• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of copper tolerance of Arabidopsis by transgenicexpressionofanalleneoxidecyclasegene,GhAOC1,in upland cotton(Gossypium hirsutum L.)

    2015-11-18 01:23:28YuangeWangHuaihuaLiuQingguoXin
    The Crop Journal 2015年4期

    Yuange Wang,Huaihua Liu*,Qingguo Xin

    aInstitute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China

    bPostdoctoral Research Center of Shandong Shengfeng Seeds Co.,Ltd.,Jiaxiang 272400,China

    cYantai Academy of Agricultural Sciences,Yantai 265500,China

    Improvement of copper tolerance of Arabidopsis by transgenicexpressionofanalleneoxidecyclasegene,GhAOC1,in upland cotton(Gossypium hirsutum L.)

    Yuange Wanga,1,Huaihua Liub,*,1,Qingguo Xinc

    aInstitute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China

    bPostdoctoral Research Center of Shandong Shengfeng Seeds Co.,Ltd.,Jiaxiang 272400,China

    cYantai Academy of Agricultural Sciences,Yantai 265500,China

    A R T I C L E I N F O

    Article history:

    Received 17 April 2014

    Received in revised form

    15 February 2015

    Accepted 16 February 2015

    Available online 11 April 2015

    Upland cotton

    GhAOC

    Expression pattern

    Overexpression

    Copper tolerance

    Allene oxide cyclase(AOC,E 5.3.99.6)is an essential enzyme in the jasmonic acid(JA)biosynthetic pathway and mediates a wide range of adaptive responses.In this report,five AOC genes(GhAOC1-GhAOC5)were cloned from upland cotton(Gossypium hirsutum L.),sequenced,and characterized.Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers,and regulated in cotton plants under methyl jasmonate(MeJA)and CuCl2stresses.To investigate the role of GhAOC under copper stress,transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S(CaMV 35S)promoter were generated.Compared to untransformed plants,GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate,shoot fresh weight,shoot dry weight,and photosynthetic efficiency,and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Toadaptandsurvive,plantshavedevelopedcomplex defensive mechanisms to cope with a variety of abiotic and biotic stresses,such as pathogen attack,drought,water deficit,salinity,and heavy metals[1].During plant adaptation to stress,JA,an important signaling chemical,may be generated from lipids.JA and its methyl ester,collectively referred to as jasmonates(JAs)[2],are important plant endogenous hormones involved in stress response[3,4].

    The oxylipin pathway in plants is responsible for JA synthesis[5].Under the catalysis of lipoxygenase,molecular oxygen is inserted into α-linolenic acid to produce(13S)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid.This product is dehydrated by a key enzyme,allene oxide synthase(AOS,EC 4.2.1.92)to an unstable allene oxide,which is cyclized by allene oxide cyclase (AOC)to 12-oxo-phytodienoic acid(OPDA).After by 12-oxo-phytodienoic acid reductase and several cycles of β-oxidation(+)-7-iso-JA is formed.AOC is considered especially important during JA biosynthesis,because its specificity leads to formation of the basic structure of JA through its ability to convert the unstable allene oxide derivative 12,13(S)-epoxyoctadecatrienoic acid(12,13-EOT)to OPDA[6,7].

    AOC genes have been cloned from several plant species,including tomato[7],mangrove[8],Arabidopsis thaliana[9],barley[10],barrel medic[11],Hyoscyamus niger[12],Camptotheca acuminate[13],Jatropha curcas[14],Physcomitrella patens[15],Glycine max[6],and Leymus mollis[16].Characterization of these genes from different plants has provided valuable information about theirbiochemical and physiological roles in adaptation to a variety of biotic and abiotic stresses.For example,overexpression of JcAOC in Escherichia coli conferred resistance to salt stress and low temperature[14].Ectopic overexpression of an AOC gene cloned from C.acuminate using the viral 35S promoter improved tolerance against salt stress and low temperature in transgenic tobacco plants compared to wild-type controls[13]. GmAOC5 transgenic tobaccos showed enhanced tolerance to oxidative stresses,while GmAOC1-expressing transgenic lines showed enhanced salinity stress tolerance[6].However,the precise mechanisms of AOC function in these plant cell processes,particularly in regulating stress response,remain to be elucidated.

    Plant AOC genes show specific and complex expression patterns in multiple organs.In soybean,GmAOC2 showed higher expression only in roots,GmAOC5 was expressed strongly only in stems,and GmAOC3 was expressed highly in flowers[6].In tomato,the AOC gene is expressed specifically in vascular bundles and the surrounding parenchymatic cells[7].In contrast,four AOC genes in A.thaliana are constitutively expressed in all leaf tissues[9].

    As one of the most important crops for the textile industry worldwide,cotton often suffers from various environmental stresses,such as drought,soil salinization,and heavy metals.Understanding the molecular basis of stress responses is accordingly a key target of cotton genetic improvement programs.To our knowledge,no reports in the literature have described the effect of GhAOC on abiotic tolerance in upland cotton.In the present study,we cloned five AOC genes,named as GhAOC1-GhAOC5,from cotton for the first time and analyzed their transcription profiles in various tissues and under different stress treatments. GhAOC1 was overexpressed in Arabidopsis and the copper stress tolerance of the transgenic Arabidopsis plants was investigated.

    2.Materials and methods

    2.1.Plant materials,growth conditions,and treatments

    Upland cotton(Gossypium hirsutum cv.Liaomian 9)seeds were surface-sterilized with 75%(v/v)ethanol for 1 min and 10%(v/v)H2O2for 1 h,followed by washing with sterile distilled water.The sterilized seeds were germinated at 23°C for 6 days and the germinated seedlings were transferred to plastic flats containing 13.5 L nutrient solution.The nutrient solution contained(mmol L-1)KH2PO4,0.2;MgSO4,0.5;KCl,1.5;CaCl2,1.5;H3BO3,1×10-3;(NH4)6Mo7O24,5×10-5;CuSO4,5×10-4;ZnSO4,1×10-3;MnSO4,1×10-3;Fe(III)-EDTA,1×10-1.The plants were grown in a controlled-environment growth chamber under the following conditions:16 h light/8 h dark photoperiod with a light intensity of 350 μmol m-2s-1,23°C day and night temperatures,and relative humidity of 60-75%. Two-week-old seedlings with similar heights were transferred to nutrient solution containing 50 μmol L-1MeJA and 120 μmol L-1CuCl2,respectively.At 0,1,3,6,12,24,and 48 h after the stress treatments,the roots were quickly frozen in liquid nitrogen and stored at-70°C for later RNA isolation.

