• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Preconditioned Gridless Method for Solving Euler Equations at Low Mach Numbers

    2015-11-24 06:57:36CaoCheng曹騁ChenHongquan陳紅全
    關(guān)鍵詞:明顯改善特長親戚

    Cao Cheng(曹騁),Chen Hongquan(陳紅全)*

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    A Preconditioned Gridless Method for Solving Euler Equations at Low Mach Numbers

    Cao Cheng(曹騁),Chen Hongquan(陳紅全)*

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers.The preconditioned system in a conservation form is obtained by multiplying a preconditioning matrix of the type of Weiss and Smith to the time derivative of the Euler equations,which are discretized using a gridless technique wherein the physical domain is distributed by clouds of points.The implementation of the preconditioned gridless method is mainly based on the frame of the traditional gridless method without preconditioning,which may fail to converge for low Mach number simulations.Therefore,the modifications corresponding to the affected terms of preconditioning are mainly addressed.The numerical results show that the preconditioned gridless method still functions for compressible transonic flow simulations and additionally,for nearly incompressible flow simulations at low Mach numbers as well.The paper ends with the nearly incompressible flow over a multi-element airfoil,which demonstrates the ability of the method presented for treating flows over complicated geometries.

    gridless method;preconditioning;Euler equations;cloud of points

    0 Introduction

    In the past few decades,computational fluid dynamics(CFD)has gained sustained development and has become an important tool in modern aircraft design.The computational domain used in CFD is discretized by cells of grid or mesh,particularly for existing commercial CFD software.The corresponding methods can be named as"grid method",which requires a grid generation step before flow simulations.For a complicated geometry like a full modern aircraft,to generate a suitable grid is still of great challenge due to the connectivity limitation of the grid,particularly to cope with some geometric details like small gaps between multi-bodies.Hence,the idea of being free of grids has drawn attention.To eliminate completely the limitation of the grid connectivity with point based discretization,a class of methods,namely"gridless or grid-free method",was developed,which behaves naturally and more flexibly to cope with the flow past any complicated geometry due to the following facts.The spatial derivative approximation at any given point by gridless methods depends only on the information of its surrounding points which do not need to form a mesh.The point distribution in the computational domain can be made by using any existing means like the ones used in existing structured or unstructured grid generators.The interesting features motivated many researchers to study this issue and various grid-free approaches[1-10]have been proposed.In aerodynamics,the most notable work was done by Batina[1],who developed an explicit solver based on the centered scheme with artificial dissipation for solving compressible flows with shocks.An implicit solver was later developed by Morinishi[5]using"midpoint upwind"and weighted least-squares.Most of above gridless methods are usually developed for compressible flows and can not be extendeddirectly for solving nearly incompressible flows at low Mach numbers.

    Here a further extension of traditional gridless method will be considered to develop a preconditioned gridless method for solving Euler equations at low Mach numbers.A preconditioning matrix of the type of Weiss and Smith is selected.The preconditioned system in conservation form is then obtained by multiplying preconditioning matrix to the time derivative of the Euler equations,which are discretized using a gridless technique wherein the physical domain is distributed by clouds of points.The implementation of the preconditioned gridless method is mainly based on the frame of the traditional gridless method without preconditioning,therefore the only modifications corresponding to the affect terms of preconditioning are mainly discussed. The resulting preconditioned gridless method is tested and analyzed by both compressible transonic flows and nearly incompressible flows at low Mach numbers over airfoils or multi-element airfoils.The numerical results show that the preconditioned gridless method still functions for compressible transonic flow simulations and additionally,for nearly incompressible flow simulations at low Mach numbers as well.

    1 Governing Equations

    The Euler equations governing inviscid flows can be expressed in a dimensionless[10]conservative form as

    where W is the vector of conservative variables.E and F are the convective flux terms.They are defined as

    whereρ,p,E and H denote the density,pressure,total energy per unit mass,and total enthalpy per unit mass respectively.u and v are the Cartesian components of the velocity vector. These quantities for a perfect gas satisfy

    whereγis the ratio of specific heats of the fluid and typically taken asγ=1.4 for air.

    2 Basic Gridless Method Without Preconditioning

    In the gridless method,scattered points are distributed in the physical domain of the problem to be solved.For each point,several points around it are chosen to form a cloud of points[1-4]. Fig.1 shows a typical cloud of points C(i),in which point i is named the center and the other points are called the satellites.

    Fig.1 Cloud of points

    The spatial derivatives of any quantities in the gridless method are evaluated with linear combinations of certain coefficients and the quantities in the cloud of points.The first order derivatives of function f at point i can be estimated by the following linear combination forms[11]

    where Midenotes the total number of the satellites in the cloud C(i),and fikthe value at the midpoint between point i and point k.The coefficientsαikandβikcan be obtained using weighted least-squares curve fitting[5,12-13].The weight functions used in this study are given by

    where rkis the relative distance defined with

    In cloud C(i),the flux terms of Eq.(1)can be rewritten as

    If Eq.(7)is applied to the convective flux of the Euler equations,it can be further written as

    where the flux term G at the midpoint is defined as

    and U is defined as

    The numerical flux Gikat the midpoint between point i and k can be calculated from the conservative variables at the midpoint.By using central difference method,the conservative variables at the midpoint can be obtained as follows

