• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Monitoring of PON System Using Compound Surveillance Technique

    2015-11-18 10:11:49SunChienKoHsiuJungChuangSiChongChenChihYihWangandShengFwuLin

    Sun-Chien Ko, Hsiu-Jung Chuang, Si-Chong Chen, Chih-Yih Wang, and, Sheng-Fwu Lin

    Monitoring of PON System Using Compound Surveillance Technique

    Sun-Chien Ko, Hsiu-Jung Chuang, Si-Chong Chen, Chih-Yih Wang, and, Sheng-Fwu Lin

    —A passive optical network (PON)monitoring system combined light pulse and frequency sweep techniques is proposed and verified in a field test. The light pulse surveys over the all whole network and the frequency sweep are used to investigate any fault in the link. The field test is performed with 4 PONs. Each PON is monitored at 4 ports, one is the splitter port and the other three are arbitrary chosen multiple optical units (ONUs). All the tested PONs are monitored in turns once per hour. Faults at the feeder and branch fiber have been observed in this field test and have been analyzed with the monitoring system.

    Index Terms—Frequency sweep, light pulse, passive optical network monitoring system.

    1. Introduction

    Passive optical networks (PONs) are the main architecture that plays an essential role in broadband optical access networks. The PON is a type of tree structure, which connects an optical line terminal (OLT) at the central office (CO) and multiple optical units (ONUs)at different residential customer locations by using a passive branch device. This device located in the remote node (RN) makes a single point PON to be shared by many subscribers. To operate the PON requires a cost effective monitoring means for troubleshooting faults in the networks[1]-[3].

    The most common method currently used in PON monitoring is to apply a light pulse technique. It is designed by exploiting backscattered and back-reflected light returning from the fiber when probing it with a laser pulse, and is regarded as a power tool to monitor an optical fiber link. However, there are some limitations of this technique in PON measurement. The tree-structured PON contains power splitter components with high insertion loss which lead to a serious drop in measurement resolution. A simple way to improve the dynamic range of the light pulse technique is to introduce a high reflective device (HRD) at the end of each branch[4],[5]. The HRD is designed to highly reflected monitor light and is transparent in transmission light. It can assist to detect effectively the presence and height variation of reflection peaks at the central office (CO). The location of optical reflector is also be used as an auxiliary reference to identify each branch fiber. The spatial resolution of the light pulse technique is dependent on narrowing the light pulse width. The narrow pulse width requires a wide receiver bandwidth, which leads to increase receiver noise and to cause a reduction in receiver sensitivity[4],[6]. The dead zone is another limit detective factor during measurement using the light pulse technique, the reflective event of power splitter in a PON structure often causes a long dead zone where a subsequent event cannot be detected. Though decreasing the pulse width is beneficial to decrease the dead zone distance and improve measurement resolution, it will cause the difficulty to see through the power splitter by using such small pulse lights.

    Monitoring solutions based on frequency sweep rather than the light pulse technique is well known in the literature[7]-[10]. It is an alternative approach to detect faults in PON, In PON monitoring using the frequency sweep technique, a monitoring light source whose frequency is changed linearly and periodically with respect to time is used. The modulated light is launched into the network as monitoring light. It travels around the test fiber and is reflected back to the receiver located at the transmission end. The receiver detects the reflective monitoring light and converts it into an electrical signal. The original frequency modulating signal and reflective monitoring electrical signal are contrasted each other by means of an electrical spectrum analyzer. The reflective events in PON return a portion of monitoring light back to the receiver with a finite time delay which is proportional to the location of the reflective event. Therefore, the location of the reflective event can be identified by frequency difference. The frequency sweep technique has the particular advantages in fiber measurement[11]. First, no dead zone is observed in fiber measurement due to no receiver saturation. Second, the receiver bandwidth is lower compared to the light pulse technique that results inreducing the noise level and increasing the dynamic range. Finally, the current detected by receiver is proportional to the square of reflected optical power which permits to measure signals with large amplitude difference. It is considered that this technique is appropriate for detection of discrete reflections, but not for the backscatters[12].

    In this study, we take advantages of both techniques and combine them to propose a PON monitoring method. The monitoring light source is designed to operate under light pulse and frequency sweep two modes. The light pulse mode is used to over all survey the whole network and to find any reflective event in the link. Then the event to draw attention will be investigated in more detail with the frequency sweep mode for cause analysis such as bends,cracks, fiber misalignment, mismatch, dirty connections,etc. In Section 2, we depict the architectures of the PON monitoring system using these techniques. The developed system is installed in the PON network for the field tested experiment. The latest monitoring results are presented in Section 3. Section 4 concludes the study with final remark.

