• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular mapping of the hybrid necrosis gene NetJingY176 in Aegilops tauschii using microsatellite markers

    2015-11-18 01:23:23FengboXueJunGuoChangyingGuanHongweiWangAnfeiLiLingrangKong
    The Crop Journal 2015年4期

    Fengbo Xue,Jun Guo,Changying Guan,Hongwei Wang,Anfei Li,Lingrang Kong*

    State Key Laboratory of Crop Biology,Shandong Key Laboratory of Crop Biology,College of Agronomy,Shandong Agricultural University,Tai'an 271018,China

    Molecular mapping of the hybrid necrosis gene NetJingY176 in Aegilops tauschii using microsatellite markers

    Fengbo Xue,Jun Guo,Changying Guan,Hongwei Wang,Anfei Li,Lingrang Kong*

    State Key Laboratory of Crop Biology,Shandong Key Laboratory of Crop Biology,College of Agronomy,Shandong Agricultural University,Tai'an 271018,China

    A R T I C L E I N F O

    Article history:

    Received 3 April 2015

    Received in revised form

    13 May 2015

    Accepted 1 June 2015

    Available online 6 June 2015

    Aegilops tauschii Coss

    Hybrid necrosis

    NetJingY176

    Molecular marker

    The rich genetic variation preserved in collections of Aegilops tauschii can be readily exploited to improve common wheat using synthetic hexaploid wheat lines.However,hybrid necrosis,which is characterized by progressive death of leaves or plants,has been observed in certain interspecific crosses between tetraploid wheat and Ae.tauschii.The aim of this study was to construct a fine genetic map of a gene(temporarily named NetJingY176)conferring hybrid necrosis in Ae.tauschii accession Jing Y176.A triploid F1population derived from distant hybridization between Ae.tauschii and tetraploid wheat was used to map the gene with microsatellite markers.The newly developed markers XsdauK539 and XsdauK561 co-segregated with NetJingY176 on chromosome arm 2DS.The tightly linked markers developed in this study were used to genotype 91 Ae.tauschii accessions.The marker genotype analysis suggested that 49.45%of the Ae.tauschii accessions carry NetJingY176.Interestingly,hybrid necrosis genotypes tended to appear more commonly in Ae.tauschii ssp.tauschii than in Ae.tauschii ssp.strangulata.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Commonwheat(Triticum aestivum L.,2n=6x=42,AABBDD)isa naturallyformedallohexaploid species;tetraploid wheat(Triticum turgidum L.,2n=4x=28,AABB)provided the A and B genomes and the diploid goatgrass species Aegilops tauschii Coss.(2n=2x=DD)provided the D genome approximately 8000 years ago[1,2].As the source of the D genome of common wheat,Ae.tauschii shows abundant genetic variation useful for wheat improvement[3-9].Ae.tauschii has historically been classified into two subspecies,ssp.tauschii and ssp.strangulata[3,10].Elongated cylindrical spikelets are a prominent typical characteristic of Ae.tauschii ssp.tauschii,whereas quadrate spikelets are a prominent typical characteristic of Ae.tauschii ssp.strangulata[3,10].The subspecies tauschii is distributed from eastern Turkey to China and Pakistan,whereas the subspecies strangulata is distributed only in the southeastern Caspian coastal region and Transcaucasia[3-5,33].

    The rich natural variation in Ae.tauschii accessions,which remains largely unexplored,can be used for the improvement of wheat breeding through the production of synthetic hexaploid wheats[11-15].However,abnormal phenotypeshave been observed in many F1triploid hybrids between tetraploid wheat and Ae.tauschii[16-20].Four abnormal phenotypes have been reported:type II and type III hybrid necrosis,hybrid chlorosis,and severe growth abortion[21]. Hybrid plants showing any of the four types of hybrid necrosis rarely produce selfed seeds[22].Thus,in the process of transferring genes from related species to cultivated wheat,hybrid necrosis has been a serious obstacle[23,24].

    Type II hybrid necrosis,which is characterized by tiller number increase and culm length decrease under low-temperature conditions,is one of the abnormal phenotypes observed in hybrids between tetraploid wheat and Ae. tauschii[22].This type of necrosis is controlled by Net1 and Net2,two complementary genes located on the A or B genome and the D genome,respectively[18].Net2 is located on the short arm of chromosome 2D,while the chromosomal location of Net1 remains uncertain[14].However,molecular markers closely linked to the two genes have not yet been identified. The tetraploid durum wheat(T.turgidum ssp.durum)cultivar Langdon has been extensively used as the AB genome source in creating synthetic hexaploid wheats[25]and carries Net1[26].

    Simple sequence repeat(SSR)markers,also known as microsatellite markers,show highly polymorphic polymerase chain reaction(PCR)products in many plant species.In most cases,SSR markers are chromosome-specific and codominant. For this reason,they have been used in many areas of genetic analysis;for example,constructing genetic linkage maps[27-29],detecting genetic diversity[30],and mapping genes of interest[31,32].Diverse breeding materials can be genotypically distinguished for phylogenetic studies by analysis of a small number of SSR markers[33,34].A genome sequence of Ae.tauschii based on a whole-genome shotgun strategy has been published[35].In addition,a physical map of Ae.tauschii covering 4 Gb has been developed[36].The 1.72-Gb genome sequence and physicalmap of Ae.tauschii establish a foundation for developing SSR markers for fine mapping and map-based cloning oftargetgenes in Ae.tauschii.

    The aim of this study was to construct a fine genetic map of NetJingY176 and to determine whether or not Aegilops accessions carry NetJingY176,using newly developed closely linked markers.

    2.Materials and methods

    2.1.Plant materials Twelve Ae.tauschii accessions(CIae 9,CIae 17,CIae 25,PI 268210,PI 276985,PI 369527,PI 428564,PI 511375,Jing Y176,Jing Y199,Jing Y215,and Jing Y225)were used as pollen parents for crossing with the durum wheat cultivar Langdon(genome formula AABB).Tightly linked markers developed in this study were used for the identification of NetJingY176 in 91 Aegilops accessions,including 49 Ae.tauschii ssp.tauschii and 42 Ae.tauschii ssp.strangulata accessions(Table S1).

    To determine the chromosome location of NetJingY176,a triploid F1mapping population was developed.First an F1was obtained by crossing Ae.tauschii accession Jing Y225(showing a normal wild-type(WT)phenotype when crossed with Langdon)with Ae.tauschii accession Jing Y176(showing hybrid necrosis when crossed with Langdon).Ae.tauschii accessions Jing Y225 and Jing Y176 are classified as subspecies strangulata and tauschii,respectively(Fig.1-a).Second,a mapping population with 199 triploid F1individuals was developed by crossing Langdon with the F1(Jing Y225/Jing Y176)using embryo rescue.The triploid F1carried the same AB genomes from Langdon as the female parent and a recombinant D genome derived from the hybrid of Jing Y176 and Jing Y225 as the male parents.After vernalization for 20 days at 4°C,the triploid F1individuals to be used for phenotypic and genetic studies were planted in the greenhouse at Shandong Agricultural University,Tai'an,Shandong province,China.

