• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrodynamic analyses of typical underwater gliders*

    2015-11-24 05:28:11CHENYajun陳亞君CHENHongxun陳紅勛MAZheng馬崢

    CHEN Ya-jun (陳亞君), CHEN Hong-xun (陳紅勛), MA Zheng (馬崢)

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China,E-mail: yjchen@shu.edu.cn

    2. China Ship Scientific Research Center, Wuxi 214082, China

    Hydrodynamic analyses of typical underwater gliders*

    CHEN Ya-jun (陳亞君)1, CHEN Hong-xun (陳紅勛)1, MA Zheng (馬崢)2

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China,E-mail: yjchen@shu.edu.cn

    2. China Ship Scientific Research Center, Wuxi 214082, China

    The underwater glider changes its weight and the weight distribution through the battery use, to move up and down and forward in the sea. It enjoys many advantages such as a long endurance, and a long operational range with its unique device. The performance of the underwater glider can not evaluated only by the drag, the energy consumption is also one of the key factors. In this paper, the power conversion ratio is proposed according to the transfer efficiency from the gravitational potential energy to the available work, and the performances of three typical underwater gliders are evaluated from multi-angles, such as the drag, the power conversion ratio and the barycenter's offset. So the glide performance and the energy consumption in various motion states can be analyzed. The results of this paper can provide a theoretical basis for further study of underwater gliders.

    the underwater glider, the drag, the energy consumption, the power conversion ratio

    Introduction

    The autonomous underwater glider (AUG), as a specific autonomous underwater vehicle, has many advantages, including the non-fuel driven mechanism and the long operational duration (months), so it is widely used in both military and civil areas[1-3]. Since 1989, when the concept was firstly proposed, different kinds of AUGs have been designed, and the three most typical ones are the Slocum (shallow and deep types), the Spray and the Seaglider. The shallow-type Slocum is designed for missions in the range of 1 300 km and of durations of one month, while the deep-type Slocum can dive to a depth of 1 500 m with a much longer sail distance range up to 4 000 km and a duration of almost 5 months[4], the Spray can dive to a depth of 1 500 m and its sail range reaches 7 000 km[5], the Seaglider is designed to cover up to 1500 km of the ocean vertically and 6 000 km horizontally under the remote control over many months[6]. These typical AUGs are shown in Figs.1-4.

    Fig.2 Outlook of a Slocum AUG

    Fig.3 Outlook of a Spray AUG

    Fig.4 Outlook of a Seaglider AUG

    The motion characteristics were extensively studied as well as the control behavior of the AUG, largely through carrying out dynamic numerical simulations. A series of studies of the hydrodynamic performance of the AUG were carried out[7-11]. In Ref.[12],the hydrodynamic performances of the AUG at different velocities and attack angles were predicted by numerical simulations. In Ref.[13], the maximum horizontal velocity required during the gliding process was analyzed by studying the motion equation in the vertical plane. In Ref.[14], the different hydrodynamic characteristics corresponding to different gliding layout forms were studied, as well as the different motion performances of the AUG in response to the density of the sea water.

    To further improve the endurance and the operational range of the AUG, it is important to increase the gliding efficiency, rather than updating its energy source (the high energy battery). The former is mainly estimated by two factors: the energy consumption and the operational range. In view of the fact that the kinematic principle of the AUG is quite unique, the hydrodynamic research is important and is related to the accurate prediction of how the lift and drag of the AUG could be changed through the residual buoyancy and the barycenter. In this paper, an evaluation of the performances of the typical gliders is presented. This may provide a theoretical basis for further AUG researches,and help design and optimize the hydrodynamic shape of this special type of autonomous underwater vehicle.

    1. Theoretical bases

    1.1Force analysis

    With the force analysis, the movement mechanism of the AUG can be clarified. A body-fixed (BF)coordinate frame is chosen on the AUG model. The buoyancy of the body is chosen as the origin point,G denotes the body's barycenter,drepresents the horizontal offset between the barycenter and the buoyancy center, andθ,αandξare the corresponding included angles, andD, andN represent the axial force along the axis of the body, and the normal force perpendicular to the body, respectively,M is the torque relative to the origin. The details are shown in Fig.5.

