• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing heat transfer at the micro-scale using elastic turbulence

    2015-11-18 05:41:53WhlleyAbedDennisPoole

    R.D.Whlley,W.M.Abed,D.J.C.Dennis,R.J.Poole,b,?

    aSchool of Engineering,University of Liverpool,Liverpool L69 3GH,UK

    bLMFA,Université de Lyon,Ecole Centrale de Lyon,69134 Ecully,F(xiàn)rance

    Letter

    Enhancing heat transfer at the micro-scale using elastic turbulence

    R.D.Whalleya,W.M.Abeda,D.J.C.Dennisa,R.J.Poolea,b,?

    aSchool of Engineering,University of Liverpool,Liverpool L69 3GH,UK

    bLMFA,Université de Lyon,Ecole Centrale de Lyon,69134 Ecully,F(xiàn)rance

    a r t i c l e i n f o

    Article history:

    Received 23 June 2014

    Received in revised form

    8 August 2014

    Accepted 27 October 2014

    Available online 14 March 2015

    Elastic turbulence

    Viscoelasticity

    Serpentine channel

    Micro-mixing

    Heat transfer

    Small concentrations of a high-molecular-weight polymer have been used to create so-called‘‘elastic turbulence’’in a micro-scale serpentine channel geometry.It is known that the interaction of large elastic stresses created by the shearing motion within the fluid flow with streamline curvature of the serpentine geometry leads initially to a purely-elastic instability and then the generation of elastic turbulence.We show that this elastic turbulence enhances the heat transfer at the micro-scale in this geometry by up to 300%under creeping flow conditions in comparison to that achieved by the equivalent Newtonian fluid flow.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    In so-called‘‘creeping flow’’,i.e.,flows for which the Reynolds number(Re)remains small(Re< 1),Newtonian fluids remain laminar and steady.Consequently efficient mixing and heat transfer to the fluid are problematic for very viscous systems or liquid flows at small scales(e.g.,microfluidics)as they are essentially diffusion/conduction dominated.One method to circumnavigate these problems is to make the fluid non-linear by the addition of small amounts of high molecular-weight polymer.The resulting viscoelastic solution enables fluid flows at arbitrarily small values of Re to exhibit‘‘turbulent-like’’characteristics such as randomly fluctuating fluid motion excited across a broad range of temporal and spatial scales[1-6].Steinberg and co-workers[1-4]showed that highly-elastic viscoelastic fluids can undergo a series of flow transitions from viscometric laminar flow,to periodic flow,to apparently chaotic flow,and then to fully developed elastic turbulence(ET)in conditions of negligible inertia(Re<1)and this has been shown in a range of flows:swirling flow between parallel disks[1,4,5],in serpentine or wavy channels[2-4,6]and in concentric cylinder devices[4,7].The instabilities and resulting nonlinear interactions are‘‘purely-elastic’’in nature—driven by the elastic(normal)stresses developed in flow—and occurat Reynolds numbers farremoved fromthe usualturbulence observed for Newtonian fluids which is inertial in nature(critical Re on the order of 1000 for internal flows).Although the original work of Groisman and Steinberg[1]has elicited a significant degree of interest(and the passive-scalar mixing effectiveness ofthe regime has been mentioned repeatedly[1,3-7])outside of the quantitative studies on passive scalar mixing[8,9],little work has yet been carried out to assess this effectiveness in other typical‘‘mixing’’scenarios.An exception to this is the study of Poole et al.[10]where ET was used to create oil in polymer solution emulsions in a swirling flow between parallel disks arrangement(similar to that used in Ref.[1])where for a Newtonian oil and continuous phase,at identical conditions,no emulsification occurred at all.Flows containing streamline curvature are ideal for encouraging elastic instabilities and elastic turbulence as itis generally accepted thatpurely-elastic instabilities arise as a consequence of both elastic normal stresses and streamline curvature[11]—although some analyticalwork[12]and experimental evidence[13]are beginning to show that even parallel shear flows may exhibit ET providing the initial perturbation is sufficiently strong.

