• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propulsive performance of two-and three-dimensional flapping flexible plates

    2015-11-21 07:27:26ChaoTangXiyunLu

    Chao Tang,Xiyun Lu

    Department of Modern Mechanics,University of Science and Technology of China,Hefei 230026,China

    Propulsive performance of two-and three-dimensional flapping flexible plates

    Chao Tang,Xiyun Lu?

    Department of Modern Mechanics,University of Science and Technology of China,Hefei 230026,China

    A R T I C L E I N F O

    Article history:

    Received 21 November 2014

    Received in revised form

    30 December 2014

    Accepted 1 January 2015

    Available online 14 February 2015

    Flapping-based locomotion

    Self-propulsion

    Flexible plate

    Passive deformation

    Fluid-structure interaction

    The propulsive performance of two-and three-dimensional(2D and 3D)flapping flexible plates in a fluid at rest is investigated by a finite element method for the plate motion and an immersed boundary-lattice Boltzmann method for the fluid flow.We consider a model that as the leading-edge of the plate takes a vertical oscillation,the entire plate moves freely due to the fluid-structure interaction.The effects of flexibility on the dynamics of the 2D and 3D flapping plates are investigated.It is found that a suitable flexibility is benefit for improving the propulsive performance.The results obtained in this study provide physical insight into the understanding of the dynamics of the flapping-based locomotion.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    A common strategy of swimming or flying animals for locomotion is to use their fins or wings to make flapping motions[1-3]. The wings and fins have complex behaviors which are associated with the distribution of the compliant components[1,4]and can deform passively in response to fluid forces[5-8].The deformations in turn affect the propulsive performances[9].In reality the role of flexibility in the flapping-based locomotion is still completely unclear and is of great interest for future detailed studies. Moreover,the mechanical properties of wings and fins have been measured which can be used to provide a physical basis for establishing a reliable model.

    For animals in free flight or swimming,the mean thrust generated balances the resistance experienced by the surrounding fluid. The dynamicalbehaviors related to the free motion should be studied.Actually,the physical models considered in extensive work are an object immersed in a given uniform incoming flow,and the relevant fluid dynamics is different from a free moving object in a stationary fluid[10].Some efforts have been done to study the locomotion of flapping flexible bodies in a stationary fluid. The two-dimensional(2D)simulation and modeling of the lamprey swimming were performed[11].The dynamics of a 2D heaving plate with passive pitching motion was investigated[12,13]. However,since the instantaneous shape of an elastic structure in free motion depends on the local passive deformation due to the fluid-structure interaction[9],a modelofa three-dimensional(3D)flexible wing moving passively in a stationary fluid is needed to be considered.

    The 3D effect has an important influence on the dynamic performance and vortical structures of flapping plates[14].Recently,the 3D effects on the translational locomotion of a passive heaving wing have been investigated[15].However,the most previous studies of the locomotion of flapping flexible plate mainly focus on the 2D model[9,16,17].Therefore,the propulsive performances of the 2D and 3D flexible plates are desirable to be studied.

    In this study,we consider a flexible plate with length c and span length R in a stationary fluid.As shown in Fig.1,the leading-edge is forced to perform a vertical oscillation

    where A0is the oscillating amplitude and f the frequency.As a result of the interplay of the plate elasticity,the leading-edge forcing,and the forces exerted by the surrounding fluid,the plate starts to move freely and passively in the stationary fluid.The active pitching angle is zero in this model.The passive pitching angleαcan be defined as the angle between the x-axis and the secant connecting the leading-edge to the trailing-edge in the midspan plane.

    To investigate this system of the fluid and flexible plate interaction,the incompressible Navier-Stokes equations are used to simulate the fluid flow,

    Fig.1.Schematic of the 3D flapping flexible plate.

    Fig.2.The mean propulsive speed U versus the bending stiffness K.

    where v is the velocity,p the pressure,ρthe density of the fluid,μthe dynamic viscosity,and f the body force term.The structural equation is used to describe the plate deformation and motion[18]

    where X isthe position vectorofthe plate,F(xiàn)sisthe Lagrangian force exerted on the plate by the fluid,Eh and EI are the stretching and bending stiffness of the plate,?ijandγijare the in-plane and outof-plane effect matrices,respectively,andδijis the Kronecker delta function.

    The characteristic quantitiesρ,f,and c are chosen to nondimensionalize the above equations.Then the governing parameters are obtained as follows:the heaving amplitude A=A0/c,the frequency Reynolds number Ref=ρfc2/μ,the aspect ratio H=R/c,the stretching stiffness S=Eh/(ρf2c3),the bending stiffness K=EI/(ρf2c5),and the mass ratio of the plate and the fluid M=ρsh/(ρc).

