• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of EST-SSRs and molecular diversity analysis in Mentha piperita

    2015-11-18 01:23:27BirendrKumrUmeshKumrHemntKumrYdv
    The Crop Journal 2015年4期

    Birendr Kumr,Umesh Kumr,Hemnt Kumr Ydv,c,*

    aCSIR-Central Institute of Medicinal and Aromatic Plant Sciences,P.O.CIMAP,Near Kukrail Picnic Spot,Lucknow-226 015,India

    bCSIR-National Botanical Research Institute,Rana Pratap Marg,Lucknow-226 001,India

    cAcademy of Scientific and Innovative Research(AcSIR),New Delhi,India

    Identification of EST-SSRs and molecular diversity analysis in Mentha piperita

    Birendra Kumara,Umesh Kumarb,Hemant Kumar Yadavb,c,*

    aCSIR-Central Institute of Medicinal and Aromatic Plant Sciences,P.O.CIMAP,Near Kukrail Picnic Spot,Lucknow-226 015,India

    bCSIR-National Botanical Research Institute,Rana Pratap Marg,Lucknow-226 001,India

    cAcademy of Scientific and Innovative Research(AcSIR),New Delhi,India

    A R T I C L E I N F O

    Article history:

    Received 8 July 2014

    Received in revised form

    2 February 2015

    Accepted 16 February 2015

    Available online 28 February 2015

    EST-SSRs

    Genetic diversity

    Mentha piperita

    Polymorphic information content Transferability

    EST sequences of Mentha piperita available in the public domain(NCBI)were exploited to develop SSR markers.A total of 1316 ESTs were assembled into 155 contigs and 653 singletons and of these,110 sequences were found to contain 130 SSRs,with a frequency of 1 SSR/3.4 kb.Dinucleotide repeat SSRs were most frequent(72.3%)with the AG/CT(43.8%)repeat motif followed by AT/AT(16.2%).Primers were successfully designed for 68 SSR-containing sequences(62.0%).The 68 primers amplified 13 accessions of M.piperita and 54 produced clear amplicons of the expected size.Of these 54,33(61%)were found to be polymorphic among M.piperita accessions,showing from 2 to 4 alleles with an average of 2.33 alleles/SSR,and the polymorphic information content(PIC)value varied between 0.13 and 0.51(average 0.25).All the amplified SSRs showed transferability among four different species of Mentha,with a highest in Mentha arvensis(87.0%)and minimum in Mentha citrata(37.0%).The newly developed SSRs markers were found to be useful for diversity analysis,as they successfully differentiated among species and accessions of Mentha.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    The genus Mentha(mint)is one of the most important taxa of the family Lamiaceae and comprises 25 to 30 species grown in different parts of the world.Only five of them,Japanese/menthol mint(Mentha arvensis L.var.piperascens forma Holmes),spearmint(Mentha spicata L.),peppermint(Mentha piperita L.),scotch spearmint(MenthacardiacaBaker.)andBergamotmint(Mentha citrata Ehrh.)are commercially grown in India and other countries[1,2].These five species are the major natural source of aroma compounds of industrial importance;namely-menthol,menthofuran,carvone,linalool,and linalyl acetate.Because of their cooling,pleasant aroma and flavor,essential oils of mint are used in perfumery,cosmetics,confectionery,and the pharmaceutical industries.The oil of M.piperita,known as peppermint oil,is widely used for headache,nerve pain,toothache,oral inflammation,joint conditions,itchiness,allergic rash,repelling mosquitoes,rheumatism,muscular pains,etc.[3,4].Menthol is the major constituent of the essential oil constituents of peppermint oil[5].Peppermint oil of globally accepted quality contains high amounts of menthol,moderate amounts of menthone,and very low amounts of pulegone and menthofuran[6,7].The presence and concentrations of certain chemical constituents of essential oils changeaccording to the season,soil,climate,and site of plant growth. Peppermint is cultivated in several parts of India and has great economic value and a strong export potential for its volatile oil extracts.

    DNA-based molecular markers have been shown to be an efficient tool to assist conventional plant breeding in various ways,such as by assessing the gene pool for diverse parental lines,hybridity testing,QTL mapping,gene tagging,and marker-assisted selection.Despite the importance of peppermint as an aromatic and medicinal plant,no comprehensive molecular marker systems are available.A few studies have assessed genetic diversity in species of Mentha based on RAPD[8-10]and AFLP fingerprinting[11].There is a complete lack of Mentha-specific molecular markers for use in genetic studies and genetic improvement programs.

    Simple sequence repeats(SSRs)also called microsatellites,are 1-6-base tandem repeats of DNA sequences,abundant in both prokaryotic and eukaryotic organisms in coding and noncoding regions[12].SSRs are a preferred marker system owing to their codominant inheritance,multiallelic nature,abundance in the genome,high reproducibility,hyperpolymorphism,and high rate of transferability across genera and species[13-15].Expressed sequence tags(ESTs)available in the public domain are the easiest and cheapest source for SSR development.EST-SSRs offer various advantages including ease of access,presence in gene-rich regions,and high transferability across species and genera[16],which enable them to serve as anchor markers for comparative mapping and evolutionary studies[15].Given that no SSR markers are reported in Mentha,the present study was undertaken to exploitthe ESTdatabase of M.piperita to(1)analyze the frequency and distribution of SSRs in ESTs,(2)develop and characterize EST-SSRs(3)test their transferability in related species and(4)detect polymorphism/diversity among accessions and species of Mentha.

    2.Materials and methods

    2.1.Plant materials and DNA isolation

    The plant material included 13 accessions of M.piperita,5 of M.arvensis,4 of M.spicata,and 1 each of Mentha longifolia and M.citrata.These accessions were previously evaluated for essential oil content and other components.The details of these plant materials are given in Table 1.M.piperita is characterized by moderate oil content and high menthofuran. M.arvensis,also known as menthol mint,contains comparatively high oil content rich in menthol.The accessions of M.spicata and M.longifolia contain carvone-rich essential oils and M.citrata is rich in linalool and linalyl acetate.These accessions were grown during the 2012-2013 crop season in the experimental field of the Central Institute of Medicinal and Aromatic Plants(CIMAP)Lucknow,Uttar Pradesh,India. Fresh leaves combined from five randomly chosen plants of each accession were used to isolate total genomic DNA with a Qiagen DNeasy Plant Mini Kit(Qiagen,Valencia,CA,USA)following the manufacturer's instructions.The quality of DNA was assessed on 0.8%agarose gel and quantity was checked with a NanoDrop spectrophotometer ND 1000(NanoDrop Products,USA).Finally,the DNA was normalized to 10 ng μL-1for PCR amplification.

