• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic variation for seed phosphorus and yield traits in Indian sorghum landraces and varieties

    2015-11-18 01:23:30AshokBdignnvrGirishGnpthi
    The Crop Journal 2015年4期

    Ashok Bdignnvr*,G.Girish,T.R.Gnpthi

    aNuclear Agriculture and Biotechnology Division,Bhabha Atomic Research Centre(BARC),Mumbai 400085,India

    bAgricultural Research Station,Aland Road,Gulbarga 585101,Karnataka,India

    Genetic variation for seed phosphorus and yield traits in Indian sorghum landraces and varieties

    Ashok Badigannavara,*,G.Girishb,T.R.Ganapathia

    aNuclear Agriculture and Biotechnology Division,Bhabha Atomic Research Centre(BARC),Mumbai 400085,India

    bAgricultural Research Station,Aland Road,Gulbarga 585101,Karnataka,India

    A R T I C L E I N F O

    Article history:

    Received 7 July 2014

    Received in revised form

    17 September 2014

    Accepted 3 December 2014

    Available online 15 December 2014

    Phytic acid

    Sorghum

    Genetic variability

    Correlation

    Phytic acid is the major storage form of phosphorus in cereals.It binds with nutritionally important metals and affects mineral bioavailability.The present study analyzed phytic acid,inorganic phosphorus(IP)content,seed weight,and grain yield in 98 sorghum landracesand varietiesgrown in twoenvironmentstoevaluategenotypicand environmentaleffects and to determine trait stability.Genotypic effects and genotype×interaction were significantforphytic acid concentration and yield components.A promising landrace,Malkhed-1,had the lowest phytic acid(0.015 mg g-1)concentration,with a higher yield(70.02 g plant-1),than the check variety M-35-1 in both environments.Similarly,among the varieties,Phule Maulee showed the lowest phytic acid(0.07 mg g-1)and a higher grain yield of 53.15 g plant-1in both environments.Phytic acid and IP were negatively correlated(r=-0.34),whereas grain yield and seed weight were positively correlated(r=0.20).Cluster analysis based on seed phosphorus traits and yield components identified five and six clusters,respectively.Genotypes containing low phytic acid with high yield identified in this study would be helpful for increasing the bioavailability of mineral nutrients.

    ?2014 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

    1.Introduction

    Sorghum is an important cereal grown mainly for food,feed,dietary fiber,and biofuel in subtropical and tropical Asia and Africa.In India it is cultivated on 7.89 Mha,of which 4.88 Mha is cultivated during the post-rainy season with a production of 4.18 Mt[1].Cultivation of sorghum is concentrated mainly in peninsular and central India as a post-rainy season crop contributing 50%of total cereal intake.Sorghum is nutritionally superior to rice,as it supplies minerals,vitamins,protein, and micronutrients essential for health,growth,and development[2].The presence of antinutritive factors,such as trypsin and amylase inhibitors and phytic acid,is known to interfere with protein,carbohydrate,and mineral metabolism.To improve the nutritional quality of sorghum and effectively exploit its potential as a food and feed crop,efforts should be made to reduce these antinutritive factors.

    Phytic acid(myo-inositol hexaphosphoric acid,IP6)is the major phosphorus storage compound of most seeds and cerealgrains,accountingformorethan 70% oftotalphosphorus.Phytic acid(PAP)has a strong ability to chelate multivalent metal ions,especially zinc,calcium and iron.This binding can result in very insoluble salts with poor bioavailability of minerals[3].Phytic acid is hydrolyzed enzymatically by phytases or chemically to lower inositol phosphates during storage,fermentation,germination,food processing,and digestion in the human gut[4].The effects of phytic acid in human and animal nutrition are associated with the interaction of phytic acid with proteins,vitamins and minerals,thereby restricting their bioavailability[5].Several methods have been employed to improve the nutritional quality of sorghum.Some of these methods,such as germination or sprouting,fermentation,soaking,dehulling,and cooking can drastically reduce the phytic acid content[6].Low-phytic acid(lpa)mutants have been reported in soybean,maize,barley and rice[7].

    Indian sorghum landraces possess moderate to high genetic variability,but their utilization in breeding programs for improving yield and seed quality has not been realized[8]. Assessment of genetic variability has accordingly become an essential component of identifying potential parents for recombination breeding.Quantitative traits such as phytic acid,inorganic phosphorus(IP),seed weight,and grain yield tend to differ from one environment to another.The interaction between genotype and environment has an important influence on the breeding behavior of the genotype. There is a need for extensive testing of these genotypes in varied agroclimatic conditions,for reducing the environmental influence.In this context,the present study aimed to estimate genetic variability for phytic acid,inorganic phosphorus,seed weight,and grain yield among sorghum landraces and popular varieties over two locations.

    2.Materials and methods

    The material used in this study comprised 83 sorghum landraces and 15 varieties including the popular check variety M-35-1,adapted to the post-rainy season in Karnataka,Maharashtra,and Andhra Pradesh states of India(Table S1).These genotypes were grown in two replications in a randomized complete block design at the Experimental and Gamma Field Facility,Bhabha Atomic Research Centre(E1),Trombay,Mumbai(19°03′N;72°93′E)during the post-rainy season,2013 and the Agricultural Research Station(E2),Gulbarga(17°36′N;76°81′E),Karnataka state during the 2012 crop season.All agronomic practices were followed to produce an optimally healthy crop. Four quantitative characters:phytic acid,IP,grain yield per plant(g)and 1000-seed weight(g)were recorded for five randomly selected plants in both replications and locations.Plant yield was measured as the weight of the seed threshed from individual panicles.One thousand seeds were counted and weighed for each accession and recorded as the seed weight.For seed phosphorus estimation,selfed seeds from each genotype in each location were used.

