• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QCM Sensors Based on PEI Films for CO2Detection

    2015-11-18 10:11:51GuangZhongXieTingKangYongZhouTaoXieHuiLingTaiandYaDongJiang
    關(guān)鍵詞:替代品產(chǎn)奶量谷物

    Guang-Zhong Xie, Ting Kang, Yong Zhou, Tao Xie, Hui-Ling Tai, and Ya-Dong Jiang

    QCM Sensors Based on PEI Films for CO2Detection

    Guang-Zhong Xie, Ting Kang, Yong Zhou, Tao Xie, Hui-Ling Tai, and Ya-Dong Jiang

    —In this paper, quartz crystal microbalance(QCM) gas sensors coated with polyehtyleneimine (PEI)was utilized for carbon dioxide (CO2) detection. The sensing mechanism is based on the availability of reversible acid-base reactions between CO2molecules and PEI at room temperature. The experimental results revealed that the PEI/starch sensor exhibited much higher sensitivity than that of pure PEI, and showed approximate linearity over a concentration region ranging from 500 ppm to 8000 ppm. The influence of humidity had also been investigated. Furthermore, the response and recovery time deceased as the operation temperatures increased. Finally, sensitivity loss after conservation for several days and reversibility of the sensors had been discussed.

    Index Terms—Humidity, polyehtyleneimine, sensor,starch, temperature.

    1. Introduction

    As a green house gas contributing to global warming,carbon dioxide (CO2) is relatively inert, so it is an important and difficult task to monitor CO2with convenient and reliable sensors. The qualitative detection and thereafter the control of CO2concentration are very important in many areas, such as air conditioning,agriculture, biological technology, and medical services[1]. To meet these increasing requirements, a large number of continuous efforts have been made to develop high performance CO2sensors. Various principles, including infrared absorption[2],[3], field-effect transistors[4],resistance[5]-[7], and piezoelectric[8]have so far been adopted for developing CO2sensors. Quartz crystal microbalance (QCM) CO2sensors have advantages of large sensitivity and digital frequency output. When the sensor exposes to ambient environment, the adsorption of CO2molecules on CO2sensing layer will make the sensor produce a frequency shift.

    In recent years, various sensitive materials have been investigated for CO2sensors, such as carbonates (BaCO3[9],Na2CO3[10], SrCO3[11]), metal oxides (CuO-BaTiO3,La2O3)[12],[13], Versamide 900, as well as CO2sensitive materials containing amino groups, such as monomeric amines, polymeric amines[14]-[19], and modified silicates,also named as siloxanes[20],[21]. Therefore, the polyehtyleneimine (PEI) is often chosen as the preferred sensitive material to detect CO2. In this paper, PEI and PEI/starch films were selected for QCM CO2detection based on the hard soft acids bases (HSAB) theory. Some methods were utilized to improve the response, and the respective sensitive properties were studied in detail as well.

    2. Experimental

    2.1 Device Preparation

    An 8 MHz AT-cut quart crystal with Ag electrode(purchased from Jingbao Company, Chengdu) was used as the substrate. Before depositing the sensitive film, the devices were cleaned with acetone, ethanol, and de-ionized water in sequence. Each step lasted 15 minutes by sonication to remove impurities and pollutants from the devices surface, and then the treated devices were dried in a vacuum drying oven for 2 hours at 60°C.

    2.2 Materials and Films Fabrication

    PEI (mass fraction was 50% in water) was purchased from Aldrich. Soluble starch (C12H22O11) was purchased from J&K Scientific. The other reagents were analytically pure, and de-ionized (DI) water was used for preparation of samples and solutions. QCM CO2gas sensors were fabricated as follows.

    Monolayer film: PEI solution was diluted 70 times with DI water, then spin-coated on the active area of QCM electrode. Finally, the devices were put into the vacuum drying oven under 60°C for 48 hours.

    Composite film: A small amount of starch (A: 2 mg, B: 6 mg, C: 10 mg) was added into 35 ml PEI solution to mix mechanically until uniform solution was obtained. Then thecomposite film was formed by spin coating the composite material on the active area of the QCM electrode. Finally,the devices were put into the vacuum drying oven under 60°C for 48 hours.

    The sensors’ frequencies were measured in dry state after the coating process to confirm the formation of the needed layer. A constant frequency shift of around 4 kHz was kept in all these devices following the same procedure.

    2.3 Test Facility

    研究表明:飼喂牛奶、牛奶替代品提高0.1千克日增重,可使產(chǎn)奶量提高65千克;飼喂谷物提高0.1千克日增重,可使產(chǎn)奶量提高266千克,所以應(yīng)重視谷物采食量,谷物攝入量對牛奶產(chǎn)量的影響大于牛奶攝入量。盡早斷奶,瘤胃才能更好的發(fā)育,如圖2。

    The sensitive properties of the prepared QCM gas sensors were measured real-timely with a flow gas system,as shown in Fig. 1. The air was used for dilution of CO2gas. The temperature in the sensor cell was stabilized at 27°C. Gas concentration was controlled by a mass flow controller. The frequency of the QCM sensor was recorded with a measurement system consisting of a film thickness oscillator, frequency counter, and computer. Scanning electron microscopy was used to analyze the morphology of the sensitive films. The Fourier transform infrared (FTIR)spectrum of PEI in the range of 667 cm-1to 4000 cm-1was recorded to analysis the contained chemical group.

    Fig. 1. Experimental facility.

    3. Result and Discussion

    Basically, the frequency of the QCM sensor changes upon adsorption or absorption of the corresponding gas. The frequency shift Δf results in an increase in the oscillating mass Δm, described as

    where A is the area of the electrode surface and f0is the fundamental frequency of QCM.

