高清在线观看| 国产欧美日韩一区二区精品| 身体一侧抽搐| 国产av又大| 亚洲 欧美 日韩 在线 免费| 亚洲成av人片免费观看| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 久热爱精品视频在线9| 亚洲欧美一区二区三区黑人| 国内精品一区二区在线观看| 免费人成视频x8x8入口观看| 国产精品一区二区三区四区免费观看 | 国产v大片淫在线免费观看| 亚洲av成人不卡在线观看播放网| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕一区二区三区有码在线看 | 日本一二三区视频观看| 亚洲国产高清在线一区二区三| 国产精品 国内视频| 国产精品一区二区三区四区免费观看 | 丁香欧美五月| 成熟少妇高潮喷水视频| 久久婷婷人人爽人人干人人爱| 国产激情久久老熟女| 搡老岳熟女国产| 免费在线观看亚洲国产| 亚洲成人精品中文字幕电影| 久久久国产成人精品二区| 久久人人精品亚洲av| 久久久精品国产亚洲av高清涩受| 日本五十路高清| 精品无人区乱码1区二区| 久久久久久人人人人人| 美女 人体艺术 gogo| www.自偷自拍.com| e午夜精品久久久久久久| 午夜免费成人在线视频| 国产成人欧美在线观看| 美女免费视频网站| 国产精品 欧美亚洲| 久久精品aⅴ一区二区三区四区| 老司机福利观看| 在线观看一区二区三区| www.精华液| 久久这里只有精品中国| 最新美女视频免费是黄的| 日韩欧美一区二区三区在线观看| 国产高清videossex| avwww免费| 亚洲av电影不卡..在线观看| 国产主播在线观看一区二区| 中文在线观看免费www的网站 | 欧美久久黑人一区二区| 亚洲熟妇熟女久久| 欧美高清成人免费视频www| 亚洲av电影在线进入| 9191精品国产免费久久| 香蕉丝袜av| 国产伦在线观看视频一区| 99国产综合亚洲精品| 国产成+人综合+亚洲专区| 日本免费a在线| 无限看片的www在线观看| 天天添夜夜摸| 国产免费男女视频| 欧美黑人巨大hd| 国产精品一区二区三区四区免费观看 | 成人av一区二区三区在线看| 中文字幕精品亚洲无线码一区| 伊人久久大香线蕉亚洲五| tocl精华| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看亚洲国产| 日韩欧美精品v在线| 婷婷丁香在线五月| 精品国产美女av久久久久小说| 亚洲欧洲精品一区二区精品久久久| 久久天堂一区二区三区四区| 91老司机精品| 亚洲精品粉嫩美女一区| 9191精品国产免费久久| 岛国在线免费视频观看| 久久香蕉精品热| 亚洲五月婷婷丁香| 999久久久国产精品视频| 很黄的视频免费| 亚洲欧美日韩无卡精品| svipshipincom国产片| 免费电影在线观看免费观看| 日日夜夜操网爽| 淫秽高清视频在线观看| 欧美精品啪啪一区二区三区| 这个男人来自地球电影免费观看| 悠悠久久av| 可以在线观看的亚洲视频| 午夜免费成人在线视频| 亚洲avbb在线观看| 国产91精品成人一区二区三区| 夜夜躁狠狠躁天天躁| 国产精品日韩av在线免费观看| 亚洲中文日韩欧美视频| 日日干狠狠操夜夜爽| 国产精品98久久久久久宅男小说| 午夜精品在线福利| 99国产极品粉嫩在线观看| 欧美丝袜亚洲另类 | 午夜亚洲福利在线播放| 国产精品1区2区在线观看.| 琪琪午夜伦伦电影理论片6080| 可以免费在线观看a视频的电影网站| 久久婷婷成人综合色麻豆| 一级片免费观看大全| 国产亚洲精品一区二区www| 长腿黑丝高跟| 正在播放国产对白刺激| 在线观看一区二区三区| 亚洲免费av在线视频| 亚洲全国av大片| 一级作爱视频免费观看| 在线a可以看的网站| 大型av网站在线播放| 国产午夜精品论理片| 久久久国产精品麻豆| 日日夜夜操网爽| 亚洲精品色激情综合| 久久久久精品国产欧美久久久| 啦啦啦免费观看视频1| 久久久久性生活片| 午夜视频精品福利| 亚洲色图 男人天堂 中文字幕| 精品少妇一区二区三区视频日本电影| 99国产精品一区二区蜜桃av| 特级一级黄色大片| 日本免费a在线| 国产精品一区二区精品视频观看| 久9热在线精品视频| 国产男靠女视频免费网站| 熟女少妇亚洲综合色aaa.