• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    System identification mo*delling of ship manoeuvring motion based onεsupport vector regression

    2015-11-24 05:28:04WANGXuegang王雪剛ZOUZaojian鄒早建HOUXianrui侯先瑞XUFeng徐鋒

    WANG Xue-gang (王雪剛), ZOU Zao-jian (鄒早建), HOU Xian-rui (侯先瑞), XU Feng (徐鋒)

    1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240,China

    2. CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China, E-mail:510simon@163.com

    3. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    4. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China

    System identification mo*delling of ship manoeuvring motion based onεsupport vector regression

    WANG Xue-gang (王雪剛)1,2, ZOU Zao-jian (鄒早建)1,3, HOU Xian-rui (侯先瑞)1, XU Feng (徐鋒)4

    1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240,China

    2. CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China, E-mail:510simon@163.com

    3. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    4. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China

    Based on the ε-support vector regression, three modelling methods for the ship manoeuvring motion, i.e., the white-box modelling, the grey-box modelling and the black-box modelling, are investigated. The10o/10o,20o/20ozigzag tests and the 35oturning circle manoeuvre are simulated. Part of the simulation data for the 20o/20ozigzag test are used to train the support vectors, and the trained support vector machine is used to predict the whole20o/20ozigzag test. Comparison between the simulated and predicted20o/20ozigzag test shows a good predictive ability of the three modelling methods. Then all mathematical models obtained by the modelling methods are used to predict the10o/10ozigzag test and 35oturning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the modelling methods are analyzed and compared with each other in terms of the application conditions, the prediction accuracy and the computation speed. An appropriate modelling method can be chosen according to the intended use of the mathematical models and the available data for the system identification.

    ship manoeuvring, hydrodynamic coefficients, mathematical model, system identification,ε-support vector regression

    Introduction

    The ship manoeuvrability is explicitly required in the Standards for Ship Manoeuvrability promulgated by the International Maritime Organization[1]. To predict the ship manoeuvrability at the ship design stage,some methods are available, including the database and/or empirical formula method, the free-running model test method, the numerical method and the computer simulation method based on mathematical models. The last one is popular and effective to predict the ship manoeuvrability. To use this method, constructing accurately the mathematical model is a necessary precondition. The application of the system identification (SI) based on the free-running model tests or the full-scale trials plays an important role in modelling the ship manoeuvring motion.

    Various classical SI methods, e.g., the extended Kalman filter method[2,3], the maximum likelihood method[4], the recursive prediction error method[5]and the least squares method[6], were applied in modelling the ship manoeuvring motion and identifying the hydrodynamic coefficients. However, they have some inherent defects, such as the sensitivity to the initial values, the ill-conditioned solutions and the simultaneous drift. To eliminate these defects, some modern SI methods were proposed for estimating the hydrodynamic coefficients, including the frequency domain identification method[7,8], the neural network[9], the su-pport vector machines (SVM)[10-13]and the genetic algorithm[14]. Among them, the neural network and the support vector machines, as two kinds of artificial intelligence algorithms, can not only be used for the parametric identification, but also, even more suitably,for the nonlinear regression. Rajesh and Bhattacharyya[15]adopted the artificial neural network to regress the nonlinear dynamic model of a large tanker. Moreira and Guedes Soares[16]applied the recursive neural network to simulate the ship manoeuvring motion. Compared with the neural network, the SVM is direct at finite samples and has better generalization performances and a global optimal extremum[17]. It is mainly used for pattern recognition and parameter identification. It is known as the support vector regression (SVR) when it is used for parameter identification. Luo and Zou[10,11], Zhang and Zou[12]identified the hydrodynamic coefficients in the Abkowitz model of the ship manoeuvring motion by using the least squares support vector regression (LS-SVR) and the ε-support vector regression (ε-SVR), respectively. The modelling method used in these two papers is only the white-box modelling, and to reduce the extent of parameter drift, a series of random signals is added into the training samples. However, the introduced random signal brings about another problem: the amplitude of the random signals is difficult to determine. Moreover, in order to obtain the hydrodynamic coefficients in the sway and yaw equations, it is necessary to solve a series of combined equations.

    In the present paper, three modelling methods for the ship manoeuvring motion using the ε-SVR, i.e.,the white-box modelling, the grey-box modelling and the black-box modelling, are investigated. The whitebox modelling method is improved by reconstructing the identification formulas to avoid adding the random signals into the training samples and solving a series of combined equations. The grey-box modelling and the black-box modelling are clearly defined. The 10o/10o,20o/20ozigzag tests and the 35oturning circle manoeuvre are simulated by using the hydrodynamic coefficients obtained from the PMM test[18]. 5% of the simulation data of the 20o/20ozigzag test are used to train the support vectors, and the trained support vector machines are used to predict the whole 20o/20ozigzag test. The predicted results are compared with those of simulation tests to demonstrate the good predictive ability of the mathematical models obtained by the modelling methods. Then, the mathematical models are used to predict the 10o/10ozigzag test and the 35oturning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the generalization performance of the mathematical models. The modelling methods are analyzed and compared with each other in terms of the application conditions, the prediction accuracy and the computation speed. An appropriate modelling method can be chosen according to the intended use of the mathematical models and the available data for the system identification.

    Fig.1 Coordinate systems

    1. Mathematical model of ship manoeuvring motion

    As shown in Fig.1, two right-handed coordinate systems, the earth-fixed inertial frame (the global coordinate system)o0-x0y0z0and the body-fixed moving frame (the local coordinate system)o-xyz , are adopted, with the plane o0-x0y0z0on the undisturbed free surface and z0-axis pointing downwards. At the initial instant, these two coordinate systems coincide with each other.