    3.1 Characterization

    The scanning electron microscope ( SEM ) image of a pure PEI thin film is shown in Fig. 2 (a). It shows that there are a large number of wrinkles on the surface. And the upper left corner of Fig. 2 (a) gives a magnification of a wrinkles. It can be found that the surface is raised, which seems to contribute to the short response time and more gas adsorption sites of the sensor. Fig. 2 (b) shows traces of starch particles dispersed unevenly in the PEI polymer. And the upper left corner of the Fig. 2 (b) gives a magnification of a starch particles, which shows that the starch does not dissolve in the PEI and just attaches on the polymer membrane.

    Fig. 2. SEM images: (a) PEI film and (b) PEI/Starch composite film.

    Fig. 3. FTIR spectrum of PEI and PEI/Starch.

    The FTIR spectrum of PEI is shown as curve A in Fig. 3, and the main characteristic peaks of PEI were assigned as follows: The broad peak centered at 3400 cm-1was an envelope of νO-Hfor the adsorbed water, and νN-Hfor theammino groups.The 2941 cmm-1and 28333 cm-1bandswere asssigned to νC-HHfor the -CHH2groups, andthe bands at1548 cmm-1and 851 ccm-1were attrributed to thee in plane bennding viibration and oout of plane bending vibratiion of N-H foor the unnits of PEI, rrespectively, bboth of whichh were assocciated wwith amino skeeleton[22],[23]. CConsidering thhe above anallysis,thhe PEI containned -NH and-CH2groups.Curve B in FFig. 3 shhows that thepeak 3100 cmm-1to 3400 cmm-1is much wwider thhan curve A,because -NHH associated wwith -OH exiist in sttarch. Besidess, the peak at851 cm-1groows weaker, wwhich mmay also be thee result of theaddition of sttarch.

    3..2 Responseto CO2

    A. Improvemennt of Responsee

    The sensibiility (S) of thee sensors to CCO2gas is giveen by ΔΔfΔC , wherre Δf represeents the frequuency shift off the seensor exposedd to CO2gas aand ΔC is the cconcentrationshift off CO2gas. Tyypical responses of QCM seensors coatedwith PEI and PEI/staarch for CO2ggas are shownn in Fig. 4 andd Fig. 5, respectively..

    Fiig. 4. Responnse of PEI gaas sensor to CCO2: (a) reall-time frrequency shift aand (b) linear fitt of the frequenncy shift.

    Fig.5. Response oof PEI/starch ggas sensor to CCO2: (a) real-timme frequuency shift and(b) linear fit off the frequencyshift.

    FFig. 4 (a) andd Fig. 5 (a) sshow the real--time frequenncy shifftts Δf of the ssensors duringg exposures too different COO2conccentrations bbetween 500ppm and 8000 ppm ata ambbient temperatture (27°C). FFrom the figuures, PEI senssor andPEI/starch seensor both dessorption incommpletely dueto theshort test timme. Thereforre an experimment had been perfformed for aa single conncentration ((5000 ppm)to inveestigate the recoverability oof the sensor aas a supplemeent showwn in the botttle-left corners of Fig. 4 (a)) and Fig. 5 (aa),whicch show thatthe sensor haad a good revversibility. Froom Fig.4 (a) and Figg. 5 (a), the mooderate quanttity of the starrch dopeed PEI sensorr shows a betteer response thhan the pure one,andboth of themm can restorre to its origginal frequenccy,althoough a longtime (about30 minutes)will be takeen. Therrefore, the innfluence of diifferent amouunt of starch oon theproperties off the sensorhas been innvestigated. AAs illusstrated in Fig.5 (a), the sensing responseof the sensorr A(2 mmg starch) iis larger thaan the otherss, and reducces graddually with thee increasing aamount of starrch. In additioon,modderate starch-ddoped compoosite film sennsors has largger senssing responsethan the monoolayer one. Thhe reason is thhat morre adsorptionsites were emmerged due tothe PEI, which ensuured more pphysical inteeraction betwween the COO2moleecules and thhe sensitive ffilms. Meanwwhile the starrch attraacts more waater to the fiilm due to thhe hygroscoppic natuure which ennhanced CO22reaction wiith PEI aminnogroups. However, the addition of excessive dopant prevented the direct contact between CO2gas and adsorption sites in PEI polymer which weakened the response of CO2gas. In addition, the linearly coefficients of the PEI/starch sensor (A) and PEI sensors were 0.882 and 0.974, respectively, as shown in Fig. 4 (b) and Fig. 5 (b). B. Response to H2O Vapor

    Moderate moisture will not resist the adsorption of CO2,but can promote it. Because the presence of H2O molecules will react with the reaction product of (2) and (3):

    Fig. 6. Influence of H2O molecules to different sensors: (a) PEI sensor and (b) PEI/starch sensor.

    Because of the acid-base interaction of CO2with amino groups and the hydrophilicity of starch, the CO2response might be affected by the presence of starch. The following test was used for investigating the relevance of humidity and CO2absorption. As shown in Fig. 6, both of the PEI sensor and PEI/starch sensor exhibit a good responsivity to H2O vapor. According to Fig. 7, the PEI/starch sensor displays greater response to H2O vapor than PEI sensor. It reveals clearly that the starch has good hygroscopicity. Besides that, the frequency shift of the two sensor exhibits a good linearity versus the H2O vapor concentration over the range investigated.

    Fig. 7. Linear fit of frequent shifts of PEI sensor and PEI/starch sensor to H2O molecules.

    Fig. 8. Real-time frequency shift of sensors in humid environment:(a) PEI sensor and (b) PEI/starch sensor.