    The growth of‘‘microfluidic’’research,and the major fundamental interest and applications of such flows[14],has revealed previously unobserved instabilities and flow phenomena that occur solely due to viscoelasticity.In fact some of the key publications on ET[4,6,13]have used such micro-geometries to access the required parameter space(low inertia,high elastic stresses). The small scale nature of such flows leads directly to the viscoelastic behavior observed:the small length scale simultaneously makes the Reynolds number(Re≡ρUD/μ)small and the Deborah(De≡λU/D)or Weissenberg(Wi≡λU/D)numbers,which characterize the degree of elasticity in the flow,large(whereρis density,U a velocity scale,D a length scale,μa viscosity,and λa characteristic or relaxation time for the fluid).The De number is a ratio of characteristic timescales(fluid to flow)and the Wi number is the ratio of elastic to viscous forces.Thus at the microscale,due to the small flow time scales and the high strain rates attainable,viscoelastic effects will become important even for dilute solutions which appear Newtonian in macro-scale flows.In the current letter we utilize this effect in a microfluidic serpentine channel[3,15-17].Typical Wi numbers required to observe elastic turbulence have been reported as:swirling flow between parallel disks Wi~3.5[1],Taylor-Couette flow Wi~ 4[4],serpentine channel flow Wi~ 3.2(onset),> 6.7(developed)[4],1.4-3.5(onset),10(developed)[3],7.5-15(developed)[6].By the use of high shear rates,viscous solvents,and an extremely highmolecular-weight polymer,we reach Wi~100.

    Fig.1.(a)Isometric view of the experimental facility,(b)plan views of the serpentine channel,and(c)detailed view and cross section of the serpentine channel.

    As far as the effect of ET on heat transfer is concerned,no work has been reported hitherto.For Newtonian fluids at low Reynolds numbers,e.g.,in microfluidics applications,both thermal and viscous development are short(~pipe diameter)and the Nusselt number(Nu)is an order one constant which is independent of the Reynolds number.The heat transfer is conduction-dominated and long fluid residence times are required to achieve significant temperature increases.In contrast,if(inertial)turbulentconditions can be reached then heat can be transferred much more efficiently.For example in a straight pipe at a Reynolds number of 3000 the Nusselt number is increased by a factor of 10 above the laminar value(for identical Prandtl numbers).It might be anticipated that such large increases in heat transfer coefficients may also occur with ET provided the base flow is free from convection(and therefore heatis treated as a passive scalar).The currentpaper addresses this question and demonstrates the potential of using ET to enhance heat transfer in microfluidics applications.

    The heat transfer measurements were conducted in a serpentine channel as shown in Fig.1(a).The serpentine channel was micro machined into a piece of copper and consisted of 20 halfloops with inner and outer radii of 1 mm and 2 mm,respectively. The serpentine channel was flanked on either side by straight inlet and outlet channel sections and had a total length of 77 mm(see Fig.1(b)).The channel had a square cross section with a depth and width of 1.075±0.01 mm(see Fig.1(c)).The entire channel was mounted on a PVC substrate,which encompassed two separate reservoirs(one at either end of the channel),and the channel was enclosed by an upper wall fabricated from PVC.

    The entire facility was housed in a Techne TE-10A water bath continuously-stirred and maintained at a temperature of 30°C(leading to typical fluid temperature increases of 4°C-8°C). The copper bottom and copper side walls guaranteed isothermal boundary conditions and the insulating properties of the PVC ensured an adiabatic boundary condition on the upper wall.The surface temperature of the serpentine channel was monitored by four K-type thermocouples each embedded 1 mm from the channel side walls.The enhancement of heat transfer generated by the complex fluid flowing through the serpentine channel was quantified by measuring the temperature difference between the two reservoirs(before and after the serpentine channel)with K-type thermocouples.The K-type thermocouples had a quoted uncertainty of±1°Cand were calibrated againsta mercury thermometer of certified accuracy(±0.1°C).

    The pressure drop along the channel was measured by a Validyne DP15-26 differential pressure transducer.The pressure transducer estimated the streamwise pressure gradient(ΔP),from which the friction factor(f=[ΔP/(0.5ρU2)](Dh/L),where U is the average velocity,Dhis the hydraulic diameter,and L is the pathlength equal to 111.25 mm in our set-up)could be determined,by measuring the difference in pressure across two pressure taps installed on the upperwallofeach reservoir.The pressure transducer used two different diaphragms to capture the full working range: one had a working range of 0.2 bar whilst the other had a range of 2 bar,both are said to be accurate to±0.25%full scale,and both diaphragms were periodically calibrated against an MKS Baratron differential pressure transducer(1000 torr fsd).

    Fluid was pumped through the serpentine channel by a regulated pressure vessel.The fluid was discharged into a beaker and weighed by a Denver TP-1502 precision balance allowing a measurement of the mass flow rate(uncertainty±0.03 mg). The working fluids were solutions of a high-molecular-weight(~18×106g/mol)polyacrylamide supplied by polysciences,with mass concentrations of 80 ppm and 120 ppm in a Newtonian solvent comprised of 65%sucrose,1%NaCl,and 34%water(all by mass).At these concentrations the solutions are either dilute or semi-dilute as c/c?~1,where c is the concentration of polymer and c?is the critical overlap concentration which is approximately 100 ppm(0.01%)when determined from intrinsic viscosity measurements(assuming c?is roughly the inverse of the intrinsic viscosity).Allrheologicalmeasurements ofthe fluids were performed with a TA Instruments AR1000N controlled-stress rheometer with a cone-and-plate geometry(60 mm diameter,2°cone angle).