    Fig.5 The sketch of force analysis of glider

    If the AUG makes a uniform motion only in the X-Zplane, the motion of the AUG can be expressed as

    The force balance equation can be written as:

    Thus, the conditions for the AUG floating at a constant speed can be expressed as:

    1.2Performance assessment

    Apart from the traditional evaluation norms, i.e.,the consideration of the drag, the energy consumption is another key factor to be considered for evaluating the performance of the AUG. Especially for the underwater gliders, deriven by a high energy battery, the energy consumption is very important for the long operational duration. To this end, in Ref.[15], the concept of the power conversion is proposed, and the power conversion is represented by

    where fxis the horizontal drag,vxis the horizontal gliding speed,ΔBis the rest of the buoyancy, and vyis the vertical speed. The numerator represents the consumed power used to overcome the drag along the horizontal direction while the denominator represents the output power of the residual buoyancy along the vertical direction. This formula gives the proportion of the horizontal power consumption and the potential output of the residual buoyancy in the vertical direction. The higher the target function is, the greater the power conversion ratio becomes. This formula provides an important index for evaluating the performances of the AUG.

    Next, the performances of three typical AUGs are evaluated from multi-angles, including the drag,the power conversion ratio, and the barycenter offset,such that the gliding performance and the energy consumption in various motion states can be analyzed.

    2. Numerical simulations

    2.1Model

    The numerical calculation is implemented by the commercial CFD software, Fluent. In order to make an objective comparison of the performances of these typical AUGs, each AUG model assumes the same geometry size, which is 0.053 m3in volume, and 1.2 m in length (not including the stern rudder). Besides, the normal cruising speed of the AUG is relatively slow, about 0.6 m/s, which means a small Reynolds number, of ~105, and in addition to the low drag, it ensures the stability of the incoming flow, therefore,the laminar flow model could be adopted.

    According to Ref.[6], the experimental results in the wind tunnel demonstrate that the laminar flow would separate at a point just after the maximum diameter of the body and reattach turbulently near the tail,when the attack angle reaches12o. The glider is placed in the middle of the computational domain at a distance of 2.5 L away from the upstream boundary. Besides, the downstream exit boundary is located at 6.5 L away from the center of the glider, in order to minimize the influence from the boundaries. As the quality of the computational gird is essential for meeting the accurate and stable requirements of the numerical calculation, a grid independence test is performed to find out the optimal number of elements.

    Table 1 Grids used for the grid independence test

    Table 1 shows the results of the grid independence test performed with the CFD software, wheref andL represent the lift and the drag of Hull01, respectively. From this table, it is obvious that the number of elements of Grid6 and Grid7 are satisfactory in predicting coherent simulation results.

    The schemas of the grids of Hull01, Hull02, and Hull03 are shown in Fig.6, Fig.7 and Fig.8, respectively.

    Fig.6 Numerical grid of Hull01 (Rogue)

    Fig.7 Numerical grid of Hull02 (Slocum)

    Fig.8 Numerical grid of Hull03 (Seaglider)

    Table 2 Drags of Hull01, Hull02 and Hull03 at different attack angles

    Fig.9 Drags of Hull01, Hull02 and Hull03 at different attack angles

    2.2Result analyses

    At a certain inflow velocity (0.2 m/s), the drags of Hull01, Hull02 and Hull03 at different attack angles are presented in Table 2. In Fig.9, the curves of drag versus attack angle of all typical gliders are also presented.

    From Fig.9, it can be found that, at a certain inflow velocity, the drag of each model increases with the increase of the attack angle. The drags of Hull01 and Hull03 are approximately the same. However, the drag of Hull02 is about two times larger than those of Hull01 and Hull03. In Ref.[16], the drags of the Seaglider and the Slocum are also compared. The results suggest that the drag of the Slocum is about two times larger than that of the Seaglider. Considering that the stabilizer of Hull02 is higher than those of Hull01 and Hull03, it is necessary to calculate the drag experienced by the stabilizer of Hull02, and the corresponding results are presented in Table 3.

    Table 3 Drag experienced by the stabilizer of Hull02

    Table 3 presents the proportion of the drag experienced by the stabilizer of Hull02. It can be found that the drag experienced by the stabilizer of Hull02 takes more than 30% of the total drag. When the attack angle is beyond 8o, this proportion reaches over 50%. Therefore, the disadvantage caused by the drag experienced by the Hull02 is limited.

    Fig.10 Barycenter offset of Hull01, Hull02 and Hull03 in response to different attack angles

    At the same inflow velocity (0.2 m/s), the barycenter offset-attack angle curves of Hull01, Hull02 and Hull03 in response to different attack angles are shown in Fig.10.

    As can be seen from Fig.10, at the same inflow velocity, the barycenter offset of each model increases with the increase of the attack angle. The barycenter offset of the Hull01 is larger than those of Hull02 and Hull03, and the barycenter offset of the Hull02 is slightly greater than that of Hull03.

    The energy consumption of Hull03 is the minimal while that of Hull01 is the greatest, hence it can be concluded that, to some extent, the design of Hull01 is unreasonable.