    The governing equations of the fluid-plate problem are solved numerically.When the immersed boundary(IB)method is applied to analyze flow-structure interaction,the body force term f in Eq.(2)is used as an interaction force between the boundary and the fluid to enforce the no-slip velocity boundary condition on the surface.The lattice Boltzmann equation with the body force model and non-uniform mesh technique are employed to solve the viscous fluid flow.Equation(4)for the deformable plate is solved by a finite element method and the deformation with large-displacement of the plate is handled by the corotational scheme[19].

    After our careful convergence studies,the computational domain for fluid flow is chosen as[-5,15]×[-6,6]×[-6,6]in the x,y,and z directions.The finest lattice spacing is 0.025 in the nearplate region and the coarsestspacing is 0.1 in the farboundary region.The plate is discretized by approximate 8000 triangular elements.The time step isΔt=0.0005.

    Based on a series ofsimulations,we have identifiedsome typical movement states of the plate due to the fluid-plate interaction. The plate motion along the negative x-direction is mainly analyzed since the motion is related to the flapping-based locomotion of swimming and flying animals.In this study,some typical results are discussed for the parameters A=0.5,Ref=100,H=2, K=5-1000,S=1000 and M=2.The dynamical behavior and propulsive performance are analyzed in terms of the mean propulsive speed,the propulsive efficiency,the passive pitching angle,and the Strouhal number.

    We first analyze the behavior of the propulsive speed of the plate.Figure 2 shows the mean propulsive speed U versus the bending rigidity K for the 2D and 3D plates,where U is obtained by time average during steady locomotion.It is seen that the profiles of U are all concave up.The speed U decreases as K increases first,then reaches a minimum(corresponding to the maximum of |U|),and finally approaches a constant as K increases further.The forward speed|U|for the 2D plate is overall larger than that for the 3D plate.Note that the motion of the flexible plate tends to the motion of the rigid one at large value of K,e.g.K=1000.The forward speeds of the flexible plate are substantially greater than those ofthe corresponding rigid plate,indicating that the flexibility can improve the performance of forward propulsion.

    The propulsive efficiency is investigated for the plate motion.As the plate spontaneously propels itself in the horizontal direction,the mean thrust becomes zero.To characterize the propulsive efficiency of a body in free motion,the ratio of the kinetic energy of the body motion and the work done by the deforming body over one flapping cycle T has been employed[9,13].Then,the propulsive efficiency for the locomotion of flexible plate is expressed as

    where Fr(s1,s2,t)represents the force on the surrounding fluid by the plate and can be expressed as Fr(s1,s2,t)=-Fs(s1,s2,t). As shown in Fig.3 for the propulsive efficiencyη,the efficiency first increases to a maximum and then decreases gradually as K increases for both the 2D and 3D plates.It is also identified that the efficiencyηfor the 2D plate is larger than that for the 3D plate. Similarly,there exists an optimal plate flexibility region for the maximal propulsive efficiency.

    The passive pitching angle is associated with the deformation of the flexible plate and with hydrodynamic performance[3,20]. Figure 4 shows the root-mean-square(rms)value of the passive pitching angleαrmsfor the 2D and 3D plates.The passive pitching angle is caused by the delayed motion of the free end of the plate relative to the constrained end.It is seen from Fig.4 that smaller bending stiffness or more flexibility causes larger pitching angle. Comparing the profiles ofαrms,the pitching angles of the 3D plate are somewhat larger than those of the 2D plate for K<100,and the pitching angles of the 2D and 3D plates tend to be together for K>100.

    Fig.3.The propulsive efficiencyηversus the bending stiffness K.

    Fig.4.The rms value of passive pitching angleαrmsversus the bending stiffness K.

    Fig.5.The Strouhal number St versus the bending stiffness K.

    Fig.6.Vortical structures for K=15:(a)vortical pattern visualized by isosurface of Q=3 for 3D plate,(b)spanwise vorticity contour on the spanwise symmetry plane for 3D plate,and(c)vorticity contour for 2D plate.

    The Strouhal number is usually used to describe the kinematics of flapping-based locomotion and a well-defined series of regimes for vortex growth and shedding of a flapping body.Here the Strouhal number is defined as St=Awf/U,where Awis the width of the wake which may be taken as the maximum excursion of the plate trailing-edge or twice of the amplitude,i.e.Aw=2A[9,21]. Figure 5 shows the profiles of the Strouhal number.The Strouhal numbers for K=O(10)-O(102)fall into the range of St=0.2-0.4 which is consistent with the region of high propulsive efficiency of the flapping-based locomotion[3,22].Moreover,according to experimental data for some swimming and flying animals[23-26],we can estimate the bending stiffness of tail-fins or wings to be the range of K=O(10)-O(102),which also corresponds to the large forward speed in Fig.2 and high propulsive efficiency in Fig.3.

