• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QCM Sensors Based on PEI Films for CO2Detection

    2015-11-18 10:11:51GuangZhongXieTingKangYongZhouTaoXieHuiLingTaiandYaDongJiang
    關(guān)鍵詞:替代品產(chǎn)奶量谷物

    Guang-Zhong Xie, Ting Kang, Yong Zhou, Tao Xie, Hui-Ling Tai, and Ya-Dong Jiang

    QCM Sensors Based on PEI Films for CO2Detection

    Guang-Zhong Xie, Ting Kang, Yong Zhou, Tao Xie, Hui-Ling Tai, and Ya-Dong Jiang

    —In this paper, quartz crystal microbalance(QCM) gas sensors coated with polyehtyleneimine (PEI)was utilized for carbon dioxide (CO2) detection. The sensing mechanism is based on the availability of reversible acid-base reactions between CO2molecules and PEI at room temperature. The experimental results revealed that the PEI/starch sensor exhibited much higher sensitivity than that of pure PEI, and showed approximate linearity over a concentration region ranging from 500 ppm to 8000 ppm. The influence of humidity had also been investigated. Furthermore, the response and recovery time deceased as the operation temperatures increased. Finally, sensitivity loss after conservation for several days and reversibility of the sensors had been discussed.

    Index Terms—Humidity, polyehtyleneimine, sensor,starch, temperature.

    1. Introduction

    As a green house gas contributing to global warming,carbon dioxide (CO2) is relatively inert, so it is an important and difficult task to monitor CO2with convenient and reliable sensors. The qualitative detection and thereafter the control of CO2concentration are very important in many areas, such as air conditioning,agriculture, biological technology, and medical services[1]. To meet these increasing requirements, a large number of continuous efforts have been made to develop high performance CO2sensors. Various principles, including infrared absorption[2],[3], field-effect transistors[4],resistance[5]-[7], and piezoelectric[8]have so far been adopted for developing CO2sensors. Quartz crystal microbalance (QCM) CO2sensors have advantages of large sensitivity and digital frequency output. When the sensor exposes to ambient environment, the adsorption of CO2molecules on CO2sensing layer will make the sensor produce a frequency shift.

    In recent years, various sensitive materials have been investigated for CO2sensors, such as carbonates (BaCO3[9],Na2CO3[10], SrCO3[11]), metal oxides (CuO-BaTiO3,La2O3)[12],[13], Versamide 900, as well as CO2sensitive materials containing amino groups, such as monomeric amines, polymeric amines[14]-[19], and modified silicates,also named as siloxanes[20],[21]. Therefore, the polyehtyleneimine (PEI) is often chosen as the preferred sensitive material to detect CO2. In this paper, PEI and PEI/starch films were selected for QCM CO2detection based on the hard soft acids bases (HSAB) theory. Some methods were utilized to improve the response, and the respective sensitive properties were studied in detail as well.

    2. Experimental

    2.1 Device Preparation

    An 8 MHz AT-cut quart crystal with Ag electrode(purchased from Jingbao Company, Chengdu) was used as the substrate. Before depositing the sensitive film, the devices were cleaned with acetone, ethanol, and de-ionized water in sequence. Each step lasted 15 minutes by sonication to remove impurities and pollutants from the devices surface, and then the treated devices were dried in a vacuum drying oven for 2 hours at 60°C.

    2.2 Materials and Films Fabrication

    PEI (mass fraction was 50% in water) was purchased from Aldrich. Soluble starch (C12H22O11) was purchased from J&K Scientific. The other reagents were analytically pure, and de-ionized (DI) water was used for preparation of samples and solutions. QCM CO2gas sensors were fabricated as follows.

    Monolayer film: PEI solution was diluted 70 times with DI water, then spin-coated on the active area of QCM electrode. Finally, the devices were put into the vacuum drying oven under 60°C for 48 hours.

    Composite film: A small amount of starch (A: 2 mg, B: 6 mg, C: 10 mg) was added into 35 ml PEI solution to mix mechanically until uniform solution was obtained. Then thecomposite film was formed by spin coating the composite material on the active area of the QCM electrode. Finally,the devices were put into the vacuum drying oven under 60°C for 48 hours.

    The sensors’ frequencies were measured in dry state after the coating process to confirm the formation of the needed layer. A constant frequency shift of around 4 kHz was kept in all these devices following the same procedure.

    2.3 Test Facility

    研究表明:飼喂牛奶、牛奶替代品提高0.1千克日增重,可使產(chǎn)奶量提高65千克;飼喂谷物提高0.1千克日增重,可使產(chǎn)奶量提高266千克,所以應(yīng)重視谷物采食量,谷物攝入量對牛奶產(chǎn)量的影響大于牛奶攝入量。盡早斷奶,瘤胃才能更好的發(fā)育,如圖2。

    The sensitive properties of the prepared QCM gas sensors were measured real-timely with a flow gas system,as shown in Fig. 1. The air was used for dilution of CO2gas. The temperature in the sensor cell was stabilized at 27°C. Gas concentration was controlled by a mass flow controller. The frequency of the QCM sensor was recorded with a measurement system consisting of a film thickness oscillator, frequency counter, and computer. Scanning electron microscopy was used to analyze the morphology of the sensitive films. The Fourier transform infrared (FTIR)spectrum of PEI in the range of 667 cm-1to 4000 cm-1was recorded to analysis the contained chemical group.

    Fig. 1. Experimental facility.

    3. Result and Discussion

    Basically, the frequency of the QCM sensor changes upon adsorption or absorption of the corresponding gas. The frequency shift Δf results in an increase in the oscillating mass Δm, described as

    where A is the area of the electrode surface and f0is the fundamental frequency of QCM.