    2.1.Determination of phytic acid(PAP)

    Phytic acid in sorghum was estimated by a modified colorimetric method[9].A sample of 30-40 mg of ground seed was prepared from selfed seeds in each location in two replications.Ground samples(30 mg)were placed in an Eppendorf tube and 1 mL of 0.2 mol L-1HCl extraction buffer was added and left overnight.Crude acid extracts were transferred to fresh tubes containing 20 mg NaCl.The contents were shaken at 3500 r min-1for 20 min to dissolve the salt and allowed to settle at-20°C for 20 min.The mixtures were centrifuged(8000 r min-1)at 10°C for 20 min and the clear supernatant was diluted 25 times by mixing with distilled water.Of this diluted sample,750 μL was combined with 250 μL of modified Wade reagent(0.03%FeCl3·6H2O+0.3%sulfosalicylic acid)in an Eppendorf tube,thoroughly mixed by vortexing,and centrifuged at 8000 r min-1at 10°C for 10 min.A series of calibration standards containing 0,0.5,1,1.5,2,3,4,5,7.5,10,and 12 μg mL-1of PAP were prepared from sodium phytate(Sigma,St.Louis,MO).The pink color of the Wade reagent is produced by the reaction between ferric ion and sulfosalicylic acid,with an absorbance maximum at 500 nm measured with a UV spectrophotometer(Thermo Electron Corporation).In the presence of phytate,iron is bound to the phosphate ester and is unavailable to react with sulfosalicylic acid,resulting in differential pink color intensity.The delta absorbance values were used to estimate phytic acid content and expressed in mg g-1of the flour sample[10].

    2.2.Determination of IP

    Inorganic phosphorus(IP)was estimated colorimetrically using 30-50 mg of ground sample in two replications for each location separately.Ground samples were placed in an Eppendorf tube and incubated in extraction buffer[12.5%(v/v)trichloroacetic acid and 25 mmol L-1MgCl2][11].These samples were centrifuged at 10,000 r min-1and the supernatant was diluted in a 1:2 ratio with distilled water.A 100-μL aliquot of the diluted sample was mixed with Chen's reagent[prepared by mixing 6 N H2SO4:2.5%ammonium molybdate:10%ascorbic acid:distilled water in a 1:1:1:2(v/v/v/v)ratio]and incubated in a water bath at 50°C for 1 h.After incubation,samples were cooled and absorbance was measured at 660 nm in a UV-vis spectrophotometer.A standard curve was plotted with the absorbance of known solutions of disodium hydrogen phosphate.Based on the calibration curve of the standard IP,the OD values of samples were converted to concentrations of IP and expressed in mg g-1of sorghum flour.

    2.3.Statistical analysis

    Analysis of variance for PAP and IP concentrations,1000-seed weight and grain yield per plant among the genotypes tested were computed with the SAS[12]procedure PROC GLM.Replication and locations were fitted as random effects and the fixed effects of genotypes were tested for significance.Summary statistics,genotypic and phenotypic coefficients of variation[13],heritabilities[14]and correlation coefficients were calculated for each of the traits.Cluster analysis was performed to evaluate associations among the genotypes based on the seed“P”and yield traits.All the above statistical analyses were performed using SAS.

    Table 1-Analysis of variance for seed phosphorus,seed weight,and grain yield in sorghum genotypes.

    3.Results

    3.1.Evaluation of yield and seed phosphorus traits

    The analysis of variance showed a significant variation among the genotypes for phytic acid,IP,grain yield,and 1000-seed weight(Table 1).G×E interaction was highly significant for PAP,grain yield,and 1000-seed weight.The frequency distribution of phytic acid content among the genotypes showed that most(65)of the genotypes possessed low PAP values,ranging from 0.02 to 1.00 mg g-1.Only 35 genotypes had high PAP values(3.2-4.3 mg g-1).In the E-1 environment,a wide range of values were observed for grain yield (4.25-77.25 g plant-1) with a mean value of 30.15 g plant-1;1000-seed weight(21.05-35.03 g)with mean of 30.49 g(Table 2).For seed phosphorus traits,PAP showed a wide range of values(0.015-4.400 mg g-1)with a mean of 1.08 mg g-1and IP ranged from 0.007 to 1.327 mg g-1with a mean of 0.39 mg g-1.Similarly in the E-2 environment,a wide range of values was observed for grain yield(24.6-59.9 g),1000-seed weight(23.54-35.08 g),phytic acid(0.04-4.20 mg g-1),and IP(0.013-1.500 mg g-1).In both environments,the landrace Malkhed-1 showed the lowest phytic acid (0.015 mg g-1)with high IP(0.70 mg g-1)followed by Nalwar-2.Among thepopular varieties,Phule Maulee showed the lowest phytic acid(0.07 mg g-1)and highest IP (1.35 mg g-1).The landrace Tengalli-2 showed the highest grain yield of 77.25 g plant-1with a 1000-seed weight of 35.30 g,representing a 167%increase over the check variety M-35-1 in the E-1 environment.In the E-2 environment,the PC-6 variety showed the highest grain yield of 59.90 g plant-1,and the Mangalagi-1 landrace was a moderate yielder(35.08 g)but had bold seeds.

    Table 3-Correlation coefficients for seed phosphorus and yield traits in sorghum genotypes.

    3.2.Estimation of genetic parameters

    Phytic acid showed the highest GCV(genotypic coefficient of variation)(93.97%and 88.98%)and seed weight the lowest GCVs(11.36%and 17.15%)compared with the other traits,in locations E1 and E2,respectively(Table 2).Location E1 showed lower values than location E2 for GCV and PCV(phenotypic coefficient of variation)for all traits except 1000-seed weight,whereas the GCV and PCV values for 1000-seed weight were highly variable,representing a location effect.High heritabilities(97.45%and 95.38%)were observed for grain yield in both locations,whereas 1000-seed weight had lower heritability(64.89)in location E1(Table 2).Correlation estimates for the sorghum genotypes over the two environments indicated that PAP and IP were negatively correlated(r=-0.345**)(Table 3,F(xiàn)ig.1). Grain yield was significantly correlated with seed weight(r=0.202**).Grain yield and seed weight were negatively but non-significantly correlated with PAP(-0.088 and -0.077,respectively)but positively and non-significantly correlated with IP(0.093 and 0.102).