    2.2.Data mining and EST-SSR identification

    A total of1316 raw EST sequences of M.piperita were downloaded from the National Center for Biotechnology Information(NCBI;http://www.ncbi.nlm.nih.gov/dbest/)on January 14,2013.The 5′or 3′end poly A or poly T stretches were removed from the raw EST sequences using EST-Trimmer software(http://pgrc.ipk-gatersleben.de/misa/download/est_trimmer.pl).EST sequences were then assembled using the CAP3 assembler[17]with criteria of 40 bp overlap and 90%identity.The assembled EST sequences were subjected to SSR search using MISA(http://pgrc.ipk-gatersleben.de/misa/)with criteria of minimum number of repeats of 5 for dinucleotide(DNR)and trinucleotide(TNR)and of 4 for tetra-,penta-,and hexanucleotide SSRs.

    Table 1-Details of cultivars and species of Mentha used in the study.

    2.3.Primer design and PCR amplification

    The SSR-containing sequences were used to design flanking primers with PRIMER3 software(http://frodo.wi.mit.edu/primer3)with major primer design parameters as follows:product length 100-300 bp,primer size 18-25 bp,and melting temperature 57-63°C(optimum 60°C).In some cases,where primers could not be designed,the criteria were relaxed. The primers were synthesized with an additional 18-base(5′-TGTAAAACGACGGCCAGT-3′)tag at the 5′end to all the forward primers[18].Additionally,four 18-base primer named as“M13 tag”was also synthesized labeled with either FAM,VIC,PET,or NED fluorescent dye.PCR amplification of genomic DNA was performed in a 10 μL reaction volume in an Veriti Thermal Cycler PCR(Applied Biosystems,F(xiàn)oster City,CA,USA)containing 10 ng genomic DNA,1×PCR Master Mix(AmpliTaq Gold 360),5 pmol forward primer(tailed with M 13 tag),15 pmol reverse primer,and 15 pmol“M13 tag”.The PCR programs employed initial denaturation for 5 min at 95°C followed by 35 cycles of denaturation for 1 min at 94°C,annealing for 45 s at 48-52°C(primer-specific)and extension for 1 min at 72°C.These were followed by 10 cycles of denaturation for 30 s at 95°C,annealing for 45 s at 53°C,and extension for 45 s at 72°C followed by a final extension for 12 min at 72°C.The PCR products were separated by capillary electrophoresis using the ABI 3730xl DNA Analyzer(Applied Biosystems,F(xiàn)oster City,CA,USA).After PCR amplification confirmation on 1.5%agarose gel,post-PCR multiplex sets were constructed based on fluorescence-labeled primer dyes.For post-PCR multiplexing,1 μL of FAM and 2 μL each of VIC,NED,and PET-labeled PCR products representing different SSRs were mixed with 60 μL water.The mixed product(2 μL)was then added to 8 μL of Hi-Di formamide containing 0.20 μL GeneScan 600 LIZas internalsize standard,denatured for 5 min at 95°C,quick-chilled on ice for 5 min,and loaded on the ABI3730xl DNA Analyzer for electrophoresis.SSR amplicon size was determined with GeneMapper 4.0 software(Applied Biosystems,USA).

    2.4.Data acquisition and statistical analyses

    The PCR-amplified SSR markers were scored by allele size as well as presence(1)or absence(0).Statistical analysis for the calculation of observed heterozygosity(Ho),gene diversity or expected heterozygosity(He),major allele frequency,and polymorphic information content(PIC)of EST-SSR markers was performed with Power Marker 3.25[19].PIC was calculated following Botstein et al.[20]:where Piand Pjare the frequencies of the i th and j th alleles. A pairwise similarity matrix among the accessions was calculated with the 0-1 data matrix using Jaccard's coefficient.This matrix was used to construct a dendrogram using the unweighted pair-group method with arithmetic mean(UPGMA)with NTSYS-pc 2.2[21].

    3.Results

    3.1.Frequency and distribution of EST-SSRs

    A total of 1316 raw EST sequences varying in length from 105 to 1147 bases(average 525)were downloaded,cleaned,and assembled(Table 2).The assembly resulted in 155 contigs and 653 singletons.The length of contigs varied between 409 and 2118 bp with an average of 743 bp.Of the 808 assembled sequences,110 were found to contain 130 SSRs,with a frequency of 1 SSR/3.4 kb of the available ESTs.Of the 110 SSR-containing ESTs,14(13%)contained more than one SSR,and 15 SSRs were found in compound form.Among the types of SSRs,the highest proportion was represented by dinucleotide repeat(DNR)(72.3%),followed by trinucleotide(TNR)(21.5),tetranucleotide(3.8%),and hexanucleotide(2.3%)repeats(Table 3).No pentanucleotide SSR was identified under the criteria used for the SSR search.The majority of the SSR motifs were of smaller repeat length and only 8 were found to contain 10 or more repeats(Table 3).The most common type of SSR motif was AG/CT(43.8%),followed by AT/AT(16.2%),AC/GT(12.3%),AAG/CTT(10.8%),and AAT/ATT(3.8%)(Table 3).

    3.2.Polymorphism analysis and cross-species transferability

    All of the 110 SSR-containing sequences were used to design primers flanking the SSR motif.We successfully designed primers for 68(62%)SSR-containing sequences(Table S1).The remaining 42(38%)SSR containing sequences were not found suitable for designing primers,owing either to marginal SSRs or inappropriate flanking sequences.All the 68 primer pairs were synthesized and characterized for various marker attributes with 13 accessions of M.piperita and also used to assess cross-species transferability in four species of Mentha. Of the 68,54 primer pairs produced clear amplicons of the expected sizes.The 54 EST-SSRs amplified with M.piperita accessions resulted in 33 polymorphic SSRs with a total of 77alleles and 21 monomorphic SSRs(Table 4,F(xiàn)ig.S1).The number of alleles varied from 2 to 4 with an average of 2.33 alleles/SSR.The PIC values of polymorphic SSRs ranged between 0.13 and 0.51 with an average of 0.325±0.09.The primer pair EMM_003 showed the highest PIC(0.51),followed by EMM_049(0.48),EMM_055(0.36),and EMM_41(0.36).The expected heterozygosity(He)varied from 0 to 0.69(EMM_026)with an average of 0.21(Table 4).The potential cross-species transferability of the 54 EST-SSRs was assessed in four species of Mentha including five accessions of M.arvensis,four of M.spicata,and one each of M.citrata and M.longifolia.Among these,M.arvensis showed the highest EST-SSR transferability(87.0%)followed by M.spicata(83.0%),M.longifolia(55.0%),and M.citrata(37.0%).