    We finally investigate the vortical structures around the 2D and 3D plates.The vortical structure in the wake is related to the propulsive properties of a flapping wing.Based on the analysis of vorticity dynamics,we have found that the force and power of the flapping plate are dominated by the attached vorticity and the localvorticalstructures close to the plate[27,28].Figure 6(a)shows the 3D perspective view of vortical structures depicted by an isosurface of the Q criterion for K=15.It is seen that the wake consists of two sets of ring-like vortical structures which convect downstream separately.This feature is essentially consistent withthe previous observation[14,28].Figures 6(b)and 6(c)shows the spanwise vorticity contour on the spanwise symmetry plane for the 3D plate and the vorticity contour for the 2D plate.The wake of the 3D plate demonstrates two branches of vorticity contours relevant to the ring-like structures.For comparison,a reverse von Kármán vortex street is formed behind the 2D flexible plate[9]. Further,to demonstrate the effect of K on the vortical structures,F(xiàn)ig.7 shows the vortex patterns for K=8.In the 3D case,the vortical structures in the wake are still nearly anti-symmetric and become more complex compared with the case for K=15 in Fig.6. It is interesting to note that the deflected wake occurs for the 2D case in Fig.7(c),resulting in a non-zero mean lift[9].

    Fig.7.Vortical structures for K=8:(a)vortical pattern visualized by isosurface of Q=3 for 3D plate,(b)spanwise vorticity contour on the spanwise symmetry plane for 3D plate,and(c)vorticity contour for 2D plate.

    In summary,the propulsive performance of flapping flexible plates in a stationary fluid has been studied by numerical solutions of the fluid and plate interaction.Some mechanisms governing the dynamics of the flapping plates are investigated.It is found that a suitable degree of flexibility can improve the propulsive performance with larger forward speed and higher propulsive efficiency for the 2D and 3D plates.Smaller bending stiffness causes larger passive pitching angle.The vortical structure around the plate is analyzed because itaffects the motion and deformation of the plate.Further,the range of high propulsive efficiency corresponds to the Strouhal number St=0.2-0.4 and the bending stiffness K=O(10)-O(102)which are usually adopted by the swimming and flying animals.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11372304)and the 111 Project(B07033).

    [1]J.J.Videler,F(xiàn)ish Swimming,Chapman&Hall,New York,1993.

    [2]A.K.Brodsky,The Evolution of Insect Flight,Oxford University Press,Oxford,1994.

    [3]M.S.Triantafyllou,G.S.Triantafyllou,D.K.P.Yue,Hydrodynamics of fishlike swimming,Annu.Rev.Fluid Mech.32(2000)33-53.

    [4]R.J.Wootton,Invertebrate paraxial locomotory appendages:design,deformation and control,J.Exp.Biol.202(1999)3333-3345.

    [5]R.J.Wootton,R.C.Herbert,P.G.Young,K.E.Evans,Approaches to structural modeling of insect wings,Phil.Trans.R.Soc.Lond.B 358(2003)1577-1587.

    [6]S.A.Combes,T.L.Daniel,F(xiàn)lexural stiffness in insect wings.I.Scaling and the influence of wing venation,J.Exp.Biol.206(2003)2979-2987.

    [7]S.A.Combes,T.L.Daniel,F(xiàn)lexural stiffness in insect wings.II.Spatial distribution and dynamic wing bending,J.Exp.Biol.206(2003)2989-2997.

    [8]F.Fish,G.Lauder,Passive and active flow control by swimming fishes and mammals,Annu.Rev.Fluid Mech.38(2006)193-224.

    [9]R.N.Hua,L.Zhu,X.Y.Lu,Locomotion of a flapping flexible plate,Phys.Fluids 25(2013)121901.

    [10]T.Y.T.Wu,On theoretical modeling of aquatic and aerial animal locomotion,Adv.Appl.Mech.38(2001)291-353.

    [11]E.D.Tytell,C.Y.Hsu,T.L.Williams,A.H.Cohen,L.J.Fauci,Interactions between internal forces,body stiffness,and fluid environment in a neuromechanical model of lamprey swimming,Proc.Natl.Acad.Sci.107(2010)19832.

    [12]S.E.Spagnolie,L.Moret,M.J.Shelley,J.Zhang,Surprising behaviors in flapping locomotion with passive pitching,Phys.Fluids 22(2010)041903.

    [13]J.Zhang,N.S.Liu,X.Y.Lu,Locomotion of a passively flapping flat plate,J.Fluid Mech.659(2010)43-68.

    [14]J.H.Buchholz,A.J.Smits,The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel,J.Fluid Mech.603(2008)331-365.