    At different inflow velocities (0.2 m/s, 0.3 m/s,0.4 m/s, 0.5 m/s and 0.6 m/s), the curves of the power conversion ratio of Hull01, Hull02 and Hull03 versus the attack angles are shown in Figs.11-13.

    Fig.11 The power conversion ratio of Hull01

    Fig.12 The power conversion ratio of Hull02

    Fig.13 The power conversion ratio of Hull03

    As can be seen from the above three figures, at the same inflow velocity, the power conversion ratio corresponding to each model first increases and then decreases with the increase of the attack angle. As a result, there is a maximum power conversion value. For all three AUGs, when the inflow velocity increases, the attack angles corresponding to the maximum power conversion ratios decrease. At different inflow velocities, the trends of the power conversion ratio are similar. Considering that the usual speed of the AUG is low, generally, 0.25m/s[5], a velocity of 0.2 m/s can be chosen for further analyses.

    When the inflow velocity is 0.2 m/s, the power conversion ratios of Hull01, Hull02 and Hull03 corresponding to different attack angles are shown in Fig.14. The curves of the power conversion ratios of Hull01, Hull02 and Hull03 versus the gliding angles are shown in Fig.15.

    Fig.14 The power conversion ratios against different attack angles

    Fig.15 The power conversion ratios against different gliding angles

    In Fig.14, it can be seen that the attack angles corresponding to the best power conversion rateηof Hull01, Hull02 and Hull03 are 6o,4oand 4o, respectively. When the attack angle is small, Hull02 has the largest power conversion ratio, and Hull03 has the second best, and Hull01 has the smallest. By increasing the attack angle, the power conversion ratio of Hull02 decreases quickly, as a result, the power conversion ratio of Hull02 becomes smaller than that of Hull03 within a certain range. When theattack angle further increases, the power conversion ratio of Hull02 is slightly smaller than that of Hull01.

    In view of the power conversion, Hull02 is suitable for a small attack angle gliding while Hull03 has a better performance especially in large attack angle ranges, and it is suitable for a fixed-point gliding.

    Figure 15 shows that the glider angles for whichthe best power conversion ratios of Hull01,Hull02 and Hull03 could be achieved are 33o,19oand 28o, respectively. At this point, the corresponding power conversion ratios are 0.623, 0.725 and 0.697, respectively. Also, it should be noted that, at the same inflow velocity, the power conversion ratio of Hull2 is the highest, therefore, the superiority of Hull2 is obvious.

    With regard to the power conversion, Hull02 has the best performance, and Hull03 has the next best performance. The performance of Hull01 is the worst. Hull02 is suitable for small-angle gliding while its glide scope is wide. Hull01 and Hull03 are suitable for large-angle gliding with a short gliding scope.

    3. Conclusions

    In this paper, the performances of three typical AUGs are evaluated from multi-view angles, which include the drag, the power conversion ratio, and the barycenter offset. From the numerical simulation, the following four conclusions can be reached.

    (1) In the case of the Rogue, although the drag is low, the power conversion rate is also low, and the barycenter offset is large. They indicate that its corresponding energy consumption is high. Generally speaking,the performance of the Rogue is poor.

    (2) For the Slocum, the drag is larger than those of the Rogue and the Seaglider. However, the calculation results show that the disadvantage caused by the drag is limited. The power conversion rate of the Slocum is higher than that of the Seaglider in the cases of small attack angles. Therefore, the Slocum is suitable for small-angle gliding with wild gliding scope.

    (3) For the Seaglider, its experienced drag is roughly equal to that of the Rogue while its energy consumption is relative low. From a standpoint of the power conversion, the Seaglider enjoys a better performance, especially in the case of large attack angles,and it is suitable for fixed-point gliding.

    (4) Because of the obvious performance advantages of the Slocum, it is reasonable to select the Slocum as the object for further researches. The related research may focus on the leading edge and the wing of the body.

    References

    [1]RUDNICK D. L., DAVIS R. E. and ERIKSEN C. C. et al. Underwater gliders for ocean research[J]. Marine Technology Society Journal, 2004, 38(2): 73-84.

    [2]STOMMEL H. The SLOCUM mission[J]. Oceanography, 1989, 2(1): 22-25.

    [3]BACHMAYER R., LEONARD N. E. and GRAVED J. et al. Underwater gliders: Recent developments and future applications[C]. Proceedings of the IEEE International Symposium on Underwater Technology. Taibei, China, 2004.

    [4]WEBB D. C., SIMONETTI P. J. and JONES C. P. SLOCUM: An underwater glider propelled by environmental energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452.

    [5]SHERMAN J., DAVIS R. and OWENS W. B. et al. The autonomous underwater glider “Spray”[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 437-446.