    Fig.1. Architecture of the PON monitoring system based on light pulse and frequency sweep techniques.

    2. PON Monitoring Architecture

    The architecture of the PON monitoring system based on light pulse and frequency sweep techniques is shown in Fig. 1. The main system is located and monitored in CO. In this architecture, a router selector connects many PON networks with wavelength division multiplexing (WDM)components and can change the monitoring PON route through switching under the control unit. The service signal from OLT and the monitoring signal are combined in WDM components, these signals are fed in a feeder fiber through a power splitter to ONUs. The monitored ONU has a high reflective device (HRD) installed at the end of branch fiber. The optical reflector is designed to highly reflect the monitor signal and be transparent in the service signal. It can assist to detect effectively the presence and height variation of reflection monitoring peak in the CO. The monitoring signal is produced from the light source,which can be operated alternatively under light pulse and frequency sweep modes. The monitoring signal is transmitted through an optical circulator to survey the whole PON network, and will be reflected it by HRD. The reflected monitoring signal is along the original route back to the optical circulator. The photo-detector receives the reflected signal from the end of optical circulator and takes the responsibility for the transformation of the electro-optical signal and the test of signal power examination. The converted electrical signals are transmitted to the signal processing unit for further processing. For the light plus signal, the intensity of the reflected pulses is integrated as a function of time and is plotted as a function of fiber length. These data are used for detecting events and estimating attenuations in overall fibers. For the frequency sweep signal, it is transmitted to a band pass filter and is used to filter the monitoring-required signal. The mixer makes the reflected and transmitted signals produce the beat respond due to the different distances, as shown in Fig. 2. Then the low-pass filter filters out the high frequency noise, the signal processing unit analyzes the frequency spectrum to obtain the steady beat note and the optical power value.

    Fig. 2. Beat respond due to the distance difference between transmitted and reflected monitoring signals.

    A control unit calculates the beat note and the corresponding reflected optical power value. Since each distance between the HRD and OLT is different, therefore the beat produced due to interfering from the abovementioned distance difference is also different. By analyzing the different beat note signals and comparing the provisioning data of the optical fiber network, the latest status of the whole optical fiber router is obtained. When there is a fault on PON, the optical power test value is declined and the beat is changed, which provides a basis for the following alert and handling.

    3. Field Trial Results

    To assess the performance of the presented PON monitoring system, the monitoring architecture described as in Section 2 was installed and four realistic PONs were used for this field test from September, 2013 to now. The OLT of tested PONs were placed at the CO of Taoyuan, the remote node (RN) was put in an outside cabinet with a 2:32 splitter, and the multiple OUNs were located at the customer sides. One splitter port and three arbitrary chose ONUs connected HRD for this monitoring test at each PON.

    All the tested PONs are measured in turns once per hour. The monitoring results are recorded in database for data processing and analyzing. The latest network status is displayed in the monitoring windows of the control unit, as shown in Fig. 3; it helps the network operator to view any occurrence of fault in PON. When problems are detected,the measured trace can be observed by clicking the related PON in the monitoring windows for further diagnose. The useful information provides that technicians can rapidly restore failed services, hence increasing the PON reliability and improving the efficiency of network maintenance.

    Fig. 3. Network status shown in monitoring windows.

    Fig. 4 shows the typical measured trace that obtained from the field test PON. Curve A is the trace of the reflected light pulse under performing at 1625 nm using a 100 ns optical pulse. From the PON trace, one can observe the large insertion loss characteristic of the splitter and HRD reflection peaks at the branch. Curve B is the trace of interference of frequency sweep that focus on HRD reflection peaks. It displays clearly the positions of HRD and the link loss. When the HRD is installed, a faultless trace is measured and is recorded in the database of the control unit as a reference. A fault would be judged whenever a difference appears in the link loss and goes beyond the detection line (marked as the heavy line in red),compared with the reference.

    Fig. 4. Measured trace of field tested PON.

    The variation of the HRD reflection peak exhibits the information about the kind of fiber fault: a peak disappearance indicates a fiber break, and a height variation can be caused by a loss in fibers. The time trace of height variation in the long observation can provide the prediction of network quality. Precautions will be taken early to reduce the service restoration times of offline troubleshooting and improve the quality of service.