    3.1 Characterization

    The scanning electron microscope ( SEM ) image of a pure PEI thin film is shown in Fig. 2 (a). It shows that there are a large number of wrinkles on the surface. And the upper left corner of Fig. 2 (a) gives a magnification of a wrinkles. It can be found that the surface is raised, which seems to contribute to the short response time and more gas adsorption sites of the sensor. Fig. 2 (b) shows traces of starch particles dispersed unevenly in the PEI polymer. And the upper left corner of the Fig. 2 (b) gives a magnification of a starch particles, which shows that the starch does not dissolve in the PEI and just attaches on the polymer membrane.

    Fig. 2. SEM images: (a) PEI film and (b) PEI/Starch composite film.

    Fig. 3. FTIR spectrum of PEI and PEI/Starch.

    The FTIR spectrum of PEI is shown as curve A in Fig. 3, and the main characteristic peaks of PEI were assigned as follows: The broad peak centered at 3400 cm-1was an envelope of νO-Hfor the adsorbed water, and νN-Hfor theammino groups.The 2941 cmm-1and 28333 cm-1bandswere asssigned to νC-HHfor the -CHH2groups, andthe bands at1548 cmm-1and 851 ccm-1were attrributed to thee in plane bennding viibration and oout of plane bending vibratiion of N-H foor the unnits of PEI, rrespectively, bboth of whichh were assocciated wwith amino skeeleton[22],[23]. CConsidering thhe above anallysis,thhe PEI containned -NH and-CH2groups.Curve B in FFig. 3 shhows that thepeak 3100 cmm-1to 3400 cmm-1is much wwider thhan curve A,because -NHH associated wwith -OH exiist in sttarch. Besidess, the peak at851 cm-1groows weaker, wwhich mmay also be thee result of theaddition of sttarch.

    3..2 Responseto CO2

    A. Improvemennt of Responsee

    The sensibiility (S) of thee sensors to CCO2gas is giveen by ΔΔfΔC , wherre Δf represeents the frequuency shift off the seensor exposedd to CO2gas aand ΔC is the cconcentrationshift off CO2gas. Tyypical responses of QCM seensors coatedwith PEI and PEI/staarch for CO2ggas are shownn in Fig. 4 andd Fig. 5, respectively..

    Fiig. 4. Responnse of PEI gaas sensor to CCO2: (a) reall-time frrequency shift aand (b) linear fitt of the frequenncy shift.

    Fig.5. Response oof PEI/starch ggas sensor to CCO2: (a) real-timme frequuency shift and(b) linear fit off the frequencyshift.

    FFig. 4 (a) andd Fig. 5 (a) sshow the real--time frequenncy shifftts Δf of the ssensors duringg exposures too different COO2conccentrations bbetween 500ppm and 8000 ppm ata ambbient temperatture (27°C). FFrom the figuures, PEI senssor andPEI/starch seensor both dessorption incommpletely dueto theshort test timme. Thereforre an experimment had been perfformed for aa single conncentration ((5000 ppm)to inveestigate the recoverability oof the sensor aas a supplemeent showwn in the botttle-left corners of Fig. 4 (a)) and Fig. 5 (aa),whicch show thatthe sensor haad a good revversibility. Froom Fig.4 (a) and Figg. 5 (a), the mooderate quanttity of the starrch dopeed PEI sensorr shows a betteer response thhan the pure one,andboth of themm can restorre to its origginal frequenccy,althoough a longtime (about30 minutes)will be takeen. Therrefore, the innfluence of diifferent amouunt of starch oon theproperties off the sensorhas been innvestigated. AAs illusstrated in Fig.5 (a), the sensing responseof the sensorr A(2 mmg starch) iis larger thaan the otherss, and reducces graddually with thee increasing aamount of starrch. In additioon,modderate starch-ddoped compoosite film sennsors has largger senssing responsethan the monoolayer one. Thhe reason is thhat morre adsorptionsites were emmerged due tothe PEI, which ensuured more pphysical inteeraction betwween the COO2moleecules and thhe sensitive ffilms. Meanwwhile the starrch attraacts more waater to the fiilm due to thhe hygroscoppic natuure which ennhanced CO22reaction wiith PEI aminnogroups. However, the addition of excessive dopant prevented the direct contact between CO2gas and adsorption sites in PEI polymer which weakened the response of CO2gas. In addition, the linearly coefficients of the PEI/starch sensor (A) and PEI sensors were 0.882 and 0.974, respectively, as shown in Fig. 4 (b) and Fig. 5 (b). B. Response to H2O Vapor

    Moderate moisture will not resist the adsorption of CO2,but can promote it. Because the presence of H2O molecules will react with the reaction product of (2) and (3):

    Fig. 6. Influence of H2O molecules to different sensors: (a) PEI sensor and (b) PEI/starch sensor.

    Because of the acid-base interaction of CO2with amino groups and the hydrophilicity of starch, the CO2response might be affected by the presence of starch. The following test was used for investigating the relevance of humidity and CO2absorption. As shown in Fig. 6, both of the PEI sensor and PEI/starch sensor exhibit a good responsivity to H2O vapor. According to Fig. 7, the PEI/starch sensor displays greater response to H2O vapor than PEI sensor. It reveals clearly that the starch has good hygroscopicity. Besides that, the frequency shift of the two sensor exhibits a good linearity versus the H2O vapor concentration over the range investigated.

    Fig. 7. Linear fit of frequent shifts of PEI sensor and PEI/starch sensor to H2O molecules.

    Fig. 8. Real-time frequency shift of sensors in humid environment:(a) PEI sensor and (b) PEI/starch sensor.