    Table 2-Details of ESTs and SSRs identified in M.piperatai.

    Table 3-SSR frequencies by repeat type and motif in M.piperita.

    3.3.Genetic diversity analysis

    Jaccard's similarity coefficients for 24 mint accessions were calculated based on the genotypic data for 54 ESTSSRs and used to prepare a dendrogram(Fig.1).The genetic similarity coefficient varied from 0.32 to 0.87 with an average of 0.57±0.12.The maximum similarity was found between CIM-Indus and CIMAP-Patra(0.87)followed by Kosi and MAS-10-11-45(0.84),MPS-16 and MPS-20(0.83),and MPS-21 and MPS-20(0.81).The minimum similarity or maximum dissimilarity was found between M.citrata and MPS-16(0.32)and between M.longifolia and MPS-20(0.32). UPGMA clustering classified all the accessions into three major clusters(Fig.1).Cluster I was the largest,containing all the accessions of M.piperita and M.arvensis.This cluster could be further subdivided into two subclusters,one containing all the accessions of M.piperita and other all the accessions of M.arvensis.The main cluster II contained all four accessions of M.spicata.The species M.citrata and M. longifolia grouped together as an outgroup(cluster III)in the dendrogram.

    4.Discussion

    Among various molecular markers,SSR markers have been widely exploited for several plant genetics and breeding studies and applications,including evaluation of genetic relationship between individuals,tagging useful genes/alleles,linkage/QTL mapping,and phylogenetic analyses. Their features including hypervariability,multiallelic nature,wide genome coverage,relative abundance,and amenability to automation and high-throughput genotyping make SSRs preferential markers[22].In the present investigation,we exploited the publically available EST database of M.piperita to develop EST-SSRs for various genetic studies.A total of 110(8.4%) of the M.piperita EST sequences contained microsatellites,yielding 130 SSRs.This was a relatively high abundance of SSRs as compared to those reported earlier for maize(1.4%),barley(3.4%),sorghum (3.6%),and rice(4.7%)[23].However,it was lower than those reported for tea(15.5%)[24],castor bean(28.4%)[25],and opium poppy(18.8%)[26]. The relative frequency of EST-SSRs was found to be 1/3.4 kb,comparable to those reported for pepper(1/3.8 kb)[27],and tea(1/3.5 kb)[28]and much higher than those reported for lotus(1/13.0 kb)[29],wheat(1/15.6 kb)[23],tomato(1/11.1 kb)[30],and lily(1/15.9 kb)[31].However,comparing the frequency and abundance of SSRs reported in different plant species may not give conclusive information,as these values are dependent on SSR search criteria,size of data set,database mining tools,and EST sequence redundancy[15].DNR and TNR have been reported to be the predominant types of repeat motif in EST-SSRs in several plants,but the most abundant motif varied with species[15].In M.piperita EST-SSRs,DNR was the most dominant motif(72.3%)followed by TNR(21.5%),with both accounting for 93.8%of EST-SSRs.A high proportion of DNR was also reported in EST-SSRs in coffee[32],lotus[29],cassava[33],and Jatropha[34].However,TNR was reported as the most common repeat motif in EST-SSRs in citrus[35],Hawaiian mint[36],peanut[37],and lily[31].The EST dataset used in the present investigation was small,and accordingly various features of EST-SSRs such as frequency,abundance,and motif type might vary if a larger dataset were used.AG/CT(43.8%)and AAG/CTT(10.8%)were the most common DNR and TNR respectively.Similar findings have also been reported earlier by Cardle et al.[30],Kantety et al.[23],Raji et al.[33],Pan et al.[29],Zhang et al.[38],Akash and Myers[39].In the present study no GC/GC repeat motif SSRs were identified. The GC/GC motif was also not reported in EST-SSRs of Medicago truncatula[40],cassava[33],coffee[32],peanut[37],sesame[37],or alfalfa[41].

    The 68 SSR flanking primers developed in the present study showed a higher rate of successful primer design(62.0%)than reported for alfalfa(14.0%)[41],sesame(49%)[38],or faba bean(29.0%)[39],but lower than reported for opium poppy(86.4%)[26].Of 54 primers,33 amplified across 13 accessions of M.piperita,showing 61.0%of polymorphism. The percent polymorphism in the present investigation wasfound to be higher than that observed across 24 accessions of sesame(11.6%)[38]but lower than that reported among 28 alfalfa accessions(97.0%)[41]and among 37 accessions of opium poppy[26].The polymorphism found in the EST-SSRs of M.piperita suggested the potential of these markers for use in future genetic studies.However,most of the SSRs showedlow PIC values,with an average of 0.25±0.09.The low average PIC value may reflect the small number of accessions surveyed or low allelic polymorphism.The utility of the SSRs could be expanded by studying their transferability to closely associated genera/species.Transferability of EST-SSRs has been reported in many crop plants,including sugarcane[42],pear[43],Prunus[44],lettuce[45],alfalfa[41],faba bean[39],and opium poppy[26].M.arvensis and M spicata showed the highest transferability,indicating the closeness of their relationship to M.piperita.This close relationship has also been previously established and reported by Khanuja et al.[8],Gobert et al.[11],and Shiran et al.[10]based on RAPD and AFLP analysis.Reports of the interspecific hybrids M.arvensis×M.spicata[2]and M.arvensis×M.piperita[46]also support these findings.The EST-SSRs developed in the present study were also used to evaluate genetic relatedness among accessions and species of Mentha.The EST-SSRs were able to distinguish different accessions within and among Mentha species.All 13 accessions of M.piperita were grouped in one cluster and accessions of M.arvensis clustered together. The adjacent clustering of M.arvensis with M.piperita further supports their close relatedness.Likewise,4 accessions of M.spicata clustered together and M.citrata and M.longifolia did not group with any cluster.This result indicates that the EST-SSRs reported here have potential for various genetic studies in Mentha.The dendrogram clustering of M.citrata and M.longifolia close to M.spicata and M.arvensis indicates some common ancestry.Gobert et al.[11]showed high similarity between M.spicata and M.longifolia based on AFLP analysis.