    Table 2-Mean,range and genetic variability components for seed phosphorus and yield traits in sorghum genotypes.

    3.3.Cluster analysis

    Cluster analysis was performed for seed phosphorus and yield components of 98 genotypes using paired-group and Euclidean similarity measures.Cluster analysis for the seed phosphorus traits resolved all the landraces and varieties into five clusters(Fig.2).Most of the landraces showing low phytic acid,including Malkhed-1 (TSG-52),Mangalagi-1(TSG-53),Mangalagi-3(TSG-55),and Nalwar-2(TSG-62),were grouped in cluster III.The mean phytic acid values for these genotypes were lowest,ranging from 0.015 to 0.400 mg g-1. Similarly,six clusters were formed for 1000-seed weight and grain yield traits(Fig.3).The PC-6(TSG-93)variety and the Tengalli-2(TSG-80)landrace diverged from the rest of the genotypes and formed a separate cluster with yield levels ranging from 68.0 to 77.25 g plant-1.Cluster II grouped most of the high-yielding and bold-seeded genotypes(with a range of 41.52-70.02 g plant-1and 23-34 g,respectively).Most of the moderately high-yielding and medium-sized seeds were grouped in clusters III,IV,V,and VI.

    4.Discussion

    The relative performances of cultivars for quantitative traits such as seed weight,grain yield,and seed phosphorus vary from one environment to another.To develop a variety with high yielding ability and consistency,focus should be placed on the multi-environment testing of genotypes and precise estimation of their interactions.The interaction between genotype and environment has an important bearing on the stability of varieties[15].The magnitude of genetic expression and of trait associations is important for the prediction of response to selection in diverse environments and provides the basis for planning breeding programs.The results of the present study in two locations(Mumbai and Gulbarga)indicated the presence of significant variability for seed phosphorus and yield traits.A wider range of values was observed for PAP,IP,seed weight,and grain yield in the landraces than in the varieties over both the locations.The traditional landraces were not bred for seed phosphorus,but for grain yield.Owing to their wide adaptability under varied agroclimatic conditions and different soil fertility levels,one could expect wide variability for seed phosphorus in landraces.The E-1 location is in the central Indian agroclimatic zone,characterized by shallow soils with a heavy rainfall.E-2 location is in southern India,characterized by deep black soils(Vertisols)with high water holding capacity and low to moderate rainfall.With this marked difference in agroclimatic conditions,the phenotypic expression levels are highly variable.As shown in the present study,there was significant G×E interaction for phytate concentration,grain yield and 1000-seed weight(P<0.001).Raboy and Dickinson also found significant environmental effects for PAP,which they concluded were due to soil phosphorus availability in soybean[16].Hence,soil characteristics should be considered in breeding for low phytic acid.In our studies,environmental effects were significant only for PAP and not for IP(Table 1).Some of the promising landraces,namely Tengalli-2,Nalwar-2,and Kannur-4,were exceptionally superior for the seed phosphorus traits and per se performance. Similarly,popular varieties such as M-35-1(control),PC-6,and Phule Maulee equally outperformed landraces in both the environments.

    Methods employed to improve the nutritional quality and organoleptic properties of cereal-based foods include genetic improvement,amino acid fortification,supplementation or complementation with protein rich sources,and processing technologies that include milling,malting,fermentation,or sprouting[17].Attempts to reduce phytate content have employed different means including milling[18]and soaking and fermentation of sorghum grains[19,20]and activation of indigenous phytase and/or addition of microbial phytase[21]. In the present study,mean phytic acid was drastically reduced from 0.523 mg g-1(control)to 0.027 mg g-1(TSG-30)and IP from 0.331 mg g-1(control)to 0.009 mg g-1(TSG-13).Despite this drastic reduction,germination and seedling growth were not affected.Earlier report indicated phytate levels in traditional and improved whole sorghum flours to be 4.03 and 7.26 mg g-1,respectively[22],which were much higher than the values recorded in the present study.A systemic reduction of phytic acid levels has negative effects on germination,emergence,and seed filling [23].But field-grown soybean with low (0.09 mg seed-1),medium(0.59 mg seed-1)and high (1.00 mg seed-1)phytic acid showed normal seedling development.This finding indicated that seedlings normally contain a phosphorus reserve far above that needed for germination and early growth of the plant[23].Even silencing the expression of an ATP binding cassette(ABC)transporter in an embryo-specific manner generated low phytic acid and high-inorganic-phosphorus transgenic maize seeds[24]that showed normal germination and no significant reduction in seed dry weight.

    Fig.1-Genetic variability among sorghum landraces and varieties for phytic acid and IP over two locations[X axis,sorghum genotypes;Y1 axis,phytic acid(mg g-1);Y2 axis,IP(mg g-1)].

    Fig.2-Cluster analysis for phytic acid and IP in sorghum landraces and varieties grown across two locations.

    Fig.3-Cluster analyses for 1000-grain weight and grain yield in sorghum landraces and varieties grown across two locations.

    The PCV was higher than the GCV for all the traits studied,suggesting that the environment had a little effect on the expression of these traits.The GCV provides a measure for comparing genetic variability in quantitative traits.The seed quality traits such as,phytic acid and IP,showed the highest GCV and PCV values.But GCV together with heritability estimates gives a good inference of the extent of heritable variation[25]. Accordingly,phytic acid and IP showed high GCV and heritability values compared with the yield-contributing traits.The high estimates of heritability for PAP(90.75 and 94.75)and grain yield(97.45 and 95.38)in the E1 and E2 locations have been found useful in plant breeding,as they enable the selection to be based on phenotypic performance[26].