    [15]J.Hu,Q.Xiao,Three-dimensional effects on the translational locomotion of a passive heaving wing,J.Fluids Struct.46(2014)77-88.

    [16]J.Lee,S.Lee,F(xiàn)luid-structure interaction forthe propulsive velocity ofa flapping flexible plate at low Reynolds number,Comput.Fluids 71(2013)348-374.

    [17]X.J.Zhu,G.W.He,X.Zhang,Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil,Comput.Fluids 97(2014)1-20.

    [18]W.X.Huang,H.J.Sung,Three-dimensional simulation of a flapping flag in a uniform flow,J.Fluid Mech.653(2010)301-336.

    [19]J.F.Doyle,Nonlinear Analysis of Thin-Walled Structures:Statics,Dynamics,and Stability,Springer-Verlag,2001.

    [20]J.M.Anderson,K.Streitlien,D.S.Barrett,M.S.Triantafyllou,Oscillating foils of high propulsive efficiency,J.Fluid Mech.360(1998)41-72.

    [21]M.S.Triantafyllou,G.S.Triantafyllou,R.Gopalkrishnan,Wake mechanics for thrust generation in oscillating foils,Phys.Fluids 3(1991)2835-2837.

    [22]G.K.Taylor,R.L.Nudds,A.L.R.Thomas,F(xiàn)lying and swimming animals cruise ata Strouhalnumbertuned forhigh power efficiency,Nature 425(2003)707-711.

    [23]S.A.Wainwright,W.D.Biggs,J.D.Currey,J.M.Gosline,Mechanical Design in Organisms,Princeton University Press,Princeton,1982.

    [24]C.P.Ellington,The aerodynamics of hovering insect flight.II.Morphological parameters,Phil.Trans.R.Soc.Lond.B 305(1984)17-40.

    [25]D.Ishihara,T.Horie,M.Denda,Atwo-dimensionalcomputationalstudy on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight,J.Exp.Biol.212(2009)1-10.

    [26]S.R.Jongerius,D.Lentink,Structural analysis of a dragonfly wing,Exp.Mech. 50(2010)1323-1334.

    [27]J.Z.Wu,X.Y.Lu,L.X.Zhuang,Integral force acting on a body due to local flow structures,J.Fluid Mech.576(2007)265-286.

    [28]G.J.Li,X.Y.Lu,F(xiàn)orce and power of flapping plates in a fluid,J.Fluid Mech.712(2012)598-613.

    ?Corresponding author.

    E-mail address:xlu@ustc.edu.cn(X.Lu).