    In order to investigate the relevance of humidity and CO2absorption, the following test was carried out. Firstly,10 ml clean water was added into the bottom of the test chamber for simulating the humid condition. Secondly,5000 ppm CO2was injected into the test chamber for 30 minutes to saturate the clean water and ensure that it would not absorb CO2anymore in the later test. Finally, QCM gas sensors were connected and clean air was injected as carrier gas to test the performance of the sensors.

    As shown in Fig. 8, on exposure to different CO2gas concentrations, the frequency shifts of PEI sensor and PEI/starch sensor in the humid condition are much larger than that in the dry condition. It shows that the appropriate amount of moisture can promote CO2adsorption. Due to the fact that the existence of H2O molecules greatly affects the response property, it can be inferred that the H2O molecules participation results in higher sensitivity.

    C. Effect of Temperature

    As physical absorption and chemical reactions are affected by temperature, the responses of PEI-coated and PEI/starch sensors exposed to various CO2concentration in different working temperature such as 27°C, 40°C, and 60°C are studied, as shown in Fig. 9.

    Fig. 9. Influence of temperature (27°C, 40°C, and 60°C) to sensors: (a) PEI sensor and (b) PEI/starch sensor.

    Fig. 9 (a) and Fig. 9 (b) illustrates the effect of the temperature on the responses of two sensors. When the concentration was higher than 3000 ppm, the sensing response increased with the increase of temperature. But 40°C was optimal when the sensors exposed to CO2with the concentration lower than 3000 ppm. And the sensors at a higher temperature exhibited better recoverability, shorter response time, and recovery time, which was owing to the difference in thermally expanded volumes leading to a difference in the sensor frequency response. And it also shows that the responses of two sensors to CO2at 40°C and 60°C were almost similar.

    D. Study of Stability

    The PEI and PEI/starch sensors were exposed to the air of ambient environment without package for several days. Their sensing responses to CO2at room temperature several days later are exhibited in the Fig. 10.

    Fig. 10 (a) and Fig. 10 (b) show that the responses of the PEI and PEI/starch sensors shrink after a long time exposed to air, but they still exhibit a distinct response to CO2. In addition, the two sensors exhibit good stability,providing a better way to detect CO2.

    Fig. 10. Stability of sensors: (a) PEI sensor and (b) PEI/starch sensor.

    4. Conclusions

    The experimental results have confirmed that CO2could be successfully detected in a concentration of 500 ppm to 8000 ppm at room temperature using PEI-basedQCM gas sensors. By adding the starch to the PEI polymer film, the sensing response to CO2was enhanced, and it seemed suitable for CO2detection at room temperature. The starch worked as a dopant can improve the adsorption of H2O molecules in the PEI layer, which resulted in an increase of sensor sensitivity and response speed. However,the interference could be removed by increasing the working temperature. Especially when the sensors worked at a high temperature atmosphere, PEI and PEI/starch coated sensors showed a shorter response and recovery time. Further, the sensors showed a modest long-term stability on exposure to the air atmosphere. These properties would be promising for future development of room-temperature CO2sensors.

    [1] P.-M. Eisenberger, R.-W. Cohen, G. Chichilnisky, et al.,“Global warming and carbon-negative technology: Prospects for a lower-cost route to a lower-risk atmosphere,”Energy and Enviroment., vol. 20, no. 6, pp. 973-984, 2009.

    [2] S. Neethirajan, D.-S. Jayas, and S. Sadistap, “Carbon dioxide (CO2) sensors for the agri-food industry—A review,”Food Bioprocess Technology, vol. 2, no. 2, pp. 115-121,2009.

    [3] A. Marshal, A. Cornet, and J.-R. Morante, “Study of the CO2and humidity interface in La doped tin oxide CO2gas sensor,” Sensors and Actuators B, vol. 94, pp. 324-329,2003.

    [4] H. Koezuka and A. Tsumura, “Field effect transistor utilizing conducting polymers,” Synthetic Metals, vol. 28, no. 1-2, pp. 753-760, 1989.

    [5] N.-V. Hieu, “Highly reproducible synthesis of very large-scale tin oxide nanowires used for screen-printed gas sensor,” Sensors and Actuators B, vol. 144, no. 2, pp. 425-431, 2010.

    [6] I.-A. Al-Homoudi, J.-S. Thakur, R. Naik, and G.-W. Auner,“Anatase TiO2films based CO gas sensor: Film thickness,substrate and temperature effects,” Applied Surface Science,vol. 253, no. 21, pp. 8607-8614, 2007.

    [7] N.-D. Hoa, N.-V. Quy, M.-A. Tuan, and N.-V. Hieu, “Facile synthesis of p-type semiconducting cupric oxide nanowires and their gas-sensing properties,” Physica E, vol. 42, no. 2,pp. 146-149, 2009.

    [8] R. Zhou, S. Vaihinger, K.-E. Geckeler, and W. Gpei?,“Reliable CO2sensors with silicon-based polymers on quartz microbalance transducers,” Sensors Actuators B: Chemical, vol. 19, no. 1-3, pp. 415-420, 1994.

    [9] B. Ostrick, M. Fleischer, and H. Meixner, “The influence of interfaces and interlayers on the gas sensitivity in work function type sensors,” Sensors Actuators B: Chemical, vol. 95, no. 1-3, pp. 271-274, 2003.

    [10] N. Miura, M. Lio, G. Lu, et al. “Solid-state amperometric NO2sensor using a sodium ion conductor,” Sensor and Actuators B: Chemical, vol. 35, no. 1, pp. 124-129, 1996.

