• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Implicit large eddy simulation of unsteady cloud cavitation around a planeconvex hydrofoil*

    2015-12-01 02:12:10HIDALGOVictorLUOXianwu羅先武ESCALERXavierJIBin季斌AGUINAGAAlvaroBeijingKeyLaboratoryofCOUtilizationandReductionTechnologyTsinghuaUniversityBeijing0008ChinamailvictorhidalgoepneduecCDIFUniversitatPolitcnicadeCatalunyaBarcel
    水動力學研究與進展 B輯 2015年6期

    HIDALGO Victor, LUO Xian-wu (羅先武), ESCALER Xavier, JI Bin (季斌), AGUINAGA Alvaro. Beijing Key Laboratory of COUtilization and Reduction Technology, Tsinghua University, Beijing 0008,China, E-mail: victor.hidalgo@epn.edu.ec. CDIF, Universitat Politècnica de Catalunya, Barcelona, Spain. School of Power and Mechanical Engineering, Wuhan University, Wuhan 007, China. Mechanical Engineering Department, Escuela Politecnica Nacional University, Quito, Ecuador

    Implicit large eddy simulation of unsteady cloud cavitation around a planeconvex hydrofoil*

    HIDALGO Victor1, LUO Xian-wu (羅先武)1, ESCALER Xavier2, JI Bin (季斌)3, AGUINAGA Alvaro4
    1. Beijing Key Laboratory of CO2Utilization and Reduction Technology, Tsinghua University, Beijing 100084,China, E-mail: victor.hidalgo@epn.edu.ec
    2. CDIF, Universitat Politècnica de Catalunya, Barcelona, Spain
    3. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
    4. Mechanical Engineering Department, Escuela Politecnica Nacional University, Quito, Ecuador

    (Received March 10, 2015, Revised October 15, 2015)

    The present paper focuses on the erosive cavitation behavior around a plane convex hydrofoil. The Zwart-Gerber-Belamri cavitation model is implemented in a library form to be used with the OpenFOAM. The implicit large eddy simulation (ILES) is applied to analyze the three dimensional unsteady cavitating flow around a plane convex hydrofoil. The numerical results in the cases under the hydrodynamic-conditions, which were experimentally tested at the high speed cavitation tunnel of the école Polytechnique Fédérale de Lausanne (EPFL), clearly show the sheet cavitation development, the shedding and the collapse of vapor clouds. It is noted that the cavitation evolutions including the maximum vapor length, the detachment and the oscillation frequency, are captured fairly well. Furthermore, the pressure pulses due to the cavitation development as well as the complex vortex structures are reasonably well predicted. Consequently, it may be concluded that the present numerical method can be used to investigate the unsteady cavitation around hydrofoils with a satisfactory accuracy.

    implicit large eddy simulation (ILES), unsteady partial cavitation, Zwart-Gerber-Belamri cavitation model, OpenFOAM, Q -criterion

    Introduction0F

    Studies of unsteady cloud cavitations around hydrofoils are important to improve the design of the fluid machinery[1]and to understand the mechanisms around the cavitation dynamic behavior and the collapse of the cloud of bubbles. However, experiments are expensive and have limitations such as the accuracy of lab equipments. Therefore, the computational fluid mechanics (CFD) are a complementary option to understand the cavity shedding and collapse, the generated cyclic stresses and the resulting cavitation erosion.

    In this way, Kunz et al.[2]proposed a cavitation model based on Merkle's ideas for the analysis of unsteady cavitating flow. The model considers the continuity of a mixture volume rather than a mixture mass equation. The transfer from liquid to vapor is modeled as being proportional to the liquid volume fraction and the pressure below the vapor pressure. For instance,Nouri et al.[3]studied unsteady cavitating flow over a disc using the OpenFOAM with the explicit LES based on this cavitation model. Their results show that the main aspects of the super cavitation could be captured. However, how to select a correct explicit subgrid model is shown to be a problem very much depending on different cases. Moreover, the shape of the cavity cluster can be improved with a cavitation model based on Rayleigh-Plesset's equation. Based on this premise, Roohi et al.[4]studied the cavitating flow over a Clark-Y hydrofoil and they compared the Kunz model with the Schnerr-Sauer cavitation model, which is based on the Rayleigh-Plesset's equation and is apart of the default OpenFOAM solver packages too. The corresponding results show that the Schnerr-Sauer model predicts a stronger re-entrant jet, which might be visible in experiment, and the shape of the obtained cavity is improved as well. However, it was found that the symmetrical consideration for condensation and vaporization processes may induce a great error of the force coefficients in the super cavitation regime.

    Consequently, Zwart et al.[5]presented a two phase flow model for predicting cavitation dynamics which was implemented in CFX-5 based on the Rayleigh-Plesset's equation. The model works well for condensation, but is unstable for vaporization. Thus, an unsymmetrical consideration was taken into account with empirical constants for calibration. As a result, the model shows improvements for non-equilibrium effects, which were not included in previous models such as those of Schnerr-Sauer, Gerber[6]and Senocak and Shyy[7]. This model was used to capture the cavitation phenomenon with good results. That is the case of Ji et al.[8], who studied the horse-shoe cloud behavior over a twisted hydrofoil and predicted the performances of a marine propeller under the cavitation condition with different skew angles. Shi et al.[9]also made a remarkable use of the Zwart-Gerber-Belamri model for the study of cavitation in a WP7 automobile centrifugal pump. Zhang et al.[10]used this model to study the effects of the density ratio on the maximum length of the attached sheet cavity. Some studies were carried out to improve the model such as in the case of Morgut et al.[11], who determined the possible values of the calibration constants for numerical simulations. In this line, it was concluded that the evaporation coefficient controls the cavity length and the high vapor volume fraction, while the condensation vapor regulates the cavity length. Unfortunately, the cavitation model of Zwart-Gerber-Belamri is not a part of the OpenFOAM solvers and no references are available for its implementation. Therefore, its proper implementation and validation is desirable, which will be carried out in the current work.