    [6]ERIKSEN C. C., OSSE T. J. and LIGHT R. D. et al. Seaglider: A long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436.

    [7]LI Zhi-wei, CUI Wei-cheng. Overview on the hydrodynamic performance ofunderwater gliders[J]. Journal of Ship Mechanics, 2012,16(7): 829-837(in Chinese).

    [8]MIN Qiang-li Discussion of the key technologies and military foreground of autonomous underwater glider[J]. Mine Warfare and Ship Self-Defence, 2013, 21(2):67-71(in Chinese).

    [9]ZHANG Shao-wei, YU Jian-cheng and ZHANG Ai-qun Optimal control for underwater gliders in the vertical plane[J]. Control Theory and Applications, 2012,29(1): 19-26(in Chinese).

    [10]LI Ye, WU Qi. The controlling system design movement simulation of underwater glider[J]. Ship and Ocean Engineering, 2013, 42(2): 144-148(in Chinese).

    [11]ZHAO Bao-qiang, WANG Xiao-hao et al. Three-dimensional steady motion modeling and analysis for underwater gliders[J]. Journal of Ocean Technology,2014, 33(1): 11-18(in Chinese).

    [12]MA Zheng, ZHANG Hua and ZHANG Nan. Study on energy and hydrodynamic performance of the underwater glider[J]. Journal of Ship Mechanics, 2006,10(3): 53-60.

    [13]LI Lin, CHEN Jin and ZHANG Zhi-guo et al. Hydrodynamic performance and gliding attitude analysis of an underwater glider[C].Proceeding of the 11th National Congress on Hydrodynamics and 24th National Conference on Hydrodynamics and Commemoration of the 110th Anniversary Zhou Pei-yuan's Birth. Wuxi, China, 2012, 774-780(in Chinese).

    [14]LI Ying-hua, CHEN Lu-yu and ZHANG Bo et al. A study on the effect of the motional performance from the hydrodynamical distribution of the gliding wings for the underwater glider[C].Proceeding of the 25th National Conference on Hydrodynamics and 12th national Congress on Hydrodynamics. Zhoushan, China, 2013, 723-729(in Chinese).

    [15]MA Dong-mei, MA Zheng and ZHANG Hua. Hydrodynamic analysis and optimization on the gliding attitude of the underwater glider[J]. Journal of Hydrodynamics, Ser. A, 2007, 22(6): 703-708(in Chinese).

    [16]CHEN Jin. A Thesis Submitted in partial fulfillment of the requirements[D]. Master Thesis, Wuhan, China:Huazhong University of Science and Technology,2012(in Chinese).

    (November 2, 2014, Revised January 6, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51279184).