    Fig. 5 and Fig. 6 show the fiber fault cases that were ever detected by the PON monitoring system in this field experiment. The variations of HRD reflection intensities versus time are shown in Fig. 5 (a). From the observed time trace, the light intensity decreases in the PON of 4 monitoring ports at the same time. Fig. 5 (b) is the measured monitoring trace of the PON. it can be seen that the intensity of HRD reflection peaks are all below the detection line. It can be deduced that the fault occurs at one point in the feeder fiber from those evidences, according as all functions of network are affected behind the fault point. In order to confirm this deduction, the location of loss fault in the feeder fiber can be found by discriminating the difference of light pulse trace between the fault one and the reference one. Comparatively, the fault occurs at one point in the branch fiber, only this branch of the PON will be affected and the provided services are disrupted. Fig. 6 (a)and Fig. 6 (b) show an HRD reflection peak disappeared in the monitoring trace and the time trace.

    It is an obvious break fault at the branch fiber case, and the time of fault can be gotten from the time trace curve. The break fault location at the branch fiber is impossible to detect accurately, since all reflective lights from the branch fiber are added together at the RN by the power splitter,thereby making the monitoring system difficult to differentiate among them. Only if there is just one fault after the splitter, it will likely to determine this branch fiber fault location by analyzing the fault traces.

    Fig. 5. Fault at feeder fiber: (a) time trace of refection intensity from HRD and (b) measured monitoring trace of PON for a fault at feeder fiber.

    Fig. 6. Fault at distributed fiber: (a) time trace of refection intensity from HRD and (b) measured monitoring trace of PON.

    4. Conclusions

    A PON monitoring system based on light pulse and frequency sweep techniques has been demonstrated in a field test. One light source of this system is designed to operate both surveillance techniques. The design is very attractive because of its low cost and simplicity. It provided the capabilities of overall fiber route survey and particular events investigation. Two fiber fault cases observed during the field test verified the monitoring performance of system. The useful information from the monitoring measurement is potential for improving the service reliability and reducing the troubleshooting time and maintenance cost.

    [1] M. A. Esmail and H. Fathallah, “Physical layer monitoring techniques for TDM-passive optical networks: A survey,”IEEE Commun. Surveys & Tutorials, vol. 15, vol. 2, pp. 943-958, 2013.

    [2] M. M. Rad, K. Fouli, H. A. Fathallah, et al., “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Magazine, vol. 49, no. 2, pp. s45-s52, 2011.

    [3] M. S. Ab-Rahman, N. B. Chuan, M. H. G. Safnal, et al.,“The overview of fiber fault localization technology in TDM-PON network,” in Proc. of Int. Conf. on Electronic Design, 2008, pp. 1-8.

    [4] Y. Enomto, H. Izumita, and M. Nakamura, “Over 31.5 dB dynamic range optical fiber testing system with optical fiber fault isolation function for 32-branched PON,” in Proc. of Optical Fiber Commun. Conf., 2003, pp. 608-610.

    [5] F. Caviglia and V. C. Di Biase, “Optical maintenance in PONs,” in Proc. of European Conf. on Optical Commun.,1998, pp. 621-625.

    [6] C. F. Lm, Passive Optical Networks Principles and Practice,Amsterdam: Elsevier, 2007, ch. 7.

    [7] K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Mégret “Optical frequency domain reflectometry: A review,” in Proc. of Int. Conf. on Transparent Optical Networks, 2009, pp. 1-5.

    [8] J. Nakayama, K. Iizuka, and J. Nielsen “Optical fiber locator by the step frequency method,” Applied Optics, vol. 26, no. 3, pp. 440-443, 1987.

    [9] D. Dolfi, M. Nazarathy and S. A. Newton, “5-mmresolution optical-frequency-domain reflectometry using a coded phase-reversal modulator,” Optics Letters, vol. 13, no. 8, pp. 678-680, 1988.

    [10] H. G. Shiraz and T. Okoshi, “Fault Location in Optical Fibers using Optical Frequency Domain Reflectometry,”Journal of Lightwave Technology, vol. 4, no. 3, pp. 316-322,1986.

    [11] D. Derickson, Fiber Optic Test and Measurement, New York: Prentice Hall PRT, 1998.

    [12] J. W. Verhoof, “New method of in-service fault location in passive optical subscriber loops,” Electronics Letters, vol. 28, no. 11, pp. 1059-1061, 1992.

    Sun-Chien Ko was born in 1962. He received the Ph.D. degree in material science and engineering from Tsing Hua University,Hsinchu in 2003. He joined Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., in 1993, and since then,he has been engaged in broadband network monitoring research and development.