    Due to the high Reynolds numbers of cavitating flows in the hydro machinery, the traditional RANS and turbulence models must be adapted to predict the cavity sheet and the shedding process. Some examples are the cases of Huang and Wang[12]and Ji et al.[13],who used the partially-averaged Navier-Stokes (PANS)equations in the commercial code ANSYS-CFX for the cavitation simulation. The PANS is a hybrid turbulence model for the simulation from the RANS to the direct numerical simulation (DNS) based on the unresolved to total ratios of kinetic energy (fk)and dissipation (fε).Nevertheless, those ratios can only be obtained by a subgrid independence analysis and cannot be easily estimated according to Sharath and Girimaji. Another solution was proposed by Zuo et al.[14], who added a function to the k -ε turbulence model to consider the influence of variations of the density on the turbulence viscosity for the study of cavitation in a Francis turbine. For a better solution,Bensow and Bark[15]applied the OpenFOAM with the implicit large eddy simulation (ILES) instead of the RANS to simulate the formation of erosive cavitation. The ILES was selected to avoid the explicit coupling between the mass transfer modeling and the subgrid modeling. The ILES was validated by recent studies of aerospace and naval engineering for highly turbulent flows such as the flows over a fully three-dimensional swept-wing geometry and a marine propeller[16].

    In summary, the main target of this paper is the implementation and validation of the Zwart-Gerber-Belamri cavitation model in the OpenFOAM using the ILES. Therefore, we intend to obtain accurate simulations of the shedding process of the partial cavitation,which is considered as the main mechanism of the material erosion. For validation purposes, the experimental results obtained by Escaler et al.[17]with a 2-D plane-convex hydrofoil at the école Polytechnique Fédérale de Lausanne (EPFL) high speed cavitation tunnel are used. Previous investigations with the OpenFOAM were focused on the NACA series or twisted geometries with unsteady cavitation[18,19]to compare the cavitation hydrodynamic behavior. In the present paper, the plane-convex hydrofoil is specifically investigated to reveal the unsteady cavitation dynamics.

    1. Description of the numerical method

    1.1 Implicit large eddy simulation

    Continuity and Navier-Stokes equations are the basis of the LES, and they are as follows:

    where u is the instant velocity,t is the time,i and j are the space coordinates.

    In the ILES, Eqs.(1) and (2) are filtered for the use of approximation as

    and some solutions are excluded[20].

    Based on the following considerations:

    (1) The product of filtered velocities is

    (2) The subgrid stress tensor, which is the Reynolds stress tensor is

    (3) The filtered strain tensor rate is

    (4) The filtered viscous stress tensor is

    Equation (4) is modified into the following form

    1.2 Zwart-Gerber-Belamri cavitation model

    In the cavitating flow, the medium is considered as a single fluid of two-phase homogeneous mixture with phase transformations between vapor and water. The vapor volume fractionα, the densityρ, and the dynamic viscosityμof the vapor-water mixture are as follows:

    whereV is the total volume,landvare the subscripts for liquid and vapor, respectively. Thus, based on Eq.(3), to include the effect of the phase transformation, we have

    wherem˙is the inter-phase mass transfer rate per unit volume.

    The Zwart-Gerber-Belamri model considers a variable bubble radius due to cavitation,R , which satisfies the following equation

    Based on Eq.(11), to neglect the second derivative term, we obtain a simplified expression as

    Thus the Zwart-Gerber-Belamri model is expressed by the following equations:

    The Zwart-Gerber-Belamri model is implemented in the C++based OpenFOAM code. The code is saved on the new solver directory and compiled to become an implemented OpenFOAM's cavitation model for the present research.

    1.3 OpenFOAM setup

    The OpenFOAM version 2.2.x is used in the present research because it has eliminated the bugs of the previous version[18]. GNU/Linux Mint 6 Petra with kernel Linux 3.11.0-12-generic (x86 64) and XFCEdesktop are also applied. This version of the OpenFOAM is used especially in the CentOS GNU/ Linux distribution, which is based on the official GNU/Linux version of RedHAT. In fact, the following implementations are carried out:

    (1) In the directory OpenFOAM/OpenFOAM-2.2.x/etc the text document bashrc is modified. The lines “foamCompiler=system” and “WMCOMPILER =Gcc” are added and the line “foamCompiler= Third-Party” is eliminated in the compiler location (#Compiler Location:). These are necessary to compile the implemented cavitation solver of Zwart-Gerber-Belamri[19].

    (2) The library libmpi.so.1 is required in the GNU/Linux Mint Petra. Thus, a symbolic link (ln-s) with libmpi.so is implemented, which is a part of Message Passing Interface (MPI) GNU/Linux library.

    2. Hydrofoil geometry, mesh generation and boundary conditions

    2.1 Hydrofoil geometry and computation domain

    Figure 1 shows a plane-convex hydrofoil used in Escaler's studies[17]. This hydrofoil has a plane upper surface and a convex lower surface, with a semicircular leading edge and a tip trailing edge. The chord lengthc of the hydrofoil is 0.0911 m, and the span is equal to0.3c.