    *This article belongs to the Fluid Mechanics

    亚洲九九香蕉| 在线播放国产精品三级| 国产麻豆69| 禁无遮挡网站| 丝袜人妻中文字幕| 母亲3免费完整高清在线观看| 亚洲人成77777在线视频| 成人亚洲精品一区在线观看| 精品乱码久久久久久99久播| 亚洲精品在线观看二区| av天堂在线播放| 亚洲精品一区av在线观看| 国产欧美日韩一区二区三区在线| 99精品在免费线老司机午夜| 少妇的丰满在线观看| 精品欧美国产一区二区三| 久久久久久国产a免费观看| 日韩 欧美 亚洲 中文字幕| 咕卡用的链子| 高潮久久久久久久久久久不卡| 中文字幕最新亚洲高清| 欧美日韩亚洲国产一区二区在线观看| 亚洲免费av在线视频| 狂野欧美激情性xxxx| 免费在线观看黄色视频的| 女警被强在线播放| 日韩有码中文字幕| 无人区码免费观看不卡| 国产成人av教育| 一进一出抽搐动态| 女警被强在线播放| 操出白浆在线播放| 欧美中文日本在线观看视频| 性欧美人与动物交配| 国产精品美女特级片免费视频播放器 | 亚洲国产欧美一区二区综合| 黑丝袜美女国产一区| 色综合站精品国产| av有码第一页| 成在线人永久免费视频| 国产精品av久久久久免费| 免费高清在线观看日韩| 天堂√8在线中文| 老汉色av国产亚洲站长工具| 午夜免费观看网址| 国产高清视频在线播放一区| 亚洲 欧美 日韩 在线 免费| 少妇 在线观看| 亚洲精品在线美女| 亚洲国产精品合色在线| av电影中文网址| 两个人看的免费小视频| 国产麻豆成人av免费视频| 99国产极品粉嫩在线观看| 老司机靠b影院| 在线观看66精品国产| 亚洲欧美精品综合一区二区三区| 久久久久国产精品人妻aⅴ院| 日韩精品中文字幕看吧| 99久久99久久久精品蜜桃| 波多野结衣巨乳人妻| 成人精品一区二区免费| 亚洲专区字幕在线| 一边摸一边抽搐一进一出视频| 亚洲电影在线观看av| 黄网站色视频无遮挡免费观看| 亚洲精品在线美女| 亚洲一区二区三区色噜噜| 精品一区二区三区视频在线观看免费| 亚洲中文字幕一区二区三区有码在线看 | 青草久久国产| 国产色视频综合| 久久性视频一级片| 最近最新中文字幕大全免费视频| 欧美日韩乱码在线| 黄色视频不卡| 亚洲av第一区精品v没综合| 天天添夜夜摸| 国产亚洲精品久久久久5区| 黄片小视频在线播放| 女性生殖器流出的白浆| 天天添夜夜摸| 香蕉丝袜av| 最近最新免费中文字幕在线| 国产成人影院久久av| 午夜精品久久久久久毛片777| 可以在线观看的亚洲视频| 亚洲免费av在线视频| 成熟少妇高潮喷水视频| 亚洲国产中文字幕在线视频| 正在播放国产对白刺激| 日日摸夜夜添夜夜添小说| 9191精品国产免费久久| 99国产精品一区二区三区| 国产精品国产高清国产av| 亚洲成人免费电影在线观看| 一区二区三区高清视频在线| 人人妻人人澡欧美一区二区 | 在线av久久热| 国产亚洲欧美精品永久| av天堂久久9| 成人精品一区二区免费| www日本在线高清视频| 超碰成人久久| 手机成人av网站| 国产欧美日韩一区二区三区在线| 午夜a级毛片| 国产一区二区在线av高清观看| 日本免费a在线| 又大又爽又粗| 国产精品美女特级片免费视频播放器 | 亚洲狠狠婷婷综合久久图片| 搡老妇女老女人老熟妇| 99riav亚洲国产免费| av片东京热男人的天堂| 在线播放国产精品三级| 看黄色毛片网站| 欧美 亚洲 国产 日韩一| 一区二区三区激情视频| 伊人久久大香线蕉亚洲五| 午夜a级毛片| 黄色视频,在线免费观看| 电影成人av| 精品国产一区二区久久| 国产精品久久电影中文字幕| 亚洲国产欧美网| 国语自产精品视频在线第100页| 亚洲av成人不卡在线观看播放网| 国产精品香港三级国产av潘金莲| 国产一区二区在线av高清观看| 国产精品久久久久久人妻精品电影| 久久久久国内视频| 久久久精品国产亚洲av高清涩受| 久久影院123| 亚洲专区国产一区二区| 亚洲av成人不卡在线观看播放网| 日韩欧美一区二区三区在线观看| 国产av精品麻豆| av超薄肉色丝袜交足视频| 别揉我奶头~嗯~啊~动态视频| 国产激情久久老熟女| 国产亚洲精品综合一区在线观看 | 免费人成视频x8x8入口观看| 十八禁人妻一区二区| 国产单亲对白刺激| 精品国内亚洲2022精品成人| 女性被躁到高潮视频| 99久久久亚洲精品蜜臀av| 久热这里只有精品99| 免费看美女性在线毛片视频| 给我免费播放毛片高清在线观看| bbb黄色大片| 女警被强在线播放| 亚洲精品国产一区二区精华液| 