    Hsiu-Jung Chuang was born in 1958. He received the M.E. degree in chemical engineering from Cheng Kung University,Tainan in 1983. He joined Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., in 1983. Since then, he has been engaged in broadband network monitoring research and development.

    Si-Chong Chen was born in 1956. He received the M.E. degree in chemical engineering from Tsing Hua University,Hsinchu in 1991. He joined Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., in 1984. Since then, he has been engaged in broadband network monitoring research and development.

    Chih-Yih Wang was born in 1966. He received the M.E. degree in optical and photonics engineering from Central University,Taoyuan in 1992. He joined Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., in 1992. Since then, he has been engaged in broadband network monitoring research and development. He is currently an assistant project manager.

    Sheng-Fwu Lin was born in 1958. He received the M.E. degree in hydraulic and ocean engineering from Cheng Kung University, Tainan in 1983. He joined Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., in 1985. Since then, he has been engaged in broadband network monitoring research and development. He is currently a project manager.

    Manuscript received November 11, 2014; revised January 24, 2015.

    S.-C. Ko is with the Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., Taoyuan 32601 (Corresponding author e-mail: ko3838@cht.com.tw).

    H.-J. Chuang, S.-C. Chen, C.-Y. Wang, and S.-F. Lin are with the Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., Taoyuan 32601 (e-mail: ch466@cht.com.tw; sea@cht.com.tw; halolo@cht.com.tw;sflin@cht.com.tw).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.015