    2.2.Trypan blue staining

    Each plant was grown at room temperature in the greenhouse for 3 weeks before staining.Leaves were harvested and placed in phosphate buffer solution(PBS),which was then mixed in equal volumes with 0.4%trypan blue dye solution.After incubation for 2 min in a boiling water bath,the leaves were cooled overnight.They were then bleached in 1.25 g mL-1chloral hydrate for 3 d and examined under an inverted microscope[37].Leaves stained with dye were considered dead.

    2.3.DNA extraction and analysis of microsatellite markers Genomic DNA was isolated from young leaves by the CTAB(Cetyltrimethyl Ammonium Bromide)method as described by Guo et al.[38].

    Wheat microsatellite markers(Xcfa,Xcfd,Xgdm,Xgwm,Xbarc,Xpsp,and Xwmc)[27-29,38]on chromosomes 1D-7D based on previously published maps were chosen to analyze polymorphism between the two Ae.tauschii parents and the linkage relationships of NetJingY176 in 10 plants showing normal phenotype(WT)and 10 plants showing hybrid necrosis using bulk segregant analysis(BSA).Wheat SSR markers on chromosome 2D were then selected for gene mapping. The sequences of the selected primers were obtained from GrainGenes 2.0(http://www.wheat.pw.usda.gov/).

    The PCR reaction mixtures of 15 μL contained 10 mmol L-1Tris-HCl,pH 8.3,50 mmol L-1KCl,1.5 mmol L-1MgCl2,0.2 mmol L-1dNTPs,25 ng of each primer,50-100 ng of genomic DNA,and 0.75 U of Taq DNA polymerase.DNA amplification was performed by denaturing template DNA at 94°C for 5 min;followed by 35 cycles of 30 s at 94°C,30 s at 50-60°C(depending on the annealing temperature of each primer),and 30 s at 72°C,and 10 min at 72°C as the final step. The PCR products were mixed with 6 μL of 6×loading buffer and separated by 8%nondenaturing polyacrylamide gels(39:1 acrylamide:bisacrylamide)by electrophoresis at 120 V for 3 h. Gels were visualized by silver staining as described by Guo et al.[38].A genetic linkage map was constructed using JoinMap 4.0[39]with a minimum LOD threshold of 2.0 for grouping order.

    2.4.Development of new SSR markers closely linked to NetJingY176

    Scaffolds of the Ae.tauschii 2D genome sequence[35,36]surrounding the necrosis gene NetJingY176 were obtainedand used for marker development.The software SSR Finder(http://www.fresnostate.edu/ssrfinder/)was used to identify SSR regions in the scaffolds and sequences flanking the SSR region were selected to design SSR primers using Primer3 Input Version 0.4.0(http://bioinfo.ut.ee/primer3-0.4.0/)under general settings.These primers were used to screen for polymorphisms between the two Ae.tauschii parents.Primer sequences of newly developed SSR markers are listed in Table S2.The primers were then used to screen for polymorphism between Ae.tauschii accessions Jing Y176 and Jing Y225. Marker analyses were performed as described above.

    Fig.1-Phenotypic characterization of hybrid necrosis in an F1triploid individual.(a)Panicle traits of Aegilops tauschii accessions Jing Y225 and Jing Y176,tetraploid wheat cultivar Langdon,and a synthetic hexaploid wheat line(Langdon/Jing Y225).Ae.tauschii accessions Jing Y225 and Jing Y176 are classified as the subspecies strangulata and tauschii,respectively.(b)Phenotypic characterization of leaves by staining with trypan blue.Untreated leaves are on the left and leaves stained with trypan blue are on the right.(c)Triploid F1individuals in a constant-temperature incubator showed no obvious symptoms.(d)Phenotypic characterization of plants.I:Triploid F1individual with the wild-type phenotype at the seedling stage;II: Triploid F1individual with the hybrid necrosis phenotype at the seedling stage;III:Triploid F1individuals with the wild-type phenotype at the heading stage;IV:Triploid F1individuals with the hybrid necrosis phenotype stopped growing at the tillering stage and then died.

    3.Results

    3.1.Phenotypic characterization of necrotic wheat—Ae. tauschii triploid hybrids showing necrosis

    Four of 12 F1hybrids from crosses between tetraploid wheat Langdon and four Ae.tauschii accessions(Jing Y176,PI 276985,PI 428564,and PI 511375)clearly showed an identical necrotic phenotype:dwarfing and markedly increased tiller number. The remaining hybrids showed normal growth.

    Compared to WT,the phenotypic progression of hybrids with necrosis was divided into three stages based on plant height and leaf senescence(Fig.1).In the first stage,no obvious necrotic symptoms were observed in a constant-temperature incubator at 4°C for one month.In the second stage,after vernalization,triploid F1individuals were planted in the greenhouse at24°C/16°C(day/night)for one month.Compared to WT individuals,hybrids with necrosis showed dwarfing and dramatically increased tiller numbers.Incomplete leaf expansion and stem tip necrosis were also observed at the tillering stage.In the third stage,the leaves of hybrids with necrosis gradually turned yellowish and the meristem gradually died,while the WT individuals produced selfed seeds.

    The cell death response was observed in the leaves of the triploid hybrids.To further confirm this phenomenon,trypan blue was used to stain the necrotic leaves.No staining was observed in the leaves of WT individuals.In contrast,the leaves of hybrid necrotic plants showed extensive cell death(Fig.1-b).

    3.2.Genetic analysis of the hybrid necrosis phenomenon

    A triploid F1mapping population was produced to map the gene for hybrid necrosis.In total,199 triploid F1individualssegregated as 110 WT and 89 hybrid necrosis plants,fitting a 1:1 segregation ratio(χ2=1.114,P=0.29).This result indicates that the gene controlling hybrid necrosis on the D genome is a single genetic locus.Thus,the phenotypic segregation of WT and hybrid necrosis in the triploid F1population can be used to confirm the genotypes of Ae.tauschii accessions Jing Y176 and Jing Y225 at the NetJingY176 locus.

    3.3.Marker development and molecular mapping of the gene NetJingY176 NetJingY176 on the D genome controlled hybrid necrosis in intraspecific crosses of tetraploid wheat and Ae.tauschii.To map the gene,140 D-genome SSR markers were chosen to analyze polymorphism between the two Ae.tauschii parents and their linkage relationships of NetJingY176 using BSA.Five markers on chromosome 2D were linked to NetJingY176.Then,64 SSR markers that were previously mapped to chromosome 2D were investigated for polymorphism between Ae.tauschii accessions Jing Y225 and Jing Y176.Of these,only 16 identified polymorphic fragments were linked to NetJingY176 in the population,suggesting that NetJingY176 was located on the short arm of chromosome 2D.Markers Xgwm102 and Xgwm515 were located on each side of NetJingY176 at genetic distances of 4.5 and 3.8 cM,respectively(Fig.2).