    With the conservative variables Wik,the numerical flux Gikcan be calculated.To make the computation stable,the artificial dissipative term D is added.The semi-discretization form of the Euler equations for cloud C(i)then can be expressed as

    The construction of the artificial dissipative terms is given by

    whereε(2)andε(4)are the adaptive coefficients.λ is the spectral radius of the Jacobian matrix A=?G/?W

    where the superscripts n and n+1 denote the current and the next new time level,respectively and m=1,2,3,4 is the internal step.The coefficients ηmcan be found in Ref.[14].To accelerate the convergence,Δtiis taken as the maximum permissible local time step[14]

    In the case of an inviscid flow,the fluid slips over the wall surface.In other words,the normal component of the velocity vanishes at the solid boundary.Therefore,the appropriate boundary condition is to require the flow to be tangential to the surface

    where Vwand n are the velocity and unit normal vector at the surface,respectively.

    In the far field,one-dimensional characteristic analysis based on Riemann invariants is used to determine the values of the flow variables on the outer boundaries of the computational domain.The details of the implementation of the boundary conditions can be found in Ref.[14].

    3 Preconditioned Gridless Method

    The preconditioned system is obtained by multiplying the time derivative in Eq.(1)by a matrixΓ

    whereΓrepresents the preconditioning matrix based on the conservative variables.In a strict sense,Eq.(21)is not conservative for the timedependent flows.As pointed out in Ref.[15],however,it is still conservative in the steady state.Thus,it is not a problem to employ Eq.(21)for steady calculations.

    The choice of the preconditioning matrix for low Mach number flows is not unique[16-21].Awell-known and widely used preconditioning matrix is introduced by Weiss and Smith[18-19].This paper uses the following preconditioning matrix and it can be written as

    為使阿力木·亞庫普度過眼前的難關(guān),吳輝生根據(jù)他的特長協(xié)調(diào)聯(lián)系給他在六建東方一分公司安排了一份司機(jī)的工作,月收入2500元。如今阿力木·亞庫普有了穩(wěn)定的工作,生活質(zhì)量有了明顯改善,他逢人便說,我能有今天多虧了漢族親戚的幫助引導(dǎo)。

    where

    where Ma and Ma∞r(nóng)epresent the local and the freestream Mach number,respectively.

    The difficulty in solving the flows at a low Mach number of the traditional gridless method without preconditioning is associated with the large disparity in the magnitudes of eigenvalues[15].The application of preconditioning changes the eigenvalues of the system and scales them to the same order of magnitude.Using the gridless method to discretize the spatial derivatives as suggested in Eq.(7),Eq.(21)can be further rewritten as

    In Eq.(25),the flux terms can be computed using the traditional gridless method described in Section 1 and then multiplied byΓ-1directly. The Jacobian matrix for the system after preconditioning now becomesΓ-1?G/?W,which has the spectral radius as

    To make the computation stable,a new artificial dissipative term D'ishould be added and takes the form as

    Compared with Eq.(16),adaptive coefficients,ε(2)andε(4)are now multiplied by a modified spectral radiusλ'defined in Eq.(26).Therefore,Eq.(25)can be rewritten as

    An explicit four-stage Runge-Kutta time integration scheme like Eq.(18)is also used for this resulting semi-discretization Eq.(28)to have a steady solution.The boundary conditions should also be changed to suit the preconditioned system.The use of characteristics-based boundary conditions requires information of the eigenvalues of the Jacobian matrix.Once the time-dependent equations are changed,the characteristics of the system are changed correspondingly. Hence,it is necessary to modify the far-field boundary conditions for the preconditioned system.Accurate characteristic boundary conditions for the preconditioned system can be found in Ref.[22].As for incompressible flows,a simplified boundary condition is proposed by Turkel[23]and adopted in this paper,which reads

    Inflow:

    Outflow:

    where the subscript"b"denotes the variables to be computed at the boundary,"int"the variables from the interior of the flowfield,and"∞"the freestream variables.

    4 Numerical Results

    The gridless method and preconditioned gridless method described above have been implemented and tested with different flow conditions.In this section one presents results obtained for the following test cases:transonic flows over NACA0012 airfoil,flows over airfoils at low Mach numbers,and nearly incompressible flow over a multi-element airfoil.The first result will showthe performance and accuracy of the present methods for computing transonic flows and the gridless method with preconditioning does not adversely affect the calculations of this type.The second case will demonstrate the preconditioned gridless method for solving the flows at low Mach numbers.And in the final case,the ability of present preconditioned gridless method is demonstrated for treating nearly incompressible flows over complex geometries.

    4.1 Transonic flows over NACA0012 airfoil

    In order to demonstrate the accuracy and performance of the present method for solving transonic flow,numerical results are presented for the calculation of two-dimensional flow around an NACA0012 airfoil.The clouds of 3 808 points used for this case are shown in Fig.2.In accordance with Ref.[24],the angle of attack is set to 0°and Mach number to 0.8.

    Fig.2 Point distribution around NACA0012 airfoil

    The surface pressure coefficients of the NACA0012 airfoil are shown in Fig.3.It is shown the reasonable agreement of the predictions obtained by the gridless method,preconditioned gridless method and finite volume method(FVM)[24]in view of the strength or location of the captured shock.

