• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Implicit large eddy simulation of unsteady cloud cavitation around a planeconvex hydrofoil*

    2015-12-01 02:12:10HIDALGOVictorLUOXianwu羅先武ESCALERXavierJIBin季斌AGUINAGAAlvaroBeijingKeyLaboratoryofCOUtilizationandReductionTechnologyTsinghuaUniversityBeijing0008ChinamailvictorhidalgoepneduecCDIFUniversitatPolitcnicadeCatalunyaBarcel
    水動力學研究與進展 B輯 2015年6期

    HIDALGO Victor, LUO Xian-wu (羅先武), ESCALER Xavier, JI Bin (季斌), AGUINAGA Alvaro. Beijing Key Laboratory of COUtilization and Reduction Technology, Tsinghua University, Beijing 0008,China, E-mail: victor.hidalgo@epn.edu.ec. CDIF, Universitat Politècnica de Catalunya, Barcelona, Spain. School of Power and Mechanical Engineering, Wuhan University, Wuhan 007, China. Mechanical Engineering Department, Escuela Politecnica Nacional University, Quito, Ecuador

    Implicit large eddy simulation of unsteady cloud cavitation around a planeconvex hydrofoil*

    HIDALGO Victor1, LUO Xian-wu (羅先武)1, ESCALER Xavier2, JI Bin (季斌)3, AGUINAGA Alvaro4
    1. Beijing Key Laboratory of CO2Utilization and Reduction Technology, Tsinghua University, Beijing 100084,China, E-mail: victor.hidalgo@epn.edu.ec
    2. CDIF, Universitat Politècnica de Catalunya, Barcelona, Spain
    3. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
    4. Mechanical Engineering Department, Escuela Politecnica Nacional University, Quito, Ecuador

    (Received March 10, 2015, Revised October 15, 2015)

    The present paper focuses on the erosive cavitation behavior around a plane convex hydrofoil. The Zwart-Gerber-Belamri cavitation model is implemented in a library form to be used with the OpenFOAM. The implicit large eddy simulation (ILES) is applied to analyze the three dimensional unsteady cavitating flow around a plane convex hydrofoil. The numerical results in the cases under the hydrodynamic-conditions, which were experimentally tested at the high speed cavitation tunnel of the école Polytechnique Fédérale de Lausanne (EPFL), clearly show the sheet cavitation development, the shedding and the collapse of vapor clouds. It is noted that the cavitation evolutions including the maximum vapor length, the detachment and the oscillation frequency, are captured fairly well. Furthermore, the pressure pulses due to the cavitation development as well as the complex vortex structures are reasonably well predicted. Consequently, it may be concluded that the present numerical method can be used to investigate the unsteady cavitation around hydrofoils with a satisfactory accuracy.

    implicit large eddy simulation (ILES), unsteady partial cavitation, Zwart-Gerber-Belamri cavitation model, OpenFOAM, Q -criterion

    Introduction0F

    Studies of unsteady cloud cavitations around hydrofoils are important to improve the design of the fluid machinery[1]and to understand the mechanisms around the cavitation dynamic behavior and the collapse of the cloud of bubbles. However, experiments are expensive and have limitations such as the accuracy of lab equipments. Therefore, the computational fluid mechanics (CFD) are a complementary option to understand the cavity shedding and collapse, the generated cyclic stresses and the resulting cavitation erosion.

    In this way, Kunz et al.[2]proposed a cavitation model based on Merkle's ideas for the analysis of unsteady cavitating flow. The model considers the continuity of a mixture volume rather than a mixture mass equation. The transfer from liquid to vapor is modeled as being proportional to the liquid volume fraction and the pressure below the vapor pressure. For instance,Nouri et al.[3]studied unsteady cavitating flow over a disc using the OpenFOAM with the explicit LES based on this cavitation model. Their results show that the main aspects of the super cavitation could be captured. However, how to select a correct explicit subgrid model is shown to be a problem very much depending on different cases. Moreover, the shape of the cavity cluster can be improved with a cavitation model based on Rayleigh-Plesset's equation. Based on this premise, Roohi et al.[4]studied the cavitating flow over a Clark-Y hydrofoil and they compared the Kunz model with the Schnerr-Sauer cavitation model, which is based on the Rayleigh-Plesset's equation and is apart of the default OpenFOAM solver packages too. The corresponding results show that the Schnerr-Sauer model predicts a stronger re-entrant jet, which might be visible in experiment, and the shape of the obtained cavity is improved as well. However, it was found that the symmetrical consideration for condensation and vaporization processes may induce a great error of the force coefficients in the super cavitation regime.

    Consequently, Zwart et al.[5]presented a two phase flow model for predicting cavitation dynamics which was implemented in CFX-5 based on the Rayleigh-Plesset's equation. The model works well for condensation, but is unstable for vaporization. Thus, an unsymmetrical consideration was taken into account with empirical constants for calibration. As a result, the model shows improvements for non-equilibrium effects, which were not included in previous models such as those of Schnerr-Sauer, Gerber[6]and Senocak and Shyy[7]. This model was used to capture the cavitation phenomenon with good results. That is the case of Ji et al.[8], who studied the horse-shoe cloud behavior over a twisted hydrofoil and predicted the performances of a marine propeller under the cavitation condition with different skew angles. Shi et al.[9]also made a remarkable use of the Zwart-Gerber-Belamri model for the study of cavitation in a WP7 automobile centrifugal pump. Zhang et al.[10]used this model to study the effects of the density ratio on the maximum length of the attached sheet cavity. Some studies were carried out to improve the model such as in the case of Morgut et al.[11], who determined the possible values of the calibration constants for numerical simulations. In this line, it was concluded that the evaporation coefficient controls the cavity length and the high vapor volume fraction, while the condensation vapor regulates the cavity length. Unfortunately, the cavitation model of Zwart-Gerber-Belamri is not a part of the OpenFOAM solvers and no references are available for its implementation. Therefore, its proper implementation and validation is desirable, which will be carried out in the current work.