    Field grown cotton plants were used to analyze tissuespecific expression of GhAOC.After flowering,leaf,stem,root,petal,anther,stigma,ovule,and fiber tissues were sampled for gene expression analysis.

    The wild-type(WT)Arabidopsis plants(Columbia ecotype)used for transformation were grown in a climate chamber at 22°C,70%relative humidity,and with a 16 h light/8 h dark photoperiod with a light intensity of 150 μmol m-2s-1.

    2.2.RNA,DNA extraction,and cDNA synthesis

    Total RNAs of cotton and Arabidopsis leaves were extracted with TRIzol reagent(Invitrogen,USA)and then treated with DNase I(Promega,USA).cDNAs were synthesized using oligo-(dT)18as anchor primer and M-MLV reverse transcriptase(Promega,USA)according to the manufacturer's instructions.Genomic DNA was extracted from cotton plants without stress using the cetyltrimethylammonium bromide method[17].

    2.3.Isolation,sequencing,and analysis of GhAOCs

    GhAOC genes were obtained by in silico cloning.Four Arabidopsis AOC genes(AtAOC1:NM_113475,AtAOC2:NM_113476,AtAOC3: NM_113477,AtAOC4:NM_101199)and six soybean AOC genes(GmAOC1:HM803106,GmAOC2:HM803107,GmAOC3:HM803108,GmAOC4:HM803109,GmAOC5:HM803110,GmAOC6:HM803111)were used as query probes for BLASTN searches of the public NCBI GenBank database.Based on the resulting sequence of interest,specific primers were designed to amplify the genomic and cDNA sequences of GhAOC in cultivar Liaomian 9(Table 1). The polymerase chain reaction(PCR)was performed using Pfu DNA polymerase(Promega,Madison,WI,USA).The isolated genes were sequenced with an ABI3730 DNA Analyzer(Applied Biosystems Inc.,F(xiàn)oster City,CA,USA).

    2.4.Gene structure and bioinformatic analysis

    Coding region was identified with ORF Finder(http://www.ncbi. nlm.nih.gov/gorf/gorf.html).The theoretical isoelectric point(pI)and molecular weight(Mw)of proteins were estimated with the Compute pI/Mw Tool(http://www.expasy.org/tools/pi_tool. html).The localization of proteins was predicted with PSORT(http://psort.nibb.ac.jp/).

    Table 1-Primer sequences used for GhAOC gene amplification.

    2.5.Real-time PCR analysis

    Real-time PCR was performed with SYBR Premix Ex Taq II(TaKaRa,Dalian,China)on a Master cycler ep realplex machine(Eppendorf,Hamburg,Germany).Triplicate quantitative assays were performed for each cDNA sample.GhUbi and AtActin were used as internal reference genes for assessing expression levels in cotton and Arabidopsis,respectively.The relative level of gene expression was calculated according to the method of Livak and Schmittgen[18].Primer sequences for real-time PCR were listed in Table 2.

    2.6.Construction of plant expression vectors and transformation of Arabidopsis

    GhAOC was cloned in the pCAMBIA-1302 vector between Bln I and Nco I restriction sites under the control of the CaMV 35S promoter.The vector was transformed into Agrobacterium strain GV3101 by electroporation.The transgenic Arabidopsis plants were generated by the Agrobacterium-mediated floral dip method[19].Arabidopsis plants were grown in a controlled culture room at 22°C with relative humidity of 60-70%under long-day conditions(16 h light and 8 h dark).

    2.7.Copper tolerance assay

    For copper treatment,two T3homozygous plants(OX2 and OX6)and wild-type(WT)seeds were surface-sterilized and grown on MS medium for two weeks,then transferred into plastic pots filled with a 1:1 mixture of perlite and vermiculite and grown for five days before exposure to copper stress.To determine survival rate after copper treatment,three weeks old plants were exposed to copper stress by withholding water and irrigating with 120 μmol L-1CuCl2for 10 days.After treatment,plants were transferred to the normal growth conditions described above.For measurement of survival rate,plants that had green and healthy young leaves were considered to have survived.Maximum photochemical efficiency(Fv/Fm),quantum yield of photosystem II(ΦPSII),and malondialdehyde(MDA)concentration were determined as described previously[20,21].Plant cell membrane damage rate(MDR)was measured with a microprocessor conductivity meter,DDS-12DW (Lida,Shanghai,China)according to the method of Sairam[22].MDR(%)=initial electrical conductivity/ electricalconductivity after boiling×100.About45 plants ofeach line were used in each stress experiment,and the experiments were performed at least three times.

    2.8.Statistical analysis

    ANOVA analysis of the experimental data was performed with SPSS 11.5(SPSS Inc.,Chicago,IL,USA).

    3.Results

    3.1.Isolation and sequence analysis of GhAOC genes

    Five GhAOC genes were identified and designated as GhAOC1-GhAOC5,respectively.They each contained a single open reading frame,encoding proteins of 253,178,246,245,and 204 amino acids with molecular weights of 27.8,19.8,27.1,27.0,and 22.4 kDa,respectively(Table 3).The similarities of the GhAOC proteins varied from 32.2%to 67.8%and their identities varied from 22.8%to 56.7%.All five proteins showed localization in the chloroplast by a PSORT analysis(http:// psort.nibb.ac.jp/).Sequence alignment revealed that the GhAOC proteins shared high similarities in the C terminus,whereas the N-terminal region was divergent(Fig.1).These divergent N-terminal regions resulted in variations in GhAOC protein length.

    Table 2-Primer sequences used for real-time PCR.

    Table 3-Overview of the five AOC genes identified in upland cotton.