    Generally, the manoeuvring motion of a surface ship can be described by the equations of the surge,sway and yaw motions in the following form[18]

    where

    m is the mass of the ship,Izis the moment of inertia of the ship aboutz -axis and xGis the longitudinal coordinate of the ship gravity centre in the bodyfixed coordinate system,u,vandrare the surge speed, the sway speed and the yaw rate, respectively,δis the rudder angle,Δuis the disturbing quantity of the surge speed.Xu,Yv,Nretc. are the hydrodynamic coefficients,Y0and N0are the hydrodynamic force in the direction of y-axis and the yaw moment aboutz-axis during the straight forward motion with constant speed.

    Denoting the kinetic parameters at the state of the straight forward motion with constant speed by subscript 0, we have u0=U0,Δu=u-u0,v0=r0=δ0===˙=0. The resultant speedU=[(u0+ Δu)2+v2]1/2.

    2.ε-support vector regression

    Based on the statistical learning theory, the SVM is effective to improve the generalization performance and can be used to obtain the globally optimal and unique solution[17]. Initially, the SVM was applied in the area of pattern recognition, with the introduction of the insensitive loss function, the SVM was extended to solve non-linear regression estimations,known as the support vector regression (SVR).

    The main idea of the SVR is to map the input data into a high-dimensional feature space and to do linear regression in this space. The optimum regression function can be described as

    wherexandy are the input and output vectors of the system, respectively, and they are defined in the high-dimensional feature space,Φ(x)represents the high-dimensional feature space, which is nonlinearly mapped from the input spacex,wis the weight matrix,b is the bias,R is the Euclidean space,l andn are the dimensions of the Euclidean space.

    The SVR aims to find a function that represents the deviation ofεfrom the actual output. The coefficientswandb are estimated by minimizing the regularized risk function:

    Introducing the slack variablesandinto Eqs.(3) and (4), they are transformed to form the dual optimization problem: minimize:

    To avoid computing explicitly the mapping Φ(x), introducing K(xi,xj)=Φ(xi)Φ(xj)in Eq.(7),K(xi,xj)is known as the kernel function, it follows that

    Any function that satisfies the Mercer condition can be used as the kernel function. Some commonly used kernel functions are: (1) the linear kernel function, (2) the polynomial kernel function, (3) the RBF kernel function, (4) the sigmoid kernel function, and(5) the B-spline kernel function.

    3. System identification modelling

    The SI combined with the free-running model tests or the full-scale trials is one of the effective methods for modelling the ship manoeuvring motion. There are three kinds of SI modelling, including the white-box modelling, the grey-box modelling and the black-box modelling. The white-box modelling is also known as the mechanism modelling. In the white-box modelling, the motion of the system is analyzed based on the structure of the system; and the mathematical model of the system is built. The black-box modelling is a modelling method that uses only the input-output data of the system, even if both the structure and the parameters of the system are unknown. It aims to obtain an appropriate approximation of the actual system. The grey-box modelling is a hybrid modelling method combining the white-box modelling and the black-box modelling for the system that is not fully known.

    3.1White-box modelling

    In the white-box modelling, the mathematical model structure of the objective ship, the principal parameters of the ship and the acceleration derivatives in the mathematical model are known. Firstly, the Lagrangian multipliers are trained by using the samples of the input and output to identify the hydrodynamic coefficients; secondly, the ship manoeuvring motion is predicted with the identified hydrodynamic coefficients and Eqs.(1)-(4).

    In the process of identification, the parameter drift happens inevitably. How to reduce the parameter drift is vital to the identification accuracy of the hydrodynamic coefficients. To reduce the extent of the parameter drift, Luo and Zou[10], Zhang and Zou[12]added a series of random signals into the training samples. However, the introduction of the random signals brings about another problem: the amplitude of the random signals is difficult to determine. Moreover, to obtain the hydrodynamic coefficients in the sway and yaw equations, it is necessary to solve a series of combined equations. In the present work, the identification formulas are reconstructed to avoid adding the random signals into the training samples and solving a series of combined equations. First of all, the continuous equation of motion is discretized using Euler's stepping method as

    whereh is the sampling interval,kand k +1are the adjacent sampling time steps.

    Substituting Eq.(9) into Eq.(1), the reconstructed identification formulas are obtained as

    where L is the ship length, and the coefficient vectors and the variable vectors are

    Note that in order to facilitate the identification, the motion state parameters (U,u,v,randδ) maintain in the dimensional form in Eq.(10), while the hydrodynamic coefficients are written in the non-dimensional form[18].

    The above coefficient vectors can be identified by using the ε-SVR. Here the linear kernel function K(x,x′)=xx′is selected and Eq.(8) is rewritten as

    Comparing Eq.(10) with Eq.(11), if the ε-SVR can provide a good approximation of the objective function (which means thatb is infinitely close to zero),are the identified hydrodynamic coefficients.

    The detailed process of the white-box modelling and the prediction of the ship manoeuvring motion using the ε-SVR is depicted in Fig.2.