    Due to the high Reynolds numbers of cavitating flows in the hydro machinery, the traditional RANS and turbulence models must be adapted to predict the cavity sheet and the shedding process. Some examples are the cases of Huang and Wang[12]and Ji et al.[13],who used the partially-averaged Navier-Stokes (PANS)equations in the commercial code ANSYS-CFX for the cavitation simulation. The PANS is a hybrid turbulence model for the simulation from the RANS to the direct numerical simulation (DNS) based on the unresolved to total ratios of kinetic energy (fk)and dissipation (fε).Nevertheless, those ratios can only be obtained by a subgrid independence analysis and cannot be easily estimated according to Sharath and Girimaji. Another solution was proposed by Zuo et al.[14], who added a function to the k -ε turbulence model to consider the influence of variations of the density on the turbulence viscosity for the study of cavitation in a Francis turbine. For a better solution,Bensow and Bark[15]applied the OpenFOAM with the implicit large eddy simulation (ILES) instead of the RANS to simulate the formation of erosive cavitation. The ILES was selected to avoid the explicit coupling between the mass transfer modeling and the subgrid modeling. The ILES was validated by recent studies of aerospace and naval engineering for highly turbulent flows such as the flows over a fully three-dimensional swept-wing geometry and a marine propeller[16].

    In summary, the main target of this paper is the implementation and validation of the Zwart-Gerber-Belamri cavitation model in the OpenFOAM using the ILES. Therefore, we intend to obtain accurate simulations of the shedding process of the partial cavitation,which is considered as the main mechanism of the material erosion. For validation purposes, the experimental results obtained by Escaler et al.[17]with a 2-D plane-convex hydrofoil at the école Polytechnique Fédérale de Lausanne (EPFL) high speed cavitation tunnel are used. Previous investigations with the OpenFOAM were focused on the NACA series or twisted geometries with unsteady cavitation[18,19]to compare the cavitation hydrodynamic behavior. In the present paper, the plane-convex hydrofoil is specifically investigated to reveal the unsteady cavitation dynamics.

    1. Description of the numerical method

    1.1 Implicit large eddy simulation

    Continuity and Navier-Stokes equations are the basis of the LES, and they are as follows:

    where u is the instant velocity,t is the time,i and j are the space coordinates.

    In the ILES, Eqs.(1) and (2) are filtered for the use of approximation as

    and some solutions are excluded[20].

    Based on the following considerations:

    (1) The product of filtered velocities is

    (2) The subgrid stress tensor, which is the Reynolds stress tensor is

    (3) The filtered strain tensor rate is

    (4) The filtered viscous stress tensor is

    Equation (4) is modified into the following form

    1.2 Zwart-Gerber-Belamri cavitation model

    In the cavitating flow, the medium is considered as a single fluid of two-phase homogeneous mixture with phase transformations between vapor and water. The vapor volume fractionα, the densityρ, and the dynamic viscosityμof the vapor-water mixture are as follows:

    whereV is the total volume,landvare the subscripts for liquid and vapor, respectively. Thus, based on Eq.(3), to include the effect of the phase transformation, we have

    wherem˙is the inter-phase mass transfer rate per unit volume.

    The Zwart-Gerber-Belamri model considers a variable bubble radius due to cavitation,R , which satisfies the following equation

    Based on Eq.(11), to neglect the second derivative term, we obtain a simplified expression as

    Thus the Zwart-Gerber-Belamri model is expressed by the following equations:

    The Zwart-Gerber-Belamri model is implemented in the C++based OpenFOAM code. The code is saved on the new solver directory and compiled to become an implemented OpenFOAM's cavitation model for the present research.

    1.3 OpenFOAM setup

    The OpenFOAM version 2.2.x is used in the present research because it has eliminated the bugs of the previous version[18]. GNU/Linux Mint 6 Petra with kernel Linux 3.11.0-12-generic (x86 64) and XFCEdesktop are also applied. This version of the OpenFOAM is used especially in the CentOS GNU/ Linux distribution, which is based on the official GNU/Linux version of RedHAT. In fact, the following implementations are carried out:

    (1) In the directory OpenFOAM/OpenFOAM-2.2.x/etc the text document bashrc is modified. The lines “foamCompiler=system” and “WMCOMPILER =Gcc” are added and the line “foamCompiler= Third-Party” is eliminated in the compiler location (#Compiler Location:). These are necessary to compile the implemented cavitation solver of Zwart-Gerber-Belamri[19].

    (2) The library libmpi.so.1 is required in the GNU/Linux Mint Petra. Thus, a symbolic link (ln-s) with libmpi.so is implemented, which is a part of Message Passing Interface (MPI) GNU/Linux library.

    2. Hydrofoil geometry, mesh generation and boundary conditions

    2.1 Hydrofoil geometry and computation domain

    Figure 1 shows a plane-convex hydrofoil used in Escaler's studies[17]. This hydrofoil has a plane upper surface and a convex lower surface, with a semicircular leading edge and a tip trailing edge. The chord lengthc of the hydrofoil is 0.0911 m, and the span is equal to0.3c.