    Table 4-Details of 54 EST-SSRs of M.piperita and their cross-species transferability among four other species of Mentha.

    Fig.1-UPGMAdendrogramof Mentha species/accessions.Genetic distance was based on Jaccard's similarity coefficientcalculated from EST-SSR data.

    In the present study,we have developed EST-SSRs using the M.piperita EST database.The EST-SSRs showed a high level of polymorphism and were transferable across several species of Mentha.Genetic relatedness among different accessions and species of Mentha was established using the EST-SSRs.The present study demonstrates the potential of EST-SSRs for genetic and phylogenetic studies in Mentha.

    Supplementary material

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cj.2015.0x.00x.

    [1]N.K.Patra,H.Tanveer,N.K.Tyagi,S.Kumar,Cyto-taxonomical status and genetical and breeding perspectives of Mentha,J.Med.Arom.Plant Sci.22(2000)419-430.

    [2]N.K.Patra,H.Tanveer,S.P.S.Khanuja,A.K.Shasany,H.P.Singh,V.R.Singh,S.Kumar,A unique interspecific hybrid spearmint clone with growth properties of Mentha arvensis L.and oil qualities of Mentha spicata L,Theor.Appl.Genet.102(2001)471-476.

    [3]S.Behnam,M.Farzaneh,M.Ahmadzadeh,A.S.Tehrani,Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens,Commun.Agric.Appl.Biol.Sci.71(2006)1321-1326.

    [4]S.Kizil,N.Hasimi,V.Tolan,E.Kilinc,U.Yuksel,Mineral content,essential oil components and biological activity of two mentha species(M.piperita L.,M.spicata L.),Turk.J.Field Crops.15(2010)148-153.

    [5]W.A.Court,R.C.Roy,R.Pocs,Effect of harvest date on the yield and quality of the essential oil of peppermint,Can.J. Plant Sci.73(1993)815-824.

    [6]S.S.Mahmoud,R.B.Croteau,Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase,Proc.Natl.Acad.Sci.U.S.A.100(2003)14481-14486.

    [7]R.B.Croteau,E.M.Davis,K.L.Ringer,M.R.Wildung,Menthol biosynthesis and molecular genetics,Naturwissenschaften 92(2005)562-577.

    [8]S.P.S.Khanuja,A.K.Shasany,A.Srivastava,S.Kumar,Assessment of genetic relationships in Mentha species,Euphytica 111(2000)121-125.

    [9]A.L.Fenwick,S.M.Ward,Use ofrandomamplified polymorphic DNA markers for cultivar identification in mint,Hort.Sci.36(2001)761-764.

    [10]B.Shiran,M.Soheila,R.Khorshid,Assessment of genetic diversity among Iranian mints using RAPD markers,in:J. Vollmann,H.Grausgruber,P.Ruckenbauer(Eds.),Genetic Variation for Plant Breeding.Proceedings of the 17th EUCARPIA General Congress,Tulln,Austria,8-11 September,2004,2004,pp.121-125.

    [11]V.Gobert,S.Moja,M.Colson,P.Taberlet,Hybridization in the section Mentha(Lamiaceae)inferred from AFLP markers,Am. J.Bot.89(2002)2017-2023.

    [12]D.Field,C.Wills,Abundant microsatellite polymorphism in Saccharomyces cerevisiae,and the different distributions of microsatellites in eight prokaryotes and S.cerevisiae,result from strong mutation pressures and a variety of selective forces,Proc.Natl.Acad.Sci.U.S.A.95(1998)1647-1652.

    [13]W.Powell,G.Machray,J.Provan,Polymorphism revealed by simple sequence repeats,Trends Plant Sci.1(1996)215-222.[14]P.K.Gupta,S.Rustgi,S.Sharma,R.Singh,N.Kumar,H.S. Balyan,Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat,Mol. Gen.Genomics.270(2003)315-323.

    [15]R.K.Varshney,A.Graner,M.E.Sorrells,Genic microsatellite markers:features and applications,Trends Biotechnol.23(2005)48-55.

    [16]T.Thiel,W.Michalek,R.K.Varshney,A.Graner,Exploiting EST database for the development and characterization of gen-derived SSR-markers in barley(Hordeum vulgare L.),Theor.Appl.Genet.10(2003)6411-6422.

    [17]X.Huang,A.Madan,CAP3:a DNA sequence assembly program,Genome Res.9(1999)868-877.

    [18]M.Schuelke,An economic method for the fluorescent labeling of PCR fragments,Nat.Biotechnol.18(2000)233-234.[19]K.Liu,S.V.Muse,Power marker:integrated analysis environment for genetic marker data,Bioinformatics 21(2005)2128-2129.

    [20]D.Botstein,R.L.White,M.Skolnick,R.W.Davis,Construction of genetic linkage map in man using restriction fragment length polymorphisms,Am.J.Hum.Genet.32(1980)314-331.[21]F.J.Rohlf,NTSYS-pc Version 2.2:Numerical Taxonomy and Multivariate Analysis System,Exeter Software,New York,2000.

    [22]R.K.Kalia,M.K.Rai,S.Kalia,R.Singh,A.K.Dhawan,Microsatellite markers:an overview of the recent progress in plants,Euphytica 177(2011)309-334.

    [23]R.V.Kantety,M.L.Rota,D.E.Mathews,M.E.Sorrells,Data mining for simple sequence repeats in expressed sequence tags from barely,maize,rice,sorghum and wheat,Plant Mol. Biol.48(2002)501-510.

    [24]J.Q.Ma,Y.H.Zhou,C.L.Ma,M.Z.Yao,J.Q.Jin,Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plant,Camellia sinensis(Theaceae),Am.J. Bot.97(2010)153-156.

    [25]L.Qui,C.Yang,B.Tian,J.B.Yang,A.Liu,Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean(Ricinus communis L.),BMC Plant Biol.10(2010)278.

    [26]H.Selale,I.Celik,V.Gultekin,J.Allmer,S.Doganlar,A. Frary,Development of EST-SSR markers for diversity and breeding studies in opium poppy,Plant Breed.132(2013)344-351.

    [27]G.Yi,J.M.Lee,S.Lee,D.Choi,B.D.Kim,Exploitation of pepper EST-SSRs and an SSR-based linkage map,Theor.Appl.Genet. 114(2006)113-130.

    [28]R.K.Sharma,P.Bhardwaj,R.Negi,T.Mohapatra,P.S.Ahuja,Identification,characterization and utilization of unigene derived microsatellite markers in tea(Camellia sinensis L.),BMC Plant Biol.9(2009)53.