    Fig.1 Plane-convex hydrofoil[17]

    Fig.2 Computation domain

    The hydrofoil is positioned in a computation domain with an angle of attackshown in Fig.2.

    2.2 Mesh generation

    Meshing is a challenge for this type of plane-convex hydrofoils due to the fact that the leading edge has an abrupt change from a convex shape to a plane shape with a semicircular leading edge.

    Fig.3 Structured and scale distributed mesh with taper analysis of the mesh around the plane-convex hydrofoil

    Therefore, a structured C mesh is generated using Gmsh 2.8.5 and Salome 7.4.0 with a scale distribution and hexahedron elements. The resulting mesh has 393980 hexahedra. The quality of the mesh is guaranteed by the Salome taper analysis as indicated in Fig.3. This analysis shows proportional changes of elements such as 0.021, which is an acceptable value according to the previous studies[18].

    The Yplus,y+, is calculated as

    where uτis the friction velocity,yis the distance to the nearest hydrofoil wall andn is the kinematic viscosity[19].

    The mean value for the hydrofoil wall is 9.2. This mean value is within the range from 1 to 15, which ensures that the mesh matches the conditions for the ILES based on Bensow et al.[15].

    2.3 Boundary conditions

    Under the cavitating conditions, the Reynolds number,Re , and the cavitation number,σ, are as follows:

    where U∞is the free stream velocity,cis the chord length, and prand pvare the reference and saturation pressures, respectively.

    Based on the experimental tests carried out by Escaler[17], five flow conditions combining the free stream velocity at the domain inlet, the angle of attack and the reference pressure at the domain outlet are selected as shown in Table 1. The uniform velocity andthe static pressure are assigned at the domain inlet and outlet.

    Table 1 Simulated flow conditions

    The front and back planes of the domain are considered as the symmetry boundaries. Besides, the top and the bottom of the computation domain, and the hydrofoil surface are treated as no-slip walls.

    Fig.4 The characteristic parameters of a sheet cavity

    3. Results and discussions

    Figure 4 shows several characteristic parameters defined for the sheet cavity attached to the hydrofoil such as the cavity lengthL , the maximum cavity length Lmax, and the maximum cavity depth Hmax. The cavitating flow over the plane-convex hydrofoil sees a typical partial cavitation development consisting of an attached cavity from the leading edge. Under unsteady conditions, the re-entrant jet mechanism leads to the periodic shedding of bubble clouds[17].

    Strouhal number,St , is a typical dimensionless parameter to show the feature of the cavity oscillation,as expressed as

    where f is the cavity oscillation frequency.

    Fig.5 Comparison of the leading edge cavity growth between the numerical simulation result and the experimental result for Case 1 in horizontal plane using iso-contour of

    The transient numerical results are post-processed and analyzed along the time to identify a single period of the cavitation oscillation process. Particular attention is paid to the vapor volume fraction, the development of the reentrant jet, the shedding of a cloud cavity and its final collapse. The cloud cavity like the horse-shoe is visible and there is a good similarity between the experiment and simulation, as indicated in Fig.5.

    For a better comparison, the dimensionless time is defined as

    wheret is a time between the initial time,to, and the final time,tf, in one cycle. In particular, six time instants corresponding to 0, 1/6, 1/3, 1/2, 2/3 and 5/6 are selected, and the corresponding contours of the vapor volume fraction α=0.5are plotted in Fig.6, under all flow conditions.

    Based on Fig.6, the following conclusions can be drawn:

    (1) In all the cases, the growth and the detachment of the leading edge cavity, the break off and the collapse of the cavity cloud are shown.

    (2) The maximum length of the leading edge attached cavity decreases with the increase of the cavitation number.

    (3) When σ=0.7, the cavity cloud is observed more clearly in Cases 1 and 3 at U∞=35 m/sthan in Case 2 at U∞=25 m/s. Therefore, the larger velocity enhances the probabilities of the cloud cavity, which has a direct link with the erosive power of the cavitation.

    Fig.6 Cavitation evolution in Cases 1 through 5 in 3-D using contour-surfaces of the vapor volume fraction (α=0.5)

    (4) Cavities at the hydrofoil trailing edge are observed along the lower surface of the hydrofoil in three cases with σ=0.7. This kind of cavitation is due to the hydrofoil convex shape, and it is also observed in the experiments.

    (5) It is noted that the present results obtained by the ILES method have as good accuracy as those of our previous studies[21]based on the explicit subgrid model of the LES.

    In order to understand the effects of the cavitation evolution shown in Fig.6, the pressure coefficient, Cp, is expressed as

    where psis the static pressure, and the vapor void fraction,α, are plotted in Fig.7 and Fig.8, respectively. Note that the two figures show the results at six points located along the upper surface at0.15c in the spanwise direction.

    According to the definition ofσand Cp, the following relation holds true:

    Due to the fact that psis always larger than or equal to pv,Cpmust be larger than or equal to -σ.

    Because in those cases with σ=0.7, a large cavity length is involved, the flat Cplines, whose value corresponding to a negative value of the cavitation number can be observed at x/ c=0.2 and 0.4, compared with other cases. On the contrary, the cavity length in Case 5 is the shortest, and the static pressure oscillates violently even at x/ c =0.2. For x/ c=0.6 through 1.0,Cplines with strong pressure oscillations are observed in all cases. At the downstream of the hydrofoil (x/ c=1.2), the average static pressure is basically around the reference pressure level, and some pressure pulses are captured. Those pulses may be related with the collapse of small vapor clusters. Based on the vapor volume fraction oscillations shown in Fig.8, the vapor sizes are large in Cases 1 and 3, and is the smallest in Case 5 due to its highest reference pressure.