成人欧美大片| 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区三区在线| avwww免费| 俄罗斯特黄特色一大片| 嫁个100分男人电影在线观看| 在线av久久热| 一级毛片精品| 黄色成人免费大全| 国产男靠女视频免费网站| 免费在线观看完整版高清| 最近最新中文字幕大全免费视频| 午夜精品久久久久久毛片777| 多毛熟女@视频| 好看av亚洲va欧美ⅴa在| 国产一区二区三区视频了| 亚洲精品久久成人aⅴ小说| 嫩草影院精品99| 麻豆国产av国片精品| svipshipincom国产片| 亚洲国产日韩欧美精品在线观看 | 国产三级黄色录像| 亚洲一码二码三码区别大吗| 可以在线观看的亚洲视频| 精品久久久久久久久久免费视频| 在线十欧美十亚洲十日本专区| av中文乱码字幕在线| 亚洲av日韩精品久久久久久密| 给我免费播放毛片高清在线观看| 精品久久久久久成人av| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品在线美女| 一a级毛片在线观看| 久久久精品欧美日韩精品| 欧美成狂野欧美在线观看| 中出人妻视频一区二区| 欧美日本视频| 大型黄色视频在线免费观看| 天堂√8在线中文| 日韩高清综合在线| 午夜久久久在线观看| 女人爽到高潮嗷嗷叫在线视频| 神马国产精品三级电影在线观看 | 久久精品亚洲熟妇少妇任你| 国产欧美日韩一区二区三区在线| 免费av毛片视频| 国产高清有码在线观看视频 | 动漫黄色视频在线观看| 久久狼人影院| 俄罗斯特黄特色一大片| 中文字幕人妻熟女乱码| 日韩欧美国产在线观看| www日本在线高清视频| 波多野结衣高清无吗| 亚洲成av片中文字幕在线观看| 麻豆av在线久日| 熟女少妇亚洲综合色aaa.| 欧美 亚洲 国产 日韩一| 午夜影院日韩av| 亚洲熟妇中文字幕五十中出| 午夜福利18| 18禁国产床啪视频网站| 一级,二级,三级黄色视频| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉精品热| 亚洲,欧美精品.| 久久精品人人爽人人爽视色| 欧美中文日本在线观看视频| 亚洲国产精品合色在线| 色综合亚洲欧美另类图片| 99精品久久久久人妻精品| 亚洲av成人一区二区三| 国产xxxxx性猛交| 国产成人精品久久二区二区91| 伦理电影免费视频| 欧美精品啪啪一区二区三区| 国产亚洲av高清不卡| 伊人久久大香线蕉亚洲五| 午夜福利欧美成人| 啦啦啦 在线观看视频| 18美女黄网站色大片免费观看| x7x7x7水蜜桃| 国产av一区在线观看免费| 一级毛片精品| av免费在线观看网站| 午夜福利高清视频| 波多野结衣av一区二区av| 波多野结衣av一区二区av| 国产精品久久久久久精品电影 | 熟女少妇亚洲综合色aaa.| 丰满人妻熟妇乱又伦精品不卡| 亚洲av电影不卡..在线观看| 成人18禁在线播放| 三级毛片av免费| 在线av久久热| 欧美一级毛片孕妇| 成熟少妇高潮喷水视频| 久久午夜综合久久蜜桃| 丁香六月欧美| 国产亚洲精品av在线| 悠悠久久av| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 欧美乱码精品一区二区三区| 国产成人系列免费观看| 亚洲精品粉嫩美女一区| 久久性视频一级片| 精品久久蜜臀av无| 免费看美女性在线毛片视频| 国产亚洲av嫩草精品影院| 成人18禁在线播放| 国产熟女xx| 91字幕亚洲| 久久天堂一区二区三区四区| АⅤ资源中文在线天堂| cao死你这个sao货| 成人手机av| xxx96com| 中文字幕av电影在线播放| 久久久久久免费高清国产稀缺| 久久亚洲精品不卡| 日韩视频一区二区在线观看| 美女 人体艺术 gogo| 久久国产精品人妻蜜桃| 天天一区二区日本电影三级 | 桃红色精品国产亚洲av| 精品久久久久久久久久免费视频| 国产伦一二天堂av在线观看| 精品一区二区三区视频在线观看免费| 欧美在线黄色| 露出奶头的视频| 国产亚洲av嫩草精品影院| 黄色毛片三级朝国网站| www.