    [29]L.Pan,Q.Xia,Z.Quan,H.Liu,W.Ke,Y.Ding,Development of novel EST-SSRs from sacred lotus(Nelumbo nucifera Gaertn)and their utilization for the genetic diversity analysis of N.nucifera,J.Hered.101(2010)71-82.

    [30]L.Cardle,L.Ramsay,D.Milbourne,M.Macaulay,D.Marshall,R.Waugh,Computational and experimental characterization of physically clustered simple sequence repeats in plants,Genetics 156(2000)847-854.

    [31]S.Yuan,G.Liang,C.Liu,J.Ming,The development of EST-SSR markers in Lilium regale and their cross-amplification in related species,Euphytica 189(2013)393-419.

    [32]R.K.Aggarwal,P.S.Hendre,R.K.Varshney,P.K.Bhat,V. Krishnakumar,L.Singh,Identification,characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species,Theor.Appl. Genet.114(2007)359-372.

    [33]A.A.Raji,J.V.Anderson,O.A.Kolade,C.D.Ugwu,A.G. Dixon,I.L.Ingelbrecht,Gene-based microsatellites for cassava(Manihot esculenta Crantz):prevalence,polymorphisms,and cross-taxa utility,BMC Plant Biol.9(2009)118.

    [34]H.K.Yadav,A.Ranjan,M.H.Asif,S.Mantri,S.V.Sawant,R. Tuli,EST-derived SSR markers in Jatropha curcas development,characterization,polymorphism,and transferability across the species/genera,Tree Genet. Genomes 7(2011)207-219.

    [35]C.Chen,P.Zhou,Y.Choi,S.Huang,F(xiàn).Gmitter,Mining and characterizing microsatellites from citrus ESTs,Theor.Appl. Genet.112(2006)1248-1257.

    [36]C.Lindqvist,A.C.Scheen,M.J.Yoo,P.Grey,D.G. Oppenheimer,J.H.L.Mack,D.E.Soltis,P.S.Soltis,V.A.Albert,An expressed sequence tag(EST)library from developing fruits of an Hawaiian endemic mint(Stenogyne rugosa,Lamiaceae):characterization and microsatellite markers,BMC Plant Biol.6(2006)16.

    [37]X.Liang,X.Chen,Y.Hong,H.Liu,G.Zhou,S.Li,B.Gu,Utility of EST-derived SSR in cultivated peanut(Arachis hypogaea L.)and Arachis wild species,BMC Plant Biol.9(2009)35.

    [38]H.Zhang,W.Libin,M.Hongmei,Z.Tide,W.Cuiying,Development and validation of genic-SSR markers in sesame by RNA-seq,BMC Genomics 13(2012)316.

    [39]M.W.Akash,G.O.Myers,The development of faba bean expressed sequence tag-simple sequence repeats(EST-SSRs)and their validity in diversity analysis,Plant Breed.131(2012)522-530.

    [40]I.M.Eujayl,K.Sledge,L.Wang,G.D.May,K.Chekhovskiy,Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp,Theor.Appl.Genet.108(2004)414-422.

    [41]Z.Wang,Y.Hongwei,F(xiàn).Xinnian,L.Xuehui,G.Hongwen,Development of simple sequence repeat markers and diversity analysis in alfalfa(Medicago sativa L.),Mol.Biol.Rep. 40(2013)3291-3298.

    [42]G.M.Cordeiro,R.Casu,C.L.McIntyre,J.M.Manners,R.J.Henry,Microsatellite markers from sugarcane(Saccharum spp.)ESTs cross transferable to Erianthus and Sorghum,Plant Sci.160(2001)1115-1123.

    [43]L.Fan,M.Y.Zhang,Q.Z.Liu,T.L.Li,Y.Song,L.F.Wang,S.L. Zhang,J.Wu,Transferability of newly developed pear ssr markers to other rosaceae species,Plant Mol.Biol.Report.31(2013)1271-1282.

    [44]M.Mnejja,M.J.Garcia,J.M.Audergon,P.Arús,Prunus microsatellite marker transferability across rosaceous crops,Tree Genet.Genomes 6(2010)689-700.

    [45]I.Simko,Development of EST-SSR markers for the study of population structure in lettuce(Lactuca sativa L.),J.Hered.100(2009)256-262.

    [46]B.Kumar,A.K.Shukla,A.Samad,Development and characterization of menthofuran-rich inter-specific hybrid peppermint variety CIMAP-Patra,Mol.Breed.34(2014)717-724.

    *Corresponding author at:CSIR-National Botanical Research Institute,Rana Pratap Marg,Lucknow-226 001,India.Tel.:+91 522 2297938.

    E-mail address:h.yadav@nbri.res.in(H.K.Yadav).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    http://dx.doi.org/10.1016/j.cj.2015.02.002