    Biography: CHEN Ya-jun (1986-), Female, Ph. D. Candidate

    MA Zheng,

    E-mail: Mazh8888@sina.com

    免费少妇av软件| 免费大片黄手机在线观看| 午夜福利,免费看| 精品人妻在线不人妻| videosex国产| 视频区图区小说| 亚洲国产精品一区三区| 亚洲精品成人av观看孕妇| 在线观看一区二区三区激情| 亚洲欧美一区二区三区黑人 | 日韩精品免费视频一区二区三区| 亚洲av电影在线进入| 亚洲色图 男人天堂 中文字幕| 日本猛色少妇xxxxx猛交久久| 国语对白做爰xxxⅹ性视频网站| 亚洲精品国产av蜜桃| 国产毛片在线视频| 男人操女人黄网站| 久久97久久精品| 激情视频va一区二区三区| 精品一品国产午夜福利视频| 久久久亚洲精品成人影院| xxx大片免费视频| 久久午夜福利片| 纯流量卡能插随身wifi吗| 国产av一区二区精品久久| 国产成人精品久久久久久| 少妇人妻久久综合中文| 最近手机中文字幕大全| 日本欧美视频一区| 中文字幕另类日韩欧美亚洲嫩草| av又黄又爽大尺度在线免费看| av国产久精品久网站免费入址| 中文字幕亚洲精品专区| 日韩,欧美,国产一区二区三区| 超色免费av| 欧美国产精品一级二级三级| 在线免费观看不下载黄p国产| 午夜福利乱码中文字幕| 这个男人来自地球电影免费观看 | 国产老妇伦熟女老妇高清| 精品亚洲成国产av| 天堂中文最新版在线下载| 桃花免费在线播放| 超碰成人久久| 日本欧美视频一区| 丝袜人妻中文字幕| 欧美少妇被猛烈插入视频| 国产精品熟女久久久久浪| 亚洲伊人色综图| 国产在线免费精品| 久久精品国产自在天天线| 国产片内射在线| 日韩欧美精品免费久久| 亚洲欧美色中文字幕在线| 国产熟女欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷色综合www| 黑人巨大精品欧美一区二区蜜桃| 大香蕉久久网| 女人精品久久久久毛片| 国产精品熟女久久久久浪| 午夜影院在线不卡| 一级片免费观看大全| 亚洲精品国产一区二区精华液| 在现免费观看毛片| 午夜免费观看性视频| 亚洲精品aⅴ在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品嫩草影院av在线观看| 久久久久久久亚洲中文字幕| 美女大奶头黄色视频| 亚洲内射少妇av| 国产片特级美女逼逼视频| 久久国产精品男人的天堂亚洲| 成年美女黄网站色视频大全免费| 夫妻午夜视频| 在线观看www视频免费| 免费在线观看完整版高清| 亚洲人成电影观看| 国精品久久久久久国模美| 自线自在国产av| 日韩熟女老妇一区二区性免费视频| 日本wwww免费看| 嫩草影院入口| 国产色婷婷99| 亚洲人成电影观看| 热re99久久国产66热| 国产日韩欧美亚洲二区| 天天操日日干夜夜撸| 日本猛色少妇xxxxx猛交久久| 亚洲欧美精品综合一区二区三区 | 各种免费的搞黄视频| 超碰成人久久| 人妻一区二区av| 如日韩欧美国产精品一区二区三区| 观看美女的网站| 国产成人欧美| 亚洲成人av在线免费| 99久久中文字幕三级久久日本| 夜夜骑夜夜射夜夜干| 在线观看一区二区三区激情| 国产黄色免费在线视频| 免费观看无遮挡的男女| 少妇精品久久久久久久| 欧美xxⅹ黑人| 成人国产麻豆网| 色播在线永久视频| 成人二区视频| 亚洲国产精品999| 欧美精品一区二区免费开放| 好男人视频免费观看在线| 女的被弄到高潮叫床怎么办| 国产有黄有色有爽视频| www.熟女人妻精品国产| 国产精品蜜桃在线观看| 男女免费视频国产| 亚洲情色 制服丝袜| 久热久热在线精品观看| 国产有黄有色有爽视频| 久久影院123| 国产无遮挡羞羞视频在线观看| 国产一区二区三区综合在线观看| 视频区图区小说| 一本久久精品| 国产成人午夜福利电影在线观看| 久久精品国产自在天天线| 亚洲国产最新在线播放| 赤兔流量卡办理| 久久99蜜桃精品久久| 久久99热这里只频精品6学生| 久久久久久久国产电影| 国产免费福利视频在线观看| 青春草亚洲视频在线观看| 美女视频免费永久观看网站| 成人亚洲欧美一区二区av| 可以免费在线观看a视频的电影网站 | 日本欧美国产在线视频| 国产不卡av网站在线观看| 亚洲精品,欧美精品| 日本爱情动作片www.