    Correlations between traits are of great importance for the success of selections to be conducted in breeding programs.In the present study,seed weight and grain yield were significantly correlated,indicating that simultaneous selection for these yield components is possible.Knowledge of the existing phenotypic and genetic variation and their association with heritability is of interest,because it allows simultaneous selection of two or more traits.Sorghum landraces have not been subjected to any systematic selection or breeding apart from traditional farming practices.Thus,the efficiency of improvement of such landraces may be enhanced by the identification of morpho-physiological traits associated with better yield response[27].Phytic acid phosphorus and IP were significantly negatively correlated in the present study,suggesting the improvement of either one of these traits in a genotype.Varietal effects appeared to be the most critical factor in selecting a sorghum variety for human consumption that would contain optimum levels of available phosphorus. The strong negative correlation between PAP and IP makes it unlikely that non-phytic phosphorus would be increased by drastic reduction of phytic acid[28].Thus,there is a need to balance the two forms to avoid interfering with germination. Cluster analysis based on location means for seed phosphorus and yield traits showed close relationships between landraces and popular varieties showing low phytic acid in a high-yielding background. Malkhed-1, Mangalagi-1,Mangalagi-3,and Nalwar-2 were promising landraces in cluster III with lower phytic acid content than the control. Phule Maulee,a shootfly-tolerant variety,showed lower phytic acid than M-35-1.For the yield components,six clusters were identified,with PC-6 and Tengalli-2,showing a high grain yield,forming a separate cluster.

    Use of sorghum as food for human nutrition is constrained by a high level of antinutritive factors,in particular phytic acid,which can reduce the bioavailability of trace elements. Genetic improvement as well as pre-treatment methods such as fermentation,soaking,or germination improves nutritional quality,particularly through the breakdown of antinutritive factors.Using genetic and mutation breeding principles,lpa mutants have been identified in several crops with the aim of improving phosphorus and mineral bioavailability [29]. Low-phytate crops show enhanced bioavailability of phosphorus and several important nutritional cations including iron.Low-phytic acid landraces identified in the present study proved to be consistent across two different agroclimatic regions for seed phosphorus and per se performance.They can be used in recombination breeding to develop tailor-made varieties/hybrids showing improved mineral bioavailability in a high-yielding background.

    Acknowledgments

    The authors are thankful to the Head,Nuclear Agriculture and Biotechnology Division,and the Experimental and Gamma Field Facility Section,Bhabha Atomic Research Centre,Mumbai,India for encouragement and support.

    Supplementary material

    Supplementary material to this article can be found online at http://dx.doi.org/10.1016/j.cj.2014.09.003.

    [1]Anonymous,Status Paper on Millets.Directorate of Millets Development,Ministry of Agriculture,Department of Agriculture and Cooperation,2010.(Jaipur(India)).

    [2]S.S.Chan,E.L.Ferguson,K.Bailey,U.Fahmida,T.B.Harper,R.S.Gibson,The concentration of iron,calcium,zinc and phytate in cereals and legumes habitually consumed by infants living in East Lombok,Indones.J.Food Compos.Anal. 20(2007)609-617.

    [3]J.R.Rhou,J.V.Erdman,Phytic acid in health and disease,Crit. Rev.Food Sci.Nutr.35(1995)495-508.

    [4]C.Burbano,M.Muzquiz,A.Osagie,G.Ayet,C.Cuadrado,Determination of phytate and lower inositol phosphates in spanish legumes by HPLC methodology,F(xiàn)ood Chem.52(1995)321-325.

    [5]E.A.I.Elkhalil,A.H.El Tinay,E.A.E.Mohamed,Elsheikh,Effect of malt pretreatment on phytic acid and in vitro protein digestibility of sorghum flour,F(xiàn)ood Chem.72(2001)29-32.

    [6]N.R.Reddy,S.K.Sathe,D.K.Salunkhe,Phytate in legumes and cereals,Adv.Food Res.28(1982)1-92.

    [7]J.R.Wilcox,G.S.Premachandra,K.A.Young,V.Raboy,Isolation of high seed inorganic P,low phytate soybean mutants,Crop Sci.40(2000)1601-1605.

    [8]B.V.S.Reddy,S.Reddy,A.R.Sadananda,E.Dinakaran,A. Ashok Kumar,S.P.Deshpande,S.Rao,H.C.Sharma,R. Sharma,L.Krishnamurthy,J.V.Patil,Postrainy seasonsorghum:constraints and breeding approaches,J.SAT Agric. Res.10(2012)1-12.

    [9]I.A.Vaintraub,N.A.Lapteva,Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing,Anal.Biochem.175(1988)227-230.

    [10]M.Latta,M.A.Eskin,Simple and rapid colorimetric determination of phytate determination,J.Agric.Food Chem.28(1980)1313-1315.

    [11]P.S.Chen,T.Y.Toribara,H.Warner,Microdetermination of P,Anal.Chem.28(1956)1756-1758.

    [12]SAS Statistical Analysis Software for Windows 9.1.3,2010.(Cary,NC,USA.).

    [13]G.W.Burton,Quantitative inheritance in grasses,Proceedings of the 6th Int.Grassland Cong,1,1952,pp.227-283.

    [14]R.W.Allard,Principal of Plant Breeding,John Wiley and Sons,Inc.,New York,1960.84-85.

    [15]R.W.Allard,A.D.Bradshaw,Implications of genotype environment interactions in plant breeding,Crop Sci.4(1964)503-507.

    [16]V.Raboy,D.B.Dickinson,Phytic acid levels in seeds of Glycine max and G.soja as influenced by phosphorus status,Crop Sci. 33(1993)1300-1305.

    [17]J.K.Chavan,S.S.Kadam,Nutritional improvement of cereals by sprouting,Crit.Rev.Food Sci.Nutr.28(1989)401-408.