    2214-5141/?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    18禁裸乳无遮挡免费网站照片 | 一个人免费在线观看的高清视频| 此物有八面人人有两片| 一级a爱视频在线免费观看| 久久 成人 亚洲| 9色porny在线观看| 99久久综合精品五月天人人| 日本vs欧美在线观看视频| 极品教师在线免费播放| 精品久久久久久久毛片微露脸| 午夜福利,免费看| 国产主播在线观看一区二区| 免费看a级黄色片| 午夜福利高清视频| 妹子高潮喷水视频| 欧美成人午夜精品| 亚洲一区二区三区不卡视频| 精品国产乱子伦一区二区三区| 级片在线观看| 色综合欧美亚洲国产小说| 制服丝袜大香蕉在线| 亚洲成av片中文字幕在线观看| 久久婷婷人人爽人人干人人爱 | 色精品久久人妻99蜜桃| 最近最新中文字幕大全免费视频| 香蕉丝袜av| 欧美激情高清一区二区三区| 丝袜美腿诱惑在线| 俄罗斯特黄特色一大片| 黑丝袜美女国产一区| 久久香蕉国产精品| 精品人妻在线不人妻| 在线视频色国产色| 久久人人精品亚洲av| 国产精品影院久久| 天天躁夜夜躁狠狠躁躁| 97碰自拍视频| 午夜视频精品福利| 成人国产一区最新在线观看| 日本黄色视频三级网站网址| 九色国产91popny在线| 国产精品野战在线观看| 国产精品美女特级片免费视频播放器 | 亚洲第一电影网av| 制服人妻中文乱码| 亚洲情色 制服丝袜| 一级毛片高清免费大全| 不卡av一区二区三区| 中文字幕精品免费在线观看视频| 欧美成人午夜精品| 亚洲第一电影网av| 在线播放国产精品三级| 国产人伦9x9x在线观看| 精品久久久久久久久久免费视频| 日日摸夜夜添夜夜添小说| 亚洲专区字幕在线| 曰老女人黄片| 亚洲欧美日韩另类电影网站| 国产精品99久久99久久久不卡| 欧美不卡视频在线免费观看 | 99国产精品一区二区蜜桃av| videosex国产| 国产精品av久久久久免费| 亚洲精品中文字幕一二三四区| 男女下面插进去视频免费观看| 中亚洲国语对白在线视频| 一级,二级,三级黄色视频| 给我免费播放毛片高清在线观看| 国产精华一区二区三区| 波多野结衣一区麻豆| 国产极品粉嫩免费观看在线| 操美女的视频在线观看| 国内精品久久久久久久电影| 午夜老司机福利片| 久久久精品国产亚洲av高清涩受| 亚洲欧美激情综合另类| 女人精品久久久久毛片| 成年女人毛片免费观看观看9| 欧美另类亚洲清纯唯美| 九色国产91popny在线| 中文字幕高清在线视频| 欧美绝顶高潮抽搐喷水| 国产精品乱码一区二三区的特点 | 成在线人永久免费视频| 69av精品久久久久久| 国产熟女午夜一区二区三区| 国产区一区二久久| 人妻久久中文字幕网| 国产精品永久免费网站| 日日摸夜夜添夜夜添小说| 免费在线观看视频国产中文字幕亚洲| 曰老女人黄片| 每晚都被弄得嗷嗷叫到高潮| 乱人伦中国视频| 亚洲片人在线观看| 久久精品aⅴ一区二区三区四区| www.999成人在线观看| 免费高清在线观看日韩| 两个人视频免费观看高清| 久久久久国内视频| 国产亚洲av嫩草精品影院| 美女 人体艺术 gogo| 日本撒尿小便嘘嘘汇集6| 岛国视频午夜一区免费看| 国产黄a三级三级三级人| 成在线人永久免费视频| av网站免费在线观看视频| 69精品国产乱码久久久| 女人精品久久久久毛片| 亚洲天堂国产精品一区在线| 免费一级毛片在线播放高清视频 | 午夜福利,免费看| 欧美老熟妇乱子伦牲交| 黄片小视频在线播放| 成人免费观看视频高清| 搡老妇女老女人老熟妇| 免费搜索国产男女视频| АⅤ资源中文在线天堂| 久久香蕉国产精品| 中文字幕另类日韩欧美亚洲嫩草| av视频在线观看入口| 这个男人来自地球电影免费观看| 人人妻人人澡人人看| 欧美一级毛片孕妇| 怎么达到女性高潮| 欧美乱色亚洲激情| 亚洲欧美激情在线| 国产亚洲精品第一综合不卡| 欧美av亚洲av综合av国产av| av电影中文网址| 欧美日本视频| 国产亚洲精品第一综合不卡| 亚洲成人国产一区在线观看| 两个人视频免费观看高清| 国产熟女午夜一区二区三区| 91大片在线观看| 久久国产精品影院| 巨乳人妻的诱惑在线观看| 男女之事视频高清在线观看| 国产亚洲欧美98| 99久久99久久久精品蜜桃| 成人av一区二区三区在线看| 亚洲av片天天在线观看| 亚洲人成网站在线播放欧美日韩| 午夜福利欧美成人| 嫩草影院精品99| 国产欧美日韩一区二区精品| 亚洲欧美一区二区三区黑人| 久久中文字幕人妻熟女| 欧美人与性动交α欧美精品济南到| 很黄的视频免费| av在线天堂中文字幕| 1024视频免费在线观看| 午夜久久久久精精品| 女同久久另类99精品国产91| 欧美日韩精品网址| 亚洲av成人一区二区三| 村上凉子中文字幕在线| 亚洲av日韩精品久久久久久密| 黄色片一级片一级黄色片| 欧美久久黑人一区二区| 美女国产高潮福利片在线看| 搡老岳熟女国产| 淫秽高清视频在线观看| 国产成人影院久久av| 日本在线视频免费播放| 日日夜夜操网爽| 一二三四在线观看免费中文在| 国产一级毛片七仙女欲春2 | 97人妻天天添夜夜摸| 国产精品久久久久久亚洲av鲁大| 久久久久久大精品| 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| 99国产极品粉嫩在线观看| 国产午夜精品久久久久久| av福利片在线| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久久毛片微露脸| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品综合一区在线观看 | 精品欧美一区二区三区在线| 男男h啪啪无遮挡| 黄色 视频免费看| 国产一卡二卡三卡精品| 这个男人来自地球电影免费观看| 午夜福利成人在线免费观看| 香蕉久久夜色| 少妇粗大呻吟视频| 欧美激情 高清一区二区三区| 美女高潮到喷水免费观看| 黄色视频不卡| 亚洲精品中文字幕一二三四区| 午夜福利成人在线免费观看| 黑人操中国人逼视频| 纯流量卡能插随身wifi吗| 国产在线观看jvid| 制服丝袜大香蕉在线| 狂野欧美激情性xxxx| 少妇熟女aⅴ在线视频| 