    The comparison of the cavity length among those five cases is listed at Table 2, where both experimental and simulation data are included. To show the difference between the experiment and the calculation,we may define the relative error evaluation of the maximum cavity length as

    Fig.7 Local pressure coefficient,Cp, versus dimensionless time,ξ, in Cases 1 through 5 for different values of x/ c

    The prediction accuracy is fairly good, though the largest error is near 20%. It must be noted that due to the transient nature of the shedding process and the high frequencies of the cavitation evolution during the tests[17], the maximum cavity length could not be determined with a sufficient accuracy from the experiments, and an error of about 5% might be reasonable. For a better understanding of the cavitation phenomenon, we define

    where?is the vorticity rate, andSis the strain rate. The Q-criterion may be used to obtain the 3-D vorticity distribution.

    Fig.8 Vapor void fraction,α, versus dimensionless time,ξ, in Cases 1 through 5 at different values of x/ c

    Table 2 Numerical and experimental results based on Lmax

    The Q-criterion is plotted in Fig.9, where the contours of Q=2× 105s-2show similarities with the vapor volume fraction contours (α=0.5). Results show that there is a strong interaction between the vorticity and the cavitation evolution.

    Fig.9 Vapor and vortex interaction

    4. Conclusion

    A numerical simulation of the unsteady cloud cavitation around a plane convex hydrofoil is carried out with a free OpenFOAM software package based on the ILES and a newly implemented Zwart-Gerber-Belamri cavitation model. The transient results under different operation conditions show the typical cavitation dynamic behaviors, including the growth of the leading edge cavity, the development of the reentrant jet, the shedding of the cavity cloud and its collapse. The comparison between the numerical and experimental results indicates that the cavitation evolution is simulated fairly well. Further, the pressure oscillation due to the cavitation dynamics as well as the complex vortex structures shown by the Q-criterion are reasonably well predicted. Therefore, the proposed numerical method and the implemented Zwart-Gerber-Belamri cavitation model in OpenFOAM are validated as reliable tools to investigate the unsteady cavitation around hydrofoils.

    Acknowledgements

    This work was supported by the Beijing Key Laboratory Development Project (Grant No. Z151100001615006), the State Key Laboratory of Hydroscience and Engineering, Tsinghua University(Grant Nos. 2014-KY-05, 2015-E-03).

    [1] LUO Xian-wu, JI Bin and XU Hong-yuan. Design and optimization for fluid machinery[M]. Beijing, China:Tsinghua University Press, 2012, 24-26(in Chinese).

    [2] KUNZ R., BOGER D. and STINEBRING D. et al. A preconditioned Navier Stokes method for two-phase flows with application to cavitation prediction[J]. Computers and Fluids, 2000, 29(8): 849-875.

    [3] NOURI N., MOGHIMI M. and MIRSAEEDI S. Numerical simulation of unsteady cavitating flow over a disc[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(6): 1245-1253.

    [4] ROOHI E., ZAHIRI A. and ANDIDEH-FARD M. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model[J]. Applied Mathematical Modelling, 2013,37(9): 6469-6488.

    [5] ZWART P., GERBER A. and BELAMRI T. A twophase flow model for predicting cavitation dynamics[C]. Proceedings of International Conference on Multiphase Flow ICMF 2004. Yokohama, Japan, 2004.

    [6] GERBER A. A CFD model for devices operating under extensive cavitation conditions[C]. Proceedings of IMECE. New Orleans, Louisina, 2002.

    [7] SENOCAK I., SHYY W. Evaluation of cavitation models for Navier-Stokes computations[C]. Proceedings of FEDSM. Montreal, Quebec, Canada, 2002.

    [8] JI B., LUO X. and WU Y. Unsteady cavitation characteristics and alleviation of pressure fluctuations around marine propellers with different skew angles[J]. Journal of Mechanical Science and Technology, 2014,28(4): 1339-1348.

    [9] SHI W., WANG C. and WANG W. et al. Numerical calculation on cavitation pressure pulsation in centrifugal pump[J]. Advances in Mechanical Engineering,2014, 6(1): 3676311-3676318.

    [10] ZHANG G., SHI W. and ZHOU L. et al. Effect of the maximum density ratio between liquid and vapor on cavitating simulation[J]. American Journal of Engineering and Applied Sciences, 2015, 9(1): 119-126.

    [11] MORGUT M., NOBILE E. Influence of the mass transfer model on the numerical prediction of the cavitating flow around a marine propeller[C]. Proceeding of the Second International Symposium on Marine Propulsors. Hamburg, Germany, 2011.

    [12] HUANG Biao, WANG Guo-yu. Partially averaged Navier-Stokes method for time-dependent turbulent cavitating flows[J]. Journal of Hydrodynamics, 2011,23(1): 26-33.

    [13] JI B., LUO X. and WU Y. et al. Partially-averaged Navier Stokes method with modifiedk model for cavitating flow around a marine propeller in a non-uniform wake[J]. International Journal of Heat and Mass Transfer, 2012, 55(2324): 6582-6588.

    [14] ZUO Z., LIU S. and LIU D. et al. Numerical predictions of the incipient and developed interblade vortex lines of a model Francis turbine by cavitation calculations[J]. Advances in Mechanical Engineering, 2013, 5(1):3975831-3975837.

    [15] BENSOW R., BARK G. Simulating cavitating flows with LES in OpenFoam[C]. Proceeding of V European Conference on Computational Fluid Dynamics. Lisbon, Portugal, 2010.