在线观看| 久久久久久人妻| 香蕉丝袜av| 各种免费的搞黄视频| 制服人妻中文乱码| 涩涩av久久男人的天堂| 日韩av在线免费看完整版不卡| 国产人伦9x9x在线观看 | 一级毛片 在线播放| 欧美国产精品va在线观看不卡| 国产成人午夜福利电影在线观看| 日韩一卡2卡3卡4卡2021年| av不卡在线播放| 80岁老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 侵犯人妻中文字幕一二三四区| 亚洲男人天堂网一区| 日本wwww免费看| 亚洲国产精品成人久久小说| 欧美日本中文国产一区发布| 又粗又硬又长又爽又黄的视频| 亚洲精品第二区| av有码第一页| 2018国产大陆天天弄谢| 久热久热在线精品观看| 中文天堂在线官网| 啦啦啦视频在线资源免费观看| 丝袜喷水一区| 国产精品无大码| 人妻人人澡人人爽人人| 人妻一区二区av| 亚洲综合色惰| 少妇 在线观看| 亚洲国产日韩一区二区| 熟女少妇亚洲综合色aaa.| 一级黄片播放器| 九草在线视频观看| 国产亚洲最大av| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| 久久久久久久久免费视频了| 久久狼人影院| 亚洲欧美成人综合另类久久久| 久久国内精品自在自线图片| 91精品三级在线观看| 性少妇av在线| 在线观看www视频免费| 久久久久久久久久人人人人人人| 精品99又大又爽又粗少妇毛片| 在线观看国产h片| 国产精品久久久久久精品电影小说| 中文字幕制服av| 国产精品不卡视频一区二区| 久久久久久久久久久久大奶| 天堂8中文在线网| 亚洲图色成人| 在线观看免费日韩欧美大片| 一区二区三区乱码不卡18| 人妻 亚洲 视频| 观看av在线不卡| 日本欧美国产在线视频| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| 久久久久久久亚洲中文字幕| 少妇人妻 视频| 午夜激情av网站| 久久久久国产网址| 又粗又硬又长又爽又黄的视频| 丝袜在线中文字幕| 日韩人妻精品一区2区三区| 91在线精品国自产拍蜜月| 亚洲欧美色中文字幕在线| 国产精品无大码| 亚洲av免费高清在线观看| 黄片小视频在线播放| 99久久中文字幕三级久久日本| 亚洲三区欧美一区| 欧美日韩综合久久久久久| 欧美少妇被猛烈插入视频| 韩国精品一区二区三区| 老鸭窝网址在线观看| 高清不卡的av网站| 国产成人午夜福利电影在线观看| 亚洲综合色惰| 在线亚洲精品国产二区图片欧美| 国产福利在线免费观看视频| 精品久久久精品久久久| 精品酒店卫生间| 午夜久久久在线观看| 中文字幕制服av| 精品人妻偷拍中文字幕| 最近手机中文字幕大全| 90打野战视频偷拍视频| 中文字幕最新亚洲高清| 精品一区二区三卡| 亚洲伊人久久精品综合| 婷婷成人精品国产| 男女边摸边吃奶| 国产免费一区二区三区四区乱码| 亚洲国产日韩一区二区| 黑人欧美特级aaaaaa片| 秋霞伦理黄片| 女人精品久久久久毛片| 九九爱精品视频在线观看| 男女啪啪激烈高潮av片| 欧美人与性动交α欧美软件| 精品酒店卫生间| 欧美精品av麻豆av| 男人添女人高潮全过程视频| 日本vs欧美在线观看视频| 亚洲欧美精品综合一区二区三区 | 中文字幕色久视频| 中文字幕亚洲精品专区| 午夜av观看不卡| 夜夜骑夜夜射夜夜干| 99re6热这里在线精品视频| 女人精品久久久久毛片| 男人舔女人的私密视频| 电影成人av| 性色avwww在线观看| 深夜精品福利| 国产精品欧美亚洲77777| 男人舔女人的私密视频| 男人操女人黄网站| 激情视频va一区二区三区| 午夜福利在线观看免费完整高清在| 黄色怎么调成土黄色| 精品视频人人做人人爽| 国产成人91sexporn| 国产精品久久久久久精品古装| 交换朋友夫妻互换小说| 最近手机中文字幕大全| 久久女婷五月综合色啪小说| av在线播放精品| 久久久精品免费免费高清| 色吧在线观看| 九九爱精品视频在线观看| 青草久久国产| 韩国高清视频一区二区三区| 婷婷色麻豆天堂久久| 中文字幕精品免费在线观看视频| 午夜福利在线免费观看网站| 中文字幕av电影在线播放| 精品人妻在线不人妻| 爱豆传媒免费全集在线观看| 午夜福利视频在线观看免费| 亚洲av男天堂| 亚洲图色成人| 久久精品国产自在天天线| 日韩中文字幕欧美一区二区 | 国产成人精品在线电影| 午夜福利视频精品| 亚洲成av片中文字幕在线观看 | 一个人免费看片子| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦啦在线视频资源| 国产精品国产三级专区第一集| a级毛片黄视频| 在线天堂最新版资源| 国产精品久久久久久av不卡| 看十八女毛片水多多多| 亚洲精品av麻豆狂野| 日韩在线高清观看一区二区三区| 国产成人精品在线电影| av卡一久久| 宅男免费午夜| 国产视频首页在线观看| 亚洲视频免费观看视频| 中文字幕最新亚洲高清| 蜜桃在线观看..