    3.2.Expression of GhAOCs in different tissues and under stress treatments

    To investigate their expression profiles in cotton tissues,expressions of the isolated five GhAOC genes in cotton were analyzed by real-time PCR.The relative transcript levels of the GhAOC genes in different tissues were shown in Fig.2.The results showed that the five GhAOC genes were expressed mainly in cotton roots and at moderate to low levels in other tissues.The root-specific expression patterns of these GhAOC genes were probably associated with their functions in roots.

    We next investigated the transcriptional responses of GhAOCs under MeJA and CuCl2treatments.Both treatments significantly increased the transcription of several GhAOCgenes compared to the control(0 h).However,this upregulation was time-dependent,and the expression of different genes peaked at different times after exposure to these stresses.For example,under MeJA treatment,all GhAOC genes were upregulated and peaked at different times,with GhAOC2,GhAOC4,and GhAOC5 reaching the highest expression level in the minimum time(Fig.3).In the copper stress treatment,GhAOC1 was significantly upregulated by 120 μmol L-1CuCl2,whereas GhAOC5 showed no obvious change(Fig.4).Collectively,our results indicated a divergence of expression profiles and levels in these five GhAOC genes.

    Fig.1-Alignment of GhAOC deduced amino acid sequences.Identical amino acids were shaded in black.

    Fig.2-Real-time PCR expression profiles of GhAOC genes in different tissues.Different letters(A to E)indicated statistical significance at the 0.05 probability level among different cotton tissues.Error bars represented standard deviation(SD)of three biological replicates,each was analyzed with three technical replicates.1:roots;2:hypocotyls;3:cotyledons;4:leaves;5:anthers;6:petals;7:ovules;8:fibers.

    3.3.GhAOC1 expression conferred copper tolerance in Arabidopsis plants

    Because the expression of GhAOC1 was markedly upregulated by CuCl2,we evaluated the copper tolerance of GhAOC1-overexpressing plants under CuCl2stress.Under normal growth conditions,no significant difference was observed in either WT or transgenic seedlings.The positive GhAOC1 transgenic plants were confirmed by RT-PCR(Fig.5-A).After copper treatment,most WT plants were chlorotic and wilting(Fig.5-B),and the survival rate of the WT plants was only 35.5%,whereas the GhAOC1-overexpressing plants remained green and survived(Fig.5-C).Compared with the control,copper stress greatly increased JA content,and this increase was much greater in the transgenic than in the WT plants(Fig.5-D).Under control conditions,there was no significant difference in shoot fresh and dry weights between WT and transgenic plants.After the plants were subjected to copper stress for 10 days,shoot fresh and dry weights were reduced in the WT and transgenic plants,indicating that copper stress impeded plant growth and development.High CuCl2treatment reduced shoot fresh weight and dry weight more severely in WT than in transgenic plants(Fig.5-E,F(xiàn)),implying that overexpressing GhAOC1 increased the tolerance of the plants to copper stress.

    3.4.GhAOC1expression led to a reduction in MDA and MDR and improved photosynthetic activity under copper stress in transgenic Arabidopsis plants

    To investigate the physiological mechanisms underlying the involvement of GhAOC1 in cotton tolerance to copper stress,F(xiàn)v/Fm,ΦPSII,MDA concentration,and MDR were determined in the youngest expanded leaf before and after copper treatment.The values of Fv/Fm,ΦPSII,MDA,and MDR showed no significant differences between the control and transgenic plants without treatment.Following exposure to copper stress for 10 days,the values of Fv/Fmand ΦPSIIwere significantly reduced.This reduction was much greater in control than in transgenic plants(Fig.6-A,B).Copper stress greatly increasedMDA concentration and MDR compared to the normal condition,and this increase was much greater in the WT than in the transgenic plants(Fig.6-C,D).

    Fig.3-The expression patterns of GhAOC genes in response to MeJA.Each value is the mean±SD of at least three independent measurements.Different letters indicated a significant difference at the 0.05 probability level.

    Fig.4-Expression patterns of GhAOC genes in response to CuCl2.Each value was the mean±SD of at least three independent measurements.Different letters on the same column indicated a significant difference at the 0.05 probability level.

    Fig.5-Stress response of GhAOC1-expressing Arabidopsis seedlings.(A)Growth of WT and transgenic lines without or with CuCl2stress.(B)Expression of GhAOC1 in different transgenic Arabidopsis lines.(C)Survival rates of WT and GhAOC1-overexpressing seedlings after copper treatment.(D)JA content of WT and GhAOC1 transgenic plants under copper treatment.(E)Fresh weight of WT and GhAOC1-overexpressing seedlings after copper treatment.(F)Dry weight of WT and GhAOC1-overexpressing seedlings after copper treatment.Different letters indicated a significant difference at the 0.05 probability level.

    3.5.Copper-induced expression of GhAOC1in Arabidopsis plants upregulated the JA pathway

    The effect of overexpressing GhAOC1 in Arabidopsis on the transcription of genes in the JA pathway was investigated by monitoring the accumulation of OPR3(a JA synthesis enzyme downstream of AOC),Jasmonate-ZIM-Domain Protein1(JAZ1)and AtMYC2(JA signaling genes),and Plant Defensin1.2(PDF1.2, a JA signaling pathway gene).The expression of these four genes was increased in transgenic compared with WT plants under copper treatment(Fig.7).

    4.Discussion

    Previous studies showed that the AOC genes belong to a multigene family.There are four homologous AOC genes in Arabidopsis and six in soybean[6,9].Tetraploid upland cotton may contain several AOC genes in its large genome,but to date little systematic identification of full-length AOC genes inthis important economic crop has been reported.In the present study,five GhAOC genes were identified in cotton. All five GhAOC proteins are conserved in their C termini and divergent in their N-terminal regions,like other plant AOC proteins[15].Analysis of tissue-specific expression showed that GhAOCs were abundantly expressed in roots(Fig.3).The tissue expression profile of GhAOC was in agreement with results in soybean,in which GmAOC2 was expressed predominantly in roots[6].This finding seems reasonable,given that roots are buried in soil and may sense the presence of copper ions.