    [18]S.E.O.Mahgoub,S.A.Elhag,Effect of milling,soaking,malting,heat-treatment and fermentation on phytate level of four Sudanese sorghum cultivars,F(xiàn)ood Chem.61(1998)77-80.

    [19]H.B.Elmaki,E.E.Babiker,A.H.El Tinay,Changes in chemical composition,grain malting,starch and tannin contents and protein digestibility during germination of sorghum cultivars,F(xiàn)ood Chem.64(1999)331-336.

    [20]E.K.Marfo,B.K.Simpson,J.S.Idowu,O.L.Oke,Effect of local food processing on phytate levels in cassava and soybean,J. Agric.Food Chem.38(1990)1580-1585.

    [21]G.B.Barrier,P.Casado,C.Jondreville,F(xiàn).Gatel,M.R.Larbier,Wheat phosphorus availability:in vivo study in broiler and pigs;relationship with indigenous phytase activity and phytic phosphorus content in wheat,J.Sci.Food Agric.70(1996)69-74.

    [22]H.I.Ali,B.F.Harland,Effects of fiber and phytate in sorghum flour on iron and zinc in weaning rats:a pilot study,Cereal Chem.68(1991)234-238.

    [23]V.Rayboy,S.J.Hudson,D.B.Dickson,Reduced phytic acid content does not have an adverse effect on germination of soybean seeds,Plant Physiol.79(1985)323-325.

    [24]J.Shi,H.Wang,K.Schellin,B.Li,M.Faller,J.M.Stoop,R.B. Meeley,D.S.Ertl,J.P.Ranch,K.Glassman,Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds,Nat.Biotechnol.25(2007)930-937.

    [25]G.W.Burton,Quantitative inheritance in pearl millet(Pennisetumglaucum),Agron.J.43(1951)409-417.

    [26]M.Siddique,M.F.A.Malik,I.A.Shahid,Genetic divergence,association and performance evaluation of different genotypes of mungbean(Vignaradiata),Int.J.Agric.Biol.8(2006)793-795.

    [27]R.Kenga,A.Tenkouano,S.C.Gupta,S.O.Alabi,Genetic and phenotypic association between yield components in hybrid sorghum(Sorghum bicolor(L.)Moench)populations,Euphytica 150(2006)319-326.

    [28]C.Doherty,J.M.Faubion,L.W.Rooney,Semi-automated determination of phytate in sorghum and sorghum products,Cereal Chem.59(1982)373-377.

    [29]V.Raboy,K.A.Young,J.A.Dorsch,A.Cook,Genetics and breeding of seed phosphorus and phytic acid,J.Plant Physiol. 158(2001)489-497.

    *Corresponding author.Tel.:+91 22 25593276;fax:+91 22 25505151.

    E-mail address:ashokmb1@gmail.com(A.Badigannavar).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    http://dx.doi.org/10.1016/j.cj.2014.09.003