    Fig.3 Process of grey-box modelling using ε-SVR

    3.2Grey-box modelling

    If it is not necessay to know the hydrodynamic coefficients apart from the prediction of the ship manoeuvring motion, the grey-box modelling is a better choice. In this case, only the structures of the mathematical model are known, while other information,even the ship's principal particulars, is unknown. In the grey-box modelling, the support vectors are firstly trained by using the samples of the input and output,and then the ship manoeuvring motion is predicted by using the trained support vectors, without using Eq.(1).

    Table 1 Main particulars of mariner class vessel

    Substituting Eq.(9) into Eq.(1), the output can be rearranged as:

    Fig.2 Process of white-box modelling using ε-SVR

    Fig.4 Process of black-box modelling using ε-SVR

    Table 2 Comparison of identified hydrodynamic coefficients (×10-5) with PMM test data

    where the coefficient vectors and the variable vectors are

    The process of the grey-box modelling and the prediction of the ship manoeuvring motion using the ε-SVR is depicted in Fig.3.

    3.3Black-box modelling

    When neither the ship's principal parameters, nor the structures of the mathematical model are known,the black-box modelling is the only choice for modelling the ship manoeuvring motion. In the black-box modelling, only the motion state variables at the last time step are used to predict those at the next time step.

    From Eqs.(12)-(14), it can be seen that Δu(k+1),v(k +1)and r(k +1)are functions of U(k),Δu(k),v(k),r(k )and δ(k). These equations can be rewritten as

    The process of the black-box modelling and the prediction of the ship manoeuvring motion using ε-SVR is depicted in Fig.4.

    4. Prediction and generalization verification

    4.1Prediction

    A Mariner Class Vessel[18]is taken as the study object. Table 1 gives the main particulars of the ship. The non-dimensional mass of the ship m′=7.98× 10-3, the non-dimensional moment of inertia of the ship about z-axis′=3.92×10-4and the non-dimensional longitudinal coordinate of the ship's centre of gravity-2.3×10-2.

    The 10o/10o,20o/20ozigzag tests and the 35oturning circle manoeuvre are simulated by using the hydrodynamic coefficients obtained from the PMM test[18], as given in Table 2. The zigzag tests are terminated after the rudder execution has repeated 5 times,for the turning circle manoeuvre, the rudder is deflected to the desired angle and maintains until the heading of the ship has changed by 540o. The time histories of the surge speedu , the sway speedv , the yaw rater , the resultant speedU and the heading angle ψare obtained from the simulation. The simulation sampling interval is 0.2 s.

    In the identification process, the simulation data of the 20o/20ozigzag test are used to identify the hydrodynamic coefficients. The white Gaussian noise is added to the simulation data of the surge speed, the sway speed, the yaw rate and the heading angle as the observation values, and then the data with noise are filtered with the wavelet denoising method. Figure 5 shows the comparison of the original simulation data,the simulation data with white Gaussian noise and the denoised data.

    The training sample couples are taken from the denoised simulation data of the 20o/20ozigzag test every 4 s (5% of the denoised simulation data). The penalty factor C =106and the insensitivity factor ε=10-6are chosen.

    In the white-box modelling, the training sample couples consist of

    input:{Aw,Bw,Cw}

    Fig.5 Comparison of the 20o/20ozigzag test data

    Fig.6 Comparison of the predicted motions with simulation results,20o/20ozigzag test

    Fig.7 Comparison of the predicted motions with simulation results,10o/10ozigzag test

    The hydrodynamic coefficients are identified by Eq.(11) and the results are given in Table 2 in comparison with the data obtained from the PMM test. Note that the acceleration derivatives are not identified and are treated as known constants during identification.

    It can be seen from Table 2, the identification results of the hydrodynamic coefficients are in good agreement with the PMM test data, which indicates that the white-box modelling using the ε-SVR is an effective method to identify the hydrodynamic coefficients.

    In the grey-box modelling, a linear kernel function is selected. The training sample couples consist of

    input:{Ag,Bg,Cg}

    Fig.8 Comparison of the predicted motions with simulation results,35oturning circle manoeuvre

    output:{Δu(k+1)-Δu(k),v(k+1)-v(k),

    In the black-box modelling, the RBF kernel functionis selected, with the width parameterσ=20. The training sample couples consist of

    input:{U(k),Δu(k),v(k),r(k),δ(k)}

    output:{Δu(k+1)-Δu(k),v(k+1)-v(k),

    Figure 6 shows the predicted motions of the 20o/20ozigzag test using the mathematical models obtained by the white-box modelling, the grey-box modelling and the black-box modelling in comparison with those of simulation data with noise. A satisfactory agreement demonstrates the validity of the proposed identification modelling methods.

    4.2Generalization verification

    To verify the generalization performance of the modelling methods, the 10o/10ozigzag test and the 35oturning circle manoeuvre are predicted by using the support vectors trained with the denoised simulation data of the20o/20ozigzag test. The comparisons of the predicted motions with the simulation results are shown in Fig.7 and Fig.8. As it can be seen from these figures, good agreements are achieved, which demonstrates that the modelling methods have a good generalization capability.

    4.3Comparison

    The requirements of the known conditions and the output results of the three modelling methods are listed in Table 3. According to the intended use of the mathematical models and the available data needed for the system identification, an appropriate modelling method can be chosen. If the hydrodynamic coefficients are to be determined, the white-box modelling might be chosen, however, many known data are required in the white-box modelling. When only the structures of the mathematical models are known, the grey-box modelling is a better choice. When neither the ship's principal parameters, nor the structures of the mathematical models are known, the black-box modelling is the only choice.