    4.2 Flows over airfoils at low Mach numbers

    Fig.3 Surface pressure coefficients

    The performance of the preconditioned gridless method has been tested firstly for the flows over the symmetric NACA 0012 airfoil at low Mach numbers.Four low Mach numbers of 0.3, 0.1,0.01 and 0.001 with the same zero angle of attack and CFL=6 are selected for the numerical simulation.Convergence histories for both gridless method and preconditioned gridless method are shown in Figs.4,5,respectively.

    Fig.4 Convergence histories without preconditioning

    Fig.5 Convergence histories with preconditioning

    Here it can be observed that the convergence of gridless method without preconditioning becomes difficulty as the Mach number becomes smaller.However,the preconditioned gridless method can be converged for all testing Mach numbers.Predicted Mach contours for the typical case of Ma=0.001,angle of attack 0°and CFL= 6 are shown in Fig.6.It can be noted that the symmetry of Mach contours is well captured in agreement with the physical symmetry flow field of the flows over the symmetric NACA 0012 airfoil with zero angle of attack.The corresponding distribution of surface pressure coefficient is compared with the experimental data[25]in Fig.7.As seen from Fig.7,the agreement between the calculation and experiment is quite good.

    Fig.6 Mach contours

    Fig.7 Distribution of surface pressure coefficient

    The computations of the flows over an unsymmetric RAE2822 airfoil at low Mach number are also carried out by the present preconditioned gridless method.Here the case of Mach number 0.01 and angle of attack 1.89°is presented as shown in Figs.8—11.Fig.8 illustrates the clouds of points distributed in the computational domain.The convergence history of the present preconditioned gridless method in Fig.9 is plotted along with that of gridless method without preconditioning for having a possible comparison. It can be learned from the corresponding Mach contours in Fig.10 that the captured flow filed is now unsymmetric,which reflects the physical feature of the flows over an unsymmetric RAE2822 airfoil.As seen from Fig.11,agreement between present calculations and other results appeared in open literature like Puoti's calculations[26]or the experiment[27]is quite good in view of peak of leading edge suction and pressure distributions.

    Fig.8 Points around RAE2822 airfoil

    Fig.9 Comparison of convergence history

    Fig.10 Mach contours around RAE2822 airfoil

    4.3 Nearly incompressible flow over a multielement airfoil

    As compared with the single-element airfoil like NACA 0012 or RAE2822 mentioned above,multi-element airfoils have relatively complicated geometry and are widely used as the techniques of high lift systems related to the landing or take-off of a real aircraft.It can be noted that the flows during the landing or take-off are nearly incompressible.Therefore,the simulation of nearly incompressible flow over a multi-element airfoil is conducted here to demonstrate the ability of the method developed in this paper.

    The clouds of 5 865 points used for this case are shown in Fig.12.Here it can be learned that this multi-element airfoil consists of slat,main,and flap parts.To compare the results with the available results appeared in open literatures,the case of Mach number Ma=0.197 and angle of attack 4.01°is selected and computed with CFL= 6.Fig.13 shows the better convergence history of this calculation,along with plotting failing convergence history of gridless method without preconditioning.The Mach contours and the corresponding surface pressure coefficient are shown in Figs.14,15,respectively.A reasonable agreement between calculations and experimental data[28]of the surface pressure coefficient is achieved particularly on the surface of the main part of thismulti-element airfoil.

    Fig.12 Point distribution around multi-element airfoil

    Fig.13 Convergence histories

    Fig.14 Mach contours

    Fig.15 Surface Cpdistribution

    5 Conclusions

    The preconditioned gridless method for solving Euler equations has been developed based on the gridless method without preconditioning,which may fail to converge for low Mach number simulations.The preconditioned gridless method still adapts to compressible transonic flow simulations and additionally,for nearly incompressible flow simulations at low Mach numbers as well. The numerical results have shown the performance and the accuracy of the preconditioned gridless method,which demonstrates the ability for treating nearly incompressible flows over complex geometries.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(No.11172134).

    [1] Batina J T.A gridless Euler/Navier-Stokes solution algorithm for complex-aircraft applications[R]. AIAA 93-0333,Reno NV:AIAA,1993.

    [2] Liu J L,Su S J.A potential gridless solution method for the compressible Euler/Navier-Stokes equations[R].AIAA 1996-0526,Reno NV:AIAA,1996.

    [3] Onate E,Idelsohn S,Zienkiewicz O C,et al.A finite point method in computational mechanics:Applications to convective transport and fluid flow[J]. International Journal for Numerical Methods in Engineering,1996,39(22):3839-3866.

    [4] Belytschko T,Krongauz Y,Organ D,et al.Meshless methods:An overview and recent developments[J].Computer Methods in Applied Mechanics and Engineering,1996,139(1):3-47.

    [5] Morinishi K.An implicit gridless type solver for the Navier-Stokes equations[J].Computational Fluid Dynamics Journal,2001(S):551-560.

    [6] Sridar D,Balakrishnan N.An upwind finite difference scheme for meshless solvers[J].Journal of Computational Physics,2003,189(1):1-29.

    [7] Kirshman D J,Liu F.A gridless boundary condition method for the solution of the Euler equations on embedded Cartesian meshes with multigrid[J].Journal of Computational Physics,2004,201(1):119-147.