    In order to investigate the relevance of humidity and CO2absorption, the following test was carried out. Firstly,10 ml clean water was added into the bottom of the test chamber for simulating the humid condition. Secondly,5000 ppm CO2was injected into the test chamber for 30 minutes to saturate the clean water and ensure that it would not absorb CO2anymore in the later test. Finally, QCM gas sensors were connected and clean air was injected as carrier gas to test the performance of the sensors.

    As shown in Fig. 8, on exposure to different CO2gas concentrations, the frequency shifts of PEI sensor and PEI/starch sensor in the humid condition are much larger than that in the dry condition. It shows that the appropriate amount of moisture can promote CO2adsorption. Due to the fact that the existence of H2O molecules greatly affects the response property, it can be inferred that the H2O molecules participation results in higher sensitivity.

    C. Effect of Temperature

    As physical absorption and chemical reactions are affected by temperature, the responses of PEI-coated and PEI/starch sensors exposed to various CO2concentration in different working temperature such as 27°C, 40°C, and 60°C are studied, as shown in Fig. 9.

    Fig. 9. Influence of temperature (27°C, 40°C, and 60°C) to sensors: (a) PEI sensor and (b) PEI/starch sensor.

    Fig. 9 (a) and Fig. 9 (b) illustrates the effect of the temperature on the responses of two sensors. When the concentration was higher than 3000 ppm, the sensing response increased with the increase of temperature. But 40°C was optimal when the sensors exposed to CO2with the concentration lower than 3000 ppm. And the sensors at a higher temperature exhibited better recoverability, shorter response time, and recovery time, which was owing to the difference in thermally expanded volumes leading to a difference in the sensor frequency response. And it also shows that the responses of two sensors to CO2at 40°C and 60°C were almost similar.

    D. Study of Stability

    The PEI and PEI/starch sensors were exposed to the air of ambient environment without package for several days. Their sensing responses to CO2at room temperature several days later are exhibited in the Fig. 10.

    Fig. 10 (a) and Fig. 10 (b) show that the responses of the PEI and PEI/starch sensors shrink after a long time exposed to air, but they still exhibit a distinct response to CO2. In addition, the two sensors exhibit good stability,providing a better way to detect CO2.

    Fig. 10. Stability of sensors: (a) PEI sensor and (b) PEI/starch sensor.

    4. Conclusions

    The experimental results have confirmed that CO2could be successfully detected in a concentration of 500 ppm to 8000 ppm at room temperature using PEI-basedQCM gas sensors. By adding the starch to the PEI polymer film, the sensing response to CO2was enhanced, and it seemed suitable for CO2detection at room temperature. The starch worked as a dopant can improve the adsorption of H2O molecules in the PEI layer, which resulted in an increase of sensor sensitivity and response speed. However,the interference could be removed by increasing the working temperature. Especially when the sensors worked at a high temperature atmosphere, PEI and PEI/starch coated sensors showed a shorter response and recovery time. Further, the sensors showed a modest long-term stability on exposure to the air atmosphere. These properties would be promising for future development of room-temperature CO2sensors.

    [1] P.-M. Eisenberger, R.-W. Cohen, G. Chichilnisky, et al.,“Global warming and carbon-negative technology: Prospects for a lower-cost route to a lower-risk atmosphere,”Energy and Enviroment., vol. 20, no. 6, pp. 973-984, 2009.

    [2] S. Neethirajan, D.-S. Jayas, and S. Sadistap, “Carbon dioxide (CO2) sensors for the agri-food industry—A review,”Food Bioprocess Technology, vol. 2, no. 2, pp. 115-121,2009.

    [3] A. Marshal, A. Cornet, and J.-R. Morante, “Study of the CO2and humidity interface in La doped tin oxide CO2gas sensor,” Sensors and Actuators B, vol. 94, pp. 324-329,2003.

    [4] H. Koezuka and A. Tsumura, “Field effect transistor utilizing conducting polymers,” Synthetic Metals, vol. 28, no. 1-2, pp. 753-760, 1989.

    [5] N.-V. Hieu, “Highly reproducible synthesis of very large-scale tin oxide nanowires used for screen-printed gas sensor,” Sensors and Actuators B, vol. 144, no. 2, pp. 425-431, 2010.

    [6] I.-A. Al-Homoudi, J.-S. Thakur, R. Naik, and G.-W. Auner,“Anatase TiO2films based CO gas sensor: Film thickness,substrate and temperature effects,” Applied Surface Science,vol. 253, no. 21, pp. 8607-8614, 2007.

    [7] N.-D. Hoa, N.-V. Quy, M.-A. Tuan, and N.-V. Hieu, “Facile synthesis of p-type semiconducting cupric oxide nanowires and their gas-sensing properties,” Physica E, vol. 42, no. 2,pp. 146-149, 2009.

    [8] R. Zhou, S. Vaihinger, K.-E. Geckeler, and W. Gpei?,“Reliable CO2sensors with silicon-based polymers on quartz microbalance transducers,” Sensors Actuators B: Chemical, vol. 19, no. 1-3, pp. 415-420, 1994.

    [9] B. Ostrick, M. Fleischer, and H. Meixner, “The influence of interfaces and interlayers on the gas sensitivity in work function type sensors,” Sensors Actuators B: Chemical, vol. 95, no. 1-3, pp. 271-274, 2003.

    [10] N. Miura, M. Lio, G. Lu, et al. “Solid-state amperometric NO2sensor using a sodium ion conductor,” Sensor and Actuators B: Chemical, vol. 35, no. 1, pp. 124-129, 1996.

    [11] T. Goto, G. He, T. Narushima, and Y. Iguchi, “Application of Sr?-alumina solid electrolyte to a CO2gas sensor,” Solid State Ionics., vol. 156, pp. 329-336, 2003.