国产又色又爽无遮挡免费看| 久久中文字幕一级| 欧美乱妇无乱码| 两人在一起打扑克的视频| 正在播放国产对白刺激| 国产亚洲精品综合一区在线观看 | 在线免费观看的www视频| 免费在线观看完整版高清| 91成年电影在线观看| 99国产综合亚洲精品| av超薄肉色丝袜交足视频| 后天国语完整版免费观看| 最新在线观看一区二区三区| svipshipincom国产片| 亚洲情色 制服丝袜| 久久国产亚洲av麻豆专区| 国产免费男女视频| 女同久久另类99精品国产91| 国产一级毛片七仙女欲春2 | 在线观看66精品国产| 国产成人欧美| 在线免费观看的www视频| 久久精品91无色码中文字幕| 少妇的丰满在线观看| 波多野结衣巨乳人妻| 亚洲精品在线美女| 日本精品一区二区三区蜜桃| 亚洲七黄色美女视频| 久久久精品国产亚洲av高清涩受| 国产人伦9x9x在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲熟妇中文字幕五十中出| 国产成人一区二区三区免费视频网站| 亚洲中文日韩欧美视频| 不卡一级毛片| 岛国视频午夜一区免费看| 在线观看午夜福利视频| 免费久久久久久久精品成人欧美视频| 国产成人精品久久二区二区免费| 亚洲中文字幕一区二区三区有码在线看 | 法律面前人人平等表现在哪些方面| 国产精品电影一区二区三区| 黑人巨大精品欧美一区二区mp4| 午夜福利18| 淫秽高清视频在线观看| 亚洲精品久久国产高清桃花| 中文字幕色久视频| 成人18禁高潮啪啪吃奶动态图| 欧美性长视频在线观看| 国产野战对白在线观看| 90打野战视频偷拍视频| 国产亚洲av嫩草精品影院| 女人被狂操c到高潮| 久久精品国产综合久久久| 亚洲自拍偷在线| 大陆偷拍与自拍| 日本撒尿小便嘘嘘汇集6| 色播在线永久视频| 久久人人精品亚洲av| 国产精品九九99| 成人手机av| 成年女人毛片免费观看观看9| 日日夜夜操网爽| 亚洲国产欧美日韩在线播放| 少妇被粗大的猛进出69影院| 一个人免费在线观看的高清视频| 夜夜躁狠狠躁天天躁| 午夜免费观看网址| 午夜福利免费观看在线| 99国产精品一区二区蜜桃av| 亚洲男人天堂网一区| 亚洲人成77777在线视频| av福利片在线| 我的亚洲天堂| 久久久久国产精品人妻aⅴ院| 国产一区二区三区视频了| 99re在线观看精品视频| 色综合站精品国产| 免费在线观看黄色视频的| 黄片播放在线免费| 欧美成人午夜精品| 国产一区在线观看成人免费| 成人亚洲精品一区在线观看| 精品国产一区二区久久| 久久国产亚洲av麻豆专区| 亚洲第一av免费看| 一个人观看的视频www高清免费观看 | 91九色精品人成在线观看| 欧美成人午夜精品| 亚洲片人在线观看| 国内毛片毛片毛片毛片毛片| 这个男人来自地球电影免费观看| 可以免费在线观看a视频的电影网站| 精品久久久久久久久久免费视频| 国产成+人综合+亚洲专区| 每晚都被弄得嗷嗷叫到高潮| 美女午夜性视频免费| 亚洲熟妇熟女久久| 一个人观看的视频www高清免费观看 | 香蕉久久夜色| 亚洲精品国产区一区二| 亚洲国产看品久久| 精品久久久久久久毛片微露脸| 男人的好看免费观看在线视频 | 99久久久亚洲精品蜜臀av| 亚洲第一av免费看| 啦啦啦 在线观看视频| 久久久久久久久久久久大奶| 亚洲欧美激情综合另类| 97超级碰碰碰精品色视频在线观看| 亚洲人成电影免费在线| 精品不卡国产一区二区三区| 国产精品亚洲美女久久久| 美国免费a级毛片| 美国免费a级毛片| 香蕉久久夜色| 好看av亚洲va欧美ⅴa在| 国产亚洲精品综合一区在线观看 | 女同久久另类99精品国产91| 妹子高潮喷水视频| 少妇熟女aⅴ在线视频| 一本综合久久免费| 天天一区二区日本电影三级 | 午夜福利,免费看| av有码第一页| 欧美日韩亚洲综合一区二区三区_| 性色av乱码一区二区三区2| 欧美日韩乱码在线| 亚洲av第一区精品v没综合| 99香蕉大伊视频| 亚洲 欧美一区二区三区| 不卡一级毛片| 美女高潮喷水抽搐中文字幕| 制服诱惑二区| 午夜久久久久精精品| 国产精品98久久久久久宅男小说| 伦理电影免费视频| 少妇被粗大的猛进出69影院| 视频在线观看一区二区三区| 男人操女人黄网站| 国产成人av教育| 级片在线观看| 一边摸一边抽搐一进一小说| 亚洲人成电影免费在线| 精品无人区乱码1区二区| 在线播放国产精品三级| 美国免费a级毛片| av免费在线观看网站| 大型黄色视频在线免费观看| 国产私拍福利视频在线观看| 国产成人精品无人区| e午夜精品久久久久久久| 色尼玛亚洲综合影院| 免费在线观看视频国产中文字幕亚洲| 久久久久久人人人人人| 午夜免费观看网址| 久久香蕉激情| 久久人人爽av亚洲精品天堂| 国产精品国产高清国产av| 婷婷精品国产亚洲av在线| 国产午夜精品久久久久久| 青草久久国产| 天堂影院成人在线观看| 亚洲色图av天堂| 欧美av亚洲av综合av国产av| 淫秽高清视频在线观看| 中文字幕人妻熟女乱码| 淫妇啪啪啪对白视频| 亚洲欧美激情在线| or卡值多少钱| 欧美国产日韩亚洲一区| 后天国语完整版免费观看| 操美女的视频在线观看| 韩国av一区二区三区四区| 亚洲自拍偷在线| 国产精品久久视频播放| 无人区码免费观看不卡| 一级片免费观看大全| 亚洲人成77777在线视频| 人人妻人人澡欧美一区二区 | 18禁裸乳无遮挡免费网站照片 | 琪琪午夜伦伦电影理论片6080| 成年人黄色毛片网站| 欧美久久黑人一区二区| 亚洲熟女毛片儿| 国产精品亚洲美女久久久| 日韩精品青青久久久久久| 国产一区二区三区综合在线观看| 香蕉国产在线看| 我的亚洲天堂| 一边摸一边做爽爽视频免费| 免费av毛片视频| 欧美成人一区二区免费高清观看 | 久久精品亚洲熟妇少妇任你| 神马国产精品三级电影在线观看 | 淫妇啪啪啪对白视频| 欧美日韩黄片免| 中文字幕人妻丝袜一区二区| 制服诱惑二区| 免费观看精品视频网站| 12—13女人毛片做爰片一| 国产黄a三级三级三级人| 99久久精品国产亚洲精品| 午夜两性在线视频| 一个人观看的视频www高清免费观看 | 男人舔女人下体高潮全视频| 非洲黑人性xxxx精品又粗又长| 国产午夜福利久久久久久| 亚洲五月天丁香| 精品国产国语对白av| 