    Fig.6-Fv/Fm,ΦPSII,MDA concentration,and MDR in plants.(A)Changes in Fv/Fmwith or without copper stress treatment.(B)Values of ΦPSIIbefore and after 120 μmol L-1CuCl2treatment.(C)MDA concentration in transgenic and WT plants after 10 day treatment with 120 μmol L-1CuCl2.(D)MDR of transgenic and WT seedlings treated with 120 μmol L-1CuCl2for 10 days.Different letters indicated a significant difference at the 0.05 probability level.

    The dynamic expression patterns of GhAOC were affected by MeJA and CuCl2(Fig.4),suggesting that GhAOCs are involved in the crosstalk of the environmental stress response in cotton.MeJA is an important cellular regulator responding to various environmental conditions in plants[3].The observation that GhAOCs were upregulated by MeJA(Fig.4-A)suggests that the induction of GhAOC gene by CuCl2-induced stress is associated with the MeJA-mediated signaling pathway.Further work is planned to clarify the molecular mechanism through which the GhAOC proteins interact with the signal transduction system of MeJA.

    Plants respond to environmental stress conditions by adjusting various biochemical and physiological processes[23].The biochemical and physiological basis of tolerance of GhAOC1 transgenic plants was analyzed by studying changes in photosynthetic efficiency,MDR,and MDA concentration under copper stress.After the plants were treated with copper stress for 10 days,survival rates and shoot fresh and dry weights were significantly higher in transgenic lines than in the WT(Fig.5),implying that GhAOC1 conferred tolerance to copper stress.Chlorophyll fluorescence in intact leaves is a reliable,noninvasive method for monitoring photosynthetic changes and reflects the physiological conditions of plants. Fv/Fmis usually used as an important parameter to assess the photooxidative damage to photosystem II(PSII)and decrease in its value indicates damage to PSII[24].Efficiency of PSII(Φ)[25]measures the amount of absorbed light by chlorophyll molecules associated with PSII system and is described as effective quantum yield(ΦPSII).Imposition of copper stress resulted in a marked reduction in the Fv/Fmand ΦPSIIvalues of the transgenic plants,and this reduction was greater in the WT plants(Fig.6-A,B).These observations indicated that overexpression of GhAOC1 resulted in enhanced stability of PSII under copper stress.Maintenance of membrane stability is a major component of environmental stress tolerance[26]. The MDR under stress conditions can be estimated by measurement of electrolyte leakage from plant cells.MDA,produced as a result of peroxidation of membrane lipids,is used as a marker of stress-induced oxidative damage at the cellular level[27].The results obtained in the present study showed that copper stress for 10 days significantly reduced MDA and MDR in transgenic plants relative to that in WT plants(Fig.6-C,D),clearly showing that lipid peroxidation and cell membrane damage reduction in transgenic plants were caused by overexpression of GhAOC.

    Fig.7-Expression levels of OPR3(A),JAZ1(B),AtMYC2(C),and PDF1.2(D)in WT and transgenic plants with or without copper stress.Each value was the mean±SD of at least three independent measurements.Different letters indicated a significant difference at the 0.05 probability level.

    To investigate the enhanced copper tolerance at the molecular level,expression levels of several JA signaling genes were measured in transgenic and WT plants with or without copper stress.GhAOC1-overexpressing transgenic Arabidopsis lines displayed increased expression levels of OPR3,JAZ1,AtMYC2,and PDF1.2 under copper stress(Fig.7). Our results suggested that the higher tolerance to copper stresses observed in GhAOC1-overexpressing Arabidopsis was the result of the increased expression levels of these genes.

    In summary,this study identified and characterized five GhAOC genes from upland cotton.GhAOCs were expressed mainly in roots and significantly upregulated by MeJA and CuCl2treatments.Overexpression of GhAOC1 led to increased expression of several JA signaling genes and significantly higher survival rate,JA accumulation,shoot fresh and dry weight,and photosynthetic efficiency under copper stress. GhAOC1 may prove to be a useful gene for molecular breeding of important crops to improve copper stress tolerance.

    Acknowledgments

    This study was supported by the project of Modern Seed Industry Enterprise Science and Technology Development of Shandong Province,China(SDKJ2012QF003).

    [1]E.E.Farmer,R.R.Johnson,C.A.Ryan,Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid,Plant Physiol.98(1992)995-1002.

    [2]C.Wasternack,B.Hause,Jasmonates and octadecanoids: signals in plant stress responses and plant development,Prog.Nucleic Acid Res.72(2002)165-221.

    [3]R.A.Creelman,J.E.Mullet,Biosynthesis and action of jasmonates in plants,Annu.Rev.Plant Physiol.Plant Mol. Biol.48(1997)355-381.

    [4]S.Parchmann,H.Gundlach,M.J.Mueller,Induction of 12-oxo-phytodienoic acid in wounded plants and elicited plant cell cultures,Plant Physiol.115(1997)1057-1064.

    [5]M.Stumpe,I.Feussner,F(xiàn)ormation of oxylipins by CYP74 enzymes,Phytochem.Rev.3(2006)347-357.

    [6]Q.Wu,J.Wu,H.Sun,D.Zhang,D.Yu,Sequence and expression divergence of the AOC gene family in soybean: insights into functional diversity for stress responses,Biotechnol.Lett.33(2011)1351-1359.

    [7]J.Ziegler,I.Stenzel,B.Hause,H.Maucher,M.Hamberg,R. Grimm,M.Ganal,C.Wasternack,Molecular cloning of allene oxide cyclase:the enzyme establishing the stereochemistry of octadecanoids and jasmonates,J.Biol.Chem.275(2000)19132-19138.

    [8]A.Yamada,T.Saitoh,T.Mimura,Y.Ozeki,Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli,yeast,and tobacco cells,Plant Cell Physiol.43(2002)903-910.

    [9]I.Stenzel,B.Hause,O.Miersch,T.Kurz,H.Maucher,H. Weichert,J.Ziegler,I.Feussner,C.Wasternack,Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana,Plant Mol.Biol.51(2003)895-911.