    Those shown in Fig.2(a)are shear viscosity(η)measurements versus shear rate(˙γ)for the Newtonian and complex fluids used in the present study.The Newtonian fluid has a constant shear viscosity of 0.164 Pa·s at 20°C,and the polymer solutions both exhibit slight shear-thinning behavior.The shear viscosity data of the complex fluids have been fitto the Carreau-Yasuda model[18],which allows an estimate of the shear viscosity(ηCY)values at any shear rate:

    In Eq.(1),η0is the zero-shear-rate viscosity,η∞is the infiniteshear-rate viscosity,λCYis a constant which characterizes theonset of shear-thinning,n is a power-law index,and a is a fitting parameter.We use this shear-rate dependent viscosity to define our Reynolds number Re = ρUDh/ηCHand Prandtl number(Pr=cηCH/kf,where c is the heat capacity and kfis the thermal conductivity of the fluid)where the viscosityηCHis determined at a characteristic shear rate corresponding to˙γ =U/Dhand at a mean film temperature((ˉTo+ˉTi)/2)whereˉToandˉTiare the mean fluid temperature at the outlet and inlet reservoirs,respectively. The specific heatand thermalconductivity were assumed to be that of the solvent following several other studies[19,20].

    Fig.2.(a)Shear viscosity and(b)relaxation time determined from small amplitude oscillatory shear measurements versus shear rate/frequency:Newtonian fluid(?),80 ppm PAA(),120 ppm PAA(),and the solid continuous lines in plot(a)are Carreau-Yasuda fits.Inset in plot(b)shows first normal-stress difference versus shear rate. All data measured at 20°C.

    Fig.3.(a)Nusselt number versus Graetz number,(b)pressure-drop,and(c)normalized Nusselt number versus Weissenberg number.Newtonian fluid(?),80 ppm PAA(),120 ppm PAA().Numerical solutions for a developing laminar flow[24](---).Data shown in plot(c)is same as data shown in plot(a)and so Graetz number is also varying slightly for the two polymer solutions.

    The shear-rate dependent polymer relaxation time(λ)has been estimated by small-amplitude-oscillatory-shear(SAOS)measurements(λ=G′/(G′′ω)),where G′is the storage modulus,G′′is the loss modulus,andωis the applied angular velocity(see Fig.2(b)). The longest relaxation times(λ0)have been obtained from the SAOS measurements,by estimating the relaxation times in the limitofthe angular velocity tending to zero(see Table 1).The slight concentration dependence of the relaxation time suggests that the highest concentration solution may just be semi-dilute in agreement with the critical overlap concentration estimate from the intrinsic viscosity.It was also possible to measure the first normalstress difference for both solutions,although the values are very close to the resolution of the instrument:estimating a relaxation time from this data over the limited shear rate range available produces data broadly in agreement with the values estimated over the same frequency range in SAOS(on the order of 10?3-10?2s). Estimates of the relaxation time from stress relaxation measurements,e.g.,following Ref.[21],were not attempted.The important fluid properties for the fluids used in this study are listed in Table 1 at both 20°C and 26°C(the latter being a typical mean film temperature).

    To quantify the enhancement of heat transfer by elastic turbulence we calculate the Nusselt number(Nu)defined as

    where˙m is the mass flow rate,Asis the surface area of the channel, andis the log-mean temperature difference withˉTwbeing the mean wall temperature.