    精品一区二区三区人妻视频| 人妻夜夜爽99麻豆av| 亚洲美女视频黄频| 97人妻精品一区二区三区麻豆| 久久精品91蜜桃| 我的老师免费观看完整版| 日日啪夜夜撸| 国产精品1区2区在线观看.| 欧美zozozo另类| 夜夜看夜夜爽夜夜摸| 免费看光身美女| 免费无遮挡裸体视频| 国产欧美日韩精品一区二区| 国产激情偷乱视频一区二区| 日韩大尺度精品在线看网址| 人人妻人人看人人澡| 亚洲在久久综合| 国产精品1区2区在线观看.| 在线观看66精品国产| 欧美三级亚洲精品| 我的老师免费观看完整版| 成人毛片a级毛片在线播放| 亚洲欧美精品专区久久| 国产蜜桃级精品一区二区三区| www.色视频.com| 国产av不卡久久| 久久久久久久午夜电影| 99热只有精品国产| 国内精品久久久久精免费| 午夜精品一区二区三区免费看| 国产大屁股一区二区在线视频| 日日摸夜夜添夜夜添av毛片| 三级国产精品欧美在线观看| 男女做爰动态图高潮gif福利片| 久久人人爽人人爽人人片va| 一区二区三区四区激情视频 | 国产激情偷乱视频一区二区| av福利片在线观看| 大型黄色视频在线免费观看| 日韩人妻高清精品专区| 又粗又爽又猛毛片免费看| 又粗又爽又猛毛片免费看| 午夜福利在线在线| 天堂中文最新版在线下载 | www.av在线官网国产| 亚洲欧美日韩高清在线视频| 亚洲av成人精品一区久久| 老师上课跳d突然被开到最大视频| 色尼玛亚洲综合影院| 丝袜喷水一区| 天堂网av新在线| 联通29元200g的流量卡| 国产成人精品一,二区 | 国产免费一级a男人的天堂| 麻豆成人午夜福利视频| 日本撒尿小便嘘嘘汇集6| 久久99热6这里只有精品| 成人亚洲精品av一区二区| 国产在线精品亚洲第一网站| 99久久成人亚洲精品观看| 国产成年人精品一区二区| 午夜福利在线在线| 高清在线视频一区二区三区 | 日韩三级伦理在线观看| 91aial.com中文字幕在线观看| 久久久久九九精品影院| 乱人视频在线观看| 亚洲最大成人av| 综合色丁香网| eeuss影院久久| 国产成人午夜福利电影在线观看| 免费av观看视频| 国产成人一区二区在线| 久久久久国产网址| 国产亚洲精品久久久久久毛片| 永久网站在线| 久久欧美精品欧美久久欧美| 成人三级黄色视频| 国产精品国产三级国产av玫瑰| 男女做爰动态图高潮gif福利片| 老女人水多毛片| 国产午夜精品久久久久久一区二区三区| 夫妻性生交免费视频一级片| 你懂的网址亚洲精品在线观看 | 国产探花在线观看一区二区| 精品久久久久久久人妻蜜臀av| 天堂av国产一区二区熟女人妻| 成人永久免费在线观看视频| 伦精品一区二区三区| 久久久久久久久久成人| 一个人看的www免费观看视频| 久久久久免费精品人妻一区二区| 中国美女看黄片| 最近2019中文字幕mv第一页| 久久99热6这里只有精品| 99久国产av精品| 日本在线视频免费播放| 亚洲av成人精品一区久久| 亚洲av中文字字幕乱码综合| 色播亚洲综合网| www日本黄色视频网| 精品久久久久久久久亚洲| 亚洲av男天堂| 天堂√8在线中文| 我要看日韩黄色一级片| 色播亚洲综合网| 1024手机看黄色片| a级毛色黄片| 99热这里只有精品一区| 欧洲精品卡2卡3卡4卡5卡区| 国产精品免费一区二区三区在线| 亚洲欧洲日产国产| 日日摸夜夜添夜夜爱| 可以在线观看的亚洲视频| 中出人妻视频一区二区| 九九爱精品视频在线观看| 99热精品在线国产| 97超碰精品成人国产| 日韩欧美 国产精品| 九九久久精品国产亚洲av麻豆| 欧美性猛交黑人性爽| 亚洲国产欧美人成| 日韩强制内射视频| 岛国在线免费视频观看| 精品午夜福利在线看| 中国国产av一级| 色播亚洲综合网| 成人漫画全彩无遮挡| 不卡一级毛片| 最好的美女福利视频网| 日韩精品有码人妻一区| 黑人高潮一二区| 黑人高潮一二区| 欧美日韩乱码在线| 日本爱情动作片www.在线观看| 天堂中文最新版在线下载 | 国产成人a∨麻豆精品| av在线播放精品| 日韩av在线大香蕉| 亚洲va在线va天堂va国产| 一本久久中文字幕| 高清毛片免费观看视频网站| 日韩亚洲欧美综合| 久久九九热精品免费| 男人的好看免费观看在线视频| 国产精品久久久久久精品电影小说 | 男女视频在线观看网站免费| 美女内射精品一级片tv| 久久久久性生活片| 国产91av在线免费观看| 日本一本二区三区精品| 国产乱人视频| 赤兔流量卡办理| 黄色欧美视频在线观看| 免费观看精品视频网站| 看十八女毛片水多多多| ponron亚洲| 久久久午夜欧美精品| 国产精品免费一区二区三区在线| 欧美性猛交╳xxx乱大交人| 国产成人a∨麻豆精品| 久久午夜福利片| 一区二区三区免费毛片| 中国美女看黄片| 能在线免费看毛片的网站| 最后的刺客免费高清国语| 一级av片app| 国产又黄又爽又无遮挡在线| 国产高清三级在线| 国产精品1区2区在线观看.