• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Micro-PIV measurements of the flow field around cells in flow chamber*

    2015-11-24 05:28:11FUYi傅怡WUJianhua吳建華WUJie吳潔SUNRen孫仁DINGZurong丁祖榮DONGCheng

    FU Yi (傅怡), WU Jian-hua (吳建華), WU Jie (吳潔), SUN Ren (孫仁), DING Zu-rong (丁祖榮),DONG Cheng,3

    1. MOE Key Laboratory of Hydrodynamics and School of Naval Architecture, Ocean and Civil Engineering,Shanghai Jiao Tong University, Shanghai 200240, China

    2. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China

    3. Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

    Micro-PIV measurements of the flow field around cells in flow chamber*

    FU Yi (傅怡)1, WU Jian-hua (吳建華)2, WU Jie (吳潔)1, SUN Ren (孫仁)1, DING Zu-rong (丁祖榮)1,DONG Cheng1,3

    1. MOE Key Laboratory of Hydrodynamics and School of Naval Architecture, Ocean and Civil Engineering,Shanghai Jiao Tong University, Shanghai 200240, China

    2. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China

    3. Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

    The velocity profile around cells in a flow chamber coated with the immobilized protein and the endothelial cells is studied using the micro particle image velocimetry (PIV). The main purpose is to study the effect of the endothelial cells on the local hydrodynamic environment and the local shear rates above a single polymorphonuclear neutrophil (PMN) and a melanoma cell when they adhere to different immobilized protein substrates. Micro-PIV images are taken in the top-view and the side-view under10X and40X objective lens and the ensemble correlation method is used to analyze the data. The results show that the endothelial monolayer has changed the patterns of the flow velocity profile of the side-view flow on the chamber bottom, and also increased the wall shear rates. The melanoma cells adhered on the immobilized fibrin disturb the local flow more than those adhered on the immobilized fibrinogen, but one sees no significant difference between the local shear rates above the PMNs adhered on the immobilized fibrinogen and those above the PMNs adhered on the immobilized fibrin.

    micro-PIV, flow chamber, velocity profile, local shear rates

    Introduction

    At the end of the 20th century, when the studies of micro fluid were of great interest and many scientific techniques were developed, the conventional particle imaging velocimetry (PIV) was applied to the visualization and measurement of micro fluid, which is named the micro-PIV. Santiago et al.[1]used the epifluorescent illumination technique to record the discrete particle images of fluorescent particles and to analyze the velocity of the particles by the correlation method in a micro flow with a resolution length of less than 10 μm. Meinhart et al.[2]then used a similar method to measure the flow field in a micro flow chamber with a dimension of 13.6 μm in length, 0.9 μm in height, 2.2 μm in width, and 27 μm3in volume. Except observing the fluid field with the help of a microscope, Raffel et al.[3]pointed out, comparing with the conventional PIV, there are three major differences in the micro-PIV: (1) the diameter of tracer particles is small, which is comparable with the wavelength of the illumination light, (2) the light source is a volumetric illumination instead of a light sheet, (3) the tracer particle is so small that the Brownian motion should be considered.

    With the rapid progress of the experimental techniques and analysis methods, the micro-PIV technique was widely used in various research areas for micro fluid measurements. Currently, more than 5 000 micro-PIV journal papers were published to date, as is estimated based on the statistics of Google Scholar search. Sugii et al.[4]measured the velocity profile of red blood cells in the arteriole in the rat mesentery by using an intravital microscope and a high-speed digitalvideo system and Jeong et al.[5]applied the micro-PIV to study the lipsomes movement in rat mesenteric blood vessels. Poelma et al.[6]measured the wall shear stress profile in vitelline network, and Hove et al.[7]obtained the velocity profile in the embryonic zebrafish heart. Besides, for in vivo micro bio-flow measurements, the micro-PIV was also used in lab-on-chip and microfluidic devices[8]. Combining with the stereo-imaging technique and the confocal imaging, the 3-D velocity profile can be obtained with the micro-PIV[9]. The Micro-PIV technique was also used to study two-phase flows and bubbles[10].

    Tumor cell metastasis is a complicated procedure,including the cell adhesion and the cell extravasation in blood vessel, in which the chemokine and protein factors play an important role[11]. Dong et al. developed a “two step theory” that the PMNs could facilitate the tumor cell adhesion on the endothelial cells in blood. The studies show that the melanoma cells adhesion on the endothelial cells is significantly enhanced under the flow conditions when the PMNs are added[12]. In their early studies, the in vitro parallel flow chamber, the flow migration chamber and the cone-plate viscometer were used to investigate the impact of different shear conditions. Before the development of the micro-PIV, most experiments were conducted in microscale geometries consisting of bulk flow measurements, such as the flow rate, the pressure drop and the thrust. With the development of the application of the micro-PIV to the blood flow, Leyton-Mange successfully combined the micro-PIV with a side-view imaging technique to study the local hydrodynamic environment around a single adherent Jurkat cell under different flow conditions[13], which was further improved by Fu to measure the velocity profile around a pair of adherent cells[14]. In the present study,we apply our side-view micro-PIV technique to measure the local hydrodynamic environment around cells in a flow chamber and study the effect of different substrates.