| 又粗又硬又长又爽又黄的视频| 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| 亚洲国产成人一精品久久久| 少妇被粗大猛烈的视频| 国产精品久久久久久久久免| 69精品国产乱码久久久| 999精品在线视频| 亚洲av中文av极速乱| 老司机影院成人| 你懂的网址亚洲精品在线观看| 丝袜美足系列| 成人亚洲精品一区在线观看| 在线观看免费高清a一片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 晚上一个人看的免费电影| 大香蕉久久成人网| 青春草国产在线视频| 伊人亚洲综合成人网| 国语对白做爰xxxⅹ性视频网站| 看十八女毛片水多多多| 久久午夜福利片| 看十八女毛片水多多多| 久久午夜福利片| 亚洲成色77777| 免费观看性生交大片5| 伦精品一区二区三区| 国产日韩一区二区三区精品不卡| 国产毛片在线视频| 天美传媒精品一区二区| 国产探花极品一区二区| 久久久久久久精品精品| 久久久久精品人妻al黑| 观看美女的网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 女人高潮潮喷娇喘18禁视频| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 亚洲av.av天堂| 黑人巨大精品欧美一区二区蜜桃| 亚洲综合色惰| 欧美av亚洲av综合av国产av | 欧美国产精品va在线观看不卡| 欧美激情高清一区二区三区 | 亚洲伊人久久精品综合| 一级黄片播放器| 人体艺术视频欧美日本| 国产高清国产精品国产三级| 国产日韩欧美在线精品| 日韩伦理黄色片| 韩国av在线不卡| 五月开心婷婷网| 国产精品欧美亚洲77777| 欧美精品高潮呻吟av久久| 观看av在线不卡| 精品少妇一区二区三区视频日本电影 | 一级毛片我不卡| 久久毛片免费看一区二区三区| 亚洲美女黄色视频免费看| 久久精品久久精品一区二区三区| 97在线人人人人妻| 日产精品乱码卡一卡2卡三| 亚洲国产最新在线播放| 熟女av电影| 久久久久久伊人网av| 麻豆乱淫一区二区| 成人亚洲欧美一区二区av| 久久热在线av| 久久久a久久爽久久v久久| 欧美日韩视频精品一区| 欧美人与性动交α欧美软件| 亚洲,欧美,日韩| 大码成人一级视频| 婷婷色av中文字幕| 成人毛片60女人毛片免费| 嫩草影院入口| 尾随美女入室| 国产亚洲欧美精品永久| 午夜福利一区二区在线看| 久久久国产一区二区| 韩国精品一区二区三区| 青草久久国产| 国产精品久久久久久精品电影小说| av有码第一页| 日本猛色少妇xxxxx猛交久久| 女人高潮潮喷娇喘18禁视频| 久久99蜜桃精品久久| 亚洲国产精品成人久久小说| 午夜日本视频在线| 在线观看www视频免费| 亚洲熟女精品中文字幕| 亚洲图色成人| 亚洲一级一片aⅴ在线观看| 在线观看一区二区三区激情| 欧美少妇被猛烈插入视频| 欧美老熟妇乱子伦牲交| 黄色怎么调成土黄色| 国产成人精品福利久久| 99九九在线精品视频| 黄频高清免费视频| 一级a爱视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产欧美网| 国产熟女欧美一区二区| 欧美日韩av久久| 日韩av不卡免费在线播放| 99热全是精品| 天天躁夜夜躁狠狠久久av| 亚洲av免费高清在线观看| 性高湖久久久久久久久免费观看| av天堂久久9| 欧美av亚洲av综合av国产av | 日本爱情动作片www.在线观看| 亚洲中文av在线| 丰满少妇做爰视频| 人成视频在线观看免费观看| 久久久精品区二区三区| 搡女人真爽免费视频火全软件| 精品亚洲成a人片在线观看| 爱豆传媒免费全集在线观看| tube8黄色片| 又粗又硬又长又爽又黄的视频| 少妇被粗大的猛进出69影院| 久久精品久久精品一区二区三区| 国产精品av久久久久免费| 久久久久网色| 日产精品乱码卡一卡2卡三| 蜜桃国产av成人99| 国产麻豆69| 国产成人精品一,二区| 一边亲一边摸免费视频| 熟女av电影| 亚洲精品av麻豆狂野| 大陆偷拍与自拍| 中文乱码字字幕精品一区二区三区| 午夜日本视频在线| 欧美国产精品一级二级三级| 另类亚洲欧美激情| 亚洲 欧美一区二区三区| 色94色欧美一区二区| 国语对白做爰xxxⅹ性视频网站| 满18在线观看网站| 在线观看www视频免费| 国产国语露脸激情在线看| 亚洲国产毛片av蜜桃av| 亚洲欧洲精品一区二区精品久久久 | 国产成人精品一,二区| 97在线视频观看| 国产成人一区二区在线| 99九九在线精品视频| 寂寞人妻少妇视频99o| 秋霞在线观看毛片| 