    Figure 3(a)shows the changes in the Nusselt number with increasing Graetz number(Gz=(Dh/L)·Re·Pr).The Newtonian fluid flow collapses to the numerical predictions for a thermally developing laminar flow through a straight square duct[24]suggesting the curvature of the serpentine channel has little influence for Newtonian fluids at such low Graetz numbers.Beyond a certain flowrate,the addition of viscoelasticity enhances the heat transfer causing an increase in the Nusselt number.From previous experimental and numerical work for isothermal flows in our group[15-17]and elsewhere[2-4,6],we know that creeping(Re→ 0)viscoelastic fluid flows through such serpentine channels firstly at low Wi number develop a steady secondary flow[15]before the onset of a purely-elastic instability leads to oscillatory timedependent flow at Weissenberg numbers of order one(~0.6[16],1.4-3.5[3],3.2[2,4]).Beyond this first linear instability the flowbecomes increasingly complex and,as previously discussed,developed elastic turbulence is observed beyond Wi> 7-15[2-4,6]. Hence for the parameter space of our investigation we are at a sufficiently high Wi number to be in a fully elastic turbulence regime and therefore we believe the increase in heat transfer we observe here is due to elastic turbulence,which has been created by the non-linear interaction between elastic stresses generated within the polymer solutions and the streamline curvature of the serpentine geometry[2-4].This scenario is illustrated in the pressure-drop data shown in Fig.3(b)where we can see thatatvery low flow-rates(Wi< 5)the pressure-drop and Nusselt number(Fig.3(c))are,to within the experimental uncertainties,essentially the same as the Newtonian values.Thus,perhaps surprisingly,the stationary secondary-flow driven by the interaction of the first normal-stress difference and channel curvature shown numerically in isothermalflow by Poole etal.[15]does notappear to modify the heattransfersignificantly in contrastto the secondary-flows driven by the second normal-stress difference for much more concentrated polymer solutions observed in straight ducts[20].Beyond this Weissenberg number the purely-elastic instability leads to an increase in the pressure-drop but the Nusselt number is only marginally affected(5< Wi< 25).Beyond Wi=25,where the pressure drop data plateaus,significant increases in normalized Nusselt number are observed(Fig.3(c)).At the highest flowrates achievable this leads to a maximum 300%increase compared to the equivalent Newtonian value(e.g.,identical Graetz number).

    Table 1 Fluid properties at 20°C and 26°C(in parenthesis).

    In this experimental investigation we have shown that it is possible to enhance the heat transfer by up to 300%in micro-scale geometry at low Graetz number using elastic turbulence.At the same flow-rates for equivalent Newtonian fluids,e.g.,either the solvent or identical Graetz number,the Nusselt number remains within 10%of the conduction limit.The elastic turbulence has been created by the non-linear interaction between elastic stresses generated within the flowing high-molecular-weight polymer solutions and the streamline curvature of the serpentine geometry.Outside of its fundamental scientific interest,the use of elastic turbulence to enhance the heat transfer could have impacts for micro-mixing technologies and in the design of lab-on-a-chip devices.

    Acknowledgments

    Waleed M.Abed gratefully acknowledges the financial support from The Higher Committee for Education Development in Iraq and The Iraqi Ministry of Higher Education and Scientific Research. Some of this paper was written whilst the corresponding author was a visiting professor at LMFA Université de Lyon Ecole Centrale de Lyon and this support is gratefully acknowledged.

    [1]A.Groisman,V.Steinberg,Elastic turbulence in a polymer solution flow,Nature 405(2000)53-55,http://dx.doi.org/10.1038/35011019.

    [2]A.Groisman,V.Steinberg,Efficient mixing at low Reynolds number using polymer additives,Nature 410(2001)905-908,http://dx.doi.org/10.1038/ 35073524.

    [3]T.Burghelea,E.Segre,I.Bar-Yosef,A.Groisman,V.Steinberg,Chaotic flow and efficient mixing in microchannel with a polymer solution,Phys.Rev.E 69(2004)066305,http://dx.doi.org/10.1103/PhysRevE.69.066305.

    [4]A.Groisman,V.Steinberg,Elastic turbulence in curvilinear flows of polymer solutions,New J.Phys.6(2004)1-48,http://dx.doi.org/10.1088/1367-2630/6/1/029.

    [5]B.A.Schiamberg,L.T.Shereda,H.Hu,R.G.Larson,Transitional pathway to elastic turbulence in torsional,parallel-plate flow ofa polymer solution,J.Fluid Mech.2006(2006)191-216,http://dx.doi.org/10.1017/S0022112006009426.

    [6]F.C.Li,H.Kinoshita,X.B.Li,M.Oishi,T.Fujii,M.Oshima,Creation of very-low-Reynolds-number chaotic fluid motions in microchannels using viscoelastic surfactant solution,Exp.Thermodyn.Fluid Sci.34(2010)20-27,http://dx.doi.org/10.1016/j.expthermflusci.2009.08.007.

    [7]J.Beaumont,N.Louvet,T.Divoux,M.A.Fardin,H.Bodiguel,S.Lerouge,S. Manneville,A.Colin,Turbulent flows in highly elastic wormlike micelles,Soft Matter 3(2013)735-749,http://dx.doi.org/10.1039/c2sm26760h.

    [8]T.Burghelea,E.Segre,V.Steinberg,Mixing by polymers:Experimental test of decay regime of mixing,Phys.Rev.Lett.92 (2004)164501,http://dx.doi.org/10.1103/PhysRevLett.92.164501.