    Fig.1 Plane-convex hydrofoil[17]

    Fig.2 Computation domain

    The hydrofoil is positioned in a computation domain with an angle of attackshown in Fig.2.

    2.2 Mesh generation

    Meshing is a challenge for this type of plane-convex hydrofoils due to the fact that the leading edge has an abrupt change from a convex shape to a plane shape with a semicircular leading edge.

    Fig.3 Structured and scale distributed mesh with taper analysis of the mesh around the plane-convex hydrofoil

    Therefore, a structured C mesh is generated using Gmsh 2.8.5 and Salome 7.4.0 with a scale distribution and hexahedron elements. The resulting mesh has 393980 hexahedra. The quality of the mesh is guaranteed by the Salome taper analysis as indicated in Fig.3. This analysis shows proportional changes of elements such as 0.021, which is an acceptable value according to the previous studies[18].

    The Yplus,y+, is calculated as

    where uτis the friction velocity,yis the distance to the nearest hydrofoil wall andn is the kinematic viscosity[19].

    The mean value for the hydrofoil wall is 9.2. This mean value is within the range from 1 to 15, which ensures that the mesh matches the conditions for the ILES based on Bensow et al.[15].

    2.3 Boundary conditions

    Under the cavitating conditions, the Reynolds number,Re , and the cavitation number,σ, are as follows:

    where U∞is the free stream velocity,cis the chord length, and prand pvare the reference and saturation pressures, respectively.

    Based on the experimental tests carried out by Escaler[17], five flow conditions combining the free stream velocity at the domain inlet, the angle of attack and the reference pressure at the domain outlet are selected as shown in Table 1. The uniform velocity andthe static pressure are assigned at the domain inlet and outlet.

    Table 1 Simulated flow conditions

    The front and back planes of the domain are considered as the symmetry boundaries. Besides, the top and the bottom of the computation domain, and the hydrofoil surface are treated as no-slip walls.

    Fig.4 The characteristic parameters of a sheet cavity

    3. Results and discussions

    Figure 4 shows several characteristic parameters defined for the sheet cavity attached to the hydrofoil such as the cavity lengthL , the maximum cavity length Lmax, and the maximum cavity depth Hmax. The cavitating flow over the plane-convex hydrofoil sees a typical partial cavitation development consisting of an attached cavity from the leading edge. Under unsteady conditions, the re-entrant jet mechanism leads to the periodic shedding of bubble clouds[17].

    Strouhal number,St , is a typical dimensionless parameter to show the feature of the cavity oscillation,as expressed as

    where f is the cavity oscillation frequency.

    Fig.5 Comparison of the leading edge cavity growth between the numerical simulation result and the experimental result for Case 1 in horizontal plane using iso-contour of

    The transient numerical results are post-processed and analyzed along the time to identify a single period of the cavitation oscillation process. Particular attention is paid to the vapor volume fraction, the development of the reentrant jet, the shedding of a cloud cavity and its final collapse. The cloud cavity like the horse-shoe is visible and there is a good similarity between the experiment and simulation, as indicated in Fig.5.

    For a better comparison, the dimensionless time is defined as

    wheret is a time between the initial time,to, and the final time,tf, in one cycle. In particular, six time instants corresponding to 0, 1/6, 1/3, 1/2, 2/3 and 5/6 are selected, and the corresponding contours of the vapor volume fraction α=0.5are plotted in Fig.6, under all flow conditions.

    Based on Fig.6, the following conclusions can be drawn:

    (1) In all the cases, the growth and the detachment of the leading edge cavity, the break off and the collapse of the cavity cloud are shown.

    (2) The maximum length of the leading edge attached cavity decreases with the increase of the cavitation number.

    (3) When σ=0.7, the cavity cloud is observed more clearly in Cases 1 and 3 at U∞=35 m/sthan in Case 2 at U∞=25 m/s. Therefore, the larger velocity enhances the probabilities of the cloud cavity, which has a direct link with the erosive power of the cavitation.

    Fig.6 Cavitation evolution in Cases 1 through 5 in 3-D using contour-surfaces of the vapor volume fraction (α=0.5)

    (4) Cavities at the hydrofoil trailing edge are observed along the lower surface of the hydrofoil in three cases with σ=0.7. This kind of cavitation is due to the hydrofoil convex shape, and it is also observed in the experiments.

    (5) It is noted that the present results obtained by the ILES method have as good accuracy as those of our previous studies[21]based on the explicit subgrid model of the LES.

    In order to understand the effects of the cavitation evolution shown in Fig.6, the pressure coefficient, Cp, is expressed as

    where psis the static pressure, and the vapor void fraction,α, are plotted in Fig.7 and Fig.8, respectively. Note that the two figures show the results at six points located along the upper surface at0.15c in the spanwise direction.

    According to the definition ofσand Cp, the following relation holds true:

    Due to the fact that psis always larger than or equal to pv,Cpmust be larger than or equal to -σ.

    Because in those cases with σ=0.7, a large cavity length is involved, the flat Cplines, whose value corresponding to a negative value of the cavitation number can be observed at x/ c=0.2 and 0.4, compared with other cases. On the contrary, the cavity length in Case 5 is the shortest, and the static pressure oscillates violently even at x/ c =0.2. For x/ c=0.6 through 1.0,Cplines with strong pressure oscillations are observed in all cases. At the downstream of the hydrofoil (x/ c=1.2), the average static pressure is basically around the reference pressure level, and some pressure pulses are captured. Those pulses may be related with the collapse of small vapor clusters. Based on the vapor volume fraction oscillations shown in Fig.8, the vapor sizes are large in Cases 1 and 3, and is the smallest in Case 5 due to its highest reference pressure.