    Based on the genome sequence and the physical map of Ae.tauschii,131 SSR markers were developed.Twenty-nine markers that were closely linked to NetJingY176 were assigned to chromosome arm 2DS(Fig.2)and 10 of them i.e.,XsdauK547,XsdauK554,XsdauK555,XsdauK558,XsdauK548,XsdauK534,XsdauK536,XsdauK541,XsdauK549,and XsdauK552 developed on the basis of Ae.tauschii scaffold sequences[35]were anchored on the chromosome 2D physical map constructed by Luo et al.[36].Of these markers,XsdauK539 and XsdauK561 co-segregated with NetJingY176 on chromosome 2DS and were designed from the same scaffold.The corresponding relationships between scaffold numbers and the new developed markers are presented in Table S2.

    Comparative analysis was performed to assess the collinearity among Ae.tauschii 2D chromosome regions containing NetJingY176 and Brachypodium(http://www.Brachypodium.org/),Oryza(http://rice.plantbiology.msu.edu/),and Sorghum(http:// www.plantgdb.org/SbGDB/cgi-bin/blastGDB.pl).The results indicated that this syntenic region between XsdauK552 and XsdauK549 corresponds to Brachypodium chromosome 1(Bradi1g19627 and Bradi1g19570),Oryza chromosome 7(Os07g45160 and Os07g45280)and Sorghum chromosome 2(Sb02g041248 and Sb02g041320)(Fig.2).Detailed comparative analyses revealed that only one gene,Bradi1g19620 in Brachypodium,corresponding to Os07g45170 in Oryza and Sb02g041250 in Sorghum,is conserved.Thus,very lower levels of genomic collinearity were observed among Brachypodium,Oryza,and Sorghum in the Ae.tauschii chromosome region containing NetJingY176.

    3.4.Identification of Ae.tauschii accessions putatively carrying NetJingY176 using linked SSR markers

    First,eight Ae.tauschii accessions showing the WT phenotype and four Ae.tauschii accessions showing hybrid necrosis phenotypes confirmed by hybridization were used to validate the efficacy of NetJingY176-linked markers XsdauK536,XsdauK549,XsdauK555,and XsdauK560 for the identification of Ae.tauschii accessions putatively carrying NetJingY176.The marker assay indicated that the marker genotypes were in agreement with the phenotypes in all 12 Ae.tauschii accessions tested,so the markers closely linked to NetJingY176 are useful for identifying the necrosis gene NetJingY176 in Ae.tauschii.Accordingly,the 91 Ae.tauschii accessions were screened with the linked SSR markers to detect the presence of NetJingY176 gene,and the amplification bands for both WT and hybrid necrosis genotypes are shown in Fig.3.Among the 91 Ae.tauschii accessions screened with markers XsdauK536,XsdauK549,XsdauK555,and XsdauK560,45 showed hybrid necrosis marker genotypes and the remainder showed WT marker genotypes.The Ae.tauschii accessions with clear genotypes identified by SSR markers included 49 ssp.tauschii accessions and 42 ssp.strangulata accessions.Interestingly,of the 42 ssp.strangulata accessions,30 showed WT marker genotypes and the rest showed necrosis marker genotypes. However,among the 49 ssp.tauschii accessions,only 16 showed WT marker genotypes and the other 33 showed hybrid necrosis marker genotypes(Fig.4).

    Fig.2-Comparative genetic linkage map of NetJingY176 and its syntenic genomic regions on the chromosome 2D physical map,Brachypodium chromosome 1,rice chromosome 7,and sorghum chromosome 2,respectively.The units of these maps are cM,cM,10 kb,kb,and 100 kb,respectively.

    4.Discussion

    Hybrid necrosis in wheat was first described in the 1940s[40]. Genes Ne1 and Ne2 are two dominant complementary genes that,when occurring together in a hybrid wheat,confer hybrid necrosis[41-44].Ne1 lies on the proximal half of chromosome arm 5BL,whereas Ne2 lies on the distal half of 2BS[45].The necrosis of wheat triploid F1hybrids was first mentioned by Nishikawa[16-18].The tetraploid cultivar Langdon is an effective AB genome source for producing synthetic hexaploid wheat[12].Large numbers of synthetic hexaploid wheat lines can be created with different D genomes from various Ae. tauschii accessions[46,47].In synthetic wheat production,there are four types of hybrid abnormality[20,21].Type II necrosis shows unique features,such as low temperature-induced necrotic symptoms and growth repression[22].In this study,hybrid necrotic plants clearly exhibited a necrotic phenotype: dwarf plants and markedly increased tiller number after vernalization.This result suggests that the hybrid necrosis phenotype oftriploid F1hybrids in the presentstudy was that of type II necrosis.

    Net2 is located on chromosome arm 2DS[14].The molecular mapping performed in this study showed that gene NetJingY176 from Ae.tauschii accession Jing Y176 co-segregated with the newly developed microsatellite markers XsdauK539 and XsdauK561 on chromosome arm 2DS.Comparison of the physical map of chromosome 2D[28]with the genetic map of 2D developed in this study shows that NetJingY176 is physically located on the proximal half of the short arm.Two SSR markersXgwm102 and Xgwm515 that flank NetJingY176 are located in deletion bins 2DS-1-0.33-0.47 and 2DS-5-0.47-1.00,respectively. This result suggests that NetJingY176 is likely to be identical to Net2.Thus,Ae.tauschii accession JingY176 or other accessions carrying Net should not be used as parents when mapping populations for genetic research are created with synthetic hexaploid wheat lines.The closely linked microsatellite markers could be effective for identifying the genotypes of parental lines for NetJingY176 or for using marker-assisted selection to remove the hybrid necrosis gene.

    Fig.4-Distribution of the gene NetJingY176 in Ae.tauschii ssp.tauschii and Ae.tauschii ssp.strangulata.The Ae.tauschii accessions comprised 49 ssp.tauschii and 42 ssp.strangulata accessions.Based on markers,49.45%of the Ae.tauschii accessions showed hybrid necrosis genotypes,and 50.55% showed WT genotypes.Among 91 Ae.tauschii with clear genotypes,28.57%of the ssp.strangulata accessions showed hybrid necrosis genotypes,whereas 67.35%of the ssp. tauschii accessions showed hybrid necrosis genotypes.

    Gene deletion or insertion,which plays an important role in adaptation to stress and environment changes for plant species,is very common in the grass family[48,49].In this study,comparative analysis was performed to investigate the collinearity among Brachypodium,Oryza,and Sorghum and the Aegilops chromosome 2D region containing NetJingY176.The results showed very low levels of genomic collinearity among these species in this Aegilops chromosome region containing NetJingY176.The low genomic collinearity could be explained by the better survival in unstable environments of species with gene deletions or insertions than of their ancestors[50,51].