| 只有这里有精品99| 国产高清视频在线观看网站| 日本av手机在线免费观看| 一本久久精品| 亚洲一区高清亚洲精品| 日韩在线高清观看一区二区三区| 在线国产一区二区在线| 日韩,欧美,国产一区二区三区 | 久久久a久久爽久久v久久| a级一级毛片免费在线观看| 免费一级毛片在线播放高清视频| 国产激情偷乱视频一区二区| 黄色配什么色好看| 波多野结衣高清无吗| 国产午夜精品久久久久久一区二区三区| 国产 一区精品| 国产精品久久久久久精品电影| 国产精品国产三级国产av玫瑰| 五月玫瑰六月丁香| 色综合站精品国产| 少妇猛男粗大的猛烈进出视频 | 男人和女人高潮做爰伦理| 色视频www国产| 老女人水多毛片| 成人亚洲欧美一区二区av| 国产亚洲5aaaaa淫片| 国产av不卡久久| 成人特级av手机在线观看| 久久午夜福利片| 精品人妻熟女av久视频| 亚洲av成人精品一区久久| 九草在线视频观看| 久久99精品国语久久久| 成人特级av手机在线观看| 毛片一级片免费看久久久久| 熟女人妻精品中文字幕| 级片在线观看| 国产成人freesex在线| av福利片在线观看| 国产精品久久久久久亚洲av鲁大| 美女黄网站色视频| 天美传媒精品一区二区| 日本爱情动作片www.在线观看| 国产高清有码在线观看视频| 国产成人a∨麻豆精品| 日本一二三区视频观看| 老司机影院成人| 晚上一个人看的免费电影| 久久这里有精品视频免费| 日本成人三级电影网站| av在线观看视频网站免费| 国产黄a三级三级三级人| 欧美成人a在线观看| 午夜福利成人在线免费观看| 又黄又爽又刺激的免费视频.| 又黄又爽又刺激的免费视频.| 国产精品1区2区在线观看.| 亚洲中文字幕一区二区三区有码在线看| 又粗又爽又猛毛片免费看| 国产 一区精品| 久久精品国产清高在天天线| 99在线人妻在线中文字幕| 久久综合国产亚洲精品| 一区二区三区免费毛片| 在线免费观看不下载黄p国产| 啦啦啦韩国在线观看视频| 全区人妻精品视频| 欧美日韩精品成人综合77777| 又粗又硬又长又爽又黄的视频 | 97热精品久久久久久| 久99久视频精品免费| 久久这里有精品视频免费| 成人高潮视频无遮挡免费网站| 国语自产精品视频在线第100页| 悠悠久久av| 午夜a级毛片| 亚洲熟妇中文字幕五十中出| 日本免费a在线| 性插视频无遮挡在线免费观看| 午夜老司机福利剧场| 一级黄片播放器| 尤物成人国产欧美一区二区三区| 国产av麻豆久久久久久久| 免费看光身美女| 精品人妻偷拍中文字幕| 日韩强制内射视频| 亚洲精品影视一区二区三区av| 久99久视频精品免费| 精品99又大又爽又粗少妇毛片| 赤兔流量卡办理| 一级黄色大片毛片| 亚洲欧洲国产日韩| 美女内射精品一级片tv| 欧美成人免费av一区二区三区| 国产精品人妻久久久久久| 中文字幕av成人在线电影| 国产精品久久久久久精品电影| 观看美女的网站| 一进一出抽搐动态| 精品日产1卡2卡| 十八禁国产超污无遮挡网站| 国产精品不卡视频一区二区| 免费av不卡在线播放| 免费看a级黄色片| 久久久久久久久久黄片| av在线播放精品| 精品无人区乱码1区二区| 精品人妻一区二区三区麻豆| 伊人久久精品亚洲午夜| 精品熟女少妇av免费看| 美女大奶头视频| 精品久久国产蜜桃| 给我免费播放毛片高清在线观看| 亚洲av电影不卡..在线观看| 亚洲av二区三区四区| 中文字幕av成人在线电影| 免费电影在线观看免费观看| 欧美zozozo另类| 热99re8久久精品国产| 国产在线精品亚洲第一网站| 特级一级黄色大片| 亚洲欧美成人综合另类久久久 | 丝袜美腿在线中文| 可以在线观看的亚洲视频| 亚洲国产精品久久男人天堂| 亚洲精华国产精华液的使用体验 | 亚洲五月天丁香| 久久精品夜色国产| av在线老鸭窝| 婷婷精品国产亚洲av| 亚洲国产欧美在线一区| 久久国内精品自在自线图片| 高清在线视频一区二区三区 | 午夜福利在线观看吧| 夜夜夜夜夜久久久久| 国产伦精品一区二区三区四那| 国产精品1区2区在线观看.