    The comparison of the cavity length among those five cases is listed at Table 2, where both experimental and simulation data are included. To show the difference between the experiment and the calculation,we may define the relative error evaluation of the maximum cavity length as

    Fig.7 Local pressure coefficient,Cp, versus dimensionless time,ξ, in Cases 1 through 5 for different values of x/ c

    The prediction accuracy is fairly good, though the largest error is near 20%. It must be noted that due to the transient nature of the shedding process and the high frequencies of the cavitation evolution during the tests[17], the maximum cavity length could not be determined with a sufficient accuracy from the experiments, and an error of about 5% might be reasonable. For a better understanding of the cavitation phenomenon, we define

    where?is the vorticity rate, andSis the strain rate. The Q-criterion may be used to obtain the 3-D vorticity distribution.

    Fig.8 Vapor void fraction,α, versus dimensionless time,ξ, in Cases 1 through 5 at different values of x/ c

    Table 2 Numerical and experimental results based on Lmax

    The Q-criterion is plotted in Fig.9, where the contours of Q=2× 105s-2show similarities with the vapor volume fraction contours (α=0.5). Results show that there is a strong interaction between the vorticity and the cavitation evolution.

    Fig.9 Vapor and vortex interaction

    4. Conclusion

    A numerical simulation of the unsteady cloud cavitation around a plane convex hydrofoil is carried out with a free OpenFOAM software package based on the ILES and a newly implemented Zwart-Gerber-Belamri cavitation model. The transient results under different operation conditions show the typical cavitation dynamic behaviors, including the growth of the leading edge cavity, the development of the reentrant jet, the shedding of the cavity cloud and its collapse. The comparison between the numerical and experimental results indicates that the cavitation evolution is simulated fairly well. Further, the pressure oscillation due to the cavitation dynamics as well as the complex vortex structures shown by the Q-criterion are reasonably well predicted. Therefore, the proposed numerical method and the implemented Zwart-Gerber-Belamri cavitation model in OpenFOAM are validated as reliable tools to investigate the unsteady cavitation around hydrofoils.

    Acknowledgements

    This work was supported by the Beijing Key Laboratory Development Project (Grant No. Z151100001615006), the State Key Laboratory of Hydroscience and Engineering, Tsinghua University(Grant Nos. 2014-KY-05, 2015-E-03).

    [1] LUO Xian-wu, JI Bin and XU Hong-yuan. Design and optimization for fluid machinery[M]. Beijing, China:Tsinghua University Press, 2012, 24-26(in Chinese).

    [2] KUNZ R., BOGER D. and STINEBRING D. et al. A preconditioned Navier Stokes method for two-phase flows with application to cavitation prediction[J]. Computers and Fluids, 2000, 29(8): 849-875.

    [3] NOURI N., MOGHIMI M. and MIRSAEEDI S. Numerical simulation of unsteady cavitating flow over a disc[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(6): 1245-1253.

    [4] ROOHI E., ZAHIRI A. and ANDIDEH-FARD M. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model[J]. Applied Mathematical Modelling, 2013,37(9): 6469-6488.

    [5] ZWART P., GERBER A. and BELAMRI T. A twophase flow model for predicting cavitation dynamics[C]. Proceedings of International Conference on Multiphase Flow ICMF 2004. Yokohama, Japan, 2004.

    [6] GERBER A. A CFD model for devices operating under extensive cavitation conditions[C]. Proceedings of IMECE. New Orleans, Louisina, 2002.

    [7] SENOCAK I., SHYY W. Evaluation of cavitation models for Navier-Stokes computations[C]. Proceedings of FEDSM. Montreal, Quebec, Canada, 2002.

    [8] JI B., LUO X. and WU Y. Unsteady cavitation characteristics and alleviation of pressure fluctuations around marine propellers with different skew angles[J]. Journal of Mechanical Science and Technology, 2014,28(4): 1339-1348.

    [9] SHI W., WANG C. and WANG W. et al. Numerical calculation on cavitation pressure pulsation in centrifugal pump[J]. Advances in Mechanical Engineering,2014, 6(1): 3676311-3676318.

    [10] ZHANG G., SHI W. and ZHOU L. et al. Effect of the maximum density ratio between liquid and vapor on cavitating simulation[J]. American Journal of Engineering and Applied Sciences, 2015, 9(1): 119-126.

    [11] MORGUT M., NOBILE E. Influence of the mass transfer model on the numerical prediction of the cavitating flow around a marine propeller[C]. Proceeding of the Second International Symposium on Marine Propulsors. Hamburg, Germany, 2011.

    [12] HUANG Biao, WANG Guo-yu. Partially averaged Navier-Stokes method for time-dependent turbulent cavitating flows[J]. Journal of Hydrodynamics, 2011,23(1): 26-33.

    [13] JI B., LUO X. and WU Y. et al. Partially-averaged Navier Stokes method with modifiedk model for cavitating flow around a marine propeller in a non-uniform wake[J]. International Journal of Heat and Mass Transfer, 2012, 55(2324): 6582-6588.

    [14] ZUO Z., LIU S. and LIU D. et al. Numerical predictions of the incipient and developed interblade vortex lines of a model Francis turbine by cavitation calculations[J]. Advances in Mechanical Engineering, 2013, 5(1):3975831-3975837.

    [15] BENSOW R., BARK G. Simulating cavitating flows with LES in OpenFoam[C]. Proceeding of V European Conference on Computational Fluid Dynamics. Lisbon, Portugal, 2010.