    [12] A. Haeusler and J.-U. Meyer, “A novel thick film conductive type CO2sensor,” Sensor and Actuators B: Chemical, vol. 34, no. 1-3, pp. 388-395, 1996.

    [13] M.-Y. Kim, Y.-N. Choi, J.-M. Bae, et al., “Carbon dioxide sensitivity of La-doped thick film tin oxide gas sensor,”Ceramics International, vol. 38, no. 1, pp. 657-660, 2012.

    [14] S. Stegmeier, M. Fleischer, A. Tawil, P. Hauptmann, K. Egly,and K. Rose, “Sensing mechanism of room temperature CO2sensors based on primary amino groups,” Sensor and Actuators B: Chemical, vol. 154, no. 2, pp. 270-276, 2011.

    [15] M.-S. Nieuwenhuizen and A.-J. Nederlof, “A SAW gas sensor for carbon dioxide and water. Preliminary experiments,” Sensor and Actuators B: Chemical, vol. 2, no. 2, pp. 97-101, 1990.

    [16] K. Korsah, C.-L. Ma, and B. Dress, “Harmonic frequency analysis of SAW resonator chemical sensors: application to the detection of carbon dioxide and humidity,” Sensor and Actuators B: Chemical, vol. 50, no. 2, pp. 110-116, 1998.

    [17] R. Zhou, D. Schmeiser, and W. Gopel, “Mass sensitive detection of carbon dioxide by amino group-functionalized polymers,” Sensor and Actuators B: Chemical, vol. 33, no. 1-3, pp. 188-193, 1996.

    [18] C. Caliedo, P. Verardi, E. Verona, et al., “Advances in SAW-based gas sensors,” Smart Material Structures, vol. 6,no. 6, pp. 689-699, 1997.

    [19] A. Star, T.-R. Han, V. Joshi, J.-C.P. Gabriel, and G. Gruner,“Nanoelectronic carbon dioxide sensors,” Advanced Materials, vol. 16, no. 22, pp. 2049-2052, 2004.

    [20] S. Stegmeier, M. Fleischer, A. Tawil, et al., “Stepwise improvement of (hetero-) polysiloxane sensing layers for CO2detection operated at room temperature by modification of the polymeric network,” Sensor and Actuators B: Chemical, vol. 148, no. 2, pp. 450-458, 2010.

    [21] S. Stegmeier, M. Fleischer, A. Tawil, et al., “Sensing of CO2at room temperature using work function readout of (hetero-)polysiloxanes sensing layers,” Sensor and Actuators B: Chemical, vol. 154, no. 2, pp. 206-212, 2011.

    [22] A. Barau, V. Budarin, A. Caragheorgheopol, et al., “A simple and efficient route to active and dispersed silica supported palladium nanoparticles,” Catalysis Letters, vol. 124, no. 3-4, pp. 204-214, 2008.

    [23] G. Martra, L. Bertinetti, C. Gerbaldi, et al., “Pd/SiO2as heterogeneous catalyst for the heck reaction evidence for a sensitivity to the surface structure of supported particles,”Catalysis Letters, vol. 132, no. 2, pp. 50-57, 2009.

    Guang-Zhoong Xie wasborn in Sicchuan Province, CChina in 1968. HHe received hiss B.S. and M.S. ddegrees in phyysics from Sicchuan University,Chengdu in1991 and1996,respectivelyy, and receivedd his Ph.D. ddegree from Univeersity of Elecctronic Sciencee and Technologyy of China (UEESTC) in 20077. He is a professsor with Schoool of Optoelecttronic Innformation, (UUESTC). Hisresearch intee rests are senn sitive mmaterials and sennsors.

    Ting Kangg was born inn Shaanxi Provvince,China in 19989. She receivved her B.S. ddegree from Jiangsu University inn 2011. Currentlly she is pursuingg the M.S.degree in optical engineeringg with UESTTC. Her ressearch interests incclude the CO2ggas sensor and QQCM gas sensingmechanism.

    Yong Zhouu was born in Henan Provvince,China in 19988. He receivved the B.S. ddegree from the Chongqing Univversity of Posts and Telecommuunications (CQUUPT), Chongqiing in 2009. Hereceived hiss M.S. degreee in microelectroonics from UEESTC and nowhe is pursuing tthe Ph.D. ddegree in optical engineeringg with UESTTC. His research innterests includee the preparattion of gas seensors, gas seensing mmaterials, and ffabrication ofmicro-electro-mmechanical systems(MMEMS) gas sennsors array.

    Tao Xie wasborn in Heilonngjiang Provincce,China in 19866. He receivedd the B.S. degrree from the JilinUniversity, Changchun in 20110. He receivedd his M.SS. degreein microelectronics from UESTTC and now heis pursuing thee Ph.D. deggree in opticcal engineering wiith UESTC. Hisresearch interests include the preeparation of OTTFT gas sensorrs, OTFFT gas sensingg mechanism and fabricatioon of OTFT ggas sensoors array.

    Hui-Ling Taiwas born in NNingxia Proxincce,China in 19799. She receivedd her B.S. degrree and Ph.D. deggrees from UESSTC, Chengduin 2003 and 20008, respectively. She isan associate proofessor withthe Schoolof Optoelectronicc Information,, UESTC. HHer scientific interrests are condducting polymeers and their compoosites for gas seensor applicatioon.

    Ya-Dong Jiang was born in SSichuan Provincce,China in 1964. He received hhis B.S. degreein 1986 from UEESTC. Then hegot his M.S. aand Ph.D. degreesin 1989 and 20001 from UESTTC,respectively. HHe is a professorr and the Deanof School of Optooelectronic Infoormation, UESTTC. His majorresearch innterests incluude optoelectronicmaterial anddevices, sensitiive material sand ssensors.