    [11] T. Goto, G. He, T. Narushima, and Y. Iguchi, “Application of Sr?-alumina solid electrolyte to a CO2gas sensor,” Solid State Ionics., vol. 156, pp. 329-336, 2003.

    [12] A. Haeusler and J.-U. Meyer, “A novel thick film conductive type CO2sensor,” Sensor and Actuators B: Chemical, vol. 34, no. 1-3, pp. 388-395, 1996.

    [13] M.-Y. Kim, Y.-N. Choi, J.-M. Bae, et al., “Carbon dioxide sensitivity of La-doped thick film tin oxide gas sensor,”Ceramics International, vol. 38, no. 1, pp. 657-660, 2012.

    [14] S. Stegmeier, M. Fleischer, A. Tawil, P. Hauptmann, K. Egly,and K. Rose, “Sensing mechanism of room temperature CO2sensors based on primary amino groups,” Sensor and Actuators B: Chemical, vol. 154, no. 2, pp. 270-276, 2011.

    [15] M.-S. Nieuwenhuizen and A.-J. Nederlof, “A SAW gas sensor for carbon dioxide and water. Preliminary experiments,” Sensor and Actuators B: Chemical, vol. 2, no. 2, pp. 97-101, 1990.

    [16] K. Korsah, C.-L. Ma, and B. Dress, “Harmonic frequency analysis of SAW resonator chemical sensors: application to the detection of carbon dioxide and humidity,” Sensor and Actuators B: Chemical, vol. 50, no. 2, pp. 110-116, 1998.

    [17] R. Zhou, D. Schmeiser, and W. Gopel, “Mass sensitive detection of carbon dioxide by amino group-functionalized polymers,” Sensor and Actuators B: Chemical, vol. 33, no. 1-3, pp. 188-193, 1996.

    [18] C. Caliedo, P. Verardi, E. Verona, et al., “Advances in SAW-based gas sensors,” Smart Material Structures, vol. 6,no. 6, pp. 689-699, 1997.

    [19] A. Star, T.-R. Han, V. Joshi, J.-C.P. Gabriel, and G. Gruner,“Nanoelectronic carbon dioxide sensors,” Advanced Materials, vol. 16, no. 22, pp. 2049-2052, 2004.

    [20] S. Stegmeier, M. Fleischer, A. Tawil, et al., “Stepwise improvement of (hetero-) polysiloxane sensing layers for CO2detection operated at room temperature by modification of the polymeric network,” Sensor and Actuators B: Chemical, vol. 148, no. 2, pp. 450-458, 2010.

    [21] S. Stegmeier, M. Fleischer, A. Tawil, et al., “Sensing of CO2at room temperature using work function readout of (hetero-)polysiloxanes sensing layers,” Sensor and Actuators B: Chemical, vol. 154, no. 2, pp. 206-212, 2011.

    [22] A. Barau, V. Budarin, A. Caragheorgheopol, et al., “A simple and efficient route to active and dispersed silica supported palladium nanoparticles,” Catalysis Letters, vol. 124, no. 3-4, pp. 204-214, 2008.

    [23] G. Martra, L. Bertinetti, C. Gerbaldi, et al., “Pd/SiO2as heterogeneous catalyst for the heck reaction evidence for a sensitivity to the surface structure of supported particles,”Catalysis Letters, vol. 132, no. 2, pp. 50-57, 2009.

    Guang-Zhoong Xie wasborn in Sicchuan Province, CChina in 1968. HHe received hiss B.S. and M.S. ddegrees in phyysics from Sicchuan University,Chengdu in1991 and1996,respectivelyy, and receivedd his Ph.D. ddegree from Univeersity of Elecctronic Sciencee and Technologyy of China (UEESTC) in 20077. He is a professsor with Schoool of Optoelecttronic Innformation, (UUESTC). Hisresearch intee rests are senn sitive mmaterials and sennsors.

    Ting Kangg was born inn Shaanxi Provvince,China in 19989. She receivved her B.S. ddegree from Jiangsu University inn 2011. Currentlly she is pursuingg the M.S.degree in optical engineeringg with UESTTC. Her ressearch interests incclude the CO2ggas sensor and QQCM gas sensingmechanism.

    Yong Zhouu was born in Henan Provvince,China in 19988. He receivved the B.S. ddegree from the Chongqing Univversity of Posts and Telecommuunications (CQUUPT), Chongqiing in 2009. Hereceived hiss M.S. degreee in microelectroonics from UEESTC and nowhe is pursuing tthe Ph.D. ddegree in optical engineeringg with UESTTC. His research innterests includee the preparattion of gas seensors, gas seensing mmaterials, and ffabrication ofmicro-electro-mmechanical systems(MMEMS) gas sennsors array.

    Tao Xie wasborn in Heilonngjiang Provincce,China in 19866. He receivedd the B.S. degrree from the JilinUniversity, Changchun in 20110. He receivedd his M.SS. degreein microelectronics from UESTTC and now heis pursuing thee Ph.D. deggree in opticcal engineering wiith UESTC. Hisresearch interests include the preeparation of OTTFT gas sensorrs, OTFFT gas sensingg mechanism and fabricatioon of OTFT ggas sensoors array.

    Hui-Ling Taiwas born in NNingxia Proxincce,China in 19799. She receivedd her B.S. degrree and Ph.D. deggrees from UESSTC, Chengduin 2003 and 20008, respectively. She isan associate proofessor withthe Schoolof Optoelectronicc Information,, UESTC. HHer scientific interrests are condducting polymeers and their compoosites for gas seensor applicatioon.