    2214-5141/?2014 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

    黄色一级大片看看| 久久6这里有精品| 免费黄色在线免费观看| 一级毛片aaaaaa免费看小| www.av在线官网国产| 国产精品福利在线免费观看| 狂野欧美激情性xxxx在线观看| 国产老妇伦熟女老妇高清| 国产久久久一区二区三区| 赤兔流量卡办理| av.在线天堂| 色婷婷av一区二区三区视频| 亚洲综合精品二区| av在线老鸭窝| 欧美区成人在线视频| 26uuu在线亚洲综合色| 欧美性感艳星| 如何舔出高潮| 免费看光身美女| 一区二区三区精品91| 丰满乱子伦码专区| 成年免费大片在线观看| 免费看光身美女| 国产午夜精品久久久久久一区二区三区| 欧美另类一区| 精品一区二区三区视频在线| av视频免费观看在线观看| 边亲边吃奶的免费视频| 丰满乱子伦码专区| 国产无遮挡羞羞视频在线观看| 在线播放无遮挡| 亚洲激情五月婷婷啪啪| 超碰av人人做人人爽久久| 国产乱来视频区| 成人一区二区视频在线观看| 久久久午夜欧美精品| 国国产精品蜜臀av免费| 国产亚洲一区二区精品| 在线播放无遮挡| 日韩一本色道免费dvd| 亚洲国产欧美在线一区| 国产淫片久久久久久久久| videos熟女内射| 亚洲经典国产精华液单| 亚洲一级一片aⅴ在线观看| 99久久综合免费| 亚洲美女搞黄在线观看| av.在线天堂| 日韩三级伦理在线观看| 水蜜桃什么品种好| 另类亚洲欧美激情| 91aial.com中文字幕在线观看| 一级毛片电影观看| 国产精品国产三级国产专区5o| 80岁老熟妇乱子伦牲交| 欧美精品一区二区免费开放| 久久6这里有精品| 纯流量卡能插随身wifi吗| 一个人看视频在线观看www免费| 国产黄频视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲av不卡在线观看| 国产一区二区三区综合在线观看 | 嘟嘟电影网在线观看| 99re6热这里在线精品视频| 中文欧美无线码| 我要看日韩黄色一级片| 18禁动态无遮挡网站| 黄色一级大片看看| 黑人高潮一二区| 亚洲四区av| 国产色婷婷99| 久久久午夜欧美精品| 丰满迷人的少妇在线观看| 日韩一区二区三区影片| 黄色一级大片看看| 日韩制服骚丝袜av| av女优亚洲男人天堂| 在线观看免费视频网站a站| 午夜福利高清视频| 国产精品女同一区二区软件| 亚洲人成网站在线播| 人人妻人人澡人人爽人人夜夜| 九九久久精品国产亚洲av麻豆| 欧美成人一区二区免费高清观看| 我的老师免费观看完整版| 亚洲综合色惰| 国产美女午夜福利| 熟女av电影| 亚洲欧美精品专区久久| 在线观看美女被高潮喷水网站| 18禁裸乳无遮挡免费网站照片| 老女人水多毛片| 在线看a的网站| 777米奇影视久久| 下体分泌物呈黄色| 国产精品99久久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 能在线免费看毛片的网站| 亚洲精品乱码久久久v下载方式| 免费av不卡在线播放| 亚洲av.av天堂| 国内精品宾馆在线| 91精品一卡2卡3卡4卡| 亚洲欧美精品专区久久| 一区二区三区乱码不卡18| tube8黄色片| 欧美xxⅹ黑人| 麻豆国产97在线/欧美| 国产中年淑女户外野战色| 中国美白少妇内射xxxbb| 免费观看a级毛片全部| 91精品国产国语对白视频| 国产深夜福利视频在线观看| 欧美日韩一区二区视频在线观看视频在线| a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| 亚洲激情五月婷婷啪啪| 在线观看免费高清a一片| 中文字幕人妻熟人妻熟丝袜美| 永久网站在线| 伦理电影免费视频| 免费黄网站久久成人精品| 欧美日韩综合久久久久久| 亚州av有码| 人妻少妇偷人精品九色| 日韩,欧美,国产一区二区三区| 26uuu在线亚洲综合色| 亚洲va在线va天堂va国产| 久久婷婷青草| 最新中文字幕久久久久| 国产淫片久久久久久久久| 18+在线观看网站| 国产一区二区三区av在线| 国产成人a∨麻豆精品| 一级爰片在线观看| 国产真实伦视频高清在线观看| 高清不卡的av网站| 男女无遮挡免费网站观看| 国产黄色免费在线视频| av卡一久久| 一个人免费看片子| 日韩一本色道免费dvd| 日本av手机在线免费观看| 欧美成人午夜免费资源| 日韩一本色道免费dvd| 国产黄片视频在线免费观看| 国产免费又黄又爽又色| 亚洲精品日韩av片在线观看| 热99国产精品久久久久久7| 另类亚洲欧美激情| 美女国产视频在线观看| 成年免费大片在线观看| 日本-黄色视频高清免费观看| 亚洲精品国产成人久久av| 91精品国产九色| 精品国产露脸久久av麻豆| 少妇的逼好多水| 三级国产精品片| 国产精品.久久久| 十分钟在线观看高清视频www | 国产精品精品国产色婷婷| 一级黄片播放器| 在线观看一区二区三区激情| 亚洲天堂av无毛| 性色avwww在线观看| 一级毛片aaaaaa免费看小| 日本av免费视频播放| 一区二区三区免费毛片| 久久亚洲国产成人精品v| 久久久久精品久久久久真实原创| 亚洲人与动物交配视频| h日本视频在线播放| 国产成人精品婷婷| 九九爱精品视频在线观看| av在线蜜桃| 免费大片18禁| 夜夜爽夜夜爽视频| 久久精品久久久久久噜噜老黄| 亚洲四区av| 欧美+日韩+精品| 日日撸夜夜添| 婷婷色av中文字幕| av在线蜜桃| 美女xxoo啪啪120秒动态图| 中文字幕亚洲精品专区| 国产永久视频网站| 大片免费播放器 马上看| 日韩一区二区视频免费看| 婷婷色综合大香蕉| 熟女人妻精品中文字幕| 成人高潮视频无遮挡免费网站| 丰满人妻一区二区三区视频av| 国产精品99久久久久久久久| 久久久久视频综合| 欧美3d第一页| 91久久精品电影网| 亚洲高清免费不卡视频| 高清视频免费观看一区二区| 一级片'在线观看视频| 91精品国产九色| av.