| 人人妻人人澡欧美一区二区| 国产男人的电影天堂91| 秋霞在线观看毛片| 黄色一级大片看看| 黄片wwwwww| 亚洲欧美清纯卡通| 免费一级毛片在线播放高清视频| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 一级黄片播放器| 亚洲精华国产精华液的使用体验 | 丰满乱子伦码专区| 国产精品一二三区在线看| 免费av观看视频| 国内少妇人妻偷人精品xxx网站| 色综合亚洲欧美另类图片| 综合色丁香网| 亚洲精品456在线播放app| 欧美+日韩+精品| 亚洲真实伦在线观看| 国产黄a三级三级三级人| 国产亚洲精品久久久com| 91精品国产九色| .国产精品久久| av又黄又爽大尺度在线免费看 | 日日撸夜夜添| 国产淫片久久久久久久久| 99热这里只有是精品50| 成年女人看的毛片在线观看| 国产男人的电影天堂91| 夜夜夜夜夜久久久久| 美女脱内裤让男人舔精品视频 | 国国产精品蜜臀av免费| 亚洲国产欧洲综合997久久,| 国内精品宾馆在线| 亚洲在线观看片| www日本黄色视频网| 亚洲四区av| 国产午夜精品论理片| 日本色播在线视频| 卡戴珊不雅视频在线播放| 啦啦啦韩国在线观看视频| 看非洲黑人一级黄片| 男人和女人高潮做爰伦理| kizo精华| 久久精品久久久久久噜噜老黄 | 国产精品一二三区在线看| 在线播放无遮挡| 久久中文看片网| 少妇熟女欧美另类| 亚洲国产精品合色在线| 亚洲一级一片aⅴ在线观看| 亚洲欧美中文字幕日韩二区| 亚洲,欧美,日韩| 高清日韩中文字幕在线| 美女 人体艺术 gogo| 大香蕉久久网| 国产精品一及| 亚洲av熟女| 噜噜噜噜噜久久久久久91| 高清毛片免费看| 日韩av不卡免费在线播放| 综合色丁香网| 成人一区二区视频在线观看| 一区福利在线观看| 久久九九热精品免费| 99久久精品一区二区三区| 3wmmmm亚洲av在线观看| 国产精品一区www在线观看| 国产精品.久久久| 精品久久国产蜜桃| 蜜桃久久精品国产亚洲av| 黄色日韩在线| 美女被艹到高潮喷水动态| 国产精品久久久久久久电影| 一级毛片久久久久久久久女| 联通29元200g的流量卡| 亚洲成人精品中文字幕电影| 国产精华一区二区三区| 97超碰精品成人国产| 精品久久久久久久久亚洲| 午夜老司机福利剧场| 日韩成人伦理影院| 黑人高潮一二区| 99热这里只有是精品在线观看| 日韩,欧美,国产一区二区三区 | 国产极品精品免费视频能看的| 淫秽高清视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 永久网站在线| 精品免费久久久久久久清纯| 成人一区二区视频在线观看| 国产精品久久久久久精品电影| 国产日本99.免费观看| 在线天堂最新版资源| 18禁在线播放成人免费| 丝袜喷水一区| 亚洲精品久久久久久婷婷小说 | 综合色丁香网| 国产精品永久免费网站| 91午夜精品亚洲一区二区三区| 亚洲av熟女| 九九爱精品视频在线观看| 麻豆久久精品国产亚洲av| 国产精品久久久久久av不卡| 小蜜桃在线观看免费完整版高清| 国产极品精品免费视频能看的| 亚洲av二区三区四区| 色哟哟·www| 免费黄网站久久成人精品| 日韩一本色道免费dvd| 免费人成视频x8x8入口观看| 国产av麻豆久久久久久久| 国内揄拍国产精品人妻在线| 亚洲国产精品成人久久小说 | 亚洲精品色激情综合| 亚洲一区高清亚洲精品| 最近手机中文字幕大全| 一进一出抽搐动态| 夫妻性生交免费视频一级片| 久久综合国产亚洲精品| 久久久a久久爽久久v久久| 深夜a级毛片| 久久精品夜色国产| 欧美日韩一区二区视频在线观看视频在线 | 成熟少妇高潮喷水视频| av天堂在线播放| 国产真实乱freesex| 亚洲中文字幕日韩| 一区二区三区免费毛片| 国产成人freesex在线| 亚洲精品粉嫩美女一区| 中文在线观看免费www的网站| 日韩中字成人| 99久久无色码亚洲精品果冻| av在线播放精品| 国产精品永久免费网站| 国产精品福利在线免费观看| 欧美激情久久久久久爽电影| 国产一区二区三区av在线 | 日韩欧美精品免费久久| 亚洲美女搞黄在线观看| 亚洲性久久影院| 深夜精品福利| 国产精品一二三区在线看| 日本成人三级电影网站| 亚洲精品国产成人久久av| 精品久久久久久成人av| 永久网站在线| 99九九线精品视频在线观看视频| 亚洲美女搞黄在线观看| 悠悠久久av| 日韩av在线大香蕉| 免费观看精品视频网站| 