    Usually, the mean square error (MSE) and the correlation coefficient (CC) are two evaluation criteria used to measure the prediction accuracy. Taking the surge speed(u)as an example, the MSE and the CC are defined as:

    where the subscriptpands denote the prediction result and the simulation result, respectively,l is the number of the surge speed data,anddenote the average prediction result and the simulation result,respectively.

    Table 3 Requirements of known conditions and output of the modelling methods

    Table 4 Comparison of the prediction accuracy and computation speed

    The MSE and the CC ofu,vandrare listed in Table 4, where the computation speed is also shown. All predictions using the mathematical models obtained by the modelling methods are made under the same computation condition and software environment.

    Table 4 demonstrates that all modelling methods have a high prediction accuracy. However, the accuracy of the white-box modelling and the grey-box modelling is significantly higher than that of the blackbox modelling. It is because the inputs of the whitebox modelling and the grey-box modelling are bothhigh-dimensional vectors and hence can better reflect the system characteristics; while the input of the black-box modelling is only one-dimensional vector. The white-box modelling and the grey-box modelling have a stronger nonlinear mapping ability than the black-box modelling, although the RBF kernel function is chosen in the black-box modelling.

    Table 4 also demonstrates that all modelling methods have a fast computation speed. However, the white-box modelling takes much less computation time than the grey-box modelling and the black-box modelling. In the white-box modelling, the ship manoeuvring motion is predicted with the identified hydrodynamic coefficients and the mathematical model(Eq.(1)), and hence is the fastest. In the grey-box modelling and the black-box modelling, the ship manoeuvring motion is predicted by using the trained support vectors, without the use of the mathematical model. The prediction based on the grey-box modelling involves a high dimensional nonlinear input, and hence takes a large amount of computation time. Although the input of the black-box modelling is very simple,the high-dimensional kernel function such as the RBF kernel function requires quite large memory and CPU time.

    5. Conclusions

    Based on the ε-SVR, this paper studies three system identification modelling methods for the ship manoeuvring motion, i.e., the white-box modelling,the grey-box modelling and the black-box modelling. The conclusions can be summarized as follows:

    (1) Good predictive ability and generalization performance of the modelling methods are demonstrated by comparing the predicted results with those of simulation tests.

    (2) An appropriate modelling method can be chosen according to the intended use of the mathematical models and the available data for the system identification. When the hydrodynamic coefficients are to be determined, the white-box modelling might be chosen,when only the structures of the mathematical models are known, the gray-box modelling is a better choice,when neither the ship's principal parameters, nor the structures of the mathematical models are known, the black-box modelling is the only choice.

    (3) By comparing the MSE and the CC between the predicted results and the simulation data, it is shown that the accuracy of the white-box modelling and the grey-box modelling is significantly higher than that of the black-box modelling.

    (4) It is shown that all modelling methods have a fast computation speed, because of theε-SVR characteristics. In comparison, the white-box modelling requires much less computation time than the grey-box modelling and the black-box modelling.

    References

    [1]IMO. Standards for ship manoeuvrability[S]. Resolution MSC.137(76), International Maritime Organization(IMO), 2002.

    [2]ABKOWITZ M. A. Measurement of hydrodynamic characteristic from ship maneuvering trials by system identification[J]. Transactions of Society of Naval Architects and Marine Engineers, 1980, 88: 283-318.

    [3]HWANG W. Y. Application of system identification to ship maneuvering[D]. Doctoral Thesis, Boston, USA:Massachusetts Institute of Technology, 1980.

    [4]?STR?M K. J., K?LLSTR?M C. G. Identification of ship steering dynamics[J]. Automatica, 1976, 12(1): 9-22.

    [5]ZHOU W. W., BLANKE M. Identification of a class of nonlinear state-space models using RPE techniques[J]. IEEE Transactions on Automatic Control, 1989, 34(3):312-316.

    [6]RHEE K. P., LEE S. Y. and SUNG Y. J. Estimation of manoeuvring coefficients from PMM test by genetic algorithm[C]. Proceedings of International Symposium and Workshop on Force Acting on a Manoeuvring Vessel. Val de Reuil, France, 1998, 77-87.

    [7]BHATTACHARYYA S. K., HADDARA M. R. Parametric identification for nonlinear ship manoeuvring[J]. Journal of Ship Research, 2006, 50(3): 197-207.

    [8]PEREZ T., FOSSEN T. I. Practical aspects of frequencydomain identification of dynamic models of marine structures from hydrodynamic data[J]. Ocean Engineering,2011, 38(2-3): 426-435.

    [9]HADDARA M. R., WANG Y. Parametric identification of manoeuvring models for ships[J]. International Shipbuilding Progress, 1999, 46(445): 5-27.

    [10]LUO W., ZOU Z. Parametric identification of ship maneuvering models by using support vector machines[J]. Journal of Ship Research, 2009, 53(1): 19-30.

    [11]LUO Wei-lin, ZOU Zao-jian. Elimination of simultaneous drift and sensitivity analysis in the hydrodynamic modeling of ship manoeuvring[J]. Journal of Shanghai Jiaotong University, 2008, 42(8): 1358-1362(in Chinese).

    [12]ZHANG Xin-guang, ZOU Zao-jian. Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression[J]. Journal of Hydrodynamics, 2011, 23(3): 353-360.

    [13]XU Feng, ZOU Zao-jian and YIN Jian-chuan et al. Parametric identification and sensitivity analysis for autonomous underwater vehicles in diving plane[J]. Journal of Hydrodynamics, 2012, 24(5): 744-751.