    Manuscript received September 1, 2014; revised November 4, 2014. This work was supported by the National Natural Science Foundation of China under Grant No. 61176006 and No. 61006036, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120185110012.

    G.-Z. Xie is with the School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China(Corresponding author e-mail: gzxie@uestc.edu.cn)

    T. Kang, Y. Zhou, T. Xie, H.-L. Tai, and Y.-D. Jiang are with the School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China (e-mail: xiaobu0401@126.com; zhyfly68@126.com; Xietaohlj@163.com;taitai1980@uestc.edu.cn; jiangyd@uestc.edu.cn ).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.017

    猜你喜歡
    替代品產(chǎn)奶量谷物
    烏克蘭谷物和油料作物庫存遠(yuǎn)低于2020年同期
    提高母豬產(chǎn)奶量的方法
    烏克蘭谷物和油料作物庫存遠(yuǎn)低于2020年同期
    論養(yǎng)殖業(yè)“減抗”背景下無抗替代品與畜產(chǎn)品安全
    擊打式谷物加工農(nóng)具
    軍事文摘(2020年20期)2020-11-16 00:32:10
    荷斯坦牛各胎次產(chǎn)奶量規(guī)律研究及相關(guān)性分析
    中國奶牛(2019年12期)2020-01-08 07:15:38
    集環(huán)保、長效、多效、無害等眾多優(yōu)點于一身的化肥替代品——微生物肥料
    瘤胃可降解纈氨酸對泌乳后期奶牛產(chǎn)奶量的影響
    飼料博覽(2016年3期)2016-04-05 16:07:52
    燕麥糊精脂肪替代品在低脂奶油中的應(yīng)用
    常用谷物飼料原料營養(yǎng)成分
    亚洲四区av| 午夜免费观看性视频| 青青草视频在线视频观看| 亚洲欧美精品专区久久| 国产午夜精品一二区理论片| 欧美成人a在线观看| 久久精品久久久久久噜噜老黄| 欧美高清性xxxxhd video| 亚洲精品乱久久久久久| 伦理电影大哥的女人| 超碰97精品在线观看| 男女视频在线观看网站免费| 国内揄拍国产精品人妻在线| 中国美白少妇内射xxxbb| 久久草成人影院| 69av精品久久久久久| 亚洲精品久久午夜乱码| 国产伦精品一区二区三区视频9| 人妻夜夜爽99麻豆av| 国产黄片美女视频| 精品国内亚洲2022精品成人| 成人亚洲精品av一区二区| 亚洲av一区综合| 国产av不卡久久| 人妻夜夜爽99麻豆av| 尾随美女入室| 欧美日韩亚洲高清精品| 久久精品夜夜夜夜夜久久蜜豆| 少妇高潮的动态图| 日本黄色片子视频| 男人和女人高潮做爰伦理| 天堂√8在线中文| 深夜a级毛片| 久久精品国产亚洲av涩爱| 亚洲国产精品国产精品| 建设人人有责人人尽责人人享有的 | 2021少妇久久久久久久久久久| 22中文网久久字幕| 日韩一区二区视频免费看| 久久精品国产亚洲av天美| 久久精品国产亚洲网站| 狂野欧美白嫩少妇大欣赏| 国产麻豆成人av免费视频| 国产黄色视频一区二区在线观看| 又爽又黄无遮挡网站| 亚洲精品一区蜜桃| 亚洲精华国产精华液的使用体验| 搞女人的毛片| 三级男女做爰猛烈吃奶摸视频| 日韩欧美 国产精品| 国产精品福利在线免费观看| av免费观看日本| 精品一区二区免费观看| 青春草亚洲视频在线观看| 一个人观看的视频www高清免费观看| 国产成人aa在线观看| 亚洲美女搞黄在线观看| 国产色婷婷99| 日韩欧美一区视频在线观看 | 狂野欧美白嫩少妇大欣赏| 亚洲美女搞黄在线观看| 午夜免费观看性视频| 99久久九九国产精品国产免费| 成人亚洲欧美一区二区av| 国产欧美日韩精品一区二区| 秋霞在线观看毛片| 欧美 日韩 精品 国产| 如何舔出高潮| 好男人在线观看高清免费视频| 亚洲精品影视一区二区三区av| 男女边吃奶边做爰视频| 亚洲精品日韩av片在线观看| 99久久人妻综合| 亚洲四区av| 男女边吃奶边做爰视频| 亚洲美女视频黄频| 搡女人真爽免费视频火全软件| 亚洲国产精品sss在线观看| 国产老妇女一区| 国产成人一区二区在线| 天堂av国产一区二区熟女人妻| 夜夜爽夜夜爽视频| 舔av片在线| av在线亚洲专区| av卡一久久| 听说在线观看完整版免费高清| 一区二区三区四区激情视频| 