    Fig.3-Amplification bands of the wild type and hybrid necrotic plants with SSR markers.(a)Marker XsdauK560;(b)Marker XsdauK549.M:The size of an amplified fragment was estimated with a GeneRulerExpress DNA ladder;1:Jing Y225;2:Jing Y176;3-12:amplification bands of the wild type(WT);13-22:amplification bands of hybrid necrosis.

    Determining the genetic and evolutionary relationships between the D genome of common wheat and the Ae.tauschii genome is crucial for understanding the development of common wheat.The Ae.tauschii genotypes associated with the origin of common wheat are confined to a narrow distribution range relative to the distribution range of the species,suggesting that Ae.tauschii harbors abundant genetic diversity that is not represented in common wheat[52].In fact,only a few Ae.tauschii lineages were involved in the origin and development of common wheat.In addition,the wheat D genome is more closely related to that of Ae.tauschii ssp.strangulata than to that of Ae.tauschii ssp. tauschii[31].In this study,91 Ae.tauschii accessions were used to detect the NetJingY176 gene.Based on the screening of SSR markers,49.45%of the Ae.tauschii accessions showed necrosis marker genotypes and 50.55%of the Ae.tauschii accessions showed WT marker genotypes.However,among 91 Ae.tauschii accessions with genotypes revealed by the associated markers,28.57% of the ssp.strangulata but 67.35%of the ssp.tauschii accessions showed necrosis marker genotypes(Fig.4).Hybrid necrosis marker genotypes tended to appear more commonly in ssp.tauschii than in ssp.strangulata.

    The molecular mechanisms of hybrid necrosis in synthetic hexaploid wheat are largely unknown.The mapping performed in this study has shown the location of the gene NetJingY176 in the Ae.tauschii genome and opens the way for further elucidating the structure,products,and function of the hybrid necrosis genes.The distribution of NetJingY176 locus in the various Ae.tauschii accessions may provide a guide for parental selection in use of Ae.tauschii germplasm collections for wheat germplasm enhancement and mapping population development.

    5.Conclusion

    We developed a triploid F1population by interspecific crosses between tetraploid wheat and Ae.tauschii to map the hybrid necrosis gene NetJingY176.The developed microsatellite markers XsdauK539 and XsdauK561 co-segregated with NetJingY176 on chromosome arm 2DS.The tightly linked markers developed in this study are useful for identifying Ae.tauschii genotypes carrying NetJingY176 and for cloning this gene from the Ae. tauschii genome.Genotyping analysis using SSR markers closely linked to NetJingY176 revealed that 49.45%of 91 Ae.tauschii accessions potentially carry NetJingY176.Hybrid necrosis genotypes tended to occur more frequently in Ae.tauschii ssp.tauschii than in Ae.tauschii ssp.strangulata.

    Acknowledgments

    This research was financially supported by the NationalNatural Science Foundation of China(grant numbers 31171553 and 31471488),the National Basic Research Program of China(2014CB138100),the National High Technology Research and Development Program of China (2011AA100102 and 2012AA101105), Shandong Seed Engineering Project(2015-2019)and the Program of Introducing International Super Agricultural Science and Technology(948 program,2013-S19).

    Supplementary material

    Supplementary material to this article can be found online at http://dx.doi.org/10.1016/j.cj.2015.05.003.

    [1]F.Salamini,H.Ozkan,A.Brandolini,R.Schafer-Pregl,W. Martin,Genetics and geography of wild cereal domestication in the Near East,Nat.Rev.Genet.3(2002)429-441.

    [2]H.Ozkan,A.A.Levy,M.Feldman,Allopolyploidy-induced rapid genome evolution in the wheat(Triticum-Aegilops)group,Plant Cell 13(2001)1735-1747.

    [3]A.Eig,Monographisch-kritische ü bersicht der Gattung Aegilops,repertorium speciorum novarum regni vegetabilis,Beihefte 55(1929)1-228(in Germany).

    [4]M.W.van Slageren,Wild wheats:a monograph of Aegilops L. and Amblyopyrum(Jaub.&Spach)Eig(Poaceae),Wageningen Agricultural University Papers 1994,pp.94-97.

    [5]J.Dvorak,M.C.Luo,Z.L.Yang,H.B.Zhang,The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat,Theor.Appl.Genet.97(1998)657-670.

    [6]A.J.Dudnikov,T.Kawahara,Aegilops tauschii:genetic variation in Iran,Genet.Resour.Crop.Evol.53(2006)579-586.

    [7]Z.L.Ren,T.Lelley,Hybrid necrosis in the triticale and the expression of necrosis genes in allopolyploids,Theor.Appl. Genet.77(1989)742-748.

    [8]Y.Matsuoka,S.Takumi,T.Kawahara,F(xiàn)lowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii Coss.:genealogical and ecological framework,PLoS ONE 3(2008)e3138.

    [9]Y.Matsuoka,E.Nishioka,T.Kawahara,S.Takumi,Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss,Plant Syst.Evol.279(2009)233-244.

    [10]K.Hammer,Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten:Aegilops L,Kulturpflanze 28(1980)33-180(in German).

    [11]H.Kihara,F(xiàn).Lilienfeld,A new synthesized 6x-wheat,Hereditas 35(1949)307-319,http://dx.doi.org/10.1111/j.1601-5223.1949. tb03343.x.

    [12]G.K.Singh,G.B.Singh,G.M.Lal,Genetic and developmental analysis of hybrid necrosis in wheat,Indian J.Genet.Pl.Br.32(1972)12-17.

    [13]N.Shitsukawa,H.Kinjo,S.Takumi,K.Murai,Heterochronic development of the floret meristem determines grain number per spikelet in diploid,tetraploid and hexaploid wheats,Ann.Bot.104(2009)243-251.

    [14]R.M.Trethowan,A.Mujeeb-Kazi,Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat,Crop Sci.48(2008)1255-1265.

    [15]H.Jones,N.Gosman,R.Horsnell,G.A.Rose,L.A.Everest,A.R. Bentley,Strategy for exploiting exotic germplasmusing genetic,morphological,and environmental diversity:the Aegilops tauschii Coss.example,Theor.Appl.Genet.126(2013)1793-1808.

    [16]K.Nishikawa,Hybrid lethality in crosses between emmer wheats and Aegilops squarrosa:I.Vitality of F1hybrids between emmer wheats and Ae.squarrosa var.typica,Seiken Ziho 11(1960)21-28.

    [17]K.Nishikawa,Hybrid lethality in crosses between Emmer wheats and Aegilops squarrosa:II.Synthesized 6x wheats employed as test varieties,Jpn.J.Genet.37(1962)227-236.

    [18]K.Nishikawa,Hybrid lethality in crosses between Emmer wheats and Aegilops squarrosa:III.Gene analysis of type-2 necrosis,Seiken Ziho 14(1962)45-50.

    [19]L.H.Rieseberg,B.K.Blackman,Speciation genes in plants,Ann.Bot.106(2010)439-455.

    [20]Y.Matsuoka,S.Takumi,T.Kawahara,Natural variation for fertile triploid F1formation in allohexaploid wheat speciation,Theor.Appl.Genet.115(2007)509-518.