    1. Experimental setup and micro-piv method

    1.1Experimental setup

    The study was specifically approved by The Pennsylvania State University Institutional Review Board (IRB), and written consents were obtained from all participants. The transfected fibroblast L-cells (EI cells, kindly provided by Dr. Simon S., University of California Davis, Davis, CA) with a stable human E-selectin and the ICAM-1 expression and the metastatic melanoma cells Lu1205 (generously provided by Dr. Robertson G., Penn State Hershey Medical Center, Hershey, PA) were cultured and treated following previous studies. The separation and the preparation of the PMNs from health human blood were following the Pennsylvania State University IRB approved protocol (No. 19311)[12]. The fibrinogen and the fibrin (Sigma, St Louis, MO) of desired concentration were prepared as described[15].

    A flow chamber consists of two microslide with the smaller one (VitrotubesTM#5005, Vitrocom,Mountain Lakes, NJ) being inserted into the bigger one (VitrocellsTM#8270, Vitrocom, Mountain Lakes,NJ) to form a dimension of 700 μm (width) × 550 μm(height). The smaller microslide is coated with the EI cells or the fibrin(ogen) as the substrate in advance. Two needles and tubings are used to assemble the chamber. A Harvard syringe pump (Harvard Apparatus,Holliston, MA) is used to generate the flow at desired volumetric flow rates, 91.25 μl min-1and 292 μl min-1,which are equivalent to the wall shear rates of 62.5 s-1and 200 s-1, respectively. The calculations are as follows

    whereμis the fluid molecular viscosity,Qis the volume flow rate,Wis the width of the chamber,H is the height of the chamber; andF is the correction factor for a rectangular channel with a finite aspect ratio.F is equal to 1.45 when the aspect ratio is 1.27[16], and the viscosity is measured to be 1.5 cP at room temperature by a RotoViscoI cone-plate viscometer (ThermoMC; Madison, WI).

    1.2Micro-PIV setup and data analysis

    The micro-PIV system consists of a Basler A504k high speed camera, a Olympus inverted fluorescent microscope, and a computer with two custom 45ohighly reflective mirrors (Red Optronics, Mountain View, CA) which are put close to both sides of the chamber[14]. Orange fluorescent micro beads (excitation/emission: 540/560 nm, Invitrogen, Carlsbad,CA) of 1 μm in diameter are chosen to be the tracer particles. 2 000 raw images are taken by the camera in 2 s under each desired conditions. After dividing the raw images with a time interval 1 ms into group A and group B, certain images are used to generate the average background images for each group. The background images are then subtracted from the raw images. Each group is further divided into 20 smaller groups of 50 images each and the median and the math min filter are calculated in the image processing. 50 images in each small group are then overlapped into a single image to increase the particle density and the NI-IMAQ (National Instruments, Austin, TX) is applied to compensate the missing dynamic boundary. After the above image processing, there are 20 images in group A and group B, separately, which are ready for the velocity profile calculation. The JPIV, an opensource PIV analysis software is used for the correlation calculations (http://www.jpiv.vennemann-online. de). As the flow in the micro flow chamber could be treated as a low Reynolds number Stokes flow, a novel correlation method different from the conventional PIV and called the ensemble correlation or the correlation averaging is chosen to minimize the errors due to the Brownian motion, the low particle density and low quality images, and the accuracy and the reliability are verified by the experimental results of Devasenathipathy, Meinhart and Wereley[17,18].

    2. Experimental results and discussions

    Top-view (XY plane) and side-view (XZ plane) fluorescent images are recorded (Fig.1) by Basler high speed camera under both10X and40X objective lens and the ensemble correlation method is imported to obtain the velocity profiles.

    Fig.1 The schematic diagram of flow chamber

    Fig.2X -velocity profile along Y-direction of flow chamber with immobilized fibrin (ogen) under10Xobjective lens

    2.1The velocity profile of flow over a substrate coated with fibrin (ogen)

    The top-view velocity profile of the immobilized fibrin(ogen) substrate inXY plane under10Xobjective lens shows that the velocity in the middle is higher than that on the sides. One column ofX-velocity profile is picked up and plotted againstYcoordinates as shown in Fig.2. It is indicated that the velocity under the high shear flow condition (292 μl/min) is about 3 times of that under the low shear flow condition (91.25 μl/min). The discrete shape of the velocity profile may be due to the lack of resolution and the near wall effect.

    Fig.3X -velocity profile along Y-direction of flow chamber with immobilized fibrin(ogen) under40Xobjective lens

    If the objective lens is switched to40X, there is no significant velocity gradient observed in the calculated velocity profile. TheX -velocity profile along Yaxis in Fig.3 is in a very discrete shape and shows no regular pattern, which might be caused by the small region of interest and the amplifying wall effect of the flow chamber bottom. Moreover, as shown in Fig.3(b), the maximum velocity appears not in the middle but on one side. That is because the region of interest is not placed in the middle of the flow chamber.

    When the view moves from the top to the side,the velocity profile inXZplane could be measured and c alcula ted. In Fig .4, under both l ow andhigh shearflowconditions,the X -velocityprofilealongZ axis under 10Xobjective lens shows a parabolic trend with the maximum velocity appearing in the middle and the minimum velocity appearing on the sides,as is consistent with the theoretical velocity profile.

    Fig.4X -velocity profile along Z-direction of flow chamber with immobilized fibrin(ogen) under10Xobjective lens

    Fig.5X -velocity profile along Z-direction of flow chamber with immobilized fibrin(ogen) under40Xobjective lens

    Since under40Xobjective lens, only part of the chamber could be included in the region of interest,the region near the flow chamber bottom is of interest. It is indicated in Fig.5 that X -velocity profile along Zaxis shows a linear trend with a significant gradient. The wall shear rates are calculated to be 59.23 s-1and 197.77 s-1under low shear flow conditions(91.25 μl/min) and high shear flow conditions(292 μl/min).