视频中文字幕在线观看| 日韩大片免费观看网站| 亚洲欧美精品自产自拍| 成人高潮视频无遮挡免费网站| 成人一区二区视频在线观看| 国产人妻一区二区三区在| 黄片wwwwww| www.av在线官网国产| 国产精品麻豆人妻色哟哟久久 | 免费少妇av软件| 亚洲美女搞黄在线观看| 亚洲一区高清亚洲精品| 国产v大片淫在线免费观看| 中文字幕av成人在线电影| 网址你懂的国产日韩在线| 内射极品少妇av片p| 午夜免费男女啪啪视频观看| 久久精品熟女亚洲av麻豆精品 | 午夜免费观看性视频| 欧美高清成人免费视频www| 在线观看人妻少妇| 午夜福利成人在线免费观看| 久久精品久久久久久久性| 国产视频内射| 中文字幕免费在线视频6| 欧美丝袜亚洲另类| 国产在视频线精品| 一级毛片我不卡| 能在线免费看毛片的网站| 综合色丁香网| 国产黄色小视频在线观看| 日本爱情动作片www.在线观看| 日韩成人av中文字幕在线观看| 色吧在线观看| 国产av不卡久久| 激情五月婷婷亚洲| 97在线视频观看| 床上黄色一级片| 亚洲av福利一区| 搡女人真爽免费视频火全软件| 日韩av不卡免费在线播放| 大话2 男鬼变身卡| 内射极品少妇av片p| 日韩一区二区视频免费看| 亚洲av中文字字幕乱码综合| 亚洲国产成人一精品久久久| 晚上一个人看的免费电影| 黄色欧美视频在线观看| 日韩一区二区视频免费看| 免费av不卡在线播放| 欧美激情久久久久久爽电影| 午夜免费观看性视频| 国产精品不卡视频一区二区| 国产黄片美女视频| 国产精品一区二区性色av| 免费看a级黄色片| 日本色播在线视频| 亚洲欧洲国产日韩| 大话2 男鬼变身卡| 伦精品一区二区三区| av专区在线播放| 亚洲美女搞黄在线观看| 日本一本二区三区精品| 一个人看视频在线观看www免费| 成人高潮视频无遮挡免费网站| 波野结衣二区三区在线| 日本黄大片高清| 免费看a级黄色片| 久久久久久久久久人人人人人人| 国产高清不卡午夜福利| 夫妻性生交免费视频一级片| 亚洲第一区二区三区不卡| 亚洲欧美精品专区久久| 久久精品久久久久久噜噜老黄| 日韩不卡一区二区三区视频在线| 国产真实伦视频高清在线观看| 亚洲精品成人久久久久久| 五月伊人婷婷丁香| 久久精品国产自在天天线| 国内揄拍国产精品人妻在线| 亚洲自拍偷在线| 欧美xxⅹ黑人| 国产精品人妻久久久久久| 欧美高清成人免费视频www| 久久久久国产网址| 三级男女做爰猛烈吃奶摸视频| 纵有疾风起免费观看全集完整版 | 国产精品国产三级专区第一集| 亚洲欧美一区二区三区黑人 | 欧美性感艳星| 嫩草影院新地址| 亚洲婷婷狠狠爱综合网| 亚洲欧美清纯卡通| 午夜激情欧美在线| 国产精品一二三区在线看| 久久人人爽人人片av| 国产精品伦人一区二区| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线播| 十八禁国产超污无遮挡网站| 成人欧美大片| 色综合色国产| 午夜福利高清视频| 日韩伦理黄色片| 少妇的逼好多水| 欧美性感艳星| 美女内射精品一级片tv| 久久99热6这里只有精品| 国产大屁股一区二区在线视频| 丝瓜视频免费看黄片| 亚洲图色成人| 精品亚洲乱码少妇综合久久| 精品久久久久久成人av| 高清在线视频一区二区三区| 97超碰精品成人国产| 免费av观看视频| 国产成人一区二区在线| 日本免费在线观看一区| 亚洲国产精品sss在线观看| 亚洲国产欧美人成| 国产美女午夜福利| 亚洲av在线观看美女高潮| 少妇熟女aⅴ在线视频| 亚洲欧美精品自产自拍| 全区人妻精品视频| 99久久九九国产精品国产免费| 久久99精品国语久久久| 国产亚洲午夜精品一区二区久久 | 亚洲熟女精品中文字幕| 亚洲在久久综合| 午夜日本视频在线| 亚洲内射少妇av| 国产亚洲精品久久久com| 亚洲精品日本国产第一区| 国产精品久久久久久久久免| 国产成人a区在线观看| 欧美最新免费一区二区三区| av在线蜜桃| 蜜臀久久99精品久久宅男| 热99在线观看视频| 99久久精品热视频| 国产av不卡久久| 国精品久久久久久国模美| 日韩 亚洲 欧美在线| 中文字幕人妻熟人妻熟丝袜美| 尾随美女入室| 男女边摸边吃奶| 综合色av麻豆| 国产视频内射| 成人高潮视频无遮挡免费网站| 在线观看一区二区三区| 性插视频无遮挡在线免费观看| 亚洲美女搞黄在线观看| 精品国产一区二区三区久久久樱花 | 亚洲真实伦在线观看| 欧美一区二区亚洲| 18禁动态无遮挡网站| 大香蕉久久网| 国产成人免费观看mmmm| 亚洲欧美中文字幕日韩二区| 免费av观看视频| av国产免费在线观看| 91精品伊人久久大香线蕉| videos熟女内射| 国产成人精品久久久久久| 国产高清不卡午夜福利| 精品一区二区三区人妻视频| 综合色av麻豆| 又爽又黄a免费视频| 男女啪啪激烈高潮av片| 少妇猛男粗大的猛烈进出视频 | 亚洲在线自拍视频| 久久久亚洲精品成人影院| 日日干狠狠操夜夜爽| 国产在视频线在精品| 男女啪啪激烈高潮av片| 亚洲欧美日韩卡通动漫| 99久久人妻综合| 日韩一本色道免费dvd| 国产精品日韩av在线免费观看| 国产亚洲一区二区精品| 久久久久免费精品人妻一区二区| 久久国产乱子免费精品| 