亚洲欧美成人综合另类久久久| 国产野战对白在线观看| av一本久久久久| 成年人免费黄色播放视频| 美女福利国产在线| 免费女性裸体啪啪无遮挡网站| 久久精品夜色国产| 久久精品久久久久久噜噜老黄| 新久久久久国产一级毛片| 欧美精品国产亚洲| 国产精品二区激情视频| av电影中文网址| 男女啪啪激烈高潮av片| 久久久久久久国产电影| 一区福利在线观看| 亚洲欧洲精品一区二区精品久久久 | 人妻 亚洲 视频| 观看美女的网站| 国产av精品麻豆| 九色亚洲精品在线播放| 久久精品国产自在天天线| 精品亚洲成a人片在线观看| 欧美另类一区| 久久久久国产网址| 色婷婷久久久亚洲欧美| 欧美日韩视频精品一区| 国产精品麻豆人妻色哟哟久久| 日本猛色少妇xxxxx猛交久久| 亚洲精品美女久久久久99蜜臀 | 91在线精品国自产拍蜜月| 在线天堂最新版资源| 侵犯人妻中文字幕一二三四区| 日韩伦理黄色片| 久久国产精品男人的天堂亚洲| 成人漫画全彩无遮挡| 久久久久久久久久人人人人人人| 9热在线视频观看99| 日本午夜av视频| 国产亚洲av片在线观看秒播厂| 国产亚洲午夜精品一区二区久久| 人妻一区二区av| 天天躁日日躁夜夜躁夜夜| 亚洲精品视频女| 自线自在国产av| 国产精品免费大片| 久久精品国产亚洲av涩爱| 欧美日韩国产mv在线观看视频| 大话2 男鬼变身卡| 啦啦啦啦在线视频资源| 免费不卡的大黄色大毛片视频在线观看| 日韩一区二区视频免费看| 日本av手机在线免费观看| 美女脱内裤让男人舔精品视频| 又黄又粗又硬又大视频| 中文字幕人妻丝袜制服| 免费在线观看视频国产中文字幕亚洲 | 日韩中文字幕视频在线看片| 高清视频免费观看一区二区| 日韩欧美精品免费久久| 亚洲精品视频女| 99久久人妻综合| www.熟女人妻精品国产| 免费高清在线观看日韩| 日韩一区二区三区影片| 99久久中文字幕三级久久日本| av视频免费观看在线观看| 亚洲精品av麻豆狂野| 边亲边吃奶的免费视频| 男人舔女人的私密视频| 黑人猛操日本美女一级片| 美女高潮到喷水免费观看| www日本在线高清视频| 欧美精品一区二区免费开放| 国产一区有黄有色的免费视频| 国产综合精华液| 熟女电影av网| 国产精品国产三级国产专区5o| 桃花免费在线播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 高清视频免费观看一区二区| 欧美 亚洲 国产 日韩一| 免费人妻精品一区二区三区视频| 精品人妻一区二区三区麻豆| 9色porny在线观看| 日本-黄色视频高清免费观看| 国产亚洲一区二区精品| 国产精品人妻久久久影院| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美+日韩+精品| 亚洲四区av| 观看av在线不卡| 日韩视频在线欧美| 久久99热这里只频精品6学生| 午夜福利网站1000一区二区三区| 欧美日韩亚洲高清精品| 国产精品欧美亚洲77777| av有码第一页| 在线免费观看不下载黄p国产| av片东京热男人的天堂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 老汉色av国产亚洲站长工具| 亚洲国产色片| 亚洲av成人精品一二三区| 日韩欧美一区视频在线观看| 高清不卡的av网站| 1024视频免费在线观看| 亚洲国产精品国产精品| 亚洲情色 制服丝袜| 在线看a的网站| 久久人人97超碰香蕉20202| av网站在线播放免费| 久久精品人人爽人人爽视色| 人妻系列 视频| 可以免费在线观看a视频的电影网站 | 国产有黄有色有爽视频| 激情视频va一区二区三区| 亚洲综合色网址| 黄色配什么色好看| 9热在线视频观看99| 亚洲伊人久久精品综合| 高清视频免费观看一区二区| 国产精品嫩草影院av在线观看| 久久精品久久久久久噜噜老黄| 国产成人午夜福利电影在线观看| 一本大道久久a久久精品| 婷婷色综合大香蕉| 亚洲人成网站在线观看播放| 一本大道久久a久久精品| 日韩中字成人| 亚洲视频免费观看视频| 亚洲四区av| 成人国产麻豆网| 尾随美女入室| 美女国产高潮福利片在线看| 国产一区二区在线观看av| 高清视频免费观看一区二区| 下体分泌物呈黄色| 亚洲av成人精品一二三区| 免费在线观看完整版高清| a级毛片黄视频| 精品一区二区免费观看| 久久av网站| 欧美日韩av久久| av免费在线看不卡| 亚洲在久久综合| 久久久久国产精品人妻一区二区| 18禁裸乳无遮挡动漫免费视频| 久久久久精品人妻al黑| 久久久久国产精品人妻一区二区| 爱豆传媒免费全集在线观看| 国产精品.久久久| 久久精品久久久久久久性| 国产激情久久老熟女|