    [16] BENSOW R., LIEFVENDAHL M. Implicit and explicit subgrid modeling in LES applied to a marine propeller[C]. Proceeding of 38th Fluid Dynamics Conference and Exhibit. Seattle, Washington, 2008.

    [17] ESCALER X., FARHAT M. and EGUSQUIZA E. et al. Dynamics and intensity of erosive partial cavitation[J]. Journal of Fluids Engineering, 2007, 129(7): 886-893.

    [18] HIDALGO V., LUO Xian-wu and JI Bin et al. Numerical study of unsteady cavitation on 2D NACA0015 hydrofoil using free/open source software[J]. Chinese Science Bulletin, 2014, 59(26): 3276-3282.

    [19] HIDALGO V., LUO X. and ESCALER X. et al. Numerical investigation of unsteady cavitation around a NACA 66 hydrofoil using OpenFOAM[J]. IOP Conference Series: Earth and Environmental Science,2014, 22(5): 0520131-0520138.

    [20] ADAMS N., HICKEL S. and FRANZ S. Implicit subgrid-scale modeling by adaptive deconvolution[J]. Journal of Computational Physics, 2004, 200(2): 412-431.

    [21] JI Bin, LUO Xian-wu and PENG Xiao-xing et al. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil[J]. Journal of Hydrodynamics, 2013, 25(4):510-519.

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51306018, 51536008 and 51179091).

    Biography: HIDALGO Victor (1985-), Male, Ph. D. Candidate(Tsinghua University), Associate Professor (EPN)