| 黄片小视频在线播放| 看片在线看免费视频| 极品教师在线免费播放| 成人国产综合亚洲| 一边摸一边抽搐一进一小说| 日韩欧美 国产精品| 亚洲欧美激情综合另类| 两个人免费观看高清视频| 中文在线观看免费www的网站 | 99国产精品一区二区三区| 中国美女看黄片| 久久久久久九九精品二区国产 | 欧美午夜高清在线| 成人精品一区二区免费| 免费人成视频x8x8入口观看| 久久婷婷成人综合色麻豆| 国产亚洲欧美98| 99久久精品热视频| 麻豆一二三区av精品| av视频在线观看入口| 精品国产亚洲在线| 欧美黄色淫秽网站| 美女黄网站色视频| 国产成人精品久久二区二区免费| 岛国在线免费视频观看| 色哟哟哟哟哟哟| 欧美丝袜亚洲另类 | 男人的好看免费观看在线视频 | 日本三级黄在线观看| 久久精品影院6| 久久久久免费精品人妻一区二区| 国产精品 国内视频| 成人av一区二区三区在线看| 亚洲欧美精品综合久久99| 亚洲激情在线av| 色综合婷婷激情| 一级片免费观看大全| 老熟妇仑乱视频hdxx| 国产精品亚洲av一区麻豆| 99久久精品热视频| 男男h啪啪无遮挡| 亚洲欧美一区二区三区黑人| 不卡一级毛片| 亚洲第一欧美日韩一区二区三区| 美女黄网站色视频| 国产精品亚洲美女久久久| 丝袜人妻中文字幕| 久久欧美精品欧美久久欧美| 高清在线国产一区| 精品久久久久久久毛片微露脸| 成年版毛片免费区| 一级作爱视频免费观看| 午夜福利欧美成人| 啦啦啦观看免费观看视频高清| 欧美性猛交╳xxx乱大交人| 美女 人体艺术 gogo| 男人舔女人下体高潮全视频| 可以在线观看毛片的网站| 亚洲av熟女| 99久久久亚洲精品蜜臀av| 国产单亲对白刺激| 99热只有精品国产| 女人爽到高潮嗷嗷叫在线视频| 日本 欧美在线| ponron亚洲| 欧美成人免费av一区二区三区| 免费高清视频大片| 欧美 亚洲 国产 日韩一| 午夜精品在线福利| www日本黄色视频网| 精品久久久久久久久久免费视频| 欧美性猛交╳xxx乱大交人| 黑人巨大精品欧美一区二区mp4| 精品一区二区三区四区五区乱码| 久久天堂一区二区三区四区| 91九色精品人成在线观看| 高清毛片免费观看视频网站| 亚洲乱码一区二区免费版| 天堂影院成人在线观看| 亚洲狠狠婷婷综合久久图片| 久久国产精品影院| 国产亚洲欧美98| 亚洲男人天堂网一区| 亚洲自偷自拍图片 自拍| 日韩高清综合在线| 成人av一区二区三区在线看| 三级毛片av免费| 熟妇人妻久久中文字幕3abv| 老熟妇仑乱视频hdxx| 在线观看免费日韩欧美大片| 亚洲精品在线美女| 午夜精品久久久久久毛片777| 一区二区三区高清视频在线| 麻豆国产av国片精品| 午夜福利高清视频| 日本撒尿小便嘘嘘汇集6| 亚洲自拍偷在线| 久久精品国产99精品国产亚洲性色| 国产又色又爽无遮挡免费看| 久久久久精品国产欧美久久久| 美女高潮喷水抽搐中文字幕| 黄色毛片三级朝国网站| 91成年电影在线观看| 91九色精品人成在线观看| 成人午夜高清在线视频| 老司机在亚洲福利影院| 日本一二三区视频观看| 久久久久久九九精品二区国产 | 亚洲成人免费电影在线观看| 精品熟女少妇八av免费久了| 又粗又爽又猛毛片免费看| xxxwww97欧美| 在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 五月玫瑰六月丁香| 久久久久久久久中文| 狠狠狠狠99中文字幕| 国产亚洲av高清不卡| 欧美日韩一级在线毛片| 欧美又色又爽又黄视频| 亚洲第一欧美日韩一区二区三区| 欧美黑人精品巨大| 色综合婷婷激情| 成人手机av| 精华霜和精华液先用哪个| 99精品在免费线老司机午夜| 久久精品91无色码中文字幕| av中文乱码字幕在线| 日韩大尺度精品在线看网址| av超薄肉色丝袜交足视频| 午夜影院日韩av| 国产激情欧美一区二区| 又大又爽又粗| 啦啦啦免费观看视频1| 亚洲中文日韩欧美视频| 久久性视频一级片| 国产精品香港三级国产av潘金莲| 99国产精品99久久久久| 91国产中文字幕| 一区福利在线观看| 国产亚洲精品一区二区www| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品夜夜夜夜夜久久蜜豆 | 久久香蕉国产精品| 在线观看66精品国产| 欧美丝袜亚洲另类 | 久久这里只有精品19| 国产精品,欧美在线| 亚洲午夜精品一区,二区,三区| 日本撒尿小便嘘嘘汇集6|