    [21]N.Mizuno,M.Yamasaki,Y.Matsuoka,T.Kawahara,S.Takumi,Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.:implications for intraspecific lineage diversification and evolution of common wheat,Mol.Ecol.19(2010)999-1013.

    [22]N.Mizuno,N.Shitsukawa,N.Hosogi,P.Park,S.Takumi,Autoimmune response and repression of mitotic cell division occur in inter-specific crosses between tetraploid wheat and Aegilops tauschii Coss.that show low temperature-induced hybrid necrosis,Plant J.68(2011)114-128.

    [23]B.Bizimungu,J.Collin,A.Comeau,C.A.St-Pierre,Hybrid necrosis as a barrier to gene transfer in hexaploid winter wheat triticale crosses,Can.J.Plant Sci.78(1998)239-244.

    [24]S.M.S.Tomar,M.Kochumadhavan,P.N.N.Nambisan,Hybrid weakness in Triticum dicoccum Schubl,Wheat Inf.Serv.72(1991)9-11.

    [25]Y.Matsuoka,S.Nasuda,Durum wheat as a candidate for the unknown female progenitor of bread wheat:an empirical study with a highly fertile F1hybrid with Aegilops tauschii Coss,Theor.Appl.Genet.109(2004)1710-1717.

    [26]S.Takumi,N.Mizuno,Low temperature-induced necrosis shows phenotypic plasticity in wheat triploid hybrids,Plant Signal.Behav.6(2011)1431-1433.

    [27]M.S.R?der,V.Korzun,K.Wendehake,J.Plaschke,M.H.Tixier,P.Leroy,M.W.Ganal,A microsatellite map of wheat,Genetics 149(1998)2007-2023.

    [28]P.Sourdille,S.Singh,T.Cadalen,G.L.Brown-Guedira,G.Gay,L. Qi,Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat(Triticum aestivum L.),F(xiàn)unct.Integr.Genomics 4(2004)12-25.

    [29]Q.J.Song,J.R.Shi,S.Singh,E.W.Fickus,J.M.Costa,J.Lewis,B.S.Gill,R.Ward,P.B.Cregan,Development and mapping of microsatellite(SSR)markers in wheat,Theor.Appl.Genet. 110(2005)550-560.

    [30]T.Fahima,M.S.R?der,A.Grama,E.Nevo,Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust,Theor.Appl.Genet.96(1998)187-195.

    [31]V.Korzun,M.S.R?der,M.W.Ganal,A.J.Worland,C.N.Law,Genetic analysis of the dwarfing gene(Rht8)in wheat:I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat(Triticum aestivum L.),Theor.Appl.Genet. 96(1998)1104-1109.

    [32]K.Yoshiya,N.Watanabe,T.Kuboyama,Genetic mapping of the genes for non-glaucous phenotypes in tetraploid wheat,Euphytica 177(2011)293-297.

    [33]J.Plaschke,M.W.Ganal,M.S.R?der,Detection of genetic diversity in closely related bread wheat using microsatellite markers,Theor.Appl.Genet.91(1995)1001-1007.

    [34]D.Struss,J.Plieske,The use of microsatellite markers for detection of genetic diversity in barley populations,Theor. Appl.Genet.97(1998)308-315.

    [35]J.Jia,S.Zhao,X.Kong,Y.Li,G.Zhao,W.He,Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation,Nature 496(2013)91-95.

    [36]M.C.Luo,Y.Q.Gu,F(xiàn).M.You,A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii,the wheat D-genome progenitor,Proc. Natl.Acad.Sci.U.S.A.110(2013)7940-7945.

    [37]T.Zhi,Z.Zhou,C.Han,C.Ren,Identification of cell death of Arabidopsis thaliana mutant sdl1 by Trypan blue staining,Crop. Res.27(2013)217-218(in Chinese with English abstract).

    [38]J.Guo,F(xiàn).He,J.Cai,H.W.Wang,A.F.Li,H.G.Wang,L.R.Kong,Molecular and cytological comparisons of chromosomes 7el1,7el2,7E 540 e and 7Ei derived from Thinopyrum,Cytogenet.GenomeRes.(2015)http://dx.doi.org/10.1159/ 000381838.

    [39]J.W.Van Ooijen,JoinMap:Version 4.0:Software for the Calculation of Genetic Linkage Maps in Experimental Population,Kyazma B.V.,Wageningen,The Netherlands,2006.

    [40]R.M.Caldwell,L.E.Compton,Complementary lethal genes in wheat causing a progressive lethal necrosis of seedlings,J.Hered.34(1943)67-70.

    [41]J.G.T.Hermsen,Hybrid necrosis as a problem for the wheat breeder,Euphytica 12(1963)147-161.

    [42]J.G.T.Hermsen,The genetic basis of hybrid necrosis in wheat,Genetica 33(1963)245-287.

    [43]J.G.T.Hermsen,Hybrid necrosis and red chlorosis in wheat,in: J.MacKey(Ed.),Proceedings of the 2nd International Wheat Genet.Symposium.Hereditas Suppl.2 1966,pp.439-452.

    [44]K.Nishikawa,Alpha-amylase isozymes and phylogeny of hexaploid wheat,in:E.R.Sears,E.M.S.Sears(Eds.),F(xiàn)ourth International Wheat Genetics Symposium,vol.1,University of Missouri,Columbia,Missouri 1974,pp.851-855.

    [45]C.G.Chu,J.D.Faris,T.L.Friesen,S.S.Xu,Molecular mapping of hybrid necrosis genes Ne1 and Ne2 in hexaploid wheat using microsatellite markers,Theor.Appl.Genet.112(2006)1374-1381.[46]S.Takumi,Y.Naka,H.Morihiro,Y.Matsuoka,Expression of morphological and flowering time variation through allopolyploidization:an empirical study with 27 wheat synthetics and their parental Aegilops tauschii accessions,Plant Breed.128(2009)585-590.

    [47]T.Kajimura,K.Murai,S.Takumi,Distinct genetic regulation of flowering time and grain-filling period based on empirical study of D-genome diversity in synthetic hexaploid wheat lines,Breed.Sci.61(2011)130-141.

    [48]A.E.Darling,B.Mau,N.Perna,Progressive Mauve:multiple genome alignment with gene gain,loss and rearrangement,PLoS ONE 5(2010)e11147.

    [49]E.H.Stukenbrock,Evolution,selection and isolation:a genomic view of speciation in fungal plant pathogens,New Phytol.199(2013)895-907.

    [50]J.Dubcovsky,J.Dvorak,Genome plasticity a key factor in the success of polyploid wheat under domestication,Science 316(2007)1862-1866.

    [51]F.Ehrendorfer,Polyploidy and distribution,in:W.Lewis(Ed.),Polyploidy,Basic Life Sciences,vol.13,Springer,US 1980,pp.45-60.

    [52]M.Feldman,Origin of cultivated wheat,in:A.P.Bonjean,W.J. Angus,M.van Ginkel(Eds.),The World Wheat Book,Lavoisier,Paris 2001,pp.3-56.