国产黄片视频在线免费观看| 真实男女啪啪啪动态图| 亚洲精品亚洲一区二区| 日韩强制内射视频| 午夜激情欧美在线| 国产伦在线观看视频一区| 日本午夜av视频| 一区二区三区免费毛片| 国产一区有黄有色的免费视频 | 舔av片在线| 中文字幕制服av| 熟女电影av网| 亚洲精品国产成人久久av| 国产精品久久久久久久久免| 国产高清不卡午夜福利| 五月玫瑰六月丁香| 午夜激情欧美在线| 看十八女毛片水多多多| 一级片'在线观看视频| 99热6这里只有精品| 国产一区二区三区综合在线观看 | 免费看不卡的av| 高清日韩中文字幕在线| 99热6这里只有精品| 久久久久久久久久成人| 亚洲内射少妇av| 九九爱精品视频在线观看| 亚洲成人av在线免费| 久久久久久久午夜电影| 99久久精品一区二区三区| 久久久久久久久久黄片| 精品人妻一区二区三区麻豆| 亚洲国产av新网站| 亚洲久久久久久中文字幕| 亚洲av国产av综合av卡| 久久6这里有精品| 国产视频内射| 色综合站精品国产| 久久久久九九精品影院| 中文字幕人妻熟人妻熟丝袜美| 国产一级毛片七仙女欲春2| 国产一区二区亚洲精品在线观看| 婷婷色av中文字幕| 成人亚洲精品一区在线观看 | 在现免费观看毛片| 久久久欧美国产精品| 26uuu在线亚洲综合色| 最近手机中文字幕大全| 久久久久久久久中文| 久久精品久久久久久噜噜老黄| 2021少妇久久久久久久久久久| 国产精品人妻久久久久久| 日韩精品有码人妻一区| 精品一区二区三区视频在线| 国产伦在线观看视频一区| 在线免费观看的www视频| 日本三级黄在线观看| 日韩中字成人| 亚洲av不卡在线观看| 亚洲精品,欧美精品| 午夜激情福利司机影院| 男人舔奶头视频| 亚洲成人久久爱视频| 寂寞人妻少妇视频99o| 久久久久九九精品影院| 亚洲电影在线观看av| 日韩欧美精品免费久久| 夜夜看夜夜爽夜夜摸| 能在线免费看毛片的网站| 网址你懂的国产日韩在线| av在线播放精品| 日韩国内少妇激情av| 亚洲av电影在线观看一区二区三区 | 日韩一区二区视频免费看| 欧美精品国产亚洲| 秋霞伦理黄片| 国产视频首页在线观看| 国产午夜精品一二区理论片| 美女高潮的动态| www.av在线官网国产| 97在线视频观看| 亚洲不卡免费看| 免费高清在线观看视频在线观看| 日本一二三区视频观看| 日本熟妇午夜| 97在线视频观看| 真实男女啪啪啪动态图| 哪个播放器可以免费观看大片| 成人性生交大片免费视频hd| 黄色日韩在线| 狂野欧美激情性xxxx在线观看| 老女人水多毛片| 亚洲熟女精品中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲性久久影院| 国产成人免费观看mmmm| 狂野欧美白嫩少妇大欣赏| 黄色一级大片看看| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区黑人 | 午夜福利成人在线免费观看| 中文资源天堂在线| 少妇丰满av| 精品久久久精品久久久| 夜夜爽夜夜爽视频| 美女国产视频在线观看| 韩国高清视频一区二区三区| 国产高潮美女av| 国产成人a∨麻豆精品| 亚洲人成网站高清观看| 欧美三级亚洲精品| or卡值多少钱| 中文字幕免费在线视频6| 我的老师免费观看完整版| 亚洲国产欧美人成| 午夜福利成人在线免费观看| 国产高潮美女av| 免费看美女性在线毛片视频| 亚洲图色成人| 免费高清在线观看视频在线观看| 日本av手机在线免费观看| 国产乱人偷精品视频| 免费看a级黄色片| 国产精品久久久久久av不卡| 亚洲欧美日韩东京热| 日韩av免费高清视频| 国产精品一二三区在线看| 国产熟女欧美一区二区| 亚洲欧美日韩卡通动漫| 久久精品熟女亚洲av麻豆精品 | 18禁在线无遮挡免费观看视频| 久久亚洲国产成人精品v| 国产成年人精品一区二区| 如何舔出高潮| 日韩精品青青久久久久久| 午夜免费激情av| 人人妻人人澡人人爽人人夜夜 | 亚洲国产成人一精品久久久| 精品少妇黑人巨大在线播放| 夫妻午夜视频| 亚洲图色成人| 少妇丰满av| 久久99热6这里只有精品| 国产乱人视频| 能在线免费看毛片的网站| 亚洲,欧美,日韩| 美女黄网站色视频| 国产亚洲一区二区精品| 身体一侧抽搐| 大片免费播放器 马上看| 麻豆成人av视频| 国产精品久久久久久精品电影| 麻豆av噜噜一区二区三区| 三级国产精品欧美在线观看| 一个人观看的视频www高清免费观看| 联通29元200g的流量卡| 免费av毛片视频| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 91久久精品国产一区二区三区| 午夜激情久久久久久久| 欧美成人一区二区免费高清观看| 日韩欧美一区视频在线观看 | 亚洲av男天堂| 国产69精品久久久久777片| 国产免费一级a男人的天堂| 看十八女毛片水多多多| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产成人一精品久久久| av在线观看视频网站免费| 亚洲综合精品二区| 亚洲精品一二三| 久久久久久久久久黄片| 亚洲av电影不卡..