    Fig.6X -velocity profile along Y-direction of flow chamber with EI under10Xobjective lens

    2.2The velocity profile of flow over a substrate grown with EI cells

    If the bottom of the flow chamber is coated with the EI cells, would the velocity profile show a similar trend? The EI cells are adherent cells, which would form a monolayer. The shape of a single EL cell is long and narrow on sides and the cell height is about 1 μm-2 μm[16]. The EI monolayer looks like a rough mountain with “peaks” and “valleys”. In both Fig.6 and Fig.7, no regular pattern is observed in X-velocity profile alongYaxis either under10Xobjective lens or40Xobjective lens.

    However, when the view moves from the top to the side,X -velocity profile along Z axis displays aparabolic trend under10Xobjective lens (Fig.8) and a linear trend under40Xobjective lens (Fig.9). Comparing with Fig.4 and Fig.5, the change of the substrate does not dramatically change the pattern ofX-velocity profile alongZaxis. The wall shear rates in Fig.9 are calculated to be 64.15 s-1and 203.1 s-1under low shear flow conditions (91.25 μl/min) and high shear flow conditions (292 μl/min). It is noted that the wall shear rates of the EI substrate are higher than those of the fibrin (ogen) substrate. The reason might be that the thickness of the EI monolayer reduces the height of the flow chamber, which results in an increase of X -velocity gradient near the wall.

    Fig.7X -velocity profile along Y-direction of flow chamber with EI under40Xobjective lens

    Fig.8X -velocity profile along Z-direction of flow chamber with EI under10X objective lens

    Fig.9X -velocity profile along Z-direction of flow chamber with EI under40Xobjective lens

    Many researchers applied the micro-PIV to the shear flow mechanical stimulation of endothelial cells[19,20]. Rossi et al.[21]reconstructed the 3-D wall shear stress above a single endothelial cell and reported that the maximum shear stress appeared at the“peak” of the cell. Since the height of a single endothelial cell is small, we are more interested in the effect of the EI monolayer on the local hydrodynamic environment. The micro-PIV measurement of the velocity profile in the flow chamber with different substrates shows that the EI monolayer disturbs the flow field in twoways:(1)X -v elocity profile in XYpla ne becomesmorediscrete,(2)X -velocityprofileinXZplane does not change much, but the wall shear stress is increased. Moreover, other studies show that the morphology of the endothelial cell monolayer would grow to be more regular under the flow condition of the physiological blood flow. However, no shear flow is applied to the EI cells when they are cultured, leading to irregular morphology, which might be an explanation for the discrete X -velocity profile inXY plane.

    Table 1 Local shear rates above an adherent cell on immobilized fibrin(ogen)

    2.3The velocity profile around cells adhered on immobilized fibrin(ogen)

    Although the melanoma cells could not adhere to the EI monolayer under flow conditions, the fibrin(ogen) acts as a bridge between the melanoma cells and the EI cells. The adhesion of the melanoma cells on the immobilized fibrin(ogen) attracts our interest. Two concentrations are chosen to be 0.25 mg/ml and 2.5 mg/ml for coating the flow chamber substrate. A column of X-velocity profile is put above the top of an adherent cell to two cells high, then it is picked up and the local shear rate is calculated. As shown in Table 1, the local shear rates above the tumor cells(TCs) adhered to the immobilized fibrin are smaller than those above the TCs adhered to the immobilized fibrinogen under both low and high shear conditions(91.25 μl/min and 292 μl/min respectively). In previous studies, we found that for a single adherent cell,its height affects the local shear rate most and a negative correlation is shown. A deformed cell with smaller height has less effect on the local hydrodynamic environment[14]. The deformation of a cell would be affected by the substrate and the bulk shear flow condition. Under the same shear flow condition, the melanoma cells may form a firmer adhesion on the immobilized fibrin than on the immobilized fibrinogen when the concentration is low.

    When the concentration increases, could we observe a similar phenomenon? Table 1 indicates that the TCs adhered on the immobilized fibrin disturb the local flow more than those adhered on the immobilized fibrinogen as well. However, one sees no significant difference between the local shear rates above PMNs adhered on the immobilized fibrinogen and those above the PMNs adhered on the immobilized fibrin. For the same substrate, both adherent PMNs and TCs show larger deformation under high shear flow conditions (cell dimension measurement data are not shown here).

    The fibrin(ogen) could form bonds with the ICAM-1 expressed on the melanoma cell surface. Moreover, the fibrin could form another bond with the αvβ3integrin expressed on the melanoma cell surface,which may promote the adhesion of the melanoma cells on the immobilized fibrin. Studies show that the affinity between the integrinαvβ3and the fibrin may be higher than that between the ICAM-1 and the fibrin[22]. That may explain why the melanoma cells experience larger deformation when adhered to the immobilized fibrin than to the immobilized fibrinogen. Nevertheless, the fibrin(ogen) could form bonds with the Mac-1 expressed on the PMNs surface, and one sees no difference between the dissociation rate constant of the fibrinogen-Mac-1 bond and that of the fibrin-Mac-1. Once the PMN forms a firm adhesion with the immobilized fibrin(ogen), the shape of the PMNs would not change too much and the PMNs would hardly detach from the immobilized protein surface.