    *Corresponding author.Tel.:+86 538 8249278.

    E-mail address:lkong@sdau.edu.cn(L.Kong).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    http://dx.doi.org/10.1016/j.cj.2015.05.003

    2214-5141/?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    欧美性长视频在线观看| 国产日韩一区二区三区精品不卡| 午夜免费激情av| 日本精品一区二区三区蜜桃| 咕卡用的链子| 18禁黄网站禁片午夜丰满| 精品免费久久久久久久清纯| 99精国产麻豆久久婷婷| 欧美日本中文国产一区发布| 日本黄色日本黄色录像| 美女高潮喷水抽搐中文字幕| 80岁老熟妇乱子伦牲交| 精品乱码久久久久久99久播| 长腿黑丝高跟| 午夜福利在线免费观看网站| 亚洲精品中文字幕一二三四区| 亚洲aⅴ乱码一区二区在线播放 | 国产成人影院久久av| 午夜精品在线福利| 精品国产一区二区久久| 97超级碰碰碰精品色视频在线观看| 很黄的视频免费| 狂野欧美激情性xxxx| 老司机福利观看| 精品一区二区三区四区五区乱码| 国产亚洲欧美在线一区二区| 最好的美女福利视频网| 中文字幕精品免费在线观看视频| 精品久久蜜臀av无| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av美国av| 国产真人三级小视频在线观看| 国产亚洲欧美在线一区二区| 午夜亚洲福利在线播放| 国产蜜桃级精品一区二区三区| 欧美日韩黄片免| 国产成+人综合+亚洲专区| 久久久久精品国产欧美久久久| 国产极品粉嫩免费观看在线| 国产成人精品无人区| videosex国产| 日韩欧美一区视频在线观看| 嫩草影视91久久| 久久国产精品影院| 看黄色毛片网站| 伦理电影免费视频| 国产精品 欧美亚洲| 久久久久久亚洲精品国产蜜桃av| 欧美激情高清一区二区三区| 一区福利在线观看| 国产高清视频在线播放一区| 激情在线观看视频在线高清| 久久久久久久久免费视频了| 欧美黄色片欧美黄色片| 亚洲国产精品sss在线观看 | 黑人巨大精品欧美一区二区蜜桃| 不卡av一区二区三区| 免费一级毛片在线播放高清视频 | 大码成人一级视频| 天堂影院成人在线观看| 操出白浆在线播放| 人人妻人人澡人人看| 日韩人妻精品一区2区三区| 亚洲狠狠婷婷综合久久图片| 欧美日本中文国产一区发布| 亚洲自拍偷在线| 亚洲av成人不卡在线观看播放网| 妹子高潮喷水视频| 色老头精品视频在线观看| av电影中文网址| 免费在线观看日本一区| 精品第一国产精品| 日韩欧美在线二视频| 99久久综合精品五月天人人| 中文字幕色久视频| 免费av中文字幕在线| 精品久久久久久成人av| 首页视频小说图片口味搜索| 首页视频小说图片口味搜索| 夜夜夜夜夜久久久久| 中亚洲国语对白在线视频| 叶爱在线成人免费视频播放| 18美女黄网站色大片免费观看| www.自偷自拍.com| 曰老女人黄片| 色播在线永久视频| 一级作爱视频免费观看| 中亚洲国语对白在线视频| 欧美激情高清一区二区三区| 国产精品一区二区三区四区久久 | 久久国产精品影院| 水蜜桃什么品种好| 在线观看66精品国产| 亚洲午夜精品一区,二区,三区| 欧美人与性动交α欧美软件| 欧美日韩av久久| 亚洲三区欧美一区| 男男h啪啪无遮挡| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成伊人成综合网2020| 波多野结衣一区麻豆| 91国产中文字幕| 国产精品久久视频播放| 狠狠狠狠99中文字幕| 性色av乱码一区二区三区2| 国产午夜精品久久久久久| 亚洲久久久国产精品| 欧美老熟妇乱子伦牲交| 日本欧美视频一区| 国产又色又爽无遮挡免费看| 久久人人精品亚洲av| 国产欧美日韩一区二区三区在线| 欧美日韩精品网址| 久久精品亚洲熟妇少妇任你| 久久精品国产综合久久久| 午夜免费鲁丝| 最新美女视频免费是黄的| 中文字幕最新亚洲高清| 大码成人一级视频| www国产在线视频色| 一区二区三区精品91| 91成年电影在线观看| 免费女性裸体啪啪无遮挡网站| 性色av乱码一区二区三区2| 一夜夜www| 欧美精品一区二区免费开放| 人人妻人人澡人人看| 久久久国产成人精品二区 | 黑人巨大精品欧美一区二区mp4| 亚洲五月色婷婷综合| 不卡一级毛片| 国产欧美日韩一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| 成年版毛片免费区| 国产乱人伦免费视频| 天堂俺去俺来也www色官网| 韩国精品一区二区三区| 纯流量卡能插随身wifi吗| 欧美日韩亚洲高清精品| 日本五十路高清| 一区二区日韩欧美中文字幕| 88av欧美| 亚洲av美国av| 黄频高清免费视频| 国产av精品麻豆| 亚洲久久久国产精品| 99在线人妻在线中文字幕| 美女高潮喷水抽搐中文字幕| 亚洲成av片中文字幕在线观看| 欧美黑人欧美精品刺激| 免费高清视频大片| av有码第一页| 国产精品 国内视频| 国产av精品麻豆| 日本黄色日本黄色录像| 久久天堂一区二区三区四区| 国产三级黄色录像| 精品国产乱码久久久久久男人| 国产有黄有色有爽视频| 狠狠狠狠99中文字幕| 一级,二级,三级黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日本一区二区免费在线视频| 欧美日韩一级在线毛片| 这个男人来自地球电影免费观看| 亚洲男人天堂网一区| 国产精品亚洲一级av第二区| 精品日产1卡2卡| 男女下面插进去视频免费观看| 80岁老熟妇乱子伦牲交| 国产精品98久久久久久宅男小说| 黄片播放在线免费| 欧美日韩一级在线毛片| 日韩av在线大香蕉| 亚洲久久久国产精品| 免费看a级黄色片| 精品福利观看| 91老司机精品| 欧美人与性动交α欧美精品济南到| 国产成人精品在线电影| 亚洲成人免费av在线播放| 免费在线观看视频国产中文字幕亚洲| 热99re8久久精品国产| 久久人妻熟女aⅴ| 搡老岳熟女国产| 黄色成人免费大全| 国产精品一区二区免费欧美| 亚洲欧美日韩高清在线视频| 热re99久久国产66热| 成人永久免费在线观看视频| 水蜜桃什么品种好| 久久久久久免费高清国产稀缺| 