    [10]H.Maucher,I.Stenzel,O.Miersch,N.Stein,M.Prasad,U. Zierold,P.Schweizer,C.Dorer,B.Hause,C.Wasternack,The allene oxide cyclase of barley(Hordeum vulgare L.):cloning and organ-specific expression,Phytochemistry 65(2004)801-811.

    [11]S.Isayenkov,C.Mrosk,I.Stenzel,D.Strack,B.Hause,Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices,Plant Physiol.139(2005)1401-1410.

    [12]K.J.Jiang,Z.H.Liao,Y.Pi,Z.S.Huang,R.Hou,Y.Cao,Q.Wang,X.F.Sun,K.X.Tang,Molecular cloning and expression profile of a jasmonate biosynthetic pathway gene for allene oxide cyclase from Hyoscyamus niger,Mol.Biol.42(2008)381-390.

    [13]Y.Pi,K.J.Jiang,Y.Cao,Q.Wang,Z.Huang,L.Li,L.Hu,W.Li,X. Sun,K.Tang,Allene oxide cyclase from Camptotheca acuminata improves tolerance against low temperature and salt stress in tobacco and bacteria,Mol.Biotechnol.41(2009)115-122.

    [14]B.Liu,W.Wang,J.Gao,F(xiàn).Chen,S.Wang,Y.Xu,L.Tang,Y.Jia,Molecular cloning and characterization of a jasmonate biosynthetic pathway gene for allene oxide cyclase from Jatropha curcas,Acta Physiol.Plant.32(2010)531-539.

    [15]T.Hashimoto,K.Takahashi,M.Sato,P.K.G.S.S.Bandara,K. Nabeta,Cloning and characterization of an allene oxide cyclase,PpAOC3,in Physcomitrella patens,Plant Growth Regul. 65(2011)239-245.

    [16]M.E.EltayebHabora,A.E.Eltayeb,M.Oka,H.Tsujimoto,K. Tanaka,Cloning of allene oxide cyclase gene from Leymus mollis and analysis of its expression in wheat-Leymus chromosome addition lines,Breed.Sci.63(2013)68-76.

    [17]M.G.Murray,W.F.Thompson,Rapid isolation of high molecular weight plant DNA,Nucleic Acids Res.8(1980)4321-4326.

    [18]K.J.Livak,T.D.Schmittgen,Analysis ofrelative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)method,Methods 25(2001)402-408.

    [19]S.J.Clough,A.F.Bent,F(xiàn)loral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana,Plant J.16(1998)735-743.

    [20]S.Lal,V.Gulyani,P.Khurana,Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry(Morus indica),Transgenic Res.17(2008)651-663.

    [21]R.S.Dhindsa,P.Plumb-Dhindsa,T.A.Thorpe,Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase,J.Exp.Bot.32(1981)93-101.

    [22]R.K.Sairam,Effect of moisture stress on physiological activities of two contrasting wheat genotypes,Indian J.Exp. Biol.32(1994)594-597.

    [23]B.Singh,H.Chauhan,J.P.Khurana,P.Khurana,P.Singh,Evidence for the role of wheat eukaryotic translation initiation factor 3 subunit g(TaeIF3g)in abiotic stress tolerance,Gene 532(2013)177-185.

    [24]K.Maxwell,G.N.Johnson,Chlorophyll fluorescence-a practical guide,J.Exp.Bot.51(2000)659-668.

    [25]J.Harbinson,B.Genty,N.R.Baker,Relationship between the quantum efficiencies of photosystems I and II in pea leaves,Plant Physiol.90(1989)1029-1034.

    [26]J.Levitt,Responses of plants to environmental stresses: water,radiation,salt and other stresses,Academic Press,New York,1980.

    [27]M.Jain,G.Mathur,S.Koul,N.B.Sarin,Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines of groundnut(Arachis hypogaea L.),Plant Cell Rep.20(2001)463-468.

    *Corresponding author.

    E-mail address:liuhh@shofine.com(H.Liu).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    1Yuange Wang and Huaihua Liu contributed equally to this work.