    3. Conclusion

    In this study, we use the micro-PIV technique to measure and analyze the velocity profile around cells in a flow chamber coated with the immobilized protein or the EI cells. It is found that the existence of the EI monolayer affects the X -velocity profile in XY andXZ planes, especially for the flow velocity profile pattern inXY plane. The wall shear rates in the flow chamber with the immobilized protein surface are calculated to be 59.23 s-1(under low shear flow condition) and 197.77 s-1(under high shear flow condition), while those in the flow chamber with the EI monolayer substrate are calculated to be 64.15 s-1(under low shear flow condition) and 203.1 s-1(underhigh shear flow condition). The velocity profiles around a single PMN or a melanoma cell adhered on the immobilized fibrin(ogen) are then measured and analyzed by the micro-PIV coupled with the side-view technique. The results indicate that the melanoma cells form a firmer adhesion on the immobilized fibrin and display a larger deformation, which results in less disturbance to the local hydrodynamic environment. However, one sees no significant difference between the adhesion of the PMNs on the immobilized fibrinogen and the fibrin, so the local shear rates above the adherent PMNs are comparable. In the future, the micro-PIV may be used to measure not only the local hydrodynamic environment change during the process of the PMNs facilitated tumor cell adhesion on the endothelial cells, but also the velocity of the moving cells at the same time.

    Acknowledgement

    The authors thank Dr. Robertson G. (Penn State University Hershey Medical Center) for providing Lu1205 melanoma cells, Dr. Simon S. (University of California Davis, Davis, CA) for providing EI cells.

    References

    [1]SANTIAGO J., WERELEY S. and MEINHART C. et al. A particle image velocimetry system for microfluidics[J]. Experiments in Fluids, 1998, 25(4): 316-319.

    [2]MEINHART C., WERELEY S. and SANTIAGO J. PIV measurements of a microchannel flow[J]. Experiments in Fluids, 1999, 27(5): 414-419.

    [3]RAFFEL M., WILLERT C. and WERELEY S. Particle image velocimetry: A practical guide[M]. Berlin,German: Springer Verlag, 2007.

    [4]SUGII Y., NISHIO S. and OKAMOTO K. In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion[J]. Physiological Measurement, 2002, 23(2): 403-416.

    [5]JEONG J., SUGII Y. and MINAMIYAMA M. et al. Interaction between liposomes and RBC in microvessels in vivo[J]. Microvascular Research, 2007, 73(1): 39-47.

    [6]POELMA C., VENNEMANN P. and LINDKEN R. et al. In vivo blood flow and wall shear stress measurements in the vitelline network[J]. Experiments in Fluids,2008, 45(4): 703-713.

    [7]HOVE J. R., K?STER R. W. and FOROUHAR A. S. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis[J]. Nature, 2003,421(6919): 172-177.

    [8]HONG J., EDEL J. and DEMELLO A. Micro-and nanofluidic systems for high-throughput biological screening[J]. Drug Discovery Today, 2009, 14(3-4): 134-146.

    [9]PARK J. S., KIHM K. D. Three-dimensional micro-PTV using deconvolution microscopy[J]. Experiments in Fluids, 2006, 40(3): 491-499.

    [10]THO P., MANASSEH R. and OOI A. Cavitation microstreaming patterns in single and multiple bubble systems[J]. Journal of Fluid Mechanics, 2007, 576: 191-233.

    [11]GUPTA G., MASSAGU J. Cancer metastasis: Building a framework[J]. Cell, 2006, 127(4): 679-695.

    [12]LIANG S., SLATTERY M. J. and WAGNER D. et al. Hydrodynamic shear rate regulates melanoma-leukocyte aggregation, melanoma adhesion to the endothelium,and subsequent extravasation[J]. Annals of Biomedical Engineering, 2008, 36(4): 661-671.

    [13]LEYTON-MANGE J., YANG S. and HOSKINS M. et al. Design of a side-view particle imaging velocimetry flow system for cell-substrate adhesion studies[J]. Journal of Biomechanical Engineering, 2006, 128(2): 271-278.

    [14]FU Y., KUNZ R. and WU J. et al. Study of local hydrodynamic environment in cell-substrate adhesion using side-view μPIV technology[J]. PLoS ONE, 2012,7(2): e30721.

    [15]OZDEMIR T., ZHANG P. and FU C. et al. Fibrin serves as a divalent ligand that regulates neutrophil-mediated melanoma cells adhesion to endothelium under shear conditions[J]. American Journal of Physiology-Cell Physiology, 2012, 302(8): C1189-1201.

    [16]CAO J., USAMI S. and DONG C. Development of a side-view chamber for studying cell-surface adhesion under flow conditions[J]. Annals of Biomedical Engineering, 1997, 25(3): 573-580.

    [17]MEINHART C., WERELEY S. and SANTIAGO J. A PIV algorithm for estimating time-averaged velocity fields[J]. Journal of Fluids Engineering, 2000, 122(2):285-289.

    [18] DEVASENATHIPATHY S., SANTIAGO J. and WERELEY S. et al. Particle imaging techniques for microfabricated fluidic systems[J]. Experiments in Fluids,2003, 34(4): 504-514.

    [19]MCCANN J., PETERSON S. and PLESNIAK M. et al. Non-uniform flow behavior in a parallel plate flow chamber alters endothelial cell responses[J]. Annals of Biomedical Engineering, 2005, 33(3): 328-336.

    [20]SMITH M., LONG D. and DAMIANO E. et al. NearwallμPIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo[J]. Biophysical Journal, 2003, 85(1): 637-645.

    [21]ROSSI M., LINDKEN R. and HIERCK B. P. et al. Single-cell level measurement of shape, shear stress distribution and gene expression of endothelial cells in microfluidic chips[C]. Proceedings of the Sixth International ASME Conference on Nanochannels, Microchannels and Minichannels, ICNMM 2008. Darmstadt, Germany, 2008, 1093-1098.