    [16] BENSOW R., LIEFVENDAHL M. Implicit and explicit subgrid modeling in LES applied to a marine propeller[C]. Proceeding of 38th Fluid Dynamics Conference and Exhibit. Seattle, Washington, 2008.

    [17] ESCALER X., FARHAT M. and EGUSQUIZA E. et al. Dynamics and intensity of erosive partial cavitation[J]. Journal of Fluids Engineering, 2007, 129(7): 886-893.

    [18] HIDALGO V., LUO Xian-wu and JI Bin et al. Numerical study of unsteady cavitation on 2D NACA0015 hydrofoil using free/open source software[J]. Chinese Science Bulletin, 2014, 59(26): 3276-3282.

    [19] HIDALGO V., LUO X. and ESCALER X. et al. Numerical investigation of unsteady cavitation around a NACA 66 hydrofoil using OpenFOAM[J]. IOP Conference Series: Earth and Environmental Science,2014, 22(5): 0520131-0520138.

    [20] ADAMS N., HICKEL S. and FRANZ S. Implicit subgrid-scale modeling by adaptive deconvolution[J]. Journal of Computational Physics, 2004, 200(2): 412-431.

    [21] JI Bin, LUO Xian-wu and PENG Xiao-xing et al. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil[J]. Journal of Hydrodynamics, 2013, 25(4):510-519.

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51306018, 51536008 and 51179091).

    Biography: HIDALGO Victor (1985-), Male, Ph. D. Candidate(Tsinghua University), Associate Professor (EPN)