    Ya-Dong Jiang was born in SSichuan Provincce,China in 1964. He received hhis B.S. degreein 1986 from UEESTC. Then hegot his M.S. aand Ph.D. degreesin 1989 and 20001 from UESTTC,respectively. HHe is a professorr and the Deanof School of Optooelectronic Infoormation, UESTTC. His majorresearch innterests incluude optoelectronicmaterial anddevices, sensitiive material sand ssensors.

    Manuscript received September 1, 2014; revised November 4, 2014. This work was supported by the National Natural Science Foundation of China under Grant No. 61176006 and No. 61006036, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120185110012.

    G.-Z. Xie is with the School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China(Corresponding author e-mail: gzxie@uestc.edu.cn)

    T. Kang, Y. Zhou, T. Xie, H.-L. Tai, and Y.-D. Jiang are with the School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China (e-mail: xiaobu0401@126.com; zhyfly68@126.com; Xietaohlj@163.com;taitai1980@uestc.edu.cn; jiangyd@uestc.edu.cn ).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.017

    猜你喜歡
    替代品產(chǎn)奶量谷物
    烏克蘭谷物和油料作物庫存遠(yuǎn)低于2020年同期
    提高母豬產(chǎn)奶量的方法
    烏克蘭谷物和油料作物庫存遠(yuǎn)低于2020年同期
    論養(yǎng)殖業(yè)“減抗”背景下無抗替代品與畜產(chǎn)品安全
    擊打式谷物加工農(nóng)具
    軍事文摘(2020年20期)2020-11-16 00:32:10
    荷斯坦牛各胎次產(chǎn)奶量規(guī)律研究及相關(guān)性分析
    中國奶牛(2019年12期)2020-01-08 07:15:38
    集環(huán)保、長效、多效、無害等眾多優(yōu)點于一身的化肥替代品——微生物肥料
    瘤胃可降解纈氨酸對泌乳后期奶牛產(chǎn)奶量的影響
    飼料博覽(2016年3期)2016-04-05 16:07:52
    燕麥糊精脂肪替代品在低脂奶油中的應(yīng)用
    常用谷物飼料原料營養(yǎng)成分
    av视频免费观看在线观看| 亚洲五月婷婷丁香| 亚洲精品乱久久久久久| 中文精品一卡2卡3卡4更新| 国产一区二区 视频在线| 在现免费观看毛片| 波多野结衣av一区二区av| 啦啦啦 在线观看视频| 亚洲国产欧美一区二区综合| 午夜激情久久久久久久| 2021少妇久久久久久久久久久| 91字幕亚洲| 亚洲男人天堂网一区| 大陆偷拍与自拍| 日本色播在线视频| 青青草视频在线视频观看| 欧美人与性动交α欧美软件| 亚洲精品国产av成人精品| 亚洲欧美清纯卡通| av不卡在线播放| 热99国产精品久久久久久7| 97精品久久久久久久久久精品| 在线观看人妻少妇| 香蕉丝袜av| 一区二区av电影网| 99久久99久久久精品蜜桃| 一级a爱视频在线免费观看| 亚洲国产欧美日韩在线播放| a 毛片基地| 国产精品二区激情视频| 天天添夜夜摸| 女性生殖器流出的白浆| 免费观看av网站的网址| 欧美日韩视频精品一区| 夫妻午夜视频| 久久精品久久精品一区二区三区| 精品国产国语对白av| 日本欧美国产在线视频| 麻豆乱淫一区二区| 纯流量卡能插随身wifi吗| 午夜免费观看性视频| 国产成人精品在线电影| 只有这里有精品99| 国产一区亚洲一区在线观看| 亚洲激情五月婷婷啪啪| 国产三级黄色录像| 色94色欧美一区二区| 成人亚洲精品一区在线观看| 日韩大码丰满熟妇| 777米奇影视久久| 亚洲情色 制服丝袜| 无限看片的www在线观看| 在线观看www视频免费| 精品亚洲成a人片在线观看| 日韩 欧美 亚洲 中文字幕| 黑人巨大精品欧美一区二区蜜桃| 国产一卡二卡三卡精品| 看免费成人av毛片| 肉色欧美久久久久久久蜜桃| 国产熟女午夜一区二区三区| 久久影院123| 午夜久久久在线观看| 精品一区二区三区av网在线观看 | 久久精品亚洲av国产电影网| 99精品久久久久人妻精品| 女人精品久久久久毛片| 亚洲欧洲精品一区二区精品久久久| 青青草视频在线视频观看| 精品久久久精品久久久| 