    [22]ZHANG P., OZDEMIR T. and CHUNG C. Y. et al. Sequential binding of αVβ3 and ICAM-1 determines fibrin-mediated melanoma capture and stable adhesion to CD11b/CD18 on neutrophils[J]. The Journal of Immunology, 2011, 186(1): 242-254.

    (October 16, 2014, Revised January 12, 2015)

    * Project supported by the National Institute of Health(NIH, USA, Grant No. CA-125707), the National Science Foundation (NSF, USA, Grant No. CBET-0729091), the National Natural Science Foundation of China (Grant Nos. 11302129, 11432006 and 31170887) and the Fellowship from Chinese Scholarship Council.

    Biography: FU Yi (1983-), Female, Ph. D.

    DONG Cheng,

    E-mail: cxd23@psu.edu

    亚洲精品久久国产高清桃花| 少妇高潮的动态图| 国产男靠女视频免费网站| 亚洲美女视频黄频| 舔av片在线| 日韩有码中文字幕| 可以在线观看毛片的网站| 午夜两性在线视频| 搡女人真爽免费视频火全软件 | 老熟妇仑乱视频hdxx| 国产99白浆流出| 免费在线观看影片大全网站| 国产老妇女一区| 麻豆成人av在线观看| 老司机在亚洲福利影院| 国内精品一区二区在线观看| 国产黄片美女视频| 日韩国内少妇激情av| 国产精品亚洲美女久久久| 亚洲va日本ⅴa欧美va伊人久久| 手机成人av网站| 成人国产综合亚洲| 国产精品乱码一区二三区的特点| 亚洲最大成人中文| 熟女电影av网| 欧美激情久久久久久爽电影| 一级黄色大片毛片| av在线蜜桃| 久久国产乱子伦精品免费另类| 国产三级在线视频| 此物有八面人人有两片| 亚洲 国产 在线| av在线蜜桃| 久久久久久人人人人人| 久久久久久九九精品二区国产| 午夜福利18| 色综合亚洲欧美另类图片| 波多野结衣高清作品| 色综合站精品国产| 中文字幕熟女人妻在线| 夜夜爽天天搞| 国产真实乱freesex| 精品99又大又爽又粗少妇毛片 | 国产精品自产拍在线观看55亚洲| 狠狠狠狠99中文字幕| 男人的好看免费观看在线视频| 午夜激情福利司机影院| 亚洲av电影不卡..在线观看| 国产激情欧美一区二区| 精品国内亚洲2022精品成人| 亚洲在线观看片| 国产探花在线观看一区二区| 欧美+日韩+精品| 国产老妇女一区| 久久国产精品影院| 两性午夜刺激爽爽歪歪视频在线观看| 三级男女做爰猛烈吃奶摸视频| 大型黄色视频在线免费观看| 在线观看一区二区三区| 国产av不卡久久| 欧美黑人巨大hd| 中文字幕精品亚洲无线码一区| 在线播放国产精品三级| 动漫黄色视频在线观看| 久久久国产精品麻豆| 中文字幕精品亚洲无线码一区| 窝窝影院91人妻| 国产精品久久久久久久电影 | 日本 av在线| 精品久久久久久,| 国产成人系列免费观看| 久久久久久久久久黄片| 欧美一区二区亚洲| 高清毛片免费观看视频网站| 夜夜夜夜夜久久久久| 日韩欧美国产在线观看| 91九色精品人成在线观看| 国产精品亚洲一级av第二区| 久久欧美精品欧美久久欧美| 他把我摸到了高潮在线观看| av在线天堂中文字幕| 美女 人体艺术 gogo| 99精品在免费线老司机午夜| 999久久久精品免费观看国产| 97超视频在线观看视频| 18禁黄网站禁片午夜丰满| 色综合婷婷激情| 国产男靠女视频免费网站| 在线观看美女被高潮喷水网站 | 精品99又大又爽又粗少妇毛片 | 在线观看美女被高潮喷水网站 | 国产精品日韩av在线免费观看| 国产精品精品国产色婷婷| www.www免费av| 国产日本99.