自偷自拍.com| 国产免费av片在线观看野外av| 丝袜美腿诱惑在线| 午夜福利视频1000在线观看 | 女性被躁到高潮视频| 精品国产亚洲在线| 无遮挡黄片免费观看| 国产私拍福利视频在线观看| av网站免费在线观看视频| 日本在线视频免费播放| 亚洲三区欧美一区| 女人高潮潮喷娇喘18禁视频| 琪琪午夜伦伦电影理论片6080| 欧美精品亚洲一区二区| 最好的美女福利视频网| 久久香蕉国产精品| 国产欧美日韩一区二区精品| 好男人在线观看高清免费视频 | 黄色视频不卡| 又大又爽又粗| 人妻久久中文字幕网| 亚洲 欧美一区二区三区| 变态另类成人亚洲欧美熟女 | 禁无遮挡网站| 国产激情久久老熟女| 色播在线永久视频| 悠悠久久av| 午夜福利一区二区在线看| 少妇裸体淫交视频免费看高清 | 亚洲精品久久成人aⅴ小说| 美女免费视频网站| 久久久国产欧美日韩av| 亚洲专区中文字幕在线| 999久久久国产精品视频| 麻豆久久精品国产亚洲av| 亚洲一区二区三区色噜噜| 天天躁夜夜躁狠狠躁躁| 久久欧美精品欧美久久欧美| 国产av在哪里看| 中文字幕人成人乱码亚洲影| 亚洲视频免费观看视频| 国产精品二区激情视频| 成人亚洲精品一区在线观看| 国产精品av久久久久免费| 欧美在线一区亚洲| 极品人妻少妇av视频| 怎么达到女性高潮| 一本大道久久a久久精品| 在线视频色国产色| 最近最新中文字幕大全免费视频| 91麻豆av在线| 美女国产高潮福利片在线看| 久久国产精品男人的天堂亚洲| 精品国产乱码久久久久久男人| x7x7x7水蜜桃| 一本综合久久免费| 国产野战对白在线观看| 日韩欧美免费精品| 亚洲免费av在线视频| 国产成人精品久久二区二区免费| 999久久久精品免费观看国产| 久热这里只有精品99| 高清黄色对白视频在线免费看| 亚洲成a人片在线一区二区| 日日爽夜夜爽网站| 久久精品91蜜桃| 国产又色又爽无遮挡免费看| 久久久国产精品麻豆| 桃红色精品国产亚洲av| 法律面前人人平等表现在哪些方面| 国产亚洲精品av在线| 老熟妇仑乱视频hdxx| 亚洲精品国产精品久久久不卡| 久久久久九九精品影院| 国产成人精品久久二区二区免费| 欧美+亚洲+日韩+国产| 国产精品日韩av在线免费观看 | 亚洲熟女毛片儿| 1024香蕉在线观看| 国产精华一区二区三区| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 亚洲片人在线观看| 日韩av在线大香蕉| 一卡2卡三卡四卡精品乱码亚洲| 最近最新免费中文字幕在线| 99久久综合精品五月天人人| 欧美 亚洲 国产 日韩一| 男女午夜视频在线观看| or卡值多少钱| 欧美丝袜亚洲另类 | 最近最新免费中文字幕在线| 亚洲色图综合在线观看| 乱人伦中国视频| 欧美激情高清一区二区三区| 黄色丝袜av网址大全| 不卡一级毛片| 88av欧美| 可以在线观看的亚洲视频| 久久 成人 亚洲| 亚洲少妇的诱惑av| 日韩欧美免费精品| 国产av一区在线观看免费| 亚洲精品一区av在线观看| 69精品国产乱码久久久| 9热在线视频观看99| 欧美激情极品国产一区二区三区| 亚洲国产精品久久男人天堂| 91成人精品电影| 夜夜爽天天搞| 亚洲av片天天在线观看| 长腿黑丝高跟| 热99re8久久精品国产| 精品一区二区三区视频在线观看免费| 日本免费a在线| 国产精品野战在线观看| 国产欧美日韩一区二区三| 在线av久久热| 国产成人欧美| 母亲3免费完整高清在线观看| 精品高清国产在线一区| 国产一卡二卡三卡精品| 中文字幕色久视频| 韩国精品一区二区三区| 在线观看午夜福利视频| 免费在线观看视频国产中文字幕亚洲| 国产一区二区在线av高清观看| 丰满人妻熟妇乱又伦精品不卡| 欧美在线黄色| 桃色一区二区三区在线观看| 色哟哟哟哟哟哟| 色精品久久人妻99蜜桃| 成人国产综合亚洲| 久久人人精品亚洲av| videosex国产| 欧美久久黑人一区二区| 亚洲精品在线观看二区| 久久香蕉激情| 岛国在线观看网站| 嫩草影院精品99| 亚洲精品av麻豆狂野| 在线免费观看的www视频| 女人被狂操c到高潮| 亚洲成国产人片在线观看| 成人亚洲精品av一区二区| 老司机午夜福利在线观看视频| 日本黄色视频三级网站网址| 黑丝袜美女国产一区| 欧美久久黑人一区二区| 亚洲国产精品sss在线观看| 中文字幕人妻熟女乱码| 一级黄色大片毛片| 日日干狠狠操夜夜爽| 欧美日本视频| 国产精品日韩av在线免费观看 | 美女国产高潮福利片在线看| 亚洲九九香蕉| 精品高清国产在线一区| av片东京热男人的天堂| 久久婷婷成人综合色麻豆| 国产高清有码在线观看视频 | 黄片大片在线免费观看| 黑人巨大精品欧美一区二区mp4| 欧美乱妇无乱码| 亚洲全国av大片| 首页视频小说图片口味搜索| 亚洲精品久久成人aⅴ小说| 精品第一国产精品| 91成年电影在线观看| 超碰成人久久| 18美女黄网站色大片免费观看| 国产一区二区三区视频了| 久久久精品国产亚洲av高清涩受| 精品国产一区二区三区四区第35| 