91av网一区二区| 国内精品宾馆在线| 特级一级黄色大片| 波多野结衣高清作品| 欧美成人精品欧美一级黄| 亚洲乱码一区二区免费版| 人妻少妇偷人精品九色| 在线观看66精品国产| 亚洲七黄色美女视频| 免费观看精品视频网站| 最新中文字幕久久久久| 国产黄色视频一区二区在线观看 | 小说图片视频综合网站| 中国国产av一级| av黄色大香蕉| 日日啪夜夜撸| 99riav亚洲国产免费| 色5月婷婷丁香| 日韩三级伦理在线观看| 成年免费大片在线观看| 男的添女的下面高潮视频| 免费搜索国产男女视频| 国产精品野战在线观看| 亚洲av免费在线观看| 级片在线观看| 久久亚洲精品不卡| 99热这里只有是精品在线观看| 一级黄色大片毛片| 青青草视频在线视频观看| 国产精品麻豆人妻色哟哟久久 | 一卡2卡三卡四卡精品乱码亚洲| 日本免费一区二区三区高清不卡| 免费观看的影片在线观看| 在线观看66精品国产| 亚洲七黄色美女视频| 日韩在线高清观看一区二区三区| 国产亚洲91精品色在线| 欧洲精品卡2卡3卡4卡5卡区| 美女大奶头视频| 久99久视频精品免费| 亚洲色图av天堂| 最近视频中文字幕2019在线8| 麻豆一二三区av精品| 国产男人的电影天堂91| 午夜福利成人在线免费观看| 亚洲精品乱码久久久久久按摩| 成人无遮挡网站| 国产精品99久久久久久久久| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 午夜福利在线在线| 久久九九热精品免费| 天堂中文最新版在线下载 | 日韩欧美三级三区| 又爽又黄a免费视频| 久久久成人免费电影| 别揉我奶头 嗯啊视频| 免费观看a级毛片全部| 中出人妻视频一区二区| 深夜a级毛片| 极品教师在线视频| 91av网一区二区| 成人亚洲精品av一区二区| av免费观看日本| 久久精品久久久久久久性| 神马国产精品三级电影在线观看| 亚洲国产精品成人久久小说 | 久久午夜福利片| 欧美日韩国产亚洲二区| 久久久久久国产a免费观看| 99久久精品一区二区三区| 亚州av有码| 日韩视频在线欧美| 天堂√8在线中文| 欧美最黄视频在线播放免费| 国产成年人精品一区二区| 日本一本二区三区精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美激情在线99| 熟妇人妻久久中文字幕3abv| 我要搜黄色片| 国产欧美日韩精品一区二区| 国产成人精品婷婷| 啦啦啦观看免费观看视频高清| 97超视频在线观看视频| 一级毛片我不卡| 亚洲国产精品合色在线| 一本精品99久久精品77| 久久精品国产自在天天线| 免费看日本二区| 亚洲欧美精品专区久久| 非洲黑人性xxxx精品又粗又长| 国产免费一级a男人的天堂| 久久久色成人| 麻豆久久精品国产亚洲av| 99在线视频只有这里精品首页| 熟女电影av网| 国产精品久久久久久av不卡| 黄色配什么色好看| 99久久无色码亚洲精品果冻| 网址你懂的国产日韩在线| 一级毛片久久久久久久久女| 波多野结衣巨乳人妻| 狂野欧美激情性xxxx在线观看| 亚洲国产日韩欧美精品在线观看| 又粗又硬又长又爽又黄的视频 | 欧美+日韩+精品| 我要搜黄色片| 欧美高清成人免费视频www| 99在线人妻在线中文字幕| 天堂网av新在线| 美女黄网站色视频| 99热精品在线国产| 久久久精品欧美日韩精品| 久久精品国产亚洲av涩爱 | 久久久久免费精品人妻一区二区| 一个人免费在线观看电影| 看十八女毛片水多多多| 亚洲婷婷狠狠爱综合网| 欧美日韩综合久久久久久| 久久国内精品自在自线图片| 麻豆久久精品国产亚洲av| 国产麻豆成人av免费视频| 国产av在哪里看| 亚洲av电影不卡..在线观看| 免费av毛片视频| 乱码一卡2卡4卡精品| 久久中文看片网| 日本一本二区三区精品| 精品午夜福利在线看| 亚洲人成网站在线观看播放| 中国国产av一级| 久久久久久久久久成人| 毛片一级片免费看久久久久| 全区人妻精品视频| 99久久精品国产国产毛片| 不卡一级毛片| 国产人妻一区二区三区在| 国产乱人视频| 日本撒尿小便嘘嘘汇集6| 欧美日韩在线观看h| 欧美成人精品欧美一级黄| 亚洲欧洲国产日韩| 国产av一区在线观看免费| 色吧在线观看| 中文字幕久久专区| 亚洲国产欧美人成| 日韩在线高清观看一区二区三区| 免费看美女性在线毛片视频| 一个人看视频在线观看www免费| 亚洲av熟女| 欧美日韩综合久久久久久| 亚洲最大成人手机在线| 22中文网久久字幕|