黄色 视频免费看| 乱人伦中国视频| 国产主播在线观看一区二区| 国产黄a三级三级三级人| 天堂√8在线中文| 母亲3免费完整高清在线观看| 青草久久国产| 女警被强在线播放| 久久久国产一区二区| 国产片内射在线| 麻豆一二三区av精品| 亚洲自偷自拍图片 自拍| 亚洲国产欧美日韩在线播放| 久久欧美精品欧美久久欧美| 国产真人三级小视频在线观看| 国产精品一区二区三区四区久久 | 免费观看人在逋| 成年人黄色毛片网站| 丰满人妻熟妇乱又伦精品不卡| 日韩免费高清中文字幕av| 精品久久久久久久久久免费视频 | 欧美 亚洲 国产 日韩一| 9191精品国产免费久久| 国产亚洲欧美在线一区二区| 日本黄色日本黄色录像| 亚洲av日韩精品久久久久久密| 一个人观看的视频www高清免费观看 | 1024香蕉在线观看| 国产三级黄色录像| 欧美在线黄色| netflix在线观看网站| 精品福利永久在线观看| 宅男免费午夜| ponron亚洲| 国产免费男女视频| 久久精品亚洲精品国产色婷小说| 久久伊人香网站| 久久久久国产一级毛片高清牌| 免费人成视频x8x8入口观看| 老汉色av国产亚洲站长工具| 欧美日本亚洲视频在线播放| 精品少妇一区二区三区视频日本电影| 午夜免费鲁丝| 亚洲成国产人片在线观看| 黑人欧美特级aaaaaa片| 99国产精品99久久久久| 看黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 91成人精品电影| 国产一区二区激情短视频| 视频在线观看一区二区三区| 国产单亲对白刺激| 91精品国产国语对白视频| 黄色 视频免费看| 80岁老熟妇乱子伦牲交| 99精品欧美一区二区三区四区| 国产免费现黄频在线看| 久久99一区二区三区| 在线观看日韩欧美| 国产高清国产精品国产三级| 中文字幕精品免费在线观看视频| 中文亚洲av片在线观看爽| 久久国产精品男人的天堂亚洲| 长腿黑丝高跟| 久久精品91无色码中文字幕| 成人18禁在线播放| 免费在线观看视频国产中文字幕亚洲| 国产无遮挡羞羞视频在线观看| 精品国产一区二区三区四区第35| 成在线人永久免费视频| 如日韩欧美国产精品一区二区三区| 欧美大码av| 老司机在亚洲福利影院| 18禁观看日本| 在线免费观看的www视频| 亚洲av熟女| 国产97色在线日韩免费| 亚洲在线自拍视频| 欧美成人午夜精品| 国产高清激情床上av| 最近最新中文字幕大全免费视频| av网站在线播放免费| 免费在线观看视频国产中文字幕亚洲| 每晚都被弄得嗷嗷叫到高潮| 国产高清激情床上av| 亚洲九九香蕉| tocl精华| 男女高潮啪啪啪动态图| 9191精品国产免费久久| 国产乱人伦免费视频| 欧美日韩亚洲高清精品| 男女下面进入的视频免费午夜 | 成人亚洲精品一区在线观看| 免费看十八禁软件| 日韩一卡2卡3卡4卡2021年| 丰满人妻熟妇乱又伦精品不卡| 午夜福利影视在线免费观看| 妹子高潮喷水视频| 国产精品香港三级国产av潘金莲| 女性生殖器流出的白浆| 国产色视频综合| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品一区二区www| 麻豆久久精品国产亚洲av | 久久香蕉激情| 在线播放国产精品三级| 精品国产国语对白av| 国产99白浆流出| 国产91精品成人一区二区三区| 久久99一区二区三区| 可以免费在线观看a视频的电影网站| 国产亚洲精品综合一区在线观看 | 999久久久国产精品视频| 免费在线观看完整版高清| 69av精品久久久久久| 欧美日韩福利视频一区二区| 欧美久久黑人一区二区| 一二三四在线观看免费中文在| 村上凉子中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 黑人猛操日本美女一级片| 咕卡用的链子| 国产欧美日韩一区二区三区在线| 欧美黄色片欧美黄色片| ponron亚洲| 国产亚洲精品第一综合不卡| 亚洲av日韩精品久久久久久密| 一级作爱视频免费观看| 国产1区2区3区精品| 天堂俺去俺来也www色官网| 国产黄a三级三级三级人| 人人妻人人澡人人看| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区蜜桃| 国产黄a三级三级三级人| 久久久精品国产亚洲av高清涩受| 啦啦啦在线免费观看视频4| 久久久久久人人人人人| 久久久久久大精品| 欧美精品一区二区免费开放| xxx96com| 成人特级黄色片久久久久久久| 亚洲av美国av| 99久久国产精品久久久| 色综合婷婷激情| 一进一出抽搐gif免费好疼 | 久久久久久亚洲精品国产蜜桃av| 国产熟女xx| 一级a爱片免费观看的视频| 久久99一区二区三区| 女警被强在线播放| 中文字幕av电影在线播放| 中文亚洲av片在线观看爽| 另类亚洲欧美激情| 又大又爽又粗| 国产日韩一区二区三区精品不卡| 麻豆成人av在线观看| 欧美午夜高清在线| 一级片免费观看大全| 高清av免费在线| 97人妻天天添夜夜摸| 在线观看一区二区三区| 欧美成人性av电影在线观看| 亚洲国产中文字幕在线视频| 久久久久国产精品人妻aⅴ院| 色在线成人网| 亚洲av熟女| 91麻豆av在线| 久久精品亚洲精品国产色婷小说| 亚洲国产精品sss在线观看 | 午夜免费激情av| 久久人妻av系列| 日本免费一区二区三区高清不卡 | a级片在线免费高清观看视频| 18美女黄网站色大片免费观看| 正在播放国产对白刺激| 亚洲精品国产区一区二| 亚洲激情在线av| 午夜免费激情av| 国产精品一区二区免费欧美| 黑人巨大精品欧美一区二区蜜桃| 国产精品爽爽va在线观看网站 | 在线国产一区二区在线| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久av网站| 很黄的视频免费| 在线十欧美十亚洲十日本专区| 精品国产一区二区三区四区第35| 丝袜人妻中文字幕| 日韩免费高清中文字幕av| 天堂√8在线中文| 多毛熟女@视频| 日本免费一区二区三区高清不卡 | 亚洲五月天丁香| 99国产精品99久久久久| 国产精品国产av在线观看| 99久久国产精品久久久| 一边摸一边抽搐一进一出视频| 91精品三级在线观看| 可以免费在线观看a视频的电影网站| 欧美日韩av久久| 国产免费av片在线观看野外av| 在线观看午夜福利视频| 国产激情久久老熟女| 久久国产精品影院| 男女床上黄色一级片免费看| 久99久视频精品免费| 看黄色毛片网站| 午夜影院日韩av| 丝袜人妻中文字幕| 国产激情欧美一区二区| 精品一品国产午夜福利视频| av福利片在线| 午夜激情av网站| 国产亚洲欧美在线一区二区| 免费久久久久久久精品成人欧美视频| 久热爱精品视频在线9| 亚洲视频免费观看视频| bbb黄色大片| 757午夜福利合集在线观看| 天堂√8在线中文| svipshipincom国产片| 乱人伦中国视频| 午夜免费激情av| 免费在线观看视频国产中文字幕亚洲| 国产一区二区在线av高清观看| 中出人妻视频一区二区| 国产一区二区三区视频了| 国产成人精品无人区| 国产99久久九九免费精品| 国产不卡一卡二| 很黄的视频免费| 少妇粗大呻吟视频| 欧美在线一区亚洲| 怎么达到女性高潮| 亚洲国产毛片av蜜桃av| 51午夜福利影视在线观看| 熟女少妇亚洲综合色aaa.