    LUO Xian-wu,

    E-mail:luoxw@mail.tsinghua.edu.cn

    精华霜和精华液先用哪个| 不卡视频在线观看欧美| 久久久久久大精品| 欧美bdsm另类| 日韩一本色道免费dvd| h日本视频在线播放| 欧美日韩国产亚洲二区| 狂野欧美激情性xxxx在线观看| 欧美一区二区亚洲| 99国产精品一区二区蜜桃av| 99久久精品国产国产毛片| 欧美色欧美亚洲另类二区| 久久草成人影院| 97超级碰碰碰精品色视频在线观看| 嫩草影院入口| 国产在线精品亚洲第一网站| 国产高清有码在线观看视频| 成人国产一区最新在线观看| 日本成人三级电影网站| 亚洲欧美日韩高清专用| 偷拍熟女少妇极品色| 国产伦一二天堂av在线观看| 久久人妻av系列| 亚洲美女搞黄在线观看 | 一个人看视频在线观看www免费| 99精品久久久久人妻精品| 国产精品久久久久久久电影| 在线播放国产精品三级| 能在线免费观看的黄片| 蜜桃久久精品国产亚洲av| 久久精品国产自在天天线| 国产成人一区二区在线| 日韩大尺度精品在线看网址| 精品欧美国产一区二区三| videossex国产| or卡值多少钱| 久久这里只有精品中国| 久久久久久国产a免费观看| 91在线精品国自产拍蜜月| 一边摸一边抽搐一进一小说| 国产麻豆成人av免费视频| 九九爱精品视频在线观看| 色综合婷婷激情| 看十八女毛片水多多多| 精品人妻视频免费看| 精品乱码久久久久久99久播| 99在线视频只有这里精品首页| 又黄又爽又刺激的免费视频.| 国产老妇女一区| 他把我摸到了高潮在线观看| 久久国内精品自在自线图片| 三级毛片av免费| 99久久成人亚洲精品观看| 不卡视频在线观看欧美| 午夜福利在线在线| 国产一区二区激情短视频| 最近视频中文字幕2019在线8| 毛片一级片免费看久久久久 | 欧美极品一区二区三区四区| 中文字幕av在线有码专区| 又黄又爽又免费观看的视频| 午夜福利18| 99热只有精品国产| videossex国产| 精品人妻熟女av久视频| 日韩一区二区视频免费看| 在线国产一区二区在线| 级片在线观看| 国产精品福利在线免费观看| 高清在线国产一区| 亚洲男人的天堂狠狠| 亚洲第一电影网av| 别揉我奶头 嗯啊视频| 午夜老司机福利剧场| 久久99热6这里只有精品| 老女人水多毛片| 亚洲,欧美,日韩| 欧美日韩综合久久久久久 | 又粗又爽又猛毛片免费看| 久久久久久伊人网av| 国内毛片毛片毛片毛片毛片| 麻豆av噜噜一区二区三区| 久久久精品大字幕| 麻豆久久精品国产亚洲av| 热99在线观看视频| 啪啪无遮挡十八禁网站| 一级av片app| 国产av麻豆久久久久久久| 在线观看66精品国产| 亚洲欧美日韩无卡精品| 欧美性感艳星| 午夜免费激情av| 久久国内精品自在自线图片| 国产女主播在线喷水免费视频网站 | 天堂影院成人在线观看| 久久午夜亚洲精品久久| 午夜精品久久久久久毛片777| 熟女人妻精品中文字幕| 午夜激情福利司机影院| 成人亚洲精品av一区二区| 国产中年淑女户外野战色| 国产aⅴ精品一区二区三区波| 中文亚洲av片在线观看爽| 精品乱码久久久久久99久播| 国产美女午夜福利| 国产精品乱码一区二三区的特点| 国产精品国产三级国产av玫瑰| 日本欧美国产在线视频| 91在线观看av| 日本 av在线| 99riav亚洲国产免费| 亚洲在线自拍视频| 午夜福利在线在线| 欧美成人一区二区免费高清观看| 男人狂女人下面高潮的视频| 在线播放无遮挡| 国产伦一二天堂av在线观看| 老熟妇仑乱视频hdxx| 日韩欧美国产一区二区入口| 亚洲最大成人av| 18禁裸乳无遮挡免费网站照片| 欧美3d第一页| 真人做人爱边吃奶动态| 一区二区三区高清视频在线| 亚洲av美国av| 能在线免费观看的黄片| 日韩在线高清观看一区二区三区 | 欧美人与善性xxx| 1000部很黄的大片| 精品乱码久久久久久99久播| 久久久色成人| 成人美女网站在线观看视频| 久久人妻av系列| 国产精品一区二区三区四区免费观看 | 国产在线精品亚洲第一网站| 精品不卡国产一区二区三区| 99久久精品热视频| a级毛片a级免费在线| 1024手机看黄色片| 国产激情偷乱视频一区二区| 日日啪夜夜撸| 欧美一区二区国产精品久久精品| 最新在线观看一区二区三区| 日韩,欧美,国产一区二区三区 | a级毛片a级免费在线| 久久午夜亚洲精品久久| 亚洲三级黄色毛片| 久久香蕉精品热| www.色视频.com| 一夜夜www| 国产日本99.免费观看| 成人欧美大片| 成人毛片a级毛片在线播放| 97超视频在线观看视频| 日本欧美国产在线视频| 国产av麻豆久久久久久久| 国产免费一级a男人的天堂| 五月玫瑰六月丁香| 亚洲最大成人手机在线| 人妻丰满熟妇av一区二区三区| 免费观看在线日韩| АⅤ资源中文在线天堂| 69av精品久久久久久| 最新在线观看一区二区三区| 欧美日本视频| 国产三级中文精品| 亚洲国产欧美人成| 国产美女午夜福利| 22中文网久久字幕| 亚洲av熟女| 国产成人aa在线观看| 国产av一区在线观看免费| 五月玫瑰六月丁香| 在线a可以看的网站| 亚洲七黄色美女视频| 日韩一本色道免费dvd| 精品无人区乱码1区二区| 久久精品久久久久久噜噜老黄 | 热99在线观看视频| 日韩在线高清观看一区二区三区 | 久久久久性生活片| 国产真实乱freesex| 亚洲人与动物交配视频| 成年免费大片在线观看| 一级av片app| 男人狂女人下面高潮的视频| 在线播放国产精品三级| 天堂影院成人在线观看| 99精品在免费线老司机午夜| 中国美白少妇内射xxxbb| 免费av观看视频| 国产成人一区二区在线| 日韩国内少妇激情av| 一个人看视频在线观看www免费| 成人国产综合亚洲| 亚洲国产高清在线一区二区三| 国产爱豆传媒在线观看| 村上凉子中文字幕在线| 18禁黄网站禁片免费观看直播| 久久精品国产清高在天天线| 麻豆国产97在线/欧美| 丰满乱子伦码专区| 