亚洲天堂国产精品一区在线| 久久久久久国产a免费观看| 欧美乱色亚洲激情| 国产精品 国内视频| 动漫黄色视频在线观看| 亚洲欧美激情综合另类| 一区二区日韩欧美中文字幕| 啦啦啦韩国在线观看视频| 99国产综合亚洲精品| 亚洲av五月六月丁香网| 好男人在线观看高清免费视频 | 叶爱在线成人免费视频播放| 九色亚洲精品在线播放| 99精品久久久久人妻精品| 国产三级在线视频| 色尼玛亚洲综合影院| www.999成人在线观看| 亚洲av成人一区二区三| 老鸭窝网址在线观看| 欧美亚洲日本最大视频资源| 亚洲一区高清亚洲精品| 国产一卡二卡三卡精品| 亚洲国产欧美网| 免费人成视频x8x8入口观看| 老司机靠b影院| 在线av久久热| 亚洲成人国产一区在线观看| 色播在线永久视频| 国产精品 国内视频| 亚洲成人久久性| 亚洲成国产人片在线观看| 国产精品久久久久久精品电影 | 大型黄色视频在线免费观看| 精品日产1卡2卡| 美女高潮喷水抽搐中文字幕| 好看av亚洲va欧美ⅴa在| 电影成人av| 国产高清视频在线播放一区| 99久久综合精品五月天人人| 中文字幕人妻丝袜一区二区| 无限看片的www在线观看| 日韩大码丰满熟妇| 亚洲av成人不卡在线观看播放网| 法律面前人人平等表现在哪些方面| 91精品三级在线观看| av电影中文网址| 欧美成人一区二区免费高清观看 | 色综合欧美亚洲国产小说| 亚洲视频免费观看视频| 亚洲午夜理论影院| 18美女黄网站色大片免费观看| 天天躁夜夜躁狠狠躁躁| 亚洲男人的天堂狠狠| 变态另类丝袜制服| 又黄又爽又免费观看的视频| 欧美人与性动交α欧美精品济南到| 欧美av亚洲av综合av国产av| 国产精品一区二区在线不卡| 日韩视频一区二区在线观看| 又紧又爽又黄一区二区| 极品人妻少妇av视频| 国产免费av片在线观看野外av| 91精品国产国语对白视频| cao死你这个sao货| 老熟妇仑乱视频hdxx| 成熟少妇高潮喷水视频| 国产黄a三级三级三级人| 不卡av一区二区三区| 制服诱惑二区| 久久国产乱子伦精品免费另类| 制服人妻中文乱码| 丝袜美腿诱惑在线| 久久精品91蜜桃| 国产成人系列免费观看| 91老司机精品| 51午夜福利影视在线观看| 国产午夜福利久久久久久| 性欧美人与动物交配| 精品乱码久久久久久99久播| 一本大道久久a久久精品| 久久性视频一级片| 国产在线观看jvid| 精品国内亚洲2022精品成人| 亚洲av熟女| 久久久久久人人人人人| 欧美中文综合在线视频| av有码第一页| 久热爱精品视频在线9| 很黄的视频免费| 国产91精品成人一区二区三区| 日日摸夜夜添夜夜添小说| 人成视频在线观看免费观看| 一进一出抽搐gif免费好疼| 精品午夜福利视频在线观看一区| 变态另类丝袜制服| 97人妻天天添夜夜摸| 国产麻豆成人av免费视频| 午夜福利一区二区在线看| 国产亚洲精品综合一区在线观看 | 黄频高清免费视频| 久久婷婷成人综合色麻豆| 午夜福利成人在线免费观看| 女生性感内裤真人,穿戴方法视频| 欧美日韩精品网址| 国产成人一区二区三区免费视频网站| 亚洲视频免费观看视频| 亚洲一区二区三区不卡视频| 最近最新免费中文字幕在线| 日本黄色视频三级网站网址| av超薄肉色丝袜交足视频| 日韩一卡2卡3卡4卡2021年| 久久国产乱子伦精品免费另类| 国产精品永久免费网站| 欧美老熟妇乱子伦牲交| 最近最新中文字幕大全电影3 | 韩国av一区二区三区四区| 亚洲无线在线观看| 亚洲在线自拍视频| 亚洲熟妇熟女久久| 亚洲国产日韩欧美精品在线观看 | 97碰自拍视频| 性欧美人与动物交配| 在线观看免费视频网站a站| 久久国产精品人妻蜜桃| 黄色视频不卡| 国产伦一二天堂av在线观看| 欧美在线一区亚洲| 一区二区三区激情视频| 日韩有码中文字幕| 欧美日本亚洲视频在线播放| 欧美另类亚洲清纯唯美| 亚洲第一青青草原| 一级毛片高清免费大全| 精品免费久久久久久久清纯| 成人国产综合亚洲| 青草久久国产| 亚洲少妇的诱惑av| 午夜久久久在线观看| 99精品欧美一区二区三区四区| 看黄色毛片网站| 69av精品久久久久久| 精品一区二区三区视频在线观看免费| 午夜老司机福利片| 中文字幕人成人乱码亚洲影| 级片在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产成人精品二区| 日本 av在线| 欧美一级a爱片免费观看看 | 成人特级黄色片久久久久久久| 国产欧美日韩综合在线一区二区| 久久国产乱子伦精品免费另类| √禁漫天堂资源中文www| 999久久久精品免费观看国产|