免费观看| 国产v大片淫在线免费观看| 免费观看精品视频网站| 国产黄片美女视频| 国产精品综合久久久久久久免费| 啦啦啦免费观看视频1| 亚洲熟妇中文字幕五十中出| 一个人免费在线观看电影| 久久久国产成人免费| 欧美成人免费av一区二区三区| 人妻丰满熟妇av一区二区三区| 欧美日韩瑟瑟在线播放| 日韩免费av在线播放| 国产主播在线观看一区二区| 欧美性猛交╳xxx乱大交人| 国产淫片久久久久久久久 | 给我免费播放毛片高清在线观看| 毛片女人毛片| 欧美一级毛片孕妇| 国产av麻豆久久久久久久| 在线观看66精品国产| 免费看光身美女| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品青青久久久久久| 久久中文看片网| 69人妻影院| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩高清在线视频| 三级男女做爰猛烈吃奶摸视频| 欧美在线黄色| 男女之事视频高清在线观看| 国产精品 欧美亚洲| 日韩中文字幕欧美一区二区| 亚洲国产欧美人成| 内地一区二区视频在线| 久久久久久人人人人人| 欧美zozozo另类| 国产在视频线在精品| 精品一区二区三区人妻视频| 亚洲狠狠婷婷综合久久图片| 人妻久久中文字幕网| 日本成人三级电影网站| 亚洲av电影在线进入| 亚洲精品456在线播放app | 国产伦人伦偷精品视频| 精品欧美国产一区二区三| 日韩欧美在线二视频| 搡老熟女国产l中国老女人| 一进一出抽搐gif免费好疼| 国产伦精品一区二区三区视频9 | 久久伊人香网站| 两性午夜刺激爽爽歪歪视频在线观看| 91字幕亚洲| 国产精品一区二区三区四区久久| 日本 欧美在线| 99久国产av精品| 中文资源天堂在线| 国产午夜福利久久久久久| 日本免费一区二区三区高清不卡| 成人三级黄色视频| 九色成人免费人妻av| 最后的刺客免费高清国语| 精品久久久久久成人av| 天堂影院成人在线观看| 成人永久免费在线观看视频| 国产精品综合久久久久久久免费| 免费电影在线观看免费观看| 亚洲黑人精品在线| 亚洲第一欧美日韩一区二区三区| 韩国av一区二区三区四区| 97碰自拍视频| 长腿黑丝高跟| 少妇裸体淫交视频免费看高清| 麻豆国产av国片精品| 精品日产1卡2卡| 熟妇人妻久久中文字幕3abv| 在线观看av片永久免费下载| 99精品欧美一区二区三区四区| 中国美女看黄片| 成熟少妇高潮喷水视频| 免费av观看视频| 日韩免费av在线播放| 哪里可以看免费的av片| 白带黄色成豆腐渣| 两性午夜刺激爽爽歪歪视频在线观看| 91久久精品电影网| 91麻豆精品激情在线观看国产| 亚洲欧美日韩卡通动漫| 老司机福利观看| 久久久久免费精品人妻一区二区| 国产一区二区三区视频了| 欧美午夜高清在线| 色播亚洲综合网| 蜜桃亚洲精品一区二区三区| 啦啦啦观看免费观看视频高清| 一个人看视频在线观看www免费 | 深爱激情五月婷婷| 成人av在线播放网站| 国产综合懂色| 午夜免费男女啪啪视频观看 | 成人av一区二区三区在线看| 日韩 欧美 亚洲 中文字幕| 久久久国产精品麻豆| 熟女人妻精品中文字幕| 最近最新中文字幕大全电影3| h日本视频在线播放| 亚洲美女视频黄频| 亚洲精华国产精华精| 亚洲久久久久久中文字幕| 亚洲最大成人中文| 久久人人精品亚洲av| 成人特级av手机在线观看| 99精品久久久久人妻精品| 国产色婷婷99| 精品人妻偷拍中文字幕| 最近视频中文字幕2019在线8| 精品久久久久久久久久久久久| 男人舔奶头视频| 亚洲精华国产精华精| 小蜜桃在线观看免费完整版高清| 免费av毛片视频| 在线免费观看不下载黄p国产 | 国产熟女xx| 久久久久久久久大av| x7x7x7水蜜桃| 国产免费一级a男人的天堂| av视频在线观看入口| 可以在线观看毛片的网站| 少妇丰满av| 欧美日韩福利视频一区二区| 中文亚洲av片在线观看爽| 欧美性感艳星| 丁香六月欧美| 日本精品一区二区三区蜜桃| 亚洲久久久久久中文字幕| 亚洲 国产 在线| 欧美xxxx黑人xx丫x性爽| 午夜免费男女啪啪视频观看 | a级一级毛片免费在线观看| 国产精品香港三级国产av潘金莲| 国产精品美女特级片免费视频播放器| 久久精品91蜜桃| 在线观看美女被高潮喷水网站 | 91在线观看av| 国产一区二区在线观看日韩 | 国产97色在线日韩免费| 特级一级黄色大片| 欧美bdsm另类| 国产精品久久视频播放| 精品久久久久久久久久久久久| 欧美日韩综合久久久久久 | 成熟少妇高潮喷水视频| 一个人看的www免费观看视频| 久久精品国产亚洲av香蕉五月| 中亚洲国语对白在线视频| 观看免费一级毛片| 12—13女人毛片做爰片一| 国产亚洲欧美在线一区二区| 欧美3d第一页| 少妇高潮的动态图| 久久久久久久久久黄片| 国产精品美女特级片免费视频播放器| 亚洲av二区三区四区| 嫩草影院精品99| 黑人欧美特级aaaaaa片| www.