天堂俺去俺来也www色官网| 国产欧美日韩一区二区三区在线| 国产一区有黄有色的免费视频| 国产精品国产av在线观看| 国产一区二区激情短视频 | 亚洲七黄色美女视频| 亚洲国产欧美一区二区综合| 香蕉国产在线看| 成年女人毛片免费观看观看9 | 18禁观看日本| 99精国产麻豆久久婷婷| 久久久久视频综合| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲国产日韩一区二区| 老司机午夜十八禁免费视频| 无限看片的www在线观看| 国产成人系列免费观看| 久久久久久久久久久久大奶| 中文字幕色久视频| xxxhd国产人妻xxx| 亚洲欧美中文字幕日韩二区| 两个人免费观看高清视频| 99国产综合亚洲精品| 国产成人免费观看mmmm| a级毛片黄视频| 国产主播在线观看一区二区 | 国产成人欧美| 日韩熟女老妇一区二区性免费视频| 久久精品国产亚洲av高清一级| 亚洲欧洲国产日韩| 一边摸一边抽搐一进一出视频| 在线观看免费视频网站a站| 美女大奶头黄色视频| 男女边吃奶边做爰视频| 午夜视频精品福利| 久久精品人人爽人人爽视色| 亚洲综合色网址| 九色亚洲精品在线播放| 国产伦理片在线播放av一区| 久久精品亚洲av国产电影网| av国产精品久久久久影院| 欧美日韩亚洲高清精品| 大香蕉久久网| 国产成人精品久久二区二区91| 免费观看av网站的网址| 国产精品一区二区在线观看99| 大型av网站在线播放| 汤姆久久久久久久影院中文字幕| 精品欧美一区二区三区在线| 国产成人a∨麻豆精品| 国产亚洲av高清不卡| 青春草视频在线免费观看| 日韩,欧美,国产一区二区三区| 51午夜福利影视在线观看| 国产一区二区三区av在线| 少妇的丰满在线观看| 国产成人av激情在线播放| 老司机亚洲免费影院| 久久久久久人人人人人| 国产在线观看jvid| 亚洲av美国av| 久久精品国产亚洲av高清一级| 操出白浆在线播放| 国产精品一区二区在线不卡| 高清欧美精品videossex| 在线观看www视频免费| 国产免费又黄又爽又色| 国产欧美亚洲国产| 满18在线观看网站| av福利片在线| 午夜福利影视在线免费观看| 晚上一个人看的免费电影| 欧美老熟妇乱子伦牲交| 国产麻豆69| 午夜91福利影院| 日本欧美视频一区| 如日韩欧美国产精品一区二区三区| 国产av国产精品国产| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久久久久久大奶| 91精品国产国语对白视频| 国产日韩欧美亚洲二区| 亚洲五月婷婷丁香| 夜夜骑夜夜射夜夜干| 精品视频人人做人人爽| 操出白浆在线播放| 国产精品99久久99久久久不卡| 久久亚洲国产成人精品v| 亚洲一卡2卡3卡4卡5卡精品中文| av不卡在线播放| 免费看不卡的av| 国产熟女午夜一区二区三区| 精品久久久精品久久久| 国产成人一区二区在线| 亚洲免费av在线视频| 亚洲欧美中文字幕日韩二区| 性高湖久久久久久久久免费观看| 大片电影免费在线观看免费| 久久久久久人人人人人| 性色av乱码一区二区三区2| 激情五月婷婷亚洲| 亚洲精品国产av蜜桃| 性色av乱码一区二区三区2| 成人影院久久| tube8黄色片| 18在线观看网站| 免费一级毛片在线播放高清视频 | 欧美精品亚洲一区二区| 五月开心婷婷网| 亚洲精品乱久久久久久| 韩国高清视频一区二区三区| 国产男女超爽视频在线观看| www.熟女人妻精品国产| 精品亚洲成国产av| 欧美精品一区二区免费开放| 两个人看的免费小视频| 天堂俺去俺来也www色官网| www.av在线官网国产| 日韩一本色道免费dvd| 国产精品一区二区在线不卡| 国产在线观看jvid| 久久精品久久久久久噜噜老黄| 老司机亚洲免费影院| 国产成人一区二区在线| 成人国产av品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美日韩另类电影网站| 午夜福利在线免费观看网站| 一级片'在线观看视频| 99热全是精品| 免费观看av网站的网址| 日日摸夜夜添夜夜爱| tube8黄色片| 十八禁人妻一区二区| 王馨瑶露胸无遮挡在线观看| 1024香蕉在线观看| 18禁裸乳无遮挡动漫免费视频| 九色亚洲精品在线播放| 国产熟女欧美一区二区| 精品一区二区三区av网在线观看 | 精品国产国语对白av| 国产淫语在线视频| 亚洲国产av新网站| 麻豆乱淫一区二区| 久久中文字幕一级| 久久青草综合色| 丝袜喷水一区| 一区在线观看完整版| 国产在视频线精品| 男女床上黄色一级片免费看| 美女扒开内裤让男人捅视频| 欧美日韩亚洲高清精品| 国产精品 国内视频| 国产成人免费无遮挡视频| 欧美精品高潮呻吟av久久| 制服诱惑二区| 亚洲一区中文字幕在线| 人人妻人人澡人人爽人人夜夜| 91麻豆av在线| 国产高清视频在线播放一区 | 中文精品一卡2卡3卡4更新| 免费看av在线观看网站| 天堂中文最新版在线下载| 制服人妻中文乱码| tube8黄色片| 国产精品成人在线| 久久精品亚洲熟妇少妇任你| 精品人妻熟女毛片av久久网站| 一本色道久久久久久精品综合| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 久久午夜综合久久蜜桃| 在线观看免费视频网站a站| 在线观看免费午夜福利视频| 日韩 亚洲 欧美在线| 久久鲁丝午夜福利片| 777米奇影视久久| 女人被躁到高潮嗷嗷叫费观| 国产精品国产三级专区第一集| 精品人妻熟女毛片av久久网站| 嫁个100分男人电影在线观看 | 人体艺术视频欧美日本| 一区二区三区四区激情视频| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 亚洲国产精品成人久久小说| 亚洲人成77777在线视频| 国产视频首页在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲天堂av无毛| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| 精品一区在线观看国产| 精品亚洲成a人片在线观看| 国产精品国产三级专区第一集| 欧美日韩国产mv在线观看视频| kizo精华| www.