狠狠狠狠99中文字幕| а√天堂www在线а√下载| 欧美一区二区亚洲| 97热精品久久久久久| 一区二区三区免费毛片| 很黄的视频免费| 日本黄色片子视频| 校园春色视频在线观看| 国产欧美日韩精品一区二区| 成人高潮视频无遮挡免费网站| 在线观看免费视频日本深夜| 日本免费一区二区三区高清不卡| 亚洲成人中文字幕在线播放| 国产成年人精品一区二区| 舔av片在线| 熟女人妻精品中文字幕| 精品日产1卡2卡| 黄色欧美视频在线观看| 亚洲成av人片在线播放无| 看十八女毛片水多多多| 神马国产精品三级电影在线观看| 3wmmmm亚洲av在线观看| 亚洲精品粉嫩美女一区| 99国产精品一区二区蜜桃av| 国产综合懂色| av女优亚洲男人天堂| 精品久久久久久成人av| 日日夜夜操网爽| 麻豆成人av在线观看| 精品久久久久久,| 国产精品一及| 天美传媒精品一区二区| 国产真实乱freesex| 蜜桃亚洲精品一区二区三区| 国产又黄又爽又无遮挡在线| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久久电影| 最好的美女福利视频网| 他把我摸到了高潮在线观看| 舔av片在线| 给我免费播放毛片高清在线观看| 亚洲男人的天堂狠狠| 亚洲av成人精品一区久久| 18+在线观看网站| 欧美不卡视频在线免费观看| 国产精品综合久久久久久久免费| 国产男靠女视频免费网站| 精品乱码久久久久久99久播| 日韩欧美免费精品| 日本一二三区视频观看| 欧美另类亚洲清纯唯美| 国产伦一二天堂av在线观看| 日韩中文字幕欧美一区二区| 日本与韩国留学比较| 最新中文字幕久久久久| 亚洲性夜色夜夜综合| 精品一区二区三区视频在线| 欧美国产日韩亚洲一区| 天天一区二区日本电影三级| 日韩欧美精品v在线| 男女做爰动态图高潮gif福利片| 美女xxoo啪啪120秒动态图| 亚洲精品久久国产高清桃花| 听说在线观看完整版免费高清| 欧美zozozo另类| 精品日产1卡2卡| 日韩国内少妇激情av| 2021天堂中文幕一二区在线观| 哪里可以看免费的av片| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 色5月婷婷丁香| 嫩草影视91久久| 哪里可以看免费的av片| 欧美成人一区二区免费高清观看| 男人狂女人下面高潮的视频| 成人永久免费在线观看视频| 久久热精品热| 丰满人妻一区二区三区视频av| 色播亚洲综合网| 亚洲成a人片在线一区二区| 成人一区二区视频在线观看| 午夜福利在线观看免费完整高清在 | 国产精品人妻久久久久久| 日本免费一区二区三区高清不卡| 欧美精品国产亚洲| 春色校园在线视频观看| 国产综合懂色| 免费在线观看影片大全网站| 精品乱码久久久久久99久播| 日本 欧美在线| 亚洲av不卡在线观看| 国产在线男女| 精品一区二区三区人妻视频| 色综合亚洲欧美另类图片| 一个人观看的视频www高清免费观看| 最新在线观看一区二区三区| 中文字幕av在线有码专区| 亚洲一区二区三区色噜噜| 一进一出好大好爽视频| 欧美zozozo另类| 如何舔出高潮| 91在线观看av| 日韩欧美国产一区二区入口| 少妇的逼好多水| 一本一本综合久久| 真实男女啪啪啪动态图| 91狼人影院| 午夜福利18| 亚洲狠狠婷婷综合久久图片| 欧美xxxx性猛交bbbb| 成人精品一区二区免费| 国产一级毛片七仙女欲春2| 美女高潮喷水抽搐中文字幕| 久久九九热精品免费| 午夜福利成人在线免费观看| 特级一级黄色大片| 亚洲美女黄片视频| 琪琪午夜伦伦电影理论片6080| 精品欧美国产一区二区三| 一卡2卡三卡四卡精品乱码亚洲| 国产成人一区二区在线| 日日啪夜夜撸| 亚洲性夜色夜夜综合| 精品人妻熟女av久视频| 成人美女网站在线观看视频| 麻豆成人av在线观看| 亚洲一级一片aⅴ在线观看| 免费搜索国产男女视频| 成年女人毛片免费观看观看9| 精品久久久久久久人妻蜜臀av| 久久欧美精品欧美久久欧美| 久久精品国产亚洲av香蕉五月| 丰满乱子伦码专区| bbb黄色大片| 国产成人一区二区在线| 亚洲综合色惰| 99精品久久久久人妻精品| 久久久久国产精品人妻aⅴ院| 高清日韩中文字幕在线| 国产欧美日韩一区二区精品| 久久久久久久久久成人| 日日撸夜夜添| 午夜激情欧美在线| 国产精品99久久久久久久久| 久久婷婷人人爽人人干人人爱| 性色avwww在线观看| 日韩一区二区视频免费看| 亚洲精品一区av在线观看| 亚洲精华国产精华精| 久久久精品大字幕| 亚洲精品在线观看二区| 欧美成人性av电影在线观看| 十八禁国产超污无遮挡网站| 在线观看av片永久免费下载| 午夜亚洲福利在线播放| 国产精品久久电影中文字幕| 身体一侧抽搐| 日本免费a在线| 尤物成人国产欧美一区二区三区| 不卡一级毛片| 露出奶头的视频| 欧美极品一区二区三区四区| 免费观看在线日韩| 九九热线精品视视频播放| 色av中文字幕| 1000部很黄的大片| 日本爱情动作片www.在线观看 | 女的被弄到高潮叫床怎么办 | 一区二区三区免费毛片| 中文字幕久久专区| 97人妻精品一区二区三区麻豆| 久久午夜福利片| 日韩一区二区视频免费看| 婷婷色综合大香蕉| 嫁个100分男人电影在线观看| netflix在线观看网站| 亚洲欧美日韩无卡精品| 男插女下体视频免费在线播放| 国产乱人视频| 国产欧美日韩一区二区精品| 91av网一区二区| 免费看美女性在线毛片视频| 亚洲人与动物交配视频| 麻豆久久精品国产亚洲av| 偷拍熟女少妇极品色| 女人被狂操c到高潮| 三级男女做爰猛烈吃奶摸视频| 麻豆国产97在线/欧美| 国产精品一区二区免费欧美| 亚洲av.av天堂| av黄色大香蕉| 亚洲av美国av| 男女那种视频在线观看| 日韩一本色道免费dvd| 午夜老司机福利剧场| 搞女人的毛片| 免费观看人在逋| 成人欧美大片| 国产男人的电影天堂91| av在线老鸭窝| 九九久久精品国产亚洲av麻豆| 欧美最新免费一区二区三区| 婷婷色综合大香蕉| 