色视频.com| e午夜精品久久久久久久| 精品一区二区三区人妻视频| 嫁个100分男人电影在线观看| 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 欧美性猛交╳xxx乱大交人| 可以在线观看的亚洲视频| 久久久久久久久中文| 国产午夜精品久久久久久一区二区三区 | 午夜免费男女啪啪视频观看 | 国产一区在线观看成人免费| 亚洲熟妇中文字幕五十中出| 精品一区二区三区视频在线 | 久久精品国产清高在天天线| 男女视频在线观看网站免费| 久久伊人香网站| 三级男女做爰猛烈吃奶摸视频| 一进一出好大好爽视频| 真人一进一出gif抽搐免费| 99精品在免费线老司机午夜| 久久久久久九九精品二区国产| 中文字幕人成人乱码亚洲影| 十八禁网站免费在线| 给我免费播放毛片高清在线观看| 成年女人毛片免费观看观看9| 欧美日本视频| 国产高清视频在线播放一区| 国产精品久久久久久精品电影| 欧美黑人巨大hd| 亚洲天堂国产精品一区在线| 一区二区三区激情视频| 长腿黑丝高跟| 一级作爱视频免费观看| 99久久精品一区二区三区| 日韩人妻高清精品专区| 免费看美女性在线毛片视频| 欧美另类亚洲清纯唯美| 九九在线视频观看精品| 亚洲精品国产精品久久久不卡| 女人被狂操c到高潮| 国产老妇女一区| 成人午夜高清在线视频| 亚洲国产日韩欧美精品在线观看 | 在线免费观看不下载黄p国产 | 高清毛片免费观看视频网站| 窝窝影院91人妻| 日韩成人在线观看一区二区三区| 嫩草影院入口| 淫妇啪啪啪对白视频| 亚洲 国产 在线| 91在线精品国自产拍蜜月 | 国产精品,欧美在线| 亚洲人成电影免费在线| 国语自产精品视频在线第100页| 亚洲av一区综合| 小蜜桃在线观看免费完整版高清| 欧美一区二区国产精品久久精品| 美女被艹到高潮喷水动态| 亚洲av免费在线观看| 精品久久久久久久久久久久久| 男人舔女人下体高潮全视频| 精品久久久久久成人av| 日韩 欧美 亚洲 中文字幕| 国产精品亚洲av一区麻豆| 人人妻,人人澡人人爽秒播| 欧美日韩福利视频一区二区| ponron亚洲| 亚洲av免费高清在线观看| 国产老妇女一区| 天天躁日日操中文字幕| av天堂中文字幕网| 午夜老司机福利剧场| 成年版毛片免费区| 亚洲五月天丁香| 少妇高潮的动态图| 天天躁日日操中文字幕| 久久国产精品影院| 午夜免费激情av| 日本成人三级电影网站| 一本久久中文字幕| 午夜福利在线观看免费完整高清在 | 最近在线观看免费完整版| 午夜两性在线视频| 亚洲av免费高清在线观看| 午夜两性在线视频| 亚洲av免费高清在线观看| 日本黄色视频三级网站网址| 久久九九热精品免费| 午夜两性在线视频| 成年人黄色毛片网站| 在线天堂最新版资源| 中国美女看黄片| 亚洲专区国产一区二区| 亚洲精品久久国产高清桃花| 亚洲 欧美 日韩 在线 免费| 高清毛片免费观看视频网站| 欧美绝顶高潮抽搐喷水| 日韩欧美三级三区| 精品无人区乱码1区二区| 亚洲av二区三区四区| 日韩欧美免费精品| 欧美乱色亚洲激情| 99国产精品一区二区蜜桃av| 欧美最新免费一区二区三区 | 亚洲人成电影免费在线| 又粗又爽又猛毛片免费看| 国产美女午夜福利| 99国产极品粉嫩在线观看| 国产中年淑女户外野战色| 成人特级黄色片久久久久久久| 我要搜黄色片| 最近最新中文字幕大全电影3| 日韩欧美国产一区二区入口| 国产精品久久视频播放| 欧美高清成人免费视频www| 午夜免费观看网址| 美女高潮的动态| 麻豆久久精品国产亚洲av| 老鸭窝网址在线观看| 国产乱人伦免费视频| 一个人观看的视频www高清免费观看| 成人国产综合亚洲| 午夜老司机福利剧场| 成人特级黄色片久久久久久久| 国产亚洲av嫩草精品影院| 日本黄大片高清| 精品一区二区三区视频在线 | 亚洲欧美精品综合久久99| 久久久久亚洲av毛片大全| a在线观看视频网站| 欧美绝顶高潮抽搐喷水| 国产成人福利小说| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 无限看片的www在线观看| 黄片小视频在线播放| e午夜精品久久久久久久| 国产99白浆流出| 欧美在线一区亚洲| 一级毛片高清免费大全| 他把我摸到了高潮在线观看| 亚洲一区高清亚洲精品| av中文乱码字幕在线| 首页视频小说图片口味搜索| av欧美777| 黄色丝袜av网址大全| 宅男免费午夜| 成人欧美大片| 国内毛片毛片毛片毛片毛片| 欧美不卡视频在线免费观看| 成人特级av手机在线观看| 久久久久精品国产欧美久久久| 亚洲av五月六月丁香网| 亚洲国产欧洲综合997久久,| 免费看日本二区| 一区二区三区高清视频在线| 老鸭窝网址在线观看| 欧美日韩国产亚洲二区| 国产欧美日韩精品亚洲av| 黄色丝袜av网址大全| 男女下面进入的视频免费午夜| 久久伊人香网站| 国产精品免费一区二区三区在线| 美女被艹到高潮喷水动态| 一个人免费在线观看的高清视频| 一个人看视频在线观看www免费 | 午夜福利在线观看免费完整高清在 | 男女之事视频高清在线观看| av专区在线播放| 一个人免费在线观看的高清视频| 国产免费男女视频| 99久久无色码亚洲精品果冻| 亚洲国产高清在线一区二区三| 亚洲国产色片| 国产男靠女视频免费网站| 成年女人毛片免费观看观看9| 国产一区在线观看成人免费| 午夜免费激情av| 久久午夜亚洲精品久久| 中出人妻视频一区二区| 中文字幕久久专区| 国产一区二区在线观看日韩 | 成人18禁在线播放| 精品久久久久久,| 国产成人av教育| 色哟哟哟哟哟哟| 成人无遮挡网站| 国产精品99久久99久久久不卡| 