| 午夜两性在线视频| 成在线人永久免费视频| 精品午夜福利视频在线观看一区| 欧美精品亚洲一区二区| 日韩精品免费视频一区二区三区| 99国产精品一区二区蜜桃av| 国产av一区在线观看免费| 国产一区二区三区视频了| 欧美日本中文国产一区发布| 国产亚洲av高清不卡| 国产精品99久久99久久久不卡| 国产精品一区二区三区四区久久 | 69精品国产乱码久久久| 黄色丝袜av网址大全| 精品福利观看| 亚洲第一av免费看| 交换朋友夫妻互换小说| 久久久久精品国产欧美久久久| a级毛片黄视频| 国产xxxxx性猛交| 黄色视频,在线免费观看| 国产亚洲欧美98| 欧美精品亚洲一区二区| 黄色女人牲交| 久久午夜亚洲精品久久| 中文字幕av电影在线播放| 久久国产精品男人的天堂亚洲| 亚洲五月天丁香| 久久精品国产综合久久久| 18禁国产床啪视频网站| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 午夜福利欧美成人| 亚洲aⅴ乱码一区二区在线播放 | 嫁个100分男人电影在线观看| √禁漫天堂资源中文www| 国产免费男女视频| 日本五十路高清| 欧美激情高清一区二区三区| 欧美成人免费av一区二区三区| 久久精品国产综合久久久| 999久久久国产精品视频| 成人亚洲精品一区在线观看| 精品久久久久久电影网| 超碰成人久久| 亚洲精品一二三| 热99re8久久精品国产| 欧美人与性动交α欧美软件| 国产av一区二区精品久久| 欧美日韩福利视频一区二区| 欧美激情久久久久久爽电影 | 热re99久久精品国产66热6| 亚洲激情在线av| 女人精品久久久久毛片| 黄网站色视频无遮挡免费观看| 亚洲精品美女久久久久99蜜臀| 日韩一卡2卡3卡4卡2021年| 老司机亚洲免费影院| 18禁国产床啪视频网站| 人人妻人人澡人人看| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 国产成人影院久久av| 中文字幕av电影在线播放| 免费少妇av软件| 午夜福利在线观看吧| 黄片播放在线免费| 亚洲成人免费电影在线观看| 欧美黑人精品巨大| 后天国语完整版免费观看| 美国免费a级毛片| 日韩欧美三级三区| 欧美丝袜亚洲另类 | 熟女少妇亚洲综合色aaa.| 亚洲va日本ⅴa欧美va伊人久久| 丰满的人妻完整版| 一级作爱视频免费观看| 欧美日韩瑟瑟在线播放| 欧美老熟妇乱子伦牲交| 久9热在线精品视频| 香蕉久久夜色| 亚洲精品久久成人aⅴ小说| 十八禁人妻一区二区| 看黄色毛片网站| 少妇被粗大的猛进出69影院| 国产精品美女特级片免费视频播放器 | av天堂久久9| 最好的美女福利视频网| 色精品久久人妻99蜜桃| 欧美乱码精品一区二区三区| 国产精品一区二区三区四区久久 | 国产精品一区二区在线不卡| 精品电影一区二区在线| 日韩av在线大香蕉| 日日摸夜夜添夜夜添小说| 精品一品国产午夜福利视频| 18美女黄网站色大片免费观看| 亚洲精品av麻豆狂野| 午夜福利欧美成人| 91国产中文字幕| 99国产精品99久久久久| 亚洲激情在线av| 久99久视频精品免费| 一边摸一边抽搐一进一出视频| av视频免费观看在线观看| 操美女的视频在线观看| 夜夜看夜夜爽夜夜摸 | 一级片免费观看大全| 99久久99久久久精品蜜桃| 亚洲,欧美精品.| 国产精品 欧美亚洲| 国产精品二区激情视频| 免费在线观看日本一区| 国产精品二区激情视频| 精品一区二区三区av网在线观看| 国产精品免费一区二区三区在线| 法律面前人人平等表现在哪些方面| 国产精品香港三级国产av潘金莲| 欧美中文日本在线观看视频| 日韩欧美国产一区二区入口| 久久午夜亚洲精品久久| 国产视频一区二区在线看| 51午夜福利影视在线观看| 亚洲av片天天在线观看| 国产午夜精品久久久久久| 一级毛片女人18水好多| 亚洲精品美女久久av网站| 男女高潮啪啪啪动态图| 午夜a级毛片| 欧美成人免费av一区二区三区| 国产男靠女视频免费网站| 亚洲欧美激情综合另类| 大型黄色视频在线免费观看| 这个男人来自地球电影免费观看| 亚洲国产精品合色在线| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 欧美乱码精品一区二区三区| 99在线人妻在线中文字幕| 久久青草综合色| 国产一区二区三区综合在线观看| 黄片播放在线免费| 国产又爽黄色视频| bbb黄色大片| 乱人伦中国视频| x7x7x7水蜜桃| 亚洲成人精品中文字幕电影 | 高潮久久久久久久久久久不卡| 亚洲,欧美精品.| 丰满迷人的少妇在线观看| 99热只有精品国产| 两个人看的免费小视频| 天堂动漫精品| 午夜日韩欧美国产| 欧美日韩亚洲综合一区二区三区_| 国产伦一二天堂av在线观看| а√天堂www在线а√下载| 日韩国内少妇激情av| 满18在线观看网站| 欧美不卡视频在线免费观看 | 中文字幕另类日韩欧美亚洲嫩草| 日韩免费高清中文字幕av| 香蕉丝袜av| 两性午夜刺激爽爽歪歪视频在线观看 | 在线视频色国产色| 亚洲成国产人片在线观看| 日本 av在线| 多毛熟女@视频| 在线免费观看的www视频| 黄色a级毛片大全视频| 成人免费观看视频高清| 美国免费a级毛片| 亚洲一码二码三码区别大吗| 成年版毛片免费区| 男人的好看免费观看在线视频 | 男人舔女人的私密视频| 色婷婷av一区二区三区视频| 日本五十路高清| 性欧美人与动物交配| 国产真人三级小视频在线观看| 熟女少妇亚洲综合色aaa.| 久久精品国产清高在天天线| 黄片播放在线免费| videosex国产|