    [8] Ma Zhihua,Chen Hongquan,Zhou Chunhua.A study of point moving adaptivity in gridless method[J].Computer Methods in Applied Mechanics and Engineering,2008,197(21/22/23/24):1926-1937.

    [9] Katz A,Jameson A.A comparison of various meshless schemes within a unified algorithm[R].AIAA 2009-596,Orlando Florida:AIAA,2009.

    [10]Pu Saihu,Chen Hongquan.Gridless method for unsteady viscous flows[J].Transactions of Nanjing U-niversity of Aeronautics&Astronautics,2012,29(1):1-8.

    [11]Guo Tongqing.Transonic unsteady aerodynamics and flutter computations for complex assemblies[D]. Nanjing,China:College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,2006.(in Chinese)

    [12]Chen Hongquan,Shu Chang.An efficient implicit mesh-free method to solve two-dimensioanl compressible euler equations[J].International Journal of Modern Physics C,2005,16(3):439-454.

    [13]Chen Hongquan.An implicit gridless method and its applications[J].Acta Aerodynamica Sinica,2002,20(2):133-140.(in Chinese)

    [14]Morinishi K.Gridless type solution for high Reynolds number multielement flow fields[R].AIAA 95-1856,1995.

    [15]Ma Zhihua.Research of adaptive meshfree and hybridized mesh/meshfree methods[D].Nanjing,China:Nanjing University of Aeronautics and Astronautics,2008.(in Chinese)

    [16]Turkel E.Preconditioned methods for solving the incompressible and low speed compressible equations[J].Journal of Computational Physics,1987,72(2):277-298.

    [17]Turkel E.A review of preconditioning methods for fluid dynamics[J].Applied Numerical Mathmatics,1993,12(1/2/3):257-284.

    [18]Choi Y H,Merkle C L.The application of preconditioning to viscous flows[J].Journal of Computational Physics,1993,105(2):207-223.

    [19]Weiss J,Smith W A.Preconditioning applied to variable and constant density flows[J].AIAA Journal,1995,33(11):2050-2057.

    [20]Weiss J M,Maruszewski J P,Smith W A.Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid[J].AIAA Journal,1999,37(1):29-36.

    [21]Han Zhirong,Lu Zhiliang,Guo Tongqing.Air-load calculation of wind turbine airfoil based on preconditioning and grid adaption technique[J].Journal of Nanjing University of Aeronautics&Astronautics,2011,43(5):586-591.(in Chinese)

    [22]Turkel E,Radespiel R,Kroll N.Assessment of preconditioning methods for multidimensional aerodynamics[J].Computers and Fluids,1997,26(6):613-634.

    [23]Turkel E,F(xiàn)iterman A,Van Leer B.Preconditioning and the limit to the incompressible flow equations[R].NASA-CR-191500,Hampton VA:Institute for Computer Applications in Science and Engineering,1993.

    [24]Jameson A,Mavriplis D.Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh[J].AIAA Journal,1986,24(4):611-618.

    [25]Liu Chen,Wang Jiangfeng,Wu Yizhao.Convergence characteristics of preconditioned Euler equations at low Mach numbers[J].Acta Aeronautica et Astronaut ica Sinica,2009,30(5):842-848.(in Chinese)

    [26]Puoti V.Preconditioning method for low-speed flows[J].AIAA Journal,2003,41(5):817-830.

    [27]Liang Zixuan,Ding Jue,Wen Peifen.Application of preconditioning and multi-grid technique to twodimensional flow calculation[J].Journal of Shanghai University,2011,17(2):158-163.(in Chinese)

    [28]Rumsey C L,Thomas B,Ying S X,et al.Prediction of high-lift flows using turbulent closure models[R]. AIAA 97-2260,Atlanta GA:AIAA,1997.

    (Executive editor:Zhang Tong)

    V211.3 Document code:A Article ID:1005-1120(2015)04-0399-09

    *Corresponding author:Chen Hongquan,Professor,E-mail:hqchenam@nuaa.edu.cn.

    How to cite this article:Cao Cheng,Chen Hongquan.A preconditioned gridless method for solving Euler equations at low Mach numbers[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):399-407.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.399

    (Received 16 July 2014;revised 23 August 2014;accepted 30 August 2014)