熟女人妻精品国产| 日韩 欧美 亚洲 中文字幕| 在线观看免费午夜福利视频| 建设人人有责人人尽责人人享有的| 免费女性裸体啪啪无遮挡网站| 丰满迷人的少妇在线观看| 精品亚洲成a人片在线观看| 久久精品亚洲av国产电影网| 超碰成人久久| 色94色欧美一区二区| 久久综合国产亚洲精品| 精品人妻在线不人妻| 黄色片一级片一级黄色片| 9热在线视频观看99| 久久久国产精品麻豆| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| 中文字幕色久视频| 亚洲国产精品国产精品| 操出白浆在线播放| 亚洲国产成人一精品久久久| 18在线观看网站| 一本大道久久a久久精品| 高清视频免费观看一区二区| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 欧美日韩一级在线毛片| 一二三四在线观看免费中文在| 亚洲九九香蕉| 久久 成人 亚洲| 国产91精品成人一区二区三区 | 黄色片一级片一级黄色片| 秋霞在线观看毛片| 黄色一级大片看看| 中文欧美无线码| av国产久精品久网站免费入址| 久久天堂一区二区三区四区| 国产男人的电影天堂91| 亚洲精品国产av蜜桃| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 国产精品av久久久久免费| 91老司机精品| 国产精品久久久人人做人人爽| 国产成人91sexporn| 婷婷成人精品国产| 亚洲熟女精品中文字幕| 精品国产超薄肉色丝袜足j| 精品福利永久在线观看| 超碰成人久久| 亚洲欧美一区二区三区黑人| 一本综合久久免费| 久久精品人人爽人人爽视色| 亚洲色图综合在线观看| 老汉色av国产亚洲站长工具| 欧美大码av| 精品一区二区三卡| 大码成人一级视频| 国产真人三级小视频在线观看| 久久精品久久久久久噜噜老黄| 麻豆乱淫一区二区| 这个男人来自地球电影免费观看| 久久人人爽人人片av| 51午夜福利影视在线观看| 精品高清国产在线一区| 美女高潮到喷水免费观看| 中文字幕最新亚洲高清| a级片在线免费高清观看视频| 狂野欧美激情性xxxx| 好男人电影高清在线观看| 久久99精品国语久久久| 又紧又爽又黄一区二区| 免费高清在线观看视频在线观看| 亚洲专区国产一区二区| cao死你这个sao货| 亚洲国产精品成人久久小说| 老鸭窝网址在线观看| 一区二区三区乱码不卡18| 国产真人三级小视频在线观看| 久久99精品国语久久久| 秋霞在线观看毛片| 大型av网站在线播放| 成人18禁高潮啪啪吃奶动态图| 丁香六月天网| 一级毛片 在线播放| 亚洲 国产 在线| 久久性视频一级片| 国产成人欧美| 观看av在线不卡| 国产亚洲一区二区精品| 欧美日韩成人在线一区二区| 久久久久久免费高清国产稀缺| 日韩av不卡免费在线播放| 免费日韩欧美在线观看| 51午夜福利影视在线观看| 国语对白做爰xxxⅹ性视频网站| 日韩熟女老妇一区二区性免费视频| 久久久久久久精品精品| 亚洲久久久国产精品| 男女高潮啪啪啪动态图| 国产精品久久久人人做人人爽| 欧美中文综合在线视频| 国产xxxxx性猛交| 99热网站在线观看| 久久精品国产a三级三级三级| 女警被强在线播放| 好男人电影高清在线观看| 国产熟女午夜一区二区三区| 中文字幕制服av| 麻豆国产av国片精品| 精品国产超薄肉色丝袜足j| 亚洲一区二区三区欧美精品| 亚洲国产精品成人久久小说| 一级片免费观看大全| 一边摸一边抽搐一进一出视频| 国产亚洲精品久久久久5区| av国产久精品久网站免费入址| 看十八女毛片水多多多| 精品卡一卡二卡四卡免费| 国产成人精品在线电影| 9191精品国产免费久久| 欧美日韩综合久久久久久| 人妻人人澡人人爽人人| 男女之事视频高清在线观看 | 久久精品国产亚洲av涩爱| 亚洲国产精品一区三区| 国产精品二区激情视频| 免费在线观看日本一区| 啦啦啦 在线观看视频| 天堂8中文在线网| 国产欧美日韩精品亚洲av| av天堂久久9| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| 久久精品国产亚洲av涩爱| 精品一区二区三区av网在线观看 | 妹子高潮喷水视频| 男人操女人黄网站| 久久精品国产a三级三级三级| 久久久精品国产亚洲av高清涩受| 精品亚洲乱码少妇综合久久| 国产成人欧美在线观看 | 亚洲黑人精品在线| 青青草视频在线视频观看| 老熟女久久久| 如日韩欧美国产精品一区二区三区| 亚洲三区欧美一区| 国产精品国产三级专区第一集| 精品国产超薄肉色丝袜足j| 国产精品偷伦视频观看了| 黄网站色视频无遮挡免费观看| 久久精品成人免费网站| 久久精品久久久久久久性| 最新的欧美精品一区二区| 久久人人爽人人片av| 亚洲精品一区蜜桃| 日韩人妻精品一区2区三区| 高潮久久久久久久久久久不卡| 