    [14]SUTULO S., GUEDES SOARES C. An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests[J]. Ocean Engineering,2014, 79: 10-25.

    [15]RAJESH G., BHATTACHARYYA S. K. System identification for nonlinear maneuvering of large tankers using artificial neural network[J]. Applied Ocean Research,2008, 30(4): 256-263.

    [16]MOREIRA L., GUEDES SOARES C. Dynamic model of manoeuvrability using recursive neural networks[J]. Ocean Engineering, 2003, 30(13): 1669-1697.

    [17]VAPNIK V. N. The nature of statistical learning theory[M]. New York, USA: Springer Verlag, 2000.

    [18]FOSSEN T. I. Handbook of marine craft hydrodynamics and motion control[M]. New York, USA: John Wiley and Sons, 2011.

    (March 17, 2014, Revised October 31, 2014)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51279106), the Special Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20110073110009).

    Biography: WANG Xue-gang (1983-), Male, Ph. D.

    ZOU Zao-jian,

    E-mail: zjzou@sjtu.edu.cn

    亚洲国产精品999在线| 国产高清videossex| 久久国产乱子伦精品免费另类| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日本黄色片子视频| 亚洲av成人精品一区久久| 欧美成人a在线观看| 国产蜜桃级精品一区二区三区| 99视频精品全部免费 在线| 怎么达到女性高潮| 99riav亚洲国产免费| 在线免费观看的www视频| 国产三级中文精品| 国产亚洲精品一区二区www| 国产一区在线观看成人免费| 麻豆一二三区av精品| 一区二区三区免费毛片| 午夜福利在线在线| 免费在线观看亚洲国产| 亚洲精品色激情综合| 亚洲国产精品合色在线| 国产精品美女特级片免费视频播放器| 丰满人妻一区二区三区视频av | 久久久久久久亚洲中文字幕 | 国产三级黄色录像| av在线蜜桃| 精品欧美国产一区二区三| 日本 av在线| 午夜免费男女啪啪视频观看 | 欧美日韩亚洲国产一区二区在线观看| 宅男免费午夜| 欧美日韩国产亚洲二区| 国产中年淑女户外野战色| 人人妻人人澡欧美一区二区| 久久伊人香网站| а√天堂www在线а√下载| 日韩人妻高清精品专区| 亚洲五月天丁香| 人人妻,人人澡人人爽秒播| 丁香六月欧美| www.www免费av| 久久久久亚洲av毛片大全| 欧美日韩国产亚洲二区| 麻豆成人午夜福利视频| 日本精品一区二区三区蜜桃| 在线十欧美十亚洲十日本专区| 国产美女午夜福利| 久久中文看片网| a级一级毛片免费在线观看| 免费观看的影片在线观看| 色吧在线观看| 免费看光身美女| 免费在线观看亚洲国产| 亚洲国产欧美人成| 熟女电影av网| 蜜桃亚洲精品一区二区三区| 亚洲熟妇熟女久久| 在线天堂最新版资源| 一本久久中文字幕| 国产精品香港三级国产av潘金莲| 日韩精品中文字幕看吧| 精品一区二区三区视频在线 | 99久久精品热视频| 看黄色毛片网站| 日韩有码中文字幕| 国产一区二区亚洲精品在线观看| 人妻夜夜爽99麻豆av| 精品人妻一区二区三区麻豆 | 男人的好看免费观看在线视频| 亚洲成人中文字幕在线播放| 国产精品99久久99久久久不卡| 中出人妻视频一区二区| 亚洲精品美女久久久久99蜜臀| 免费高清视频大片| 在线a可以看的网站| 国产精品嫩草影院av在线观看 | 性色av乱码一区二区三区2| 无遮挡黄片免费观看| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩卡通动漫| 国内揄拍国产精品人妻在线| 亚洲人成网站在线播放欧美日韩| 黑人欧美特级aaaaaa片| 亚洲精品456在线播放app | 天堂网av新在线| 又爽又黄无遮挡网站| 黄片大片在线免费观看| 天天躁日日操中文字幕| 综合色av麻豆| 日本精品一区二区三区蜜桃| 午夜福利欧美成人| 成人三级黄色视频| 91久久精品电影网| 