    猜你喜歡
    明顯改善特長親戚
    結(jié)對幫扶成“親戚” 扶貧路上心連心
    金橋(2020年11期)2020-12-14 07:52:54
    遠(yuǎn)房親戚
    我們是親戚
    特長,亦是一種成長
    中華家教(2018年11期)2018-12-03 08:08:48
    風(fēng)電:棄風(fēng)限電明顯改善 海上風(fēng)電如火如荼
    能源(2018年8期)2018-01-15 19:18:24
    膽寧片聯(lián)合阿托伐他汀鈣片治療非酒精性脂肪肝93療效觀察
    健康前沿(2017年2期)2017-08-13 18:40:48
    引避
    控?zé)焻f(xié)會:北京禁煙實(shí)施一周年 無煙環(huán)境明顯改善
    人民周刊(2016年11期)2016-06-30 14:04:45
    讓女兒快樂學(xué)“特長”
    LED照明在井岡山特長隧道的應(yīng)用
    999久久久国产精品视频| 麻豆av在线久日| 午夜免费成人在线视频| 少妇 在线观看| 激情视频va一区二区三区| 999久久久国产精品视频| 村上凉子中文字幕在线| 精品一区二区三区视频在线观看免费 | 黄色a级毛片大全视频| 在线观看日韩欧美| 高清毛片免费观看视频网站 | 国产精品二区激情视频| 久久久久国产精品人妻aⅴ院 | 涩涩av久久男人的天堂| 一二三四在线观看免费中文在| 国产1区2区3区精品| 精品一区二区三区视频在线观看免费 | 国内毛片毛片毛片毛片毛片| 天堂√8在线中文| 精品国产美女av久久久久小说| 亚洲精品国产精品久久久不卡| 黄频高清免费视频| 免费观看人在逋| 亚洲精品国产精品久久久不卡| 亚洲国产精品一区二区三区在线| 欧美黄色片欧美黄色片| 女性生殖器流出的白浆| 一二三四社区在线视频社区8| 国产野战对白在线观看| 少妇被粗大的猛进出69影院| 国产蜜桃级精品一区二区三区 | 国产精品秋霞免费鲁丝片| 99国产综合亚洲精品| 久久精品国产清高在天天线| 久久人妻福利社区极品人妻图片| 久久香蕉激情| 中出人妻视频一区二区| 两个人看的免费小视频| 高潮久久久久久久久久久不卡| 男男h啪啪无遮挡| 亚洲av成人一区二区三| 国产精品国产高清国产av | 亚洲色图 男人天堂 中文字幕| 国产国语露脸激情在线看| √禁漫天堂资源中文www| 久久热在线av| 激情在线观看视频在线高清 | 免费久久久久久久精品成人欧美视频| 免费在线观看视频国产中文字幕亚洲| 国产xxxxx性猛交| 欧美日韩乱码在线| 国产男女内射视频| 黑人巨大精品欧美一区二区mp4| 精品一品国产午夜福利视频| 一区二区三区精品91| 高清在线国产一区| 热re99久久精品国产66热6| 久久亚洲精品不卡| 女性生殖器流出的白浆| 欧美乱妇无乱码| 狂野欧美激情性xxxx| 两个人看的免费小视频| 侵犯人妻中文字幕一二三四区| 十八禁高潮呻吟视频| 国产不卡av网站在线观看| 一二三四社区在线视频社区8| 久久中文字幕一级| 一进一出抽搐动态| 成人18禁高潮啪啪吃奶动态图| 欧美日韩国产mv在线观看视频| 在线观看www视频免费| videos熟女内射| 高清视频免费观看一区二区| 一夜夜www| 成年人黄色毛片网站| 中文字幕色久视频| 黑人操中国人逼视频| 最近最新中文字幕大全电影3 | 黑人操中国人逼视频| 亚洲熟女毛片儿| 免费少妇av软件| 99国产精品免费福利视频| 亚洲精品中文字幕一二三四区| 久9热在线精品视频| 成人三级做爰电影| 欧美精品啪啪一区二区三区| 久久婷婷成人综合色麻豆| 波多野结衣av一区二区av| 日韩欧美三级三区| 电影成人av| 很黄的视频免费| 国产精品一区二区在线不卡| 亚洲色图综合在线观看| 久久久久久免费高清国产稀缺| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜制服| cao死你这个sao货| 国产欧美日韩综合在线一区二区| 两个人看的免费小视频| 建设人人有责人人尽责人人享有的| 精品久久久久久,| 美女高潮喷水抽搐中文字幕| 一本一本久久a久久精品综合妖精| 亚洲性夜色夜夜综合| 男人的好看免费观看在线视频 | 青草久久国产| 国产熟女午夜一区二区三区| 操美女的视频在线观看| 久久精品亚洲av国产电影网| 成人三级做爰电影| 欧美日韩av久久| 12—13女人毛片做爰片一| 欧美成人午夜精品| 国产亚洲精品第一综合不卡| 久久中文字幕一级| 色婷婷av一区二区三区视频| 久久人人爽av亚洲精品天堂| 中文字幕av电影在线播放| 变态另类成人亚洲欧美熟女 | 国产成人精品久久二区二区免费| 精品国产亚洲在线| 一本一本久久a久久精品综合妖精| 久久天躁狠狠躁夜夜2o2o| 