    http://dx.doi.org/10.1016/j.cj.2015.02.004

    2214-5141/?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    久久精品久久精品一区二区三区| 国产高清videossex| 激情五月婷婷亚洲| 亚洲精品第二区| 男女午夜视频在线观看| 国产亚洲欧美在线一区二区| 国产精品成人在线| 久久久久久久久免费视频了| 亚洲成人免费电影在线观看 | 2018国产大陆天天弄谢| 我要看黄色一级片免费的| 国产爽快片一区二区三区| 久久av网站| 一级,二级,三级黄色视频| 国产成人免费观看mmmm| 热re99久久国产66热| 免费在线观看影片大全网站 | 777米奇影视久久| 精品国产国语对白av| 晚上一个人看的免费电影| 国产伦理片在线播放av一区| 制服诱惑二区| 国精品久久久久久国模美| 精品国产超薄肉色丝袜足j| 赤兔流量卡办理| 免费观看av网站的网址| 国产亚洲欧美精品永久| 精品福利观看| 久久久欧美国产精品| 交换朋友夫妻互换小说| 各种免费的搞黄视频| 9191精品国产免费久久| 自线自在国产av| 成年人免费黄色播放视频| 后天国语完整版免费观看| 国产片内射在线| 国产片特级美女逼逼视频| 一个人免费看片子| 免费观看人在逋| 99热网站在线观看| 我要看黄色一级片免费的| 一个人免费看片子| 母亲3免费完整高清在线观看| 国产精品人妻久久久影院| 精品国产国语对白av| 人人妻,人人澡人人爽秒播 | 男女高潮啪啪啪动态图| 建设人人有责人人尽责人人享有的| 考比视频在线观看| 国产伦人伦偷精品视频| 高清av免费在线| 老司机亚洲免费影院| 久久久国产欧美日韩av| 天天操日日干夜夜撸| 婷婷丁香在线五月| 少妇 在线观看| 久久亚洲精品不卡| 国产女主播在线喷水免费视频网站| 亚洲免费av在线视频| av天堂久久9| 亚洲 欧美一区二区三区| 99久久综合免费| netflix在线观看网站| 精品久久久精品久久久| 男人爽女人下面视频在线观看| 亚洲专区国产一区二区| 国产一级毛片在线| 午夜免费成人在线视频| 亚洲成人国产一区在线观看 | 黑人欧美特级aaaaaa片| 精品高清国产在线一区| 精品福利观看| 91字幕亚洲| 男人添女人高潮全过程视频| 久久中文字幕一级| 中国美女看黄片| av一本久久久久| 九色亚洲精品在线播放| 欧美黑人欧美精品刺激| 一区二区av电影网| 老司机深夜福利视频在线观看 | 成年美女黄网站色视频大全免费| 国产一区二区在线观看av| 国产1区2区3区精品| 欧美日韩av久久| 久久久久久久久免费视频了| 国产黄色视频一区二区在线观看| 亚洲精品国产区一区二| 国产精品九九99| 日韩视频在线欧美| 男女午夜视频在线观看| 在线亚洲精品国产二区图片欧美| 晚上一个人看的免费电影| 色播在线永久视频| 久久久精品免费免费高清| 超碰成人久久| 9191精品国产免费久久| 中文乱码字字幕精品一区二区三区| av不卡在线播放| 亚洲专区国产一区二区| 亚洲精品一卡2卡三卡4卡5卡 | 久久热在线av| 一级毛片女人18水好多 | 久久久国产精品麻豆| 成在线人永久免费视频| 美女大奶头黄色视频| 男人操女人黄网站| 国产97色在线日韩免费| 国产精品亚洲av一区麻豆| 我的亚洲天堂| 黄色毛片三级朝国网站| 男男h啪啪无遮挡| 久久综合国产亚洲精品| 国产三级黄色录像| 男人添女人高潮全过程视频| av线在线观看网站| 美女视频免费永久观看网站| 成年动漫av网址| 欧美变态另类bdsm刘玥| 亚洲视频免费观看视频| 精品人妻在线不人妻| 国产精品.久久久| 免费看十八禁软件| 免费高清在线观看视频在线观看| 视频区图区小说| 亚洲欧洲精品一区二区精品久久久| 中文字幕高清在线视频| 精品少妇久久久久久888优播| 91九色精品人成在线观看| 婷婷色av中文字幕| 国产在线一区二区三区精| 午夜福利视频在线观看免费| 色婷婷久久久亚洲欧美| 黄网站色视频无遮挡免费观看| 少妇猛男粗大的猛烈进出视频| 免费av中文字幕在线| 亚洲国产中文字幕在线视频| 久久精品久久精品一区二区三区| 国产片内射在线| 国产成人啪精品午夜网站| 搡老乐熟女国产| 9191精品国产免费久久| 18禁观看日本| 国产三级黄色录像| 国产黄频视频在线观看| 一本色道久久久久久精品综合| 免费在线观看日本一区| 国产精品成人在线| 老司机影院毛片| 69精品国产乱码久久久| 丝袜美足系列| 久久亚洲精品不卡| 亚洲美女黄色视频免费看| 免费在线观看日本一区| 国产又爽黄色视频| 丝袜人妻中文字幕| 老司机影院毛片| 大片免费播放器 马上看| 日本vs欧美在线观看视频| 国产成人91sexporn| 大型av网站在线播放| 免费在线观看完整版高清| www.自偷自拍.com| 高清欧美精品videossex| 午夜激情久久久久久久| 国产精品偷伦视频观看了| 亚洲精品美女久久av网站| 一个人免费看片子| 国产精品国产三级国产专区5o| 2021少妇久久久久久久久久久| 久久久久国产精品人妻一区二区| 精品人妻1区二区| 久久天堂一区二区三区四区| 亚洲人成网站在线观看播放| 精品亚洲成a人片在线观看| 成人午夜精彩视频在线观看| 日本五十路高清| 欧美av亚洲av综合av国产av| 99久久人妻综合| 丰满饥渴人妻一区二区三| 一级a爱视频在线免费观看| 午夜免费男女啪啪视频观看| 国产成人一区二区三区免费视频网站 | 欧美精品一区二区大全| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 亚洲精品自拍成人| 99九九在线精品视频| 一级a爱视频在线免费观看| 国产精品一区二区精品视频观看| 欧美日韩综合久久久久久| 制服诱惑二区| 欧美日韩视频精品一区| 久久久久精品国产欧美久久久 | 午夜久久久在线观看| 精品卡一卡二卡四卡免费| 建设人人有责人人尽责人人享有的| 午夜免费观看性视频| 捣出白浆h1v1| 免费看十八禁软件| 亚洲精品一区蜜桃| 日本欧美视频一区| 亚洲中文av在线| 成人手机av| 欧美中文综合在线视频| 精品国产国语对白av| 