成年版毛片免费区| 久久精品国产综合久久久| 中文字幕久久专区| 亚洲不卡免费看| 色视频www国产| 精品熟女少妇八av免费久了| 性色avwww在线观看| 女人十人毛片免费观看3o分钟| 欧美日韩中文字幕国产精品一区二区三区| 免费电影在线观看免费观看| 97人妻精品一区二区三区麻豆| 免费在线观看影片大全网站| 三级男女做爰猛烈吃奶摸视频| 国产亚洲精品av在线| 免费一级毛片在线播放高清视频| 一卡2卡三卡四卡精品乱码亚洲| 可以在线观看的亚洲视频| 中国美女看黄片| 最近最新免费中文字幕在线| 亚洲无线在线观看| 亚洲精品色激情综合| 男女之事视频高清在线观看| 国产精品三级大全| av国产免费在线观看| 精品电影一区二区在线| 精品一区二区三区人妻视频| 在线a可以看的网站| 白带黄色成豆腐渣| 国产伦在线观看视频一区| 久久久精品大字幕| 亚洲天堂国产精品一区在线| 亚洲久久久久久中文字幕| 亚洲人成网站在线播| 久久草成人影院| 久久久久性生活片| 很黄的视频免费| 午夜激情欧美在线| 国产美女午夜福利| 精品一区二区三区视频在线 | 免费看光身美女| 国产精品国产高清国产av| 欧美乱码精品一区二区三区| 小蜜桃在线观看免费完整版高清| 中文字幕久久专区| 国产探花在线观看一区二区| 国产av一区在线观看免费| 中出人妻视频一区二区| www国产在线视频色| 很黄的视频免费| 97超级碰碰碰精品色视频在线观看| 很黄的视频免费| 少妇人妻精品综合一区二区 | 亚洲天堂国产精品一区在线| 亚洲久久久久久中文字幕| 99久国产av精品| 夜夜夜夜夜久久久久| 国产麻豆成人av免费视频| 久久久国产成人免费| 午夜老司机福利剧场| 真人一进一出gif抽搐免费| 色精品久久人妻99蜜桃| 啪啪无遮挡十八禁网站| 九九热线精品视视频播放| 国产成人福利小说| 亚洲18禁久久av| 18禁国产床啪视频网站| 一a级毛片在线观看| 美女免费视频网站| 女人高潮潮喷娇喘18禁视频| 欧美又色又爽又黄视频| 国产午夜精品久久久久久一区二区三区 | 亚洲精品一区av在线观看| 国产三级在线视频| 我的老师免费观看完整版| 成年女人看的毛片在线观看| 国产精品亚洲一级av第二区| 欧美日韩精品网址| av天堂中文字幕网| 1000部很黄的大片| 日韩人妻高清精品专区| 欧美又色又爽又黄视频| 无遮挡黄片免费观看| 欧美在线黄色| 国内揄拍国产精品人妻在线| 婷婷六月久久综合丁香| 国产91精品成人一区二区三区| 男女床上黄色一级片免费看| 男人舔女人下体高潮全视频| 丰满的人妻完整版| 国产精品免费一区二区三区在线| 日韩欧美一区二区三区在线观看| 深夜精品福利| 亚洲精品色激情综合| 国产av不卡久久| 国产精品三级大全| 亚洲内射少妇av| 我要搜黄色片| 日本免费a在线| 91在线精品国自产拍蜜月 | 亚洲av电影不卡..在线观看| 久久久久性生活片| 99久国产av精品| 桃色一区二区三区在线观看| 91麻豆av在线| 丰满人妻熟妇乱又伦精品不卡| 国产aⅴ精品一区二区三区波| 少妇的丰满在线观看| 变态另类成人亚洲欧美熟女| 成人欧美大片| 少妇的丰满在线观看| 变态另类成人亚洲欧美熟女| 亚洲av美国av| 亚洲熟妇熟女久久| 亚洲国产中文字幕在线视频| 色精品久久人妻99蜜桃| 亚洲18禁久久av| 丁香六月欧美| 日日摸夜夜添夜夜添小说| 级片在线观看| 午夜影院日韩av| 成人av在线播放网站| 变态另类丝袜制服| 欧美av亚洲av综合av国产av| 国产精品亚洲一级av第二区| av天堂中文字幕网| 国产精品一区二区三区四区免费观看 | 女同久久另类99精品国产91| 久久精品夜夜夜夜夜久久蜜豆| 嫁个100分男人电影在线观看| 少妇的逼水好多| 亚洲真实伦在线观看| 欧美成人a在线观看| 亚洲在线自拍视频| av欧美777| 麻豆国产av国片精品| 久久精品国产综合久久久| 国产免费一级a男人的天堂| 国产亚洲精品一区二区www| 欧美av亚洲av综合av国产av| 国产熟女xx| 国产免费男女视频| 12—13女人毛片做爰片一| 婷婷精品国产亚洲av在线| 免费人成在线观看视频色| 中文字幕av在线有码专区| 国产精品99久久久久久久久| 国产探花极品一区二区| 网址你懂的国产日韩在线| 久久精品国产亚洲av涩爱 | 一区二区三区高清视频在线| 午夜福利在线在线| 精品国产美女av久久久久小说| 麻豆国产97在线/欧美| 琪琪午夜伦伦电影理论片6080| 噜噜噜噜噜久久久久久91| 国产主播在线观看一区二区| 久久久久久九九精品二区国产| 免费av不卡在线播放| 黄色日韩在线| 亚洲国产欧美网| 9191精品国产免费久久| 两性午夜刺激爽爽歪歪视频在线观看| 免费av不卡在线播放| 久久久久久九九精品二区国产| 中文字幕人成人乱码亚洲影| 草草在线视频免费看| 十八禁网站免费在线| 超碰av人人做人人爽久久 | 国产色婷婷99| 久久这里只有精品中国| 亚洲欧美激情综合另类| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线观看吧| 午夜日韩欧美国产| 波多野结衣高清作品| 亚洲第一欧美日韩一区二区三区| 久久精品人妻少妇| 