在线天堂| 美女xxoo啪啪120秒动态图| 极品少妇高潮喷水抽搐| 亚洲熟女精品中文字幕| 国产精品99久久99久久久不卡 | 人妻一区二区av| 高清日韩中文字幕在线| 特大巨黑吊av在线直播| 身体一侧抽搐| 六月丁香七月| 国产毛片在线视频| 日韩av免费高清视频| 国产v大片淫在线免费观看| 高清午夜精品一区二区三区| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 只有这里有精品99| 亚洲国产色片| 欧美激情极品国产一区二区三区 | 久久av网站| 菩萨蛮人人尽说江南好唐韦庄| 人妻少妇偷人精品九色| 久久女婷五月综合色啪小说| 综合色丁香网| 联通29元200g的流量卡| 国产伦精品一区二区三区视频9| 亚洲国产色片| 久久国产精品大桥未久av | 成年免费大片在线观看| 成人毛片a级毛片在线播放| 免费观看性生交大片5| 在线观看一区二区三区激情| 亚洲天堂av无毛| av黄色大香蕉| 五月伊人婷婷丁香| 久久久久性生活片| 永久免费av网站大全| 久久久久久久精品精品| 精品一品国产午夜福利视频| 哪个播放器可以免费观看大片| 99久国产av精品国产电影| 亚洲欧美日韩东京热| 国产亚洲欧美精品永久| 日日啪夜夜爽| 成人黄色视频免费在线看| 国产亚洲精品久久久com| 高清视频免费观看一区二区| 国产男人的电影天堂91| 日日啪夜夜爽| 国产一区二区三区av在线| 在线 av 中文字幕| 女性生殖器流出的白浆| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 国内揄拍国产精品人妻在线| 久久99热6这里只有精品| av.在线天堂| 校园人妻丝袜中文字幕| 18+在线观看网站| 黑人高潮一二区| 午夜精品国产一区二区电影| 婷婷色麻豆天堂久久| 好男人视频免费观看在线| 免费看不卡的av| 日日撸夜夜添| 高清毛片免费看| 亚洲精品,欧美精品| 夜夜骑夜夜射夜夜干| 欧美+日韩+精品| 亚洲av福利一区| 免费黄网站久久成人精品| 亚洲真实伦在线观看| 在线 av 中文字幕| 免费观看av网站的网址| 免费观看无遮挡的男女| 国产毛片在线视频| 日韩强制内射视频| a级一级毛片免费在线观看| 搡女人真爽免费视频火全软件| 少妇 在线观看| 精品国产一区二区三区久久久樱花 | 色婷婷av一区二区三区视频| 国产精品蜜桃在线观看| 免费高清在线观看视频在线观看| 国产淫片久久久久久久久| 成人免费观看视频高清| 国产黄片视频在线免费观看| 99国产精品免费福利视频| 一级片'在线观看视频| 九九爱精品视频在线观看| 欧美亚洲 丝袜 人妻 在线| 美女cb高潮喷水在线观看| 免费大片黄手机在线观看| 国产精品精品国产色婷婷| 国产日韩欧美在线精品| 亚洲av.av天堂| 干丝袜人妻中文字幕| 成人毛片a级毛片在线播放| 18禁裸乳无遮挡免费网站照片| 日韩国内少妇激情av| 日韩av免费高清视频| 精品亚洲乱码少妇综合久久| 精品国产三级普通话版| 国产欧美日韩一区二区三区在线 | 国产免费一级a男人的天堂| 91精品伊人久久大香线蕉| 欧美老熟妇乱子伦牲交| 久久久久人妻精品一区果冻| 免费看不卡的av| 亚洲国产欧美在线一区| 丝袜喷水一区| 色婷婷av一区二区三区视频| 高清在线视频一区二区三区| 国产伦精品一区二区三区视频9| 天堂俺去俺来也www色官网| 全区人妻精品视频| 91久久精品国产一区二区成人| av视频免费观看在线观看| 国产亚洲91精品色在线| 日韩视频在线欧美| 一边亲一边摸免费视频| 一级爰片在线观看| 亚洲怡红院男人天堂| 久久久久久久大尺度免费视频| 国产极品天堂在线| 狂野欧美激情性bbbbbb| 国产永久视频网站| 亚洲四区av| av福利片在线观看| 成人无遮挡网站| 性高湖久久久久久久久免费观看| 久久久久久久精品精品| 国产毛片在线视频| 色视频在线一区二区三区| 97超碰精品成人国产| 国产精品三级大全| 日韩视频在线欧美| 亚洲av福利一区| 少妇精品久久久久久久| 亚洲一级一片aⅴ在线观看| 欧美高清性xxxxhd video| 国产精品无大码| 狂野欧美白嫩少妇大欣赏| 纵有疾风起免费观看全集完整版| 五月天丁香电影| 免费观看在线日韩| 美女cb高潮喷水在线观看| 99精国产麻豆久久婷婷| 高清欧美精品videossex| 国产精品一区二区在线观看99| 午夜免费鲁丝| 国产伦理片在线播放av一区| 我要看日韩黄色一级片| 国产精品99久久久久久久久| 国产高清有码在线观看视频| 国产一区二区三区综合在线观看 | 人体艺术视频欧美日本| 欧美xxxx黑人xx丫x性爽| 成人免费观看视频高清| av卡一久久| 国产精品.久久久| 嫩草影院新地址| 97超碰精品成人国产| 国产视频首页在线观看| 91精品一卡2卡3卡4卡| 中国国产av一级| av视频免费观看在线观看| 国国产精品蜜臀av免费| 国产午夜精品一二区理论片| 国产亚洲最大av| 成人综合一区亚洲| 亚洲内射少妇av| 国产色婷婷99| 国国产精品蜜臀av免费| 国产午夜精品一二区理论片| 久久ye,这里只有精品| 国产又色又爽无遮挡免| 国产精品精品国产色婷婷| 国产精品不卡视频一区二区| 成人18禁高潮啪啪吃奶动态图 | 99热6这里只有精品| 精品人妻偷拍中文字幕| 少妇人妻精品综合一区二区| 只有这里有精品99| 免费看av在线观看网站| 3wmmmm亚洲av在线观看| 亚洲av在线观看美女高潮| 国产精品秋霞免费鲁丝片| 亚洲国产成人一精品久久久| 国内揄拍国产精品人妻在线| 国产日韩欧美亚洲二区| 亚州av有码| 国产精品麻豆人妻色哟哟久久| 亚洲综合色惰| 久久国产精品男人的天堂亚洲 | 日韩,欧美,国产一区二区三区| av国产精品久久久久影院| 久久鲁丝午夜福利片| av国产精品久久久久影院| 国产精品一区二区三区四区免费观看| 大片免费播放器 马上看| 大陆偷拍与自拍| 最后的刺客免费高清国语| 