男人的好看免费观看在线视频| 不卡一级毛片| 在线看三级毛片| 国产一区二区在线观看日韩 | 午夜福利欧美成人| 男女那种视频在线观看| 国产精品爽爽va在线观看网站| 看免费av毛片| 亚洲av免费在线观看| 成人18禁在线播放| 五月伊人婷婷丁香| 老司机午夜福利在线观看视频| 人妻夜夜爽99麻豆av| 亚洲精品美女久久久久99蜜臀| 天天添夜夜摸| 欧美大码av| 国产伦精品一区二区三区视频9 | 免费在线观看日本一区| 国产欧美日韩一区二区三| 精品99又大又爽又粗少妇毛片 | 亚洲乱码一区二区免费版| 色综合欧美亚洲国产小说| 国产91精品成人一区二区三区| 国产av麻豆久久久久久久| 免费大片18禁| 小说图片视频综合网站| 国产麻豆成人av免费视频| 97人妻精品一区二区三区麻豆| 国产精品永久免费网站| 亚洲精品粉嫩美女一区| 亚洲最大成人中文| 久久九九热精品免费| 婷婷精品国产亚洲av在线| 精品99又大又爽又粗少妇毛片 | 国产免费av片在线观看野外av| 一级毛片女人18水好多| 制服丝袜大香蕉在线| 日本成人三级电影网站| 美女 人体艺术 gogo| 色噜噜av男人的天堂激情| 国产成人a区在线观看| 噜噜噜噜噜久久久久久91| 国产毛片a区久久久久| 亚洲av免费高清在线观看| 亚洲精品一区av在线观看| 欧美中文综合在线视频| 亚洲精品国产精品久久久不卡| 伊人久久精品亚洲午夜| 禁无遮挡网站| 色在线成人网| 两个人看的免费小视频| 噜噜噜噜噜久久久久久91| 国产黄片美女视频| 女警被强在线播放| 午夜a级毛片| 99热精品在线国产| 91在线精品国自产拍蜜月 | 日本黄色片子视频| 国产私拍福利视频在线观看| 亚洲国产欧美网| 日本 欧美在线| 日本免费一区二区三区高清不卡| 亚洲av电影不卡..在线观看| АⅤ资源中文在线天堂| www日本在线高清视频| 午夜福利视频1000在线观看| 亚洲乱码一区二区免费版| 亚洲天堂国产精品一区在线| 国产精品自产拍在线观看55亚洲| 小说图片视频综合网站| 亚洲欧美激情综合另类| 99久久精品热视频| 在线国产一区二区在线| 成人无遮挡网站| 神马国产精品三级电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久精品综合一区二区三区| 国语自产精品视频在线第100页| 欧美日韩福利视频一区二区| avwww免费| 日日摸夜夜添夜夜添小说| 丝袜美腿在线中文| 日韩免费av在线播放| 亚洲国产中文字幕在线视频| 成年女人永久免费观看视频| 亚洲色图av天堂| 亚洲成人久久爱视频| 国产精品香港三级国产av潘金莲| 国产av麻豆久久久久久久| 日韩av在线大香蕉| 国产精品综合久久久久久久免费| 亚洲avbb在线观看| 欧美一区二区国产精品久久精品| 好看av亚洲va欧美ⅴa在| 亚洲七黄色美女视频| 欧美日韩国产亚洲二区| 12—13女人毛片做爰片一| 久久九九热精品免费| 精品一区二区三区人妻视频| 免费在线观看亚洲国产| 亚洲 国产 在线| 女人被狂操c到高潮| eeuss影院久久| 亚洲精品乱码久久久v下载方式 | av片东京热男人的天堂| 日韩 欧美 亚洲 中文字幕| 制服人妻中文乱码| 久久香蕉国产精品| 脱女人内裤的视频| 欧美性感艳星| 99久久九九国产精品国产免费| 国产精品久久视频播放| 日韩中文字幕欧美一区二区| 麻豆成人午夜福利视频| 国产乱人视频| e午夜精品久久久久久久| 一级a爱片免费观看的视频| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三| 亚洲人成网站高清观看| 久久精品影院6| 色综合婷婷激情| 69人妻影院| 欧美日韩综合久久久久久 | 又紧又爽又黄一区二区| 两人在一起打扑克的视频| 男女床上黄色一级片免费看| 婷婷亚洲欧美| 一级黄片播放器| 草草在线视频免费看| 在线观看舔阴道视频| 给我免费播放毛片高清在线观看| 国产一区在线观看成人免费| 波多野结衣巨乳人妻| 俺也久久电影网| 美女免费视频网站| 精品久久久久久久人妻蜜臀av| 日韩欧美精品免费久久 | 91在线精品国自产拍蜜月 | 亚洲avbb在线观看| 噜噜噜噜噜久久久久久91| 精品国产超薄肉色丝袜足j| 亚洲av电影不卡..在线观看| 综合色av麻豆| 亚洲av二区三区四区| av片东京热男人的天堂| 男女下面进入的视频免费午夜| 色综合婷婷激情| 亚洲成av人片免费观看| 亚洲成人精品中文字幕电影| 国产探花在线观看一区二区| 久久精品91无色码中文字幕| 久久国产乱子伦精品免费另类| 免费人成在线观看视频色| 午夜福利在线观看吧| 亚洲成人精品中文字幕电影| 可以在线观看毛片的网站| 午夜老司机福利剧场| av国产免费在线观看| 午夜免费男女啪啪视频观看 | 免费看a级黄色片| 免费观看精品视频网站| 欧美xxxx黑人xx丫x性爽| 美女大奶头视频| 亚洲av中文字字幕乱码综合| 国产精华一区二区三区| 一区福利在线观看| 香蕉久久夜色|