男插女下体视频免费在线播放| 一级毛片高清免费大全| 丰满人妻一区二区三区视频av | 国产高清视频在线播放一区| 一边摸一边抽搐一进一小说| 欧美精品啪啪一区二区三区| av在线天堂中文字幕| 九色国产91popny在线| 在线视频色国产色| 很黄的视频免费| 国产精品亚洲一级av第二区| 母亲3免费完整高清在线观看| 麻豆一二三区av精品| 日韩精品中文字幕看吧| www日本在线高清视频| 婷婷精品国产亚洲av| 天天一区二区日本电影三级| 日韩免费av在线播放| 男人舔奶头视频| 欧美精品啪啪一区二区三区| 亚洲精品亚洲一区二区| avwww免费| www.999成人在线观看| 国产成人福利小说| 深夜精品福利| 一a级毛片在线观看| 亚洲熟妇中文字幕五十中出| 欧美性猛交╳xxx乱大交人| 色播亚洲综合网| 亚洲五月天丁香| 国产中年淑女户外野战色| 亚洲avbb在线观看| 在线播放无遮挡| 在线a可以看的网站| 男人舔奶头视频| 老汉色av国产亚洲站长工具| 亚洲av一区综合| 1024手机看黄色片| 亚洲久久久久久中文字幕| 亚洲专区国产一区二区| 午夜免费成人在线视频| www日本黄色视频网| 一级a爱片免费观看的视频| or卡值多少钱| 成熟少妇高潮喷水视频| 色老头精品视频在线观看| 国内揄拍国产精品人妻在线| 国产主播在线观看一区二区| 欧美成人免费av一区二区三区| 高潮久久久久久久久久久不卡| 欧美最新免费一区二区三区 | 精品久久久久久久人妻蜜臀av| 老司机在亚洲福利影院| 婷婷六月久久综合丁香| 男插女下体视频免费在线播放| www.熟女人妻精品国产| 国产免费男女视频| 男女下面进入的视频免费午夜| 免费看十八禁软件| 中文字幕久久专区| 最好的美女福利视频网| 最近最新中文字幕大全免费视频| 精品日产1卡2卡| 99久久九九国产精品国产免费| 最新中文字幕久久久久| 一本久久中文字幕| 在线国产一区二区在线| 亚洲狠狠婷婷综合久久图片| 99久久精品一区二区三区| 男女下面进入的视频免费午夜| 亚洲精品456在线播放app | 日本免费一区二区三区高清不卡| 日韩有码中文字幕| 男人舔奶头视频| 国产成人aa在线观看| av欧美777| av天堂在线播放| 国产一级毛片七仙女欲春2| 亚洲国产精品999在线| 午夜精品久久久久久毛片777| 久久久久久久久中文| 亚洲av美国av| 热99re8久久精品国产| 精品福利观看| 高清日韩中文字幕在线| a在线观看视频网站| 一区二区三区国产精品乱码| 亚洲成人中文字幕在线播放| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 久久久国产精品麻豆| 精品一区二区三区av网在线观看| 欧美av亚洲av综合av国产av| 99精品久久久久人妻精品| 香蕉久久夜色| 亚洲熟妇中文字幕五十中出| 99热这里只有精品一区| 日本与韩国留学比较| 午夜精品久久久久久毛片777| 久久久久久久久中文| 国产精品久久久人人做人人爽| 别揉我奶头~嗯~啊~动态视频| 天天一区二区日本电影三级| 婷婷六月久久综合丁香| 一进一出抽搐动态| 亚洲va日本ⅴa欧美va伊人久久| 欧美黄色片欧美黄色片| 真人一进一出gif抽搐免费| 中文在线观看免费www的网站| 小说图片视频综合网站| 国产精品99久久久久久久久| 久久久久久久亚洲中文字幕 | 成人永久免费在线观看视频| 搡女人真爽免费视频火全软件 | 国产高潮美女av| 亚洲欧美日韩卡通动漫| 午夜日韩欧美国产| 岛国视频午夜一区免费看| 女人被狂操c到高潮| 99久久久亚洲精品蜜臀av| 久久亚洲真实| 一本精品99久久精品77| 亚洲一区二区三区色噜噜| 18禁在线播放成人免费| 少妇的丰满在线观看| 精品一区二区三区av网在线观看| 欧美日韩综合久久久久久 | 精品熟女少妇八av免费久了| 国内揄拍国产精品人妻在线| 亚洲aⅴ乱码一区二区在线播放| 可以在线观看毛片的网站| 国产精品久久久人人做人人爽| 国产久久久一区二区三区| 免费av毛片视频| 国产 一区 欧美 日韩| 99久久精品热视频| xxx96com| 亚洲av美国av| 国产精品野战在线观看| 日韩欧美免费精品| 亚洲国产日韩欧美精品在线观看 | 亚洲最大成人中文| 免费看十八禁软件| 国产一级毛片七仙女欲春2| tocl精华| 大型黄色视频在线免费观看| av片东京热男人的天堂| 国产一区二区在线观看日韩 | 神马国产精品三级电影在线观看| 日本黄色片子视频| av国产免费在线观看| 亚洲精品乱码久久久v下载方式 | 男女那种视频在线观看| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 一夜夜www| 色老头精品视频在线观看| 18美女黄网站色大片免费观看| 熟女电影av网| 成人av在线播放网站| 午夜免费成人在线视频| 校园春色视频在线观看| 午夜免费观看网址| 免费在线观看日本一区| 淫秽高清视频在线观看| 色尼玛亚洲综合影院| 国产一区二区三区视频了| 神马国产精品三级电影在线观看| 在线观看66精品国产| 国产高清激情床上av| 亚洲人成伊人成综合网2020| 亚洲av五月六月丁香网| 欧美性猛交黑人性爽| 国产高清videossex| 中文字幕av成人在线电影| 老司机午夜十八禁免费视频| 亚洲美女黄片视频| 最好的美女福利视频网| 久99久视频精品免费| 国产老妇女一区| 老鸭窝网址在线观看| 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影| 桃色一区二区三区在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久精品91无色码中文字幕| 成人永久免费在线观看视频| 欧美一区二区国产精品久久精品| 欧美一级a爱片免费观看看| 99久久精品热视频| 熟女少妇亚洲综合色aaa.