    LUO Xian-wu,

    E-mail:luoxw@mail.tsinghua.edu.cn

    av又黄又爽大尺度在线免费看| 国产成人精品久久二区二区91| 人人妻,人人澡人人爽秒播| 成人精品一区二区免费| 狂野欧美激情性xxxx| 制服诱惑二区| 日韩大码丰满熟妇| 最新的欧美精品一区二区| 色精品久久人妻99蜜桃| 久久人妻熟女aⅴ| 91成年电影在线观看| 国产不卡av网站在线观看| 久久精品熟女亚洲av麻豆精品| av欧美777| 国内毛片毛片毛片毛片毛片| 成人国语在线视频| 色播在线永久视频| 纯流量卡能插随身wifi吗| 欧美老熟妇乱子伦牲交| 这个男人来自地球电影免费观看| 久久午夜综合久久蜜桃| 麻豆乱淫一区二区| 午夜福利,免费看| 最近最新免费中文字幕在线| 国产精品一区二区在线不卡| 精品国产超薄肉色丝袜足j| 精品人妻在线不人妻| 天天添夜夜摸| 成人国语在线视频| 亚洲午夜精品一区,二区,三区| 在线亚洲精品国产二区图片欧美| 人人妻,人人澡人人爽秒播| 乱人伦中国视频| 在线观看人妻少妇| 亚洲熟女毛片儿| 变态另类成人亚洲欧美熟女 | 黑人欧美特级aaaaaa片| 高清av免费在线| 精品欧美一区二区三区在线| 免费久久久久久久精品成人欧美视频| 自拍欧美九色日韩亚洲蝌蚪91| 一本色道久久久久久精品综合| 精品久久蜜臀av无| 天天躁日日躁夜夜躁夜夜| 自线自在国产av| 欧美激情极品国产一区二区三区| 国产麻豆69| 国产1区2区3区精品| 亚洲va日本ⅴa欧美va伊人久久| 高潮久久久久久久久久久不卡| 在线av久久热| 午夜久久久在线观看| 精品久久久久久电影网| 人人妻人人澡人人看| 三级毛片av免费| 免费在线观看黄色视频的| 午夜福利在线观看吧| 国产成人影院久久av| 色精品久久人妻99蜜桃| 一区二区三区精品91| 久久九九热精品免费| 日本av免费视频播放| 亚洲国产av新网站| 国产成人欧美在线观看 | 最黄视频免费看| 无人区码免费观看不卡 | 国产精品av久久久久免费| 精品国产一区二区久久| 夜夜骑夜夜射夜夜干| videos熟女内射| 黄色视频,在线免费观看| 国产成人av教育| 成人精品一区二区免费| 少妇精品久久久久久久| 久久亚洲真实| 人人澡人人妻人| 久久久精品区二区三区| 五月开心婷婷网| 黄色片一级片一级黄色片| 日日夜夜操网爽| 午夜精品国产一区二区电影| 中文字幕人妻丝袜制服| 精品久久蜜臀av无| 国产精品亚洲一级av第二区| 国产一区二区激情短视频| 18禁黄网站禁片午夜丰满| 大片免费播放器 马上看| 乱人伦中国视频| 国产精品av久久久久免费| 狂野欧美激情性xxxx| 亚洲一区中文字幕在线| 高清视频免费观看一区二区| 老司机午夜十八禁免费视频| 美女国产高潮福利片在线看| 日韩欧美三级三区| 老司机午夜十八禁免费视频| 美女国产高潮福利片在线看| 国产精品二区激情视频| 日本撒尿小便嘘嘘汇集6| 成人永久免费在线观看视频 | 黑人欧美特级aaaaaa片| 女人被躁到高潮嗷嗷叫费观| 国产黄频视频在线观看| av国产精品久久久久影院| 91字幕亚洲| 黄色视频,在线免费观看| 亚洲精品乱久久久久久| 97人妻天天添夜夜摸| 一进一出好大好爽视频| 人人妻人人澡人人看| 久久 成人 亚洲| 成人国产一区最新在线观看| 欧美激情高清一区二区三区| 制服人妻中文乱码| 老司机靠b影院| 亚洲av日韩精品久久久久久密| 色婷婷av一区二区三区视频| 精品少妇一区二区三区视频日本电影| 视频区欧美日本亚洲| 无人区码免费观看不卡 | 99国产综合亚洲精品| 大码成人一级视频| 黑人巨大精品欧美一区二区mp4| 考比视频在线观看| 国产国语露脸激情在线看| 精品久久久精品久久久| h视频一区二区三区| 国产成人影院久久av| 怎么达到女性高潮| 国产日韩欧美在线精品| 十八禁人妻一区二区| 精品少妇久久久久久888优播| 韩国精品一区二区三区| 性色av乱码一区二区三区2| 欧美成人免费av一区二区三区 | 久久久久久久久免费视频了| 老司机深夜福利视频在线观看| 涩涩av久久男人的天堂| 日韩大码丰满熟妇| 99九九在线精品视频| 亚洲欧美色中文字幕在线| 亚洲精华国产精华精| 欧美久久黑人一区二区| 午夜福利视频在线观看免费| 嫁个100分男人电影在线观看| 啦啦啦中文免费视频观看日本| 亚洲伊人色综图| 国产成人精品无人区| 国产精品一区二区在线不卡| videos熟女内射| 亚洲国产欧美一区二区综合| 窝窝影院91人妻| 男女午夜视频在线观看| 免费人妻精品一区二区三区视频| 久久精品亚洲精品国产色婷小说| 在线永久观看黄色视频| 99久久精品国产亚洲精品| 色老头精品视频在线观看| 1024香蕉在线观看| e午夜精品久久久久久久| 手机成人av网站| 亚洲第一青青草原| 日本vs欧美在线观看视频| 岛国在线观看网站| 黄色视频不卡| 国产激情久久老熟女| 999久久久精品免费观看国产| 90打野战视频偷拍视频| 正在播放国产对白刺激| 嫩草影视91久久| 精品免费久久久久久久清纯 | 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| 无人区码免费观看不卡 | 波多野结衣一区麻豆| 王馨瑶露胸无遮挡在线观看| 欧美老熟妇乱子伦牲交| 精品欧美一区二区三区在线| 国产欧美日韩一区二区三区在线| 亚洲欧美一区二区三区黑人| 日本av手机在线免费观看| 亚洲美女黄片视频| 久久性视频一级片| 五月天丁香电影| 欧美黄色片欧美黄色片| 日韩大片免费观看网站| 老司机靠b影院| 免费观看av网站的网址| 日本av手机在线免费观看| 午夜福利视频在线观看免费| 91国产中文字幕| 啦啦啦视频在线资源免费观看| 在线观看一区二区三区激情| 国产熟女午夜一区二区三区| 美女国产高潮福利片在线看| 国产男女超爽视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 色在线成人网| 操出白浆在线播放| 一边摸一边做爽爽视频免费| 性高湖久久久久久久久免费观看| 欧美精品av麻豆av| 欧美在线黄色| 成人黄色视频免费在线看| 国产在视频线精品| 91精品三级在线观看| 日韩大片免费观看网站| 999精品在线视频| 亚洲七黄色美女视频| 免费av中文字幕在线| 久热爱精品视频在线9| 亚洲欧美色中文字幕在线| 精品国产乱码久久久久久男人| 女警被强在线播放| 一级毛片女人18水好多| 丰满饥渴人妻一区二区三| 丁香欧美五月| 国产精品.