国产成人一区二区三区免费视频网站| 欧美另类亚洲清纯唯美| 欧美 亚洲 国产 日韩一| 我的亚洲天堂| 大型黄色视频在线免费观看| 19禁男女啪啪无遮挡网站| 久久久久久久久久久久大奶| 成人18禁在线播放| 不卡av一区二区三区| 大型黄色视频在线免费观看| 国产亚洲欧美在线一区二区| 国产亚洲精品久久久久5区| 久久香蕉激情| 人人妻人人添人人爽欧美一区卜| 黑人巨大精品欧美一区二区mp4| 欧美精品高潮呻吟av久久| 99re6热这里在线精品视频| 亚洲人成77777在线视频| 久久久久久久午夜电影 | 精品一区二区三区四区五区乱码| 亚洲国产精品合色在线| 深夜精品福利| 亚洲一区高清亚洲精品| 国产精品免费视频内射| a级片在线免费高清观看视频| 久久精品成人免费网站| netflix在线观看网站| 搡老岳熟女国产| av网站免费在线观看视频| 人人妻人人澡人人看| 欧美国产精品va在线观看不卡| 无遮挡黄片免费观看| 老汉色av国产亚洲站长工具| 青草久久国产| 国产99久久九九免费精品| 国产99白浆流出| 女人久久www免费人成看片| bbb黄色大片| 国产1区2区3区精品| 国产精品98久久久久久宅男小说| 视频区欧美日本亚洲| 午夜老司机福利片| 亚洲专区字幕在线| 黄片小视频在线播放| 麻豆国产av国片精品| 怎么达到女性高潮| 亚洲伊人色综图| 国产亚洲欧美在线一区二区| 成年女人毛片免费观看观看9 | 麻豆乱淫一区二区| 久久国产精品大桥未久av| 老司机午夜十八禁免费视频| 午夜91福利影院| 国产男靠女视频免费网站| 黑丝袜美女国产一区| 国产精品.久久久| 久久久国产成人精品二区 | 80岁老熟妇乱子伦牲交| 久久久精品国产亚洲av高清涩受| 黑人欧美特级aaaaaa片| av天堂在线播放| 极品教师在线免费播放| 色综合欧美亚洲国产小说| 亚洲三区欧美一区| 久久久久久久午夜电影 | 黑人欧美特级aaaaaa片| 激情视频va一区二区三区| 成在线人永久免费视频| 欧美中文综合在线视频| 中文亚洲av片在线观看爽 | 久久国产亚洲av麻豆专区| 亚洲精品在线观看二区| 亚洲av欧美aⅴ国产| 夜夜躁狠狠躁天天躁| 日本五十路高清| 国产黄色免费在线视频| 成人精品一区二区免费| 亚洲男人天堂网一区| 免费不卡黄色视频| 国产无遮挡羞羞视频在线观看| 国产av精品麻豆| 国产精品永久免费网站| 涩涩av久久男人的天堂| a级毛片在线看网站| 国产成人免费无遮挡视频| 亚洲国产精品sss在线观看 | av福利片在线| 日韩中文字幕欧美一区二区| 亚洲熟妇中文字幕五十中出 | 99精品在免费线老司机午夜| 国产亚洲精品第一综合不卡| 国产伦人伦偷精品视频| 亚洲在线自拍视频| 国产男靠女视频免费网站| 亚洲av熟女| 久久精品国产99精品国产亚洲性色 | 色老头精品视频在线观看| 亚洲精品一二三| 女警被强在线播放| 国产精品99久久99久久久不卡| 91麻豆精品激情在线观看国产 | 一边摸一边抽搐一进一小说 | 亚洲精品美女久久久久99蜜臀| 久久香蕉激情| 国产乱人伦免费视频| 亚洲av美国av| 久久久久视频综合| 女同久久另类99精品国产91| 日韩欧美免费精品| 国产精品一区二区在线不卡| 国产日韩欧美亚洲二区| 狠狠狠狠99中文字幕| 国产99久久九九免费精品| 久久国产乱子伦精品免费另类| 精品福利永久在线观看| 国产aⅴ精品一区二区三区波| 老司机在亚洲福利影院| 男女床上黄色一级片免费看| 黄色丝袜av网址大全| 一进一出抽搐gif免费好疼 | 国产成人精品无人区| 多毛熟女@视频| 9热在线视频观看99| 99国产精品免费福利视频| 久久久国产一区二区| 丰满饥渴人妻一区二区三| 99精品欧美一区二区三区四区| 国产国语露脸激情在线看| 欧美乱码精品一区二区三区| 极品少妇高潮喷水抽搐| 国产精品久久视频播放| 精品高清国产在线一区| 搡老岳熟女国产| а√天堂www在线а√下载 | 精品人妻在线不人妻| 性色av乱码一区二区三区2| 老司机福利观看| 国产亚洲精品久久久久久毛片 | 国产精品偷伦视频观看了| 欧美乱码精品一区二区三区| 在线永久观看黄色视频| 制服诱惑二区| 欧美最黄视频在线播放免费 | av超薄肉色丝袜交足视频| 看免费av毛片| 日韩欧美国产一区二区入口| 一级,二级,三级黄色视频| 制服人妻中文乱码| 丝袜在线中文字幕| 视频在线观看一区二区三区| 窝窝影院91人妻| 无遮挡黄片免费观看| av网站免费在线观看视频| 久久久久精品国产欧美久久久| 国产一区二区三区视频了| 日韩欧美免费精品| 黄色毛片三级朝国网站| 精品亚洲成a人片在线观看| 最近最新免费中文字幕在线| 怎么达到女性高潮| 精品人妻1区二区| 一级,二级,三级黄色视频| 在线观看免费高清a一片| 一进一出抽搐gif免费好疼 | 18在线观看网站| 