| 无遮挡黄片免费观看| 99在线视频只有这里精品首页| 精品人妻偷拍中文字幕| 亚洲一区高清亚洲精品| 久久精品国产亚洲av香蕉五月| 亚洲在线观看片| 亚洲av日韩精品久久久久久密| 欧美乱码精品一区二区三区| 啪啪无遮挡十八禁网站| 精品国产超薄肉色丝袜足j| 少妇人妻精品综合一区二区 | 级片在线观看| 成人高潮视频无遮挡免费网站| 亚洲精品在线观看二区| 亚洲成a人片在线一区二区| 欧美av亚洲av综合av国产av| 两人在一起打扑克的视频| 午夜福利在线在线| 熟女人妻精品中文字幕| 亚洲成人久久性| 久久久久国内视频| 黄色成人免费大全| 制服丝袜大香蕉在线| 亚洲无线观看免费| 欧美性感艳星| 亚洲国产欧美网| 国产精品精品国产色婷婷| 男女那种视频在线观看| 欧美av亚洲av综合av国产av| 一级作爱视频免费观看| 麻豆成人av在线观看| 午夜亚洲福利在线播放| 欧美乱色亚洲激情| 中文字幕熟女人妻在线| 搡老熟女国产l中国老女人| 最近视频中文字幕2019在线8| 夜夜躁狠狠躁天天躁| 长腿黑丝高跟| 国产激情偷乱视频一区二区| 欧美性猛交黑人性爽| 成人永久免费在线观看视频| 亚洲七黄色美女视频| 国产精品99久久99久久久不卡| 欧美激情在线99| 欧美日韩瑟瑟在线播放| 极品教师在线免费播放| 国产熟女xx| 我要搜黄色片| 亚洲va日本ⅴa欧美va伊人久久| 搡老妇女老女人老熟妇| 色综合婷婷激情| 叶爱在线成人免费视频播放| 91在线观看av| 日韩欧美三级三区| 成人一区二区视频在线观看| 露出奶头的视频| 成人永久免费在线观看视频| 国产欧美日韩精品亚洲av| 99精品在免费线老司机午夜| 久久久国产精品麻豆| 一级毛片高清免费大全| 中文字幕人妻丝袜一区二区| 久久久久精品国产欧美久久久| www.色视频.com| 国产高清videossex| 免费av毛片视频| 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 久久久久久久精品吃奶| 蜜桃亚洲精品一区二区三区| 成人国产一区最新在线观看| 青草久久国产| 欧美日韩黄片免| a级毛片a级免费在线| 免费一级毛片在线播放高清视频| 国产av不卡久久| 免费观看精品视频网站| 床上黄色一级片| 美女被艹到高潮喷水动态| 久久精品综合一区二区三区| a级一级毛片免费在线观看| 欧美一区二区国产精品久久精品| 91在线观看av| 亚洲欧美一区二区三区黑人| 欧美激情久久久久久爽电影| 色精品久久人妻99蜜桃| 在线观看66精品国产| a在线观看视频网站| 97碰自拍视频| 中文字幕人妻熟人妻熟丝袜美 | 国产高清三级在线| 18禁美女被吸乳视频| 亚洲成人久久性| 亚洲男人的天堂狠狠| 九九热线精品视视频播放| 欧美最新免费一区二区三区 | 国内久久婷婷六月综合欲色啪| 综合色av麻豆| 一级黄色大片毛片| 很黄的视频免费| 色吧在线观看| 天天一区二区日本电影三级| 麻豆国产av国片精品| 精品国产三级普通话版| 99久久99久久久精品蜜桃| 男插女下体视频免费在线播放| 欧美av亚洲av综合av国产av| 啦啦啦韩国在线观看视频| 亚洲黑人精品在线| 久久久久亚洲av毛片大全| 真实男女啪啪啪动态图| 少妇裸体淫交视频免费看高清| 欧美三级亚洲精品| 久久精品国产99精品国产亚洲性色| www.999成人在线观看| 成年版毛片免费区| 亚洲欧美激情综合另类| 五月玫瑰六月丁香| 少妇的逼水好多| 亚洲av第一区精品v没综合| 又紧又爽又黄一区二区| 女人被狂操c到高潮| 哪里可以看免费的av片| netflix在线观看网站| 狠狠狠狠99中文字幕| 亚洲人成网站在线播放欧美日韩| 久久草成人影院| 亚洲熟妇熟女久久| 在线a可以看的网站| 性欧美人与动物交配| 国产一区二区在线av高清观看| 婷婷精品国产亚洲av| 欧美丝袜亚洲另类 | av中文乱码字幕在线| 国产 一区 欧美 日韩| 欧美成人性av电影在线观看| ponron亚洲| 在线播放国产精品三级| 偷拍熟女少妇极品色| 久久久久久人人人人人| svipshipincom国产片| 免费观看人在逋| 日韩人妻高清精品专区| av黄色大香蕉| 国产高清有码在线观看视频| 精品电影一区二区在线| 中文在线观看免费www的网站| 国产高清有码在线观看视频| 久久欧美精品欧美久久欧美| 黑人欧美特级aaaaaa片| 一个人观看的视频www高清免费观看| 亚洲精品一区av在线观看| 啦啦啦韩国在线观看视频| 性色avwww在线观看|