久久久| 久久香蕉激情| 久久国产精品人妻蜜桃| 一级黄色大片毛片| 午夜福利,免费看| 极品人妻少妇av视频| 亚洲一区中文字幕在线| 精品一区二区三卡| 天天添夜夜摸| 日本一区二区免费在线视频| 亚洲色图综合在线观看| 老司机靠b影院| 天堂动漫精品| 中文字幕人妻熟女乱码| 精品国内亚洲2022精品成人 | 侵犯人妻中文字幕一二三四区| 国产三级黄色录像| 91大片在线观看| 国产亚洲精品第一综合不卡| 男人操女人黄网站| 9热在线视频观看99| videosex国产| 久久ye,这里只有精品| 免费看a级黄色片| 国产精品偷伦视频观看了| 一本大道久久a久久精品| 国产精品二区激情视频| 久久久国产一区二区| 99riav亚洲国产免费| 国产成+人综合+亚洲专区| 高清视频免费观看一区二区| 伦理电影免费视频| av欧美777| 久久这里只有精品19| 侵犯人妻中文字幕一二三四区| 俄罗斯特黄特色一大片| 国产精品电影一区二区三区 | 男女免费视频国产| 欧美乱码精品一区二区三区| 深夜精品福利| av一本久久久久| 国产野战对白在线观看| 欧美乱妇无乱码| www日本在线高清视频| 亚洲精品国产精品久久久不卡| 欧美中文综合在线视频| 99re在线观看精品视频| 久久精品国产99精品国产亚洲性色 | 亚洲精品久久午夜乱码| 一区二区日韩欧美中文字幕| 91麻豆av在线| 亚洲美女黄片视频| 99久久精品国产亚洲精品| 国产精品久久久久久精品古装| 纵有疾风起免费观看全集完整版| 中文字幕精品免费在线观看视频| 国产男女超爽视频在线观看| 男男h啪啪无遮挡| 1024香蕉在线观看| 在线播放国产精品三级| 亚洲精品久久成人aⅴ小说| 99热网站在线观看| 国产深夜福利视频在线观看| 免费在线观看黄色视频的| 在线观看免费视频日本深夜| 母亲3免费完整高清在线观看| 9191精品国产免费久久| 欧美日韩中文字幕国产精品一区二区三区 | 黄色视频在线播放观看不卡| 叶爱在线成人免费视频播放| 午夜91福利影院| 老汉色av国产亚洲站长工具| www.熟女人妻精品国产| 两个人免费观看高清视频| e午夜精品久久久久久久| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩一区二区精品| 国产一区二区三区视频了| 中国美女看黄片| 国产精品熟女久久久久浪| 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| videosex国产| 热re99久久国产66热| 男女床上黄色一级片免费看| 丰满迷人的少妇在线观看| av欧美777| 少妇的丰满在线观看| 亚洲国产成人一精品久久久| 久久久国产成人免费| 亚洲成人免费电影在线观看| 高清毛片免费观看视频网站 | 国产片内射在线| 99re在线观看精品视频| 成人三级做爰电影| 丁香欧美五月| 欧美一级毛片孕妇| 国产日韩欧美在线精品| 91麻豆av在线| 日韩视频在线欧美| 人妻久久中文字幕网| 国产男靠女视频免费网站| 欧美日韩一级在线毛片| 老熟妇仑乱视频hdxx| 久久精品亚洲av国产电影网| 精品国产超薄肉色丝袜足j| 麻豆av在线久日| 曰老女人黄片| 黄频高清免费视频| 无限看片的www在线观看| 午夜福利在线免费观看网站| 日日爽夜夜爽网站| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲中文字幕日韩| 十八禁人妻一区二区| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 久久国产精品影院| 十八禁人妻一区二区| 黄色成人免费大全| 日韩人妻精品一区2区三区| 五月天丁香电影| 免费观看av网站的网址| 色婷婷久久久亚洲欧美| 精品免费久久久久久久清纯 | 久久国产精品男人的天堂亚洲| aaaaa片日本免费| 国产欧美日韩一区二区三区在线| 99久久国产精品久久久| 国产深夜福利视频在线观看| aaaaa片日本免费| 丝瓜视频免费看黄片| 午夜精品久久久久久毛片777| 天堂俺去俺来也www色官网| 中国美女看黄片| 一级a爱视频在线免费观看| 国产精品久久久久久人妻精品电影 | 久久久水蜜桃国产精品网| 精品第一国产精品| 十八禁网站免费在线| 黄片播放在线免费| 精品人妻熟女毛片av久久网站| 我的亚洲天堂| 国产精品九九99| 啦啦啦视频在线资源免费观看| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 国产av精品麻豆| netflix在线观看网站| 日韩熟女老妇一区二区性免费视频| 亚洲 欧美一区二区三区| 成年人免费黄色播放视频| 精品少妇久久久久久888优播| 亚洲久久久国产精品| 日本av手机在线免费观看| 捣出白浆h1v1| 中文字幕高清在线视频| 黄色视频,在线免费观看| 咕卡用的链子| 最近最新中文字幕大全免费视频| 老司机在亚洲福利影院| 久久精品成人免费网站| 一区二区三区激情视频| 久9热在线精品视频| 飞空精品影院首页| 精品一区二区三区四区五区乱码| 丝袜喷水一区| av网站在线播放免费| 国产不卡一卡二| 午夜久久久在线观看| 两个人免费观看高清视频| 高清在线国产一区| 人人妻人人爽人人添夜夜欢视频| 99精品在免费线老司机午夜| 日韩视频一区二区在线观看| 在线十欧美十亚洲十日本专区| 满18在线观看网站| 午夜激情av网站| 亚洲av国产av综合av卡| 国产无遮挡羞羞视频在线观看| 如日韩欧美国产精品一区二区三区| cao死你这个sao货| 日韩有码中文字幕| 久久人人97超碰香蕉20202| 99热国产这里只有精品6| 日韩免费av在线播放| 操出白浆在线播放| 首页视频小说图片口味搜索| 乱人伦中国视频| 国产区一区二久久| 国产精品香港三级国产av潘金莲| 中文字幕最新亚洲高清| 亚洲熟妇熟女久久| 午夜日韩欧美国产| 久久人妻熟女aⅴ| 一边摸一边抽搐一进一出视频| 国产精品 国内视频| 九色亚洲精品在线播放| 