无限看片的www在线观看| 国产高清激情床上av| 精品熟女少妇八av免费久了| 超碰成人久久| 一区二区日韩欧美中文字幕| 极品人妻少妇av视频| av电影中文网址| 国产男靠女视频免费网站| 日韩大码丰满熟妇| 757午夜福利合集在线观看| 露出奶头的视频| 午夜久久久在线观看| 中文字幕制服av| 亚洲av欧美aⅴ国产| 久久人人爽av亚洲精品天堂| 亚洲成人国产一区在线观看| 操美女的视频在线观看| 国产高清视频在线播放一区| 又大又爽又粗| 精品福利观看| 国产一区二区三区在线臀色熟女 | 自拍欧美九色日韩亚洲蝌蚪91| 国产男女内射视频| 18禁观看日本| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩免费高清中文字幕av| 国产一区二区激情短视频| 校园春色视频在线观看| 亚洲精品在线观看二区| 麻豆国产av国片精品| 国产亚洲精品久久久久久毛片 | 欧美最黄视频在线播放免费 | 久久久久久久国产电影| 一边摸一边抽搐一进一小说 | 久久久久久久精品吃奶| 亚洲色图综合在线观看| 他把我摸到了高潮在线观看| 免费在线观看亚洲国产| 成人国产一区最新在线观看| 高清毛片免费观看视频网站 | 黄片播放在线免费| 国产真人三级小视频在线观看| 波多野结衣一区麻豆| 手机成人av网站| 日韩制服丝袜自拍偷拍| 国产又色又爽无遮挡免费看| 少妇裸体淫交视频免费看高清 | 制服诱惑二区| 老司机亚洲免费影院| 十八禁网站免费在线| 亚洲精品国产一区二区精华液| 欧美日韩亚洲高清精品| 在线观看免费午夜福利视频| 欧美日韩黄片免| 天天操日日干夜夜撸| 午夜免费鲁丝| 亚洲久久久国产精品| 老司机福利观看| 悠悠久久av| 高清黄色对白视频在线免费看| 欧美中文综合在线视频| 丝袜在线中文字幕| 免费看十八禁软件| 色婷婷久久久亚洲欧美| 一夜夜www| 午夜日韩欧美国产| 亚洲av成人av| 色尼玛亚洲综合影院| 精品国产一区二区三区四区第35| 国产成人一区二区三区免费视频网站| 丝袜在线中文字幕| 一边摸一边抽搐一进一小说 | 高清黄色对白视频在线免费看| 啦啦啦视频在线资源免费观看| 久热这里只有精品99| 婷婷丁香在线五月| 欧美+亚洲+日韩+国产| a级毛片在线看网站| 精品久久久精品久久久| 18禁国产床啪视频网站| 国产亚洲欧美精品永久| 91成人精品电影| 欧美人与性动交α欧美精品济南到| 成年版毛片免费区| 男女下面插进去视频免费观看| 国产成人精品久久二区二区免费| 精品人妻熟女毛片av久久网站| 欧美国产精品一级二级三级| 婷婷成人精品国产| 国产黄色免费在线视频| 国产精品国产高清国产av | 搡老熟女国产l中国老女人| 高清视频免费观看一区二区| 欧美国产精品一级二级三级| 乱人伦中国视频| 最新的欧美精品一区二区| 9热在线视频观看99| 少妇裸体淫交视频免费看高清 | 久热这里只有精品99| 国产国语露脸激情在线看| 黄网站色视频无遮挡免费观看| 一个人免费在线观看的高清视频| 我的亚洲天堂| 两个人免费观看高清视频| 熟女少妇亚洲综合色aaa.| 91成人精品电影| 国产成人一区二区三区免费视频网站| 国产成人欧美| 青草久久国产| 国产亚洲av高清不卡| 久久精品国产亚洲av高清一级| 午夜91福利影院| 成人免费观看视频高清| 一级毛片高清免费大全| 天堂√8在线中文| 久久影院123| 香蕉丝袜av| 欧美精品av麻豆av| 日本黄色日本黄色录像| 精品国内亚洲2022精品成人 | bbb黄色大片| 国产在线一区二区三区精| 亚洲成a人片在线一区二区| 亚洲av成人不卡在线观看播放网| 久久精品国产99精品国产亚洲性色 | 日韩欧美在线二视频 | 久久国产亚洲av麻豆专区| 一个人免费在线观看的高清视频| 99国产精品一区二区三区| 性色av乱码一区二区三区2| 国产精品国产高清国产av | 嫩草影视91久久| 久久这里只有精品19| 波多野结衣av一区二区av| 久久草成人影院| 日韩精品免费视频一区二区三区| 亚洲欧洲精品一区二区精品久久久| 免费在线观看完整版高清| 国产99久久九九免费精品| 一个人免费在线观看的高清视频| 欧美性长视频在线观看| 亚洲九九香蕉| 成人精品一区二区免费| 丝袜美腿诱惑在线| 欧美日韩av久久| 狠狠婷婷综合久久久久久88av| 久久 成人 亚洲| 色94色欧美一区二区| 欧美乱码精品一区二区三区| av网站免费在线观看视频| 亚洲成人免费电影在线观看| 一进一出抽搐动态| 久久久国产欧美日韩av| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利欧美成人| 麻豆av在线久日| 不卡一级毛片| 99热网站在线观看| avwww免费| 9色porny在线观看| 久久国产精品大桥未久av| 