久久6这里有精品| 啦啦啦韩国在线观看视频| 在线观看一区二区三区| 久久6这里有精品| 欧美潮喷喷水| 亚洲欧美日韩无卡精品| 夜夜爽天天搞| 国产在线男女| 3wmmmm亚洲av在线观看| 免费大片18禁| 亚洲精品456在线播放app | videossex国产| 真人做人爱边吃奶动态| 欧美日韩精品成人综合77777| 久久天躁狠狠躁夜夜2o2o| 亚洲av中文字字幕乱码综合| 男人舔女人下体高潮全视频| 亚洲国产色片| 久久久久国产精品人妻aⅴ院| 亚洲av美国av| 久久草成人影院| 身体一侧抽搐| 午夜亚洲福利在线播放| 国产高清三级在线| 国产av在哪里看| 一边摸一边抽搐一进一小说| 日本熟妇午夜| 亚洲五月天丁香| 一级黄色大片毛片| a在线观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 男人和女人高潮做爰伦理| 12—13女人毛片做爰片一| 国产成人aa在线观看| 神马国产精品三级电影在线观看| 久久久国产成人精品二区| 少妇被粗大猛烈的视频| 又爽又黄a免费视频| 亚州av有码| 国产又黄又爽又无遮挡在线| 中文字幕av成人在线电影| av视频在线观看入口| 国产又黄又爽又无遮挡在线| 亚洲一区二区三区色噜噜| 少妇裸体淫交视频免费看高清| 九色国产91popny在线| 国产爱豆传媒在线观看| 在线观看美女被高潮喷水网站| 中文资源天堂在线| 99国产精品一区二区蜜桃av| 成年女人永久免费观看视频| 真人做人爱边吃奶动态| 九色成人免费人妻av| 亚洲欧美精品综合久久99| 国内精品美女久久久久久| 国国产精品蜜臀av免费| 日本黄色片子视频| 亚洲色图av天堂| 中文字幕熟女人妻在线| 精品久久久久久久久久久久久| 久久久久久九九精品二区国产| 乱人视频在线观看| 亚洲在线自拍视频| 大型黄色视频在线免费观看| 欧美日韩乱码在线| 真实男女啪啪啪动态图| 成年版毛片免费区| 少妇的逼好多水| 免费看日本二区| 欧美日韩黄片免| 一级毛片久久久久久久久女| 黄色欧美视频在线观看| av国产免费在线观看| 亚洲国产精品成人综合色| 91麻豆av在线| 亚洲av二区三区四区| 亚洲av成人av| 中文字幕av在线有码专区| 少妇裸体淫交视频免费看高清| 亚洲精品一卡2卡三卡4卡5卡| 久久国内精品自在自线图片| 亚洲精品亚洲一区二区| 免费黄网站久久成人精品| 亚洲av免费在线观看| 色综合婷婷激情| 欧美日韩乱码在线| 日韩中文字幕欧美一区二区| 狂野欧美白嫩少妇大欣赏| 色精品久久人妻99蜜桃| 日韩欧美 国产精品| 99热这里只有是精品在线观看| 久久亚洲精品不卡| 免费人成在线观看视频色| 国内毛片毛片毛片毛片毛片| 免费av不卡在线播放| 别揉我奶头~嗯~啊~动态视频| 人人妻人人澡欧美一区二区| 久久久久久久久久久丰满 | 午夜爱爱视频在线播放| 婷婷色综合大香蕉| 国产色婷婷99| 91在线精品国自产拍蜜月| 亚洲中文字幕日韩| 亚洲人成伊人成综合网2020| 日本 av在线| 中文字幕久久专区| 日本免费a在线| 熟女电影av网| 韩国av在线不卡| 精品国产三级普通话版| a级一级毛片免费在线观看| 岛国在线免费视频观看| 身体一侧抽搐| 亚洲欧美精品综合久久99| 欧美黑人欧美精品刺激| 成人永久免费在线观看视频| 久久久久九九精品影院| av天堂在线播放| 精品久久久久久久久久久久久| 亚洲av日韩精品久久久久久密| 成人国产综合亚洲| 国产淫片久久久久久久久| 美女大奶头视频| av在线老鸭窝| 午夜亚洲福利在线播放| 亚洲一区二区三区色噜噜| 一级av片app| 国产高清视频在线观看网站| 欧美绝顶高潮抽搐喷水| 春色校园在线视频观看| 午夜福利18| 乱码一卡2卡4卡精品| 国产一区二区三区在线臀色熟女| 在线观看66精品国产| 国产成人av教育| 久久这里只有精品中国| 18+在线观看网站| 亚洲精华国产精华精| 亚洲精品亚洲一区二区| 高清在线国产一区| 亚洲狠狠婷婷综合久久图片| 小说图片视频综合网站| 精品无人区乱码1区二区| 婷婷六月久久综合丁香| 国产在线男女| 成人无遮挡网站| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品久久男人天堂| 国产精品爽爽va在线观看网站| 在线观看免费视频日本深夜| 中文字幕精品亚洲无线码一区| 婷婷六月久久综合丁香| 欧美日本视频| 亚洲欧美清纯卡通| 少妇人妻一区二区三区视频| 久久久精品大字幕| 两个人视频免费观看高清| 一个人免费在线观看电影| 亚洲电影在线观看av| 极品教师在线视频| 亚洲精品粉嫩美女一区| 成人高潮视频无遮挡免费网站| 精品欧美国产一区二区三| 少妇丰满av| 少妇的逼水好多| videossex国产| 国产午夜精品久久久久久一区二区三区 | 日本免费a在线| av在线蜜桃| 精品久久久久久成人av| 亚洲最大成人av| 亚洲人成网站在线播放欧美日韩| 夜夜夜夜夜久久久久| 88av欧美| 成年版毛片免费区| xxxwww97欧美| 亚洲自偷自拍三级| 婷婷亚洲欧美| 在线看三级毛片| 国产精品一区二区三区四区久久| 亚洲国产精品合色在线| 欧美zozozo另类| 日韩欧美国产一区二区入口| 久久国产精品人妻蜜桃| 日本爱情动作片www.在线观看 | 变态另类丝袜制服| 少妇的逼水好多| 免费观看的影片在线观看| 搡老岳熟女国产| 可以在线观看毛片的网站| 国产精品久久视频播放| 午夜福利18| av专区在线播放| 久久久久国内视频| av国产免费在线观看| 久久久久久久久中文| 丝袜美腿在线中文| 亚洲人成网站在线播放欧美日韩| 51国产日韩欧美| 在线观看一区二区三区| 国产色婷婷99| 观看美女的网站| 国产亚洲精品久久久久久毛片| 麻豆国产av国片精品| 日韩欧美国产一区二区入口| 国产精品伦人一区二区| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清在线视频| 欧美性猛交黑人性爽|