1024视频免费在线观看| 精品一区二区三区视频在线观看免费 | 欧美人与性动交α欧美软件| 国产精品 国内视频| 亚洲中文字幕日韩| 女警被强在线播放| 欧美av亚洲av综合av国产av| 成人18禁在线播放| 久久久久精品人妻al黑| 精品卡一卡二卡四卡免费| 中文字幕人妻丝袜制服| 下体分泌物呈黄色| 成年人黄色毛片网站| 纯流量卡能插随身wifi吗| 色婷婷av一区二区三区视频| 精品视频人人做人人爽| 欧美大码av| 亚洲精品美女久久久久99蜜臀| 啦啦啦在线免费观看视频4| 日韩熟女老妇一区二区性免费视频| 欧美乱码精品一区二区三区| 欧美精品人与动牲交sv欧美| 国产一区二区三区视频了| 人人妻人人澡人人看| 免费黄频网站在线观看国产| 精品福利永久在线观看| 亚洲精品一卡2卡三卡4卡5卡| 麻豆av在线久日| 日韩中文字幕欧美一区二区| 亚洲熟女精品中文字幕| 伊人久久大香线蕉亚洲五| aaaaa片日本免费| 天天影视国产精品| 伦理电影免费视频| 捣出白浆h1v1| 丰满少妇做爰视频| 精品福利永久在线观看| 成人特级黄色片久久久久久久 | 高清欧美精品videossex| 黄片播放在线免费| 欧美激情极品国产一区二区三区| 99九九在线精品视频| 亚洲精品中文字幕一二三四区 | 麻豆av在线久日| 动漫黄色视频在线观看| 免费在线观看黄色视频的| 十八禁高潮呻吟视频| 久久精品国产99精品国产亚洲性色 | 男人舔女人的私密视频| 夜夜夜夜夜久久久久| 国产真人三级小视频在线观看| 熟女少妇亚洲综合色aaa.| 亚洲视频免费观看视频| 国精品久久久久久国模美| 国产成人精品在线电影| 欧美国产精品va在线观看不卡| 纵有疾风起免费观看全集完整版| 女同久久另类99精品国产91| 国产熟女午夜一区二区三区| 丁香六月天网| 夫妻午夜视频| 美女高潮喷水抽搐中文字幕| 精品少妇内射三级| 天堂中文最新版在线下载| 国产精品99久久99久久久不卡| 在线观看免费日韩欧美大片| 韩国精品一区二区三区| 亚洲综合色网址| 国产精品久久久人人做人人爽| 青青草视频在线视频观看| 国产一区二区三区综合在线观看| 精品国产国语对白av| 人成视频在线观看免费观看| 精品国产超薄肉色丝袜足j| 一进一出抽搐动态| 国产精品久久久av美女十八| 亚洲欧洲精品一区二区精品久久久| 欧美黑人欧美精品刺激| 午夜日韩欧美国产| 国产福利在线免费观看视频| 亚洲精品成人av观看孕妇| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利视频在线观看免费| 国产片内射在线| 欧美日本中文国产一区发布| 老司机深夜福利视频在线观看| 电影成人av| 妹子高潮喷水视频| 日本撒尿小便嘘嘘汇集6| 午夜福利欧美成人| 一级毛片电影观看| 99在线人妻在线中文字幕 | 久久久久久久大尺度免费视频| 极品人妻少妇av视频| 国产不卡一卡二| 国产在线精品亚洲第一网站| 日韩视频一区二区在线观看| 老熟妇乱子伦视频在线观看| 十八禁人妻一区二区| 91字幕亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费一区二区三区在线 | 啦啦啦中文免费视频观看日本| 黑丝袜美女国产一区| 成年版毛片免费区| 欧美人与性动交α欧美精品济南到| 久久精品国产a三级三级三级| 最新在线观看一区二区三区| 久久久欧美国产精品| av国产精品久久久久影院| 国产亚洲精品久久久久5区| 亚洲精品成人av观看孕妇| 中文字幕人妻熟女乱码| 天天躁狠狠躁夜夜躁狠狠躁| 国产在线精品亚洲第一网站| 久久中文字幕人妻熟女| 久热爱精品视频在线9| bbb黄色大片| 国产又色又爽无遮挡免费看| 91老司机精品| 叶爱在线成人免费视频播放| 在线观看免费视频日本深夜| 久久这里只有精品19| 精品一品国产午夜福利视频| 精品少妇久久久久久888优播| 性色av乱码一区二区三区2| 999久久久精品免费观看国产| 亚洲精品乱久久久久久| 99国产精品免费福利视频| 亚洲自偷自拍图片 自拍| 久久午夜亚洲精品久久| 在线观看一区二区三区激情| 精品国内亚洲2022精品成人 | 国产熟女午夜一区二区三区| 亚洲国产看品久久| 黄色a级毛片大全视频| 亚洲av第一区精品v没综合| 免费在线观看影片大全网站| 午夜激情久久久久久久| 美女高潮到喷水免费观看| 国产精品久久久久久精品电影小说| 日韩有码中文字幕| av视频免费观看在线观看| 午夜日韩欧美国产| 欧美日韩成人在线一区二区| 波多野结衣av一区二区av| 欧美精品av麻豆av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品中文字幕在线视频| 午夜激情久久久久久久| 女性生殖器流出的白浆| 黑人巨大精品欧美一区二区mp4| 免费不卡黄色视频| 欧美黄色片欧美黄色片| 757午夜福利合集在线观看| 日韩有码中文字幕| 国产精品国产av在线观看| 香蕉久久夜色| 麻豆国产av国片精品| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区免费| 一边摸一边抽搐一进一小说 | 男女之事视频高清在线观看| 老司机靠b影院| 午夜成年电影在线免费观看| 成在线人永久免费视频| 亚洲精品成人av观看孕妇| 91国产中文字幕| 韩国精品一区二区三区| 亚洲国产欧美在线一区| 国产av一区二区精品久久| 91精品国产国语对白视频| 最新的欧美精品一区二区| 欧美av亚洲av综合av国产av| av国产精品久久久久影院| 久久天躁狠狠躁夜夜2o2o| 女人高潮潮喷娇喘18禁视频| 色视频在线一区二区三区| 久久99一区二区三区| 婷婷成人精品国产| 午夜成年电影在线免费观看| 极品教师在线免费播放| 老司机靠b影院| 成人18禁在线播放| 肉色欧美久久久久久久蜜桃| 久久久久久人人人人人| 伦理电影免费视频| 亚洲av第一区精品v没综合| 亚洲全国av大片| 国产精品一区二区在线不卡| 国产免费福利视频在线观看| 欧美+亚洲+日韩+国产| 欧美久久黑人一区二区| 人成视频在线观看免费观看| 极品少妇高潮喷水抽搐| 看免费av毛片| 国产成人精品无人区| 女人高潮潮喷娇喘18禁视频| 一级毛片女人18水好多| 1024视频免费在线观看|