757午夜福利合集在线观看| 免费看十八禁软件| 三上悠亚av全集在线观看| 极品人妻少妇av视频| 国产一区在线观看成人免费| 久久ye,这里只有精品| 天堂动漫精品| 99久久99久久久精品蜜桃| 满18在线观看网站| 亚洲五月色婷婷综合| 如日韩欧美国产精品一区二区三区| 丝瓜视频免费看黄片| 女人被狂操c到高潮| 亚洲精品久久成人aⅴ小说| 亚洲情色 制服丝袜| 久久精品人人爽人人爽视色| 超碰成人久久| 在线观看免费日韩欧美大片| 婷婷精品国产亚洲av在线 | 亚洲成av片中文字幕在线观看| 成人精品一区二区免费| 亚洲七黄色美女视频| 中文亚洲av片在线观看爽 | avwww免费| 人人澡人人妻人| 成人亚洲精品一区在线观看| 手机成人av网站| 制服诱惑二区| 免费黄频网站在线观看国产| 免费av中文字幕在线| 国产精品二区激情视频| netflix在线观看网站| 啪啪无遮挡十八禁网站| 欧美日韩亚洲高清精品| 欧美一级毛片孕妇| 国产精品二区激情视频| 亚洲专区字幕在线| 嫁个100分男人电影在线观看| 黄色 视频免费看| 极品人妻少妇av视频| 国产主播在线观看一区二区| 看免费av毛片| 亚洲七黄色美女视频| 激情视频va一区二区三区| x7x7x7水蜜桃| 国产av一区二区精品久久| 日日爽夜夜爽网站| 69av精品久久久久久| 婷婷成人精品国产| 久久草成人影院| 精品乱码久久久久久99久播| 女人爽到高潮嗷嗷叫在线视频| 久久精品91无色码中文字幕| 欧美+亚洲+日韩+国产| 欧美另类亚洲清纯唯美| 啦啦啦 在线观看视频| 欧美国产精品va在线观看不卡| 日韩大码丰满熟妇| 十八禁高潮呻吟视频| www.熟女人妻精品国产| 久久精品人人爽人人爽视色| 国产精品1区2区在线观看. | 精品一区二区三区视频在线观看免费 | 欧美日韩成人在线一区二区| 精品人妻1区二区| 黄色丝袜av网址大全| 久久精品人人爽人人爽视色| av免费在线观看网站| 免费观看a级毛片全部| 一级a爱片免费观看的视频| 人人澡人人妻人| 日韩欧美免费精品| 亚洲精品在线美女| 夜夜夜夜夜久久久久| 1024香蕉在线观看| 色综合婷婷激情| 国产精品 国内视频| 亚洲 国产 在线| 久久久国产一区二区| 国产欧美亚洲国产| 国产精品国产高清国产av | 啦啦啦免费观看视频1| 精品第一国产精品| 国产av精品麻豆| 亚洲欧美激情在线| 久久这里只有精品19| 在线永久观看黄色视频| 黑人操中国人逼视频| 丝袜人妻中文字幕| av中文乱码字幕在线| 伦理电影免费视频| 叶爱在线成人免费视频播放| 亚洲五月色婷婷综合| 99热网站在线观看| 午夜福利,免费看| 女人爽到高潮嗷嗷叫在线视频| 桃红色精品国产亚洲av| 女人高潮潮喷娇喘18禁视频| 两个人看的免费小视频| 香蕉丝袜av| 国产精品久久久久久精品古装| 99久久综合精品五月天人人| 99国产精品免费福利视频| 在线十欧美十亚洲十日本专区| 香蕉国产在线看| 精品亚洲成国产av| 人人妻人人添人人爽欧美一区卜| 狠狠狠狠99中文字幕| 国产精品综合久久久久久久免费 | 亚洲国产欧美一区二区综合| 成人av一区二区三区在线看| 自拍欧美九色日韩亚洲蝌蚪91| 老汉色av国产亚洲站长工具| 老司机在亚洲福利影院| 很黄的视频免费| 国产精品免费一区二区三区在线 | 久久精品人人爽人人爽视色| 黑人巨大精品欧美一区二区mp4| 热99re8久久精品国产| 国产淫语在线视频| 在线国产一区二区在线| 最新的欧美精品一区二区| 久久久国产欧美日韩av| xxxhd国产人妻xxx| 亚洲国产欧美一区二区综合| 女人高潮潮喷娇喘18禁视频| 淫妇啪啪啪对白视频| 亚洲国产精品一区二区三区在线| 亚洲专区中文字幕在线| av天堂久久9| 亚洲av电影在线进入| 下体分泌物呈黄色| 日本一区二区免费在线视频| 91麻豆精品激情在线观看国产 | 国产在线观看jvid| 怎么达到女性高潮| 日韩人妻精品一区2区三区| 亚洲伊人色综图| 精品一区二区三区av网在线观看| 大型av网站在线播放| 伊人久久大香线蕉亚洲五| 国产精品一区二区在线不卡| 精品免费久久久久久久清纯 | 校园春色视频在线观看| 亚洲av电影在线进入| 国产99白浆流出| 国产成人啪精品午夜网站| 免费高清在线观看日韩| 亚洲精品中文字幕在线视频| 多毛熟女@视频| 精品国产乱码久久久久久男人| 12—13女人毛片做爰片一| 国内久久婷婷六月综合欲色啪| 99精国产麻豆久久婷婷| 999久久久精品免费观看国产| 国产亚洲欧美98| 人妻 亚洲 视频| 国产激情欧美一区二区| а√天堂www在线а√下载 | 中文字幕色久视频| 宅男免费午夜| 一区二区三区国产精品乱码| 母亲3免费完整高清在线观看| 精品亚洲成国产av| 免费一级毛片在线播放高清视频 | 国产成人精品久久二区二区91|