精品国产一区二区三区久久久樱花 | 国产欧美日韩一区二区三区在线 | 国产精品福利在线免费观看| 亚洲国产成人一精品久久久| 男女边吃奶边做爰视频| kizo精华| 久久青草综合色| 岛国毛片在线播放| 亚洲成人手机| 熟女电影av网| av女优亚洲男人天堂| 久久热精品热| 国产视频内射| 男女下面进入的视频免费午夜| 午夜精品国产一区二区电影| 国产精品一及| 国产乱人偷精品视频| av在线观看视频网站免费| 午夜激情福利司机影院| 久久久亚洲精品成人影院| 好男人视频免费观看在线| 91狼人影院| 国产黄片视频在线免费观看| 波野结衣二区三区在线| 热99国产精品久久久久久7| 人妻夜夜爽99麻豆av| 亚洲人与动物交配视频| 日本色播在线视频| 内地一区二区视频在线| 国产精品一及| 99久久精品一区二区三区| 成人漫画全彩无遮挡| 日本黄色日本黄色录像| 美女内射精品一级片tv| av在线蜜桃| 亚洲精品成人av观看孕妇| 免费高清在线观看视频在线观看| 一级av片app| 男女下面进入的视频免费午夜| 99久久人妻综合| 色吧在线观看| 男人添女人高潮全过程视频| 亚洲av电影在线观看一区二区三区| 97超视频在线观看视频| 秋霞伦理黄片| 少妇裸体淫交视频免费看高清| 女性生殖器流出的白浆| 日韩免费高清中文字幕av| 成年美女黄网站色视频大全免费 | 亚洲va在线va天堂va国产| 制服丝袜香蕉在线| 狂野欧美激情性bbbbbb| 日本午夜av视频| av线在线观看网站| 久久久国产一区二区| 国产在线男女| 亚洲,一卡二卡三卡| 99视频精品全部免费 在线| 能在线免费看毛片的网站| 欧美最新免费一区二区三区| 色视频在线一区二区三区| 一级毛片aaaaaa免费看小| 一本—道久久a久久精品蜜桃钙片| 久久99热6这里只有精品| av在线app专区| 久久精品熟女亚洲av麻豆精品| 搡老乐熟女国产| 国产亚洲91精品色在线| 最近最新中文字幕大全电影3| 成人国产麻豆网| 欧美成人精品欧美一级黄| 亚洲精品视频女| 麻豆成人午夜福利视频| 九九在线视频观看精品| 午夜免费鲁丝| 不卡视频在线观看欧美| 成人漫画全彩无遮挡| h视频一区二区三区| 爱豆传媒免费全集在线观看| 亚洲精品乱码久久久v下载方式| 黄片wwwwww| 国产乱来视频区| 亚洲av中文av极速乱| 亚洲欧美中文字幕日韩二区| 人体艺术视频欧美日本| videossex国产| 久久久久久久久久久免费av| 嫩草影院新地址| 亚洲性久久影院| 国产高清国产精品国产三级 | 少妇人妻一区二区三区视频| 精品久久久噜噜| 一级毛片电影观看| 黄色一级大片看看| 中文乱码字字幕精品一区二区三区| 久久久午夜欧美精品| 女的被弄到高潮叫床怎么办| 高清日韩中文字幕在线| 免费人成在线观看视频色| 日韩成人av中文字幕在线观看| 成人亚洲欧美一区二区av| 男人和女人高潮做爰伦理| 日韩欧美 国产精品| 国产亚洲一区二区精品| 国产成人免费观看mmmm| 在线播放无遮挡| 午夜福利视频精品| 国内少妇人妻偷人精品xxx网站| 欧美成人精品欧美一级黄| 日韩三级伦理在线观看| 熟女av电影| videossex国产| 亚洲av中文av极速乱| 亚洲精品国产av蜜桃| 十分钟在线观看高清视频www | 少妇高潮的动态图| 简卡轻食公司| 亚洲精品日韩av片在线观看| 欧美一级a爱片免费观看看| 免费大片18禁| 国产av精品麻豆| 亚洲欧美日韩另类电影网站 | 国产v大片淫在线免费观看| av免费在线看不卡| 免费看不卡的av| 国产免费一区二区三区四区乱码| 中文字幕av成人在线电影| 女的被弄到高潮叫床怎么办| 黑人高潮一二区| 国产精品99久久久久久久久| 男人和女人高潮做爰伦理| 国产黄频视频在线观看| 极品少妇高潮喷水抽搐| 丰满迷人的少妇在线观看| 国产精品一区二区在线观看99| 国产人妻一区二区三区在| 日本av免费视频播放| 国产成人a区在线观看| 久久综合国产亚洲精品| 国产高清不卡午夜福利| 99热全是精品| 一本—道久久a久久精品蜜桃钙片| 欧美高清成人免费视频www| 美女福利国产在线 | 中文在线观看免费www的网站| 免费av中文字幕在线| 国产精品一区二区三区四区免费观看| 国产人妻一区二区三区在| 成人国产麻豆网| 人妻 亚洲 视频| av在线播放精品| 日韩欧美 国产精品| 国产爽快片一区二区三区| 麻豆国产97在线/欧美| 黄色一级大片看看| 精品人妻熟女av久视频| 精品国产乱码久久久久久小说| 国产免费又黄又爽又色| 免费观看无遮挡的男女| 亚洲精品乱码久久久久久按摩| 高清毛片免费看| 成人影院久久| 亚洲第一区二区三区不卡| 97精品久久久久久久久久精品| 久久精品久久久久久噜噜老黄| 小蜜桃在线观看免费完整版高清| 美女福利国产在线 | 夜夜骑夜夜射夜夜干| 精品人妻视频免费看| tube8黄色片| 最近中文字幕高清免费大全6| 亚洲第一区二区三区不卡| 欧美成人精品欧美一级黄| 国产国拍精品亚洲av在线观看| 伦理电影大哥的女人| 亚洲欧美中文字幕日韩二区| 精品久久久久久电影网| 亚洲国产精品999| 一级毛片我不卡| 黄片无遮挡物在线观看| av在线老鸭窝| 人人妻人人添人人爽欧美一区卜 | 国语对白做爰xxxⅹ性视频网站| 中文欧美无线码| 成人一区二区视频在线观看| 久久 成人 亚洲| 午夜日本视频在线| 丝袜喷水一区| 亚洲精品久久午夜乱码| 久久热精品热| 最近最新中文字幕大全电影3| 在线观看美女被高潮喷水网站| 午夜福利网站1000一区二区三区| 老熟女久久久| 精品一区在线观看国产| 校园人妻丝袜中文字幕| 国产乱人视频| 国产色爽女视频免费观看| 免费观看无遮挡的男女| 日产精品乱码卡一卡2卡三| 久久99精品国语久久久| 亚洲第一av免费看| 久久韩国三级中文字幕| 婷婷色麻豆天堂久久| 国产成人a区在线观看| 男男h啪啪无遮挡| 2022亚洲国产成人精品| 亚洲av成人精品一区久久| 毛片一级片免费看久久久久| 91午夜精品亚洲一区二区三区| 国产色爽女视频免费观看|