欧美精品高潮呻吟av久久| 亚洲精品自拍成人| 国产成人a∨麻豆精品| 午夜福利乱码中文字幕| 久久这里只有精品19| 欧美成人午夜精品| 黄频高清免费视频| 国产av国产精品国产| 精品人妻在线不人妻| 99热网站在线观看| 欧美亚洲日本最大视频资源| 纵有疾风起免费观看全集完整版| 日日夜夜操网爽| 另类亚洲欧美激情| 在线av久久热| 悠悠久久av| 男的添女的下面高潮视频| 少妇猛男粗大的猛烈进出视频| 国产不卡av网站在线观看| 又粗又硬又长又爽又黄的视频| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| 久久亚洲精品不卡| 免费av中文字幕在线| 久久毛片免费看一区二区三区| 欧美少妇被猛烈插入视频| 午夜免费男女啪啪视频观看| 黄色怎么调成土黄色| 国产一区二区三区综合在线观看| 国产成人免费观看mmmm| 国产亚洲精品第一综合不卡| 成人三级做爰电影| 国产欧美日韩一区二区三 | 欧美久久黑人一区二区| 国产欧美亚洲国产| 亚洲欧美一区二区三区久久| av网站免费在线观看视频| 精品少妇一区二区三区视频日本电影| 波多野结衣一区麻豆| 三上悠亚av全集在线观看| 日本vs欧美在线观看视频| 免费黄频网站在线观看国产| 国产男女内射视频| 久久亚洲国产成人精品v| 久久 成人 亚洲| 天天添夜夜摸| 在线 av 中文字幕| 国产精品偷伦视频观看了| 纯流量卡能插随身wifi吗| 少妇人妻久久综合中文| 亚洲国产看品久久| 人人澡人人妻人| 亚洲国产日韩一区二区| 午夜福利影视在线免费观看| 男女下面插进去视频免费观看| 亚洲熟女毛片儿| 别揉我奶头~嗯~啊~动态视频 | 色网站视频免费| 欧美国产精品va在线观看不卡| 日韩av在线免费看完整版不卡| 999精品在线视频| 久久这里只有精品19| 欧美精品高潮呻吟av久久| 一级毛片电影观看| 大香蕉久久网| 2021少妇久久久久久久久久久| 日韩一本色道免费dvd| 久久久久久久大尺度免费视频| 亚洲国产av影院在线观看| 搡老岳熟女国产| 成人影院久久| 精品久久久久久久毛片微露脸 | 午夜两性在线视频| 亚洲欧美成人综合另类久久久| 在线观看一区二区三区激情| 制服人妻中文乱码| 成在线人永久免费视频| 欧美日韩av久久| 国产色视频综合| 国产爽快片一区二区三区| 一本色道久久久久久精品综合| 久热这里只有精品99| 精品一区二区三区av网在线观看 | 狠狠精品人妻久久久久久综合| 首页视频小说图片口味搜索 | 91精品伊人久久大香线蕉| 国产精品av久久久久免费| 97人妻天天添夜夜摸| 久9热在线精品视频| 亚洲伊人色综图| 美女扒开内裤让男人捅视频| 国产欧美亚洲国产| 欧美精品啪啪一区二区三区 | 欧美日韩福利视频一区二区| 亚洲国产毛片av蜜桃av| 黑人猛操日本美女一级片| 成年人免费黄色播放视频| 无限看片的www在线观看| 亚洲av国产av综合av卡| 国产亚洲av高清不卡| 视频在线观看一区二区三区| 久久久精品区二区三区| 成人国产av品久久久| 777久久人妻少妇嫩草av网站| 精品福利永久在线观看| 亚洲精品日本国产第一区| 国产亚洲精品久久久久5区| 亚洲av片天天在线观看| 交换朋友夫妻互换小说| 妹子高潮喷水视频| 日韩大片免费观看网站| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美网| 永久免费av网站大全| 欧美日韩黄片免| 国产精品人妻久久久影院| 亚洲av美国av| 丝袜美足系列| 欧美精品人与动牲交sv欧美| 超碰97精品在线观看| 日韩一卡2卡3卡4卡2021年| 国产精品香港三级国产av潘金莲 | 国产高清不卡午夜福利| 国产黄色视频一区二区在线观看| 日本色播在线视频| 巨乳人妻的诱惑在线观看| 脱女人内裤的视频| 久久人妻熟女aⅴ| 亚洲精品在线美女| 777米奇影视久久| 亚洲,欧美,日韩| 一级毛片我不卡| 亚洲五月婷婷丁香| 国产日韩欧美亚洲二区| 青春草亚洲视频在线观看| 天天添夜夜摸| 亚洲欧美激情在线| 桃花免费在线播放| 亚洲av美国av| 五月天丁香电影| 别揉我奶头~嗯~啊~动态视频 | 色精品久久人妻99蜜桃| 国产深夜福利视频在线观看| 欧美国产精品一级二级三级| 亚洲av电影在线进入| 九色亚洲精品在线播放| 99热网站在线观看| 尾随美女入室| 不卡av一区二区三区| 久久久久久久久久久久大奶| 亚洲欧美激情在线| 麻豆国产av国片精品| 男女午夜视频在线观看| 成人国产av品久久久| 男女国产视频网站| 考比视频在线观看| 久久久久国产一级毛片高清牌| 久热这里只有精品99| 91字幕亚洲| 人人妻人人爽人人添夜夜欢视频| 精品久久久精品久久久| 欧美日韩视频精品一区| 男人添女人高潮全过程视频| 啦啦啦在线免费观看视频4| 久久天躁狠狠躁夜夜2o2o | 国产精品秋霞免费鲁丝片| 免费看不卡的av| 午夜福利影视在线免费观看| 日本色播在线视频| 日韩精品免费视频一区二区三区| 大片免费播放器 马上看| 交换朋友夫妻互换小说| 嫩草影视91久久| 久久国产精品人妻蜜桃| 丝袜美腿诱惑在线| 亚洲精品国产区一区二| 2018国产大陆天天弄谢| 成人免费观看视频高清| 一级黄片播放器| e午夜精品久久久久久久| 99re6热这里在线精品视频| 男人爽女人下面视频在线观看| 国产成人av教育| 少妇被粗大的猛进出69影院| 国产1区2区3区精品| 免费人妻精品一区二区三区视频| 国产在线一区二区三区精| 黄片播放在线免费| 国产免费福利视频在线观看| 一级黄色大片毛片| 欧美日韩一级在线毛片|