亚洲专区中文字幕在线| 99精国产麻豆久久婷婷| 可以免费在线观看a视频的电影网站| 午夜91福利影院| 国产无遮挡羞羞视频在线观看| 一区二区日韩欧美中文字幕| 纵有疾风起免费观看全集完整版| 免费一级毛片在线播放高清视频 | 日本av手机在线免费观看| 午夜福利视频精品| 亚洲国产精品成人久久小说| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久国产电影| 涩涩av久久男人的天堂| 日韩电影二区| 国产精品偷伦视频观看了| 日韩免费高清中文字幕av| 熟女av电影| 七月丁香在线播放| 黄色 视频免费看| 天堂中文最新版在线下载| 91老司机精品| 久久久精品免费免费高清| 亚洲av成人精品一二三区| 侵犯人妻中文字幕一二三四区| videosex国产| 国产精品一区二区免费欧美 | 最近中文字幕2019免费版| 国产精品 欧美亚洲| 自线自在国产av| 又大又爽又粗| 成年人午夜在线观看视频| 国产在线视频一区二区| 丰满人妻熟妇乱又伦精品不卡| av天堂在线播放| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美一区二区三区久久| 日本黄色日本黄色录像| 亚洲精品国产色婷婷电影| 久久精品国产a三级三级三级| 超色免费av| 午夜福利影视在线免费观看| 午夜福利免费观看在线| 我的亚洲天堂| 另类亚洲欧美激情| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 又大又黄又爽视频免费| 性色av一级| 51午夜福利影视在线观看| 中文字幕av电影在线播放| 国产淫语在线视频| 一区在线观看完整版| 亚洲av片天天在线观看| 少妇 在线观看| 男女边吃奶边做爰视频| 热re99久久国产66热| 久久精品久久久久久久性| 少妇被粗大的猛进出69影院| 肉色欧美久久久久久久蜜桃| 亚洲成国产人片在线观看| 欧美另类一区| 亚洲欧美中文字幕日韩二区| 国产精品一区二区在线观看99| 两个人看的免费小视频| 久久久精品免费免费高清| 两人在一起打扑克的视频| 久久精品久久久久久久性| 国产女主播在线喷水免费视频网站| 热re99久久国产66热| 尾随美女入室| 黑人猛操日本美女一级片| 天天躁狠狠躁夜夜躁狠狠躁| 一级毛片 在线播放| 婷婷成人精品国产| 成人手机av| 97人妻天天添夜夜摸| 亚洲人成77777在线视频| 日韩av免费高清视频| 一区二区三区乱码不卡18| 亚洲av成人精品一二三区| 国产精品欧美亚洲77777| 又黄又粗又硬又大视频| 久久久久久久大尺度免费视频| 国产不卡av网站在线观看| 国产女主播在线喷水免费视频网站| 桃花免费在线播放| 我的亚洲天堂| 一二三四在线观看免费中文在| 成人国产一区最新在线观看 | 操出白浆在线播放| 精品少妇内射三级| 国产成人精品久久二区二区免费| 啦啦啦视频在线资源免费观看| 久久久久久免费高清国产稀缺| 搡老岳熟女国产| 五月开心婷婷网| 中文字幕人妻熟女乱码| 久久久国产一区二区| 国产精品熟女久久久久浪| 午夜免费成人在线视频| 亚洲国产精品999| 亚洲伊人久久精品综合| 欧美日韩国产mv在线观看视频| 国产欧美日韩一区二区三区在线| 男女无遮挡免费网站观看| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲av一区麻豆| 欧美日韩精品网址| 欧美日韩综合久久久久久| 国产免费视频播放在线视频| 国产精品.久久久| 9色porny在线观看| 91麻豆精品激情在线观看国产 | 手机成人av网站| 国产伦人伦偷精品视频| 亚洲欧洲精品一区二区精品久久久| 天天躁日日躁夜夜躁夜夜| 午夜老司机福利片| 咕卡用的链子| 亚洲av成人不卡在线观看播放网 | 亚洲欧美精品综合一区二区三区| 国产在线一区二区三区精| 夫妻性生交免费视频一级片| 成人国产av品久久久| 99久久99久久久精品蜜桃| 亚洲国产欧洲综合997久久, | videosex国产| 色播在线永久视频| 成人亚洲精品一区在线观看| 成人欧美大片| 国产不卡一卡二| 黄片大片在线免费观看| 午夜久久久久精精品| 少妇 在线观看| 国产一卡二卡三卡精品| 99久久精品国产亚洲精品| 激情在线观看视频在线高清| 不卡av一区二区三区| 免费无遮挡裸体视频| 搡老岳熟女国产| 啪啪无遮挡十八禁网站| 亚洲精品av麻豆狂野| 精品电影一区二区在线| 视频区欧美日本亚洲| 99热这里只有精品一区 | 一级黄色大片毛片| 日韩成人在线观看一区二区三区| cao死你这个sao货| 国产又黄又爽又无遮挡在线| 成人特级黄色片久久久久久久| 久久精品影院6| x7x7x7水蜜桃| 中文字幕精品免费在线观看视频| 国内少妇人妻偷人精品xxx网站 | 欧美午夜高清在线| 久久午夜综合久久蜜桃| 亚洲精品在线观看二区| 黄色成人免费大全| 欧美日本视频| 精华霜和精华液先用哪个| 欧美zozozo另类| bbb黄色大片| 国产精品98久久久久久宅男小说| 一级片免费观看大全| 成年版毛片免费区| 丝袜人妻中文字幕| 色哟哟哟哟哟哟| 麻豆国产av国片精品| 亚洲国产欧美日韩在线播放| 午夜老司机福利片| 午夜福利18| 日本一区二区免费在线视频| 精品电影一区二区在线| 后天国语完整版免费观看| 国产一级毛片七仙女欲春2 | 动漫黄色视频在线观看| 精品欧美国产一区二区三| 黄色 视频免费看| 别揉我奶头~嗯~啊~动态视频| 老汉色∧v一级毛片| 亚洲色图 男人天堂 中文字幕| 999久久久精品免费观看国产| 午夜精品在线福利| 亚洲精品国产区一区二| 在线观看日韩欧美| 久久欧美精品欧美久久欧美| 99热6这里只有精品| 日韩欧美国产一区二区入口| 国产成人欧美在线观看| www日本黄色视频网| 亚洲人成伊人成综合网2020| 中文资源天堂在线| 在线看三级毛片| 熟女电影av网| 欧美zozozo另类| 人人妻人人看人人澡| 午夜免费观看网址| 性欧美人与动物交配| 悠悠久久av| 久久久久久久精品吃奶| 99久久99久久久精品蜜桃| 日本精品一区二区三区蜜桃| 色综合欧美亚洲国产小说| 国产午夜福利久久久久久| 