亚洲精品国产精品久久久不卡| 国产亚洲欧美精品永久| 婷婷精品国产亚洲av在线| 午夜老司机福利片| 精品电影一区二区在线| www.www免费av| 亚洲av五月六月丁香网| 亚洲av熟女| 超碰成人久久| 免费观看人在逋| 丝袜美足系列| 亚洲精品粉嫩美女一区| 黄色a级毛片大全视频| 一进一出好大好爽视频| 美女扒开内裤让男人捅视频| 亚洲国产精品999在线| 女人被狂操c到高潮| 免费看a级黄色片| 午夜福利视频1000在线观看 | 日韩欧美国产一区二区入口| 午夜福利,免费看| 久久久久九九精品影院| 可以免费在线观看a视频的电影网站| 精品久久久精品久久久| 久久婷婷成人综合色麻豆| 欧美日韩瑟瑟在线播放| 好男人在线观看高清免费视频 | 日本撒尿小便嘘嘘汇集6| 国产免费男女视频| 中文字幕人成人乱码亚洲影| 夜夜爽天天搞| 久久人人爽av亚洲精品天堂| 成人国产一区最新在线观看| 亚洲av第一区精品v没综合| 久久伊人香网站| 国产午夜福利久久久久久| 欧美大码av| 97人妻天天添夜夜摸| 亚洲av成人av| x7x7x7水蜜桃| 9191精品国产免费久久| 美女大奶头视频| 国产成人影院久久av| 一区二区三区国产精品乱码| 欧美av亚洲av综合av国产av| 日韩大码丰满熟妇| 黄色毛片三级朝国网站| 亚洲国产毛片av蜜桃av| 中国美女看黄片| 亚洲精品av麻豆狂野| 啦啦啦免费观看视频1| 久久九九热精品免费| 亚洲av片天天在线观看| 精品人妻在线不人妻| 好男人在线观看高清免费视频 | 国产精品野战在线观看| 国产真人三级小视频在线观看| 日韩高清综合在线| 热re99久久国产66热| 久久亚洲精品不卡| 久久久国产成人免费| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情 高清一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 国产男靠女视频免费网站| 日韩欧美三级三区| 一本久久中文字幕| 精品高清国产在线一区| av在线播放免费不卡| 99精品久久久久人妻精品| 久久国产精品影院| 免费高清视频大片| 亚洲精品国产精品久久久不卡| 亚洲一区高清亚洲精品| 国产亚洲av高清不卡| 亚洲欧美日韩另类电影网站| 88av欧美| 中出人妻视频一区二区| 成人av一区二区三区在线看| 18禁美女被吸乳视频| 免费观看精品视频网站| 日韩 欧美 亚洲 中文字幕| 成年人黄色毛片网站| 不卡av一区二区三区| 国产精品二区激情视频| 性欧美人与动物交配| 韩国精品一区二区三区| 国产精品久久久久久人妻精品电影| 久久久久久久久中文| 国产真人三级小视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区中文字幕在线| 女性生殖器流出的白浆| 国产精品 欧美亚洲| ponron亚洲| 麻豆av在线久日| 亚洲一区二区三区不卡视频| 久久久水蜜桃国产精品网| 精品午夜福利视频在线观看一区| 九色亚洲精品在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区三区在线臀色熟女| 大型av网站在线播放| 精品高清国产在线一区| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩精品亚洲av| 国产激情欧美一区二区| 视频区欧美日本亚洲| 成人永久免费在线观看视频| 欧美在线一区亚洲| 一边摸一边做爽爽视频免费| 好男人在线观看高清免费视频 | 久久 成人 亚洲| 90打野战视频偷拍视频| 香蕉久久夜色| 国产成人精品无人区| 九色亚洲精品在线播放| 欧美乱妇无乱码| 亚洲电影在线观看av| 男人操女人黄网站| 日韩免费av在线播放| 热99re8久久精品国产| 村上凉子中文字幕在线| 国产亚洲欧美98| 久久欧美精品欧美久久欧美| 日本 欧美在线| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| 久久久国产精品麻豆| 黄色a级毛片大全视频| 国产av一区二区精品久久| 女人精品久久久久毛片| 日韩免费av在线播放| 给我免费播放毛片高清在线观看| 欧美日韩瑟瑟在线播放| 亚洲性夜色夜夜综合| 中文字幕精品免费在线观看视频| 黄频高清免费视频| 女性被躁到高潮视频| 精品一品国产午夜福利视频| 91成年电影在线观看| av视频在线观看入口| 久久午夜综合久久蜜桃| 日本欧美视频一区| 美女 人体艺术 gogo| 国产一级毛片七仙女欲春2 | 午夜福利,免费看| 国产高清videossex| 男女下面进入的视频免费午夜 | 女生性感内裤真人,穿戴方法视频| 国产片内射在线| 国产又色又爽无遮挡免费看| 中出人妻视频一区二区| 色在线成人网| 亚洲成a人片在线一区二区| 午夜视频精品福利| 国产欧美日韩一区二区精品| 亚洲 欧美 日韩 在线 免费| 欧美成人一区二区免费高清观看 | 激情在线观看视频在线高清| 性色av乱码一区二区三区2| 亚洲av片天天在线观看| 亚洲中文av在线| 日韩大尺度精品在线看网址 | 一卡2卡三卡四卡精品乱码亚洲| 成人国产一区最新在线观看| 亚洲人成电影免费在线| 99久久久亚洲精品蜜臀av| 男人操女人黄网站| 身体一侧抽搐| 国产色视频综合| 国产午夜福利久久久久久| 国产精华一区二区三区| av免费在线观看网站| a级毛片在线看网站| av免费在线观看网站| a级毛片在线看网站| av免费在线观看网站| 亚洲精华国产精华精| 国产精品免费视频内射| 色精品久久人妻99蜜桃| 国产精品乱码一区二三区的特点 | 久久精品国产综合久久久| 久久久久久久午夜电影| 黄色毛片三级朝国网站| 国产精品日韩av在线免费观看 | 深夜精品福利| 人妻丰满熟妇av一区二区三区| 久久精品影院6| 日日摸夜夜添夜夜添小说| 日韩三级视频一区二区三区| 中文字幕久久专区| 欧美激情极品国产一区二区三区| 人妻丰满熟妇av一区二区三区| 一二三四社区在线视频社区8| 久久青草综合色| 亚洲精品粉嫩美女一区| 在线国产一区二区在线| av在线天堂中文字幕| 欧美绝顶高潮抽搐喷水| 国产成人精品久久二区二区91| 免费无遮挡裸体视频| 一边摸一边抽搐一进一小说|