在线观看| 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| 欧美日韩一区二区视频在线观看视频在线 | 麻豆av噜噜一区二区三区| 国内精品美女久久久久久| 亚洲经典国产精华液单| 国产精品.久久久| 女人十人毛片免费观看3o分钟| 赤兔流量卡办理| 丰满乱子伦码专区| 国产综合懂色| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 男女边摸边吃奶| 亚洲精品第二区| 国产精品久久久久久久电影| 欧美zozozo另类| av专区在线播放| 久久99热这里只有精品18| 国产69精品久久久久777片| 国产av码专区亚洲av| 观看美女的网站| 国产日韩欧美在线精品| 国产黄频视频在线观看| 97精品久久久久久久久久精品| 一级毛片黄色毛片免费观看视频| 卡戴珊不雅视频在线播放| 亚洲人成网站高清观看| 免费观看av网站的网址| 高清日韩中文字幕在线| 久久99热6这里只有精品| 精品人妻偷拍中文字幕| 中文乱码字字幕精品一区二区三区 | 男的添女的下面高潮视频| 2021少妇久久久久久久久久久| 久久久久久久久久人人人人人人| 最近中文字幕高清免费大全6| 熟妇人妻久久中文字幕3abv| 一级毛片我不卡| 在线观看av片永久免费下载| 亚洲av不卡在线观看| 亚州av有码| 日韩在线高清观看一区二区三区| 亚洲精品影视一区二区三区av| 人妻夜夜爽99麻豆av| 建设人人有责人人尽责人人享有的 | 十八禁国产超污无遮挡网站| 嫩草影院精品99| h日本视频在线播放| 国产淫片久久久久久久久| 亚洲自拍偷在线| 亚洲天堂国产精品一区在线| 亚洲精品国产成人久久av| 国产成人精品福利久久| 成年人午夜在线观看视频 | 国产片特级美女逼逼视频| 国产精品无大码| 天堂影院成人在线观看| a级毛片免费高清观看在线播放| www.av在线官网国产| 国产精品嫩草影院av在线观看| 午夜福利高清视频| 午夜激情福利司机影院| 日韩一本色道免费dvd| 国产人妻一区二区三区在| 你懂的网址亚洲精品在线观看| 日韩av在线大香蕉| 十八禁网站网址无遮挡 | 国产精品日韩av在线免费观看| av专区在线播放| 男女边吃奶边做爰视频| 蜜桃久久精品国产亚洲av| 久久国产乱子免费精品| 能在线免费观看的黄片| 欧美日韩一区二区视频在线观看视频在线 | 赤兔流量卡办理| 色综合站精品国产| 天堂网av新在线| 国产精品一及| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久大av| 乱码一卡2卡4卡精品| 丰满人妻一区二区三区视频av| 国产综合懂色| 爱豆传媒免费全集在线观看| 亚洲在线自拍视频| 高清av免费在线| 国产激情偷乱视频一区二区| 欧美性感艳星| 在线天堂最新版资源| 国产精品国产三级国产专区5o| 亚洲综合色惰| 亚洲精品一二三| 最后的刺客免费高清国语| 免费高清在线观看视频在线观看| 亚洲天堂国产精品一区在线| 深爱激情五月婷婷| 国产精品久久久久久久电影| 又爽又黄无遮挡网站| 国产欧美另类精品又又久久亚洲欧美| 熟妇人妻久久中文字幕3abv| 久久久色成人| 精品久久久久久久久亚洲| 精品一区二区三卡| 免费观看无遮挡的男女| 日韩一本色道免费dvd| 别揉我奶头 嗯啊视频| 狂野欧美激情性xxxx在线观看| 成人亚洲欧美一区二区av| a级毛色黄片| 日韩欧美三级三区| 伊人久久精品亚洲午夜| 国产精品久久久久久精品电影小说 | 国产午夜精品论理片| 国产亚洲av嫩草精品影院| 国产午夜精品久久久久久一区二区三区| av在线老鸭窝| 69人妻影院| 日韩欧美 国产精品| 蜜桃久久精品国产亚洲av| 国产亚洲最大av| 精品国产一区二区三区久久久樱花 | 看非洲黑人一级黄片| av专区在线播放| 18禁在线无遮挡免费观看视频| 日产精品乱码卡一卡2卡三| 国产高清三级在线| 久久97久久精品| 在线观看av片永久免费下载| 又爽又黄a免费视频| 青青草视频在线视频观看| 寂寞人妻少妇视频99o| 午夜精品国产一区二区电影 | 日日干狠狠操夜夜爽| 久久热精品热| 极品少妇高潮喷水抽搐| 欧美日韩视频高清一区二区三区二| 国产精品一区二区性色av| 亚洲美女搞黄在线观看| av在线天堂中文字幕| 欧美xxⅹ黑人| 蜜桃久久精品国产亚洲av| 舔av片在线| 寂寞人妻少妇视频99o| 99热这里只有精品一区| 激情 狠狠 欧美| 亚洲欧美一区二区三区黑人 | 少妇被粗大猛烈的视频| 免费在线观看成人毛片| 真实男女啪啪啪动态图| 久久久久久久久久黄片| 国产伦精品一区二区三区四那| 久久久精品欧美日韩精品| 特级一级黄色大片| 亚洲精品影视一区二区三区av| 国产免费一级a男人的天堂| 国产69精品久久久久777片| 久久久久久伊人网av| 赤兔流量卡办理| 亚洲国产精品成人综合色| 国产成人精品久久久久久| 建设人人有责人人尽责人人享有的 | 男女啪啪激烈高潮av片| 女人被狂操c到高潮| 国产精品久久久久久精品电影| 精品国内亚洲2022精品成人| 美女xxoo啪啪120秒动态图| 欧美最新免费一区二区三区| 国产淫片久久久久久久久| 亚洲自拍偷在线| 中文在线观看免费www的网站|