免费人成视频x8x8入口观看| 亚洲午夜理论影院| 哪里可以看免费的av片| 免费在线观看日本一区| 婷婷六月久久综合丁香| 欧美丝袜亚洲另类 | 日韩欧美三级三区| 国产成人啪精品午夜网站| 国产亚洲精品第一综合不卡| 久99久视频精品免费| 亚洲成人久久性| 成年人黄色毛片网站| 一边摸一边做爽爽视频免费| 欧美在线一区亚洲| 在线观看舔阴道视频| 美女高潮喷水抽搐中文字幕| 久久久久精品国产欧美久久久| 国产高清激情床上av| 女警被强在线播放| 少妇粗大呻吟视频| 日韩大码丰满熟妇| 老熟妇乱子伦视频在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美网| 成人免费观看视频高清| 国产麻豆成人av免费视频| 国产成+人综合+亚洲专区| 99在线人妻在线中文字幕| 久久午夜综合久久蜜桃| 啦啦啦免费观看视频1| 国产区一区二久久| 成人av一区二区三区在线看| 中亚洲国语对白在线视频| 国产伦在线观看视频一区| 国产成人系列免费观看| 美女午夜性视频免费| 18禁裸乳无遮挡免费网站照片 | 亚洲专区字幕在线| 国产av不卡久久| 国产亚洲欧美98| 精品一区二区三区视频在线观看免费| 亚洲国产欧美一区二区综合| 搞女人的毛片| www.www免费av| ponron亚洲| 国产日本99.免费观看| 中文字幕人成人乱码亚洲影| 黄片播放在线免费| 亚洲性夜色夜夜综合| 日韩国内少妇激情av| av超薄肉色丝袜交足视频| 欧美日韩黄片免| 精品一区二区三区四区五区乱码| 久久国产精品男人的天堂亚洲| 国产精品永久免费网站| 丰满的人妻完整版| 免费一级毛片在线播放高清视频| 亚洲av第一区精品v没综合| 国产精品精品国产色婷婷| 亚洲国产精品久久男人天堂| 久久久久久九九精品二区国产 | 亚洲欧美一区二区三区黑人| 在线播放国产精品三级| 18禁黄网站禁片免费观看直播| 十分钟在线观看高清视频www| 国产精品香港三级国产av潘金莲| 黑人欧美特级aaaaaa片| 90打野战视频偷拍视频| 国产乱人伦免费视频| 1024手机看黄色片| 欧美日本亚洲视频在线播放| 精品久久久久久久久久久久久 | 国产高清videossex| 天堂动漫精品| 无限看片的www在线观看| 老鸭窝网址在线观看| 妹子高潮喷水视频| 很黄的视频免费| 久久精品夜夜夜夜夜久久蜜豆 | 免费在线观看视频国产中文字幕亚洲| 高清毛片免费观看视频网站| 伊人久久大香线蕉亚洲五| 免费看日本二区| 在线永久观看黄色视频| 黄色毛片三级朝国网站| 亚洲aⅴ乱码一区二区在线播放 | videosex国产| 国产精品99久久99久久久不卡| 最近在线观看免费完整版| 日本五十路高清| 丰满人妻熟妇乱又伦精品不卡| 国产精品九九99| 超碰成人久久| 午夜福利视频1000在线观看| 亚洲真实伦在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区激情短视频| 超碰成人久久| 亚洲色图 男人天堂 中文字幕| 久久久国产欧美日韩av| 日本一本二区三区精品| 俄罗斯特黄特色一大片| 久久国产精品影院| 免费在线观看亚洲国产| 日韩欧美一区视频在线观看| 中文字幕久久专区| 日本a在线网址| 成人特级黄色片久久久久久久| 日韩一卡2卡3卡4卡2021年| 国产主播在线观看一区二区| 一级毛片高清免费大全| 亚洲黑人精品在线| 日韩欧美 国产精品| 免费看日本二区| 欧美黑人欧美精品刺激| 国产伦一二天堂av在线观看| a在线观看视频网站| 男人舔奶头视频| www.精华液| 欧美日韩中文字幕国产精品一区二区三区| 免费无遮挡裸体视频| 国产极品粉嫩免费观看在线| 草草在线视频免费看| 黄色毛片三级朝国网站| 最近最新免费中文字幕在线| www.自偷自拍.com| 久久久久精品国产欧美久久久| 露出奶头的视频| av免费在线观看网站| 亚洲人成伊人成综合网2020| 1024香蕉在线观看| 国产精品亚洲美女久久久| 国产亚洲av嫩草精品影院| 欧美日本亚洲视频在线播放| 欧美久久黑人一区二区| 欧美激情高清一区二区三区| 亚洲国产高清在线一区二区三 | 国产爱豆传媒在线观看 | 日本成人三级电影网站| av片东京热男人的天堂| 国产91精品成人一区二区三区| netflix在线观看网站| 嫁个100分男人电影在线观看| 嫩草影视91久久| 成人18禁在线播放| 欧美性猛交╳xxx乱大交人| 日本黄色视频三级网站网址| 可以免费在线观看a视频的电影网站| 亚洲精品美女久久久久99蜜臀| 女性被躁到高潮视频| 99在线视频只有这里精品首页| 美女大奶头视频| 日日夜夜操网爽| 亚洲精华国产精华精| 久久久久久人人人人人| 最新在线观看一区二区三区| 一区福利在线观看| svipshipincom国产片| 亚洲片人在线观看| 成人国语在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产日本99.免费观看| 日韩成人在线观看一区二区三区| 人人妻人人澡人人看| 此物有八面人人有两片| 成人国语在线视频| 久久久久久久久久黄片| 免费在线观看视频国产中文字幕亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利欧美成人| 午夜日韩欧美国产| 18禁裸乳无遮挡免费网站照片 | 热99re8久久精品国产| 一进一出好大好爽视频| 女人爽到高潮嗷嗷叫在线视频| 国产av又大| 亚洲片人在线观看| 搡老熟女国产l中国老女人| 禁无遮挡网站| 在线观看一区二区三区| 精品久久久久久久人妻蜜臀av| 色精品久久人妻99蜜桃| 国产av在哪里看| xxx96com| 人成视频在线观看免费观看| 日韩欧美国产一区二区入口| 人人澡人人妻人| 国产高清有码在线观看视频 | 欧美在线黄色| 看片在线看免费视频| 久久久久九九精品影院| 国产真人三级小视频在线观看| 看黄色毛片网站| 两性夫妻黄色片| 日韩欧美一区视频在线观看| 国产伦在线观看视频一区| 亚洲人成电影免费在线| 宅男免费午夜| 婷婷亚洲欧美| 精品一区二区三区四区五区乱码| 深夜精品福利| 曰老女人黄片| 国产日本99.免费观看| 天堂√8在线中文|