    [9]Y.Jun,V.Steinberg,Mixing of passive tracers in the decay Batchelor regime of a channel flow,Phys.Fluids 22(2010)123101,http://dx.doi.org/10.1063/1. 3522400.

    [10]R.J.Poole,B.Budhiraja,A.R.Cain,P.A.Scott,Emulsification using elastic turbulence,J.Non-Newton.Fluid Mech.177-178(2012)15-18,http://dx.doi. org/10.1016/j.jnnfm.2012.03.012.

    [11]E.S.G.Shaqfeh,Purely elastic instabilities in viscometric flows,Ann.Rev.Fluid Mech.28(1996)129-185,http://dx.doi.org/10.1146/annurev.fl.28.010196. 001021.

    [12]A.N.Morozov,W.V.Saarloos,An introductory essay on subcritical instabilities and the transtion to turbulence in visco-elastic parallel shear flows,Phys.Rep. 447(2007)112-143,http://dx.doi.org/10.1016/j.physrep.2007.03.004.

    [13]L.Pan,A.N.Morozov,C.Wagner,P.E.Arratia,Purely nonlinear elastic instability in parallel shear flows,Phys.Rev.Lett.110(2013)174502,http://dx.doi.org/10.1103/PhysRevLett.110.174502.

    [14]T.M.Squires,S.R.Quake,Microfluidics:Fluid physics atthe nanoliter scale,Rev. Modern Phys.77(2005)977-1026,http://dx.doi.org/10.1103/RevModPhys. 77.977.

    [15]R.J.Poole,M.A.Alves,A.Lindner,Viscoelastic secondary flows in serpentine channels,J.Non-Newton.Fluid Mech.201 (2013)10-16,http://dx.doi.org/10.1016/j.jnnfm.2013.07.001.

    [16]J.Zilz,R.J.Poole,M.A.Alves,D.Bartolo,B.Levache,A.Lindner,Geometric scaling of a purely elastic flow instability in serpentine channels,J.Fluid Mech. 712(2012)203-218,http://dx.doi.org/10.1017/jfm.2012.411.

    [17]J.Zilz,C.Sch?fer,C.Wagner,R.J.Poole,M.A.Alves,A.Lindner,Serpentine channels:quantitative micro-rheometers for fluid relaxation times,Lab Chip 14(2014)351-358,http://dx.doi.org/10.1039/c3lc50809a.

    [18]K.Yasuda,R.C.Armstrong,R.E.Cohen,Shear flow properties of concentrated solutions of linear and star branched polystyrenes,Rheol.Acta 20(1981)163-178,http://dx.doi.org/10.1007/BF01513059.

    [19]R.P.Chhabra,J.F.Richardson,Non-Newtonian Flow and Applied Rheology: Engineering Applications,Butterworth-Heinemann,ISBN:978-0-7506-8532-0,2008.

    [20]J.P.Hartnett,M.Kostic,Heat transfer to a viscoelastic fluid in laminar flow through a rectangularchannel,Int.J.Heat Mass Transfer 28(1985)1147-1155,http://dx.doi.org/10.1016/0017-9310(85)90122-X.

    [21]Y.Liu,Y.Jun,V.Steinberg,Concentration dependence of the longest relaxation times of dilute and semi-diulte polymer solutions,J.Rheol.53(2009)1069-1085,http://dx.doi.org/10.1122/1.3160734.

    [22]M.Werner,A.Baars,F(xiàn).Werner,C.Eder,A.Delgado,Thermal conductivity of aqueous sugar solutions under high pressure,Int.J.Thermophys.28(2007)1161-1180,http://dx.doi.org/10.1007/s10765-007-0221-z.

    [23]F.A.Mohos,Confectionery and Chocolate Engineering Principles and Applications,John Wiley&Sons,Ltd.,ISBN:978-1-4051-9470-9,2010.

    [24]A.R.Chandrupatla,V.M.Sastri,Laminar forced convection heat transfer of a non-Newtonian fluid in a square duct,J.Heat Mass Transfer 20(1977)1315-1324,http://dx.doi.org/10.1016/0017-9310(77)90027-8.

    ?Corresponding author.

    E-mail address:robpoole@liv.ac.uk(R.J.Poole).

    http://dx.doi.org/10.1016/j.taml.2015.03.006

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    国产精品久久久久久精品电影小说 | eeuss影院久久| 亚洲欧美精品专区久久| 长腿黑丝高跟| 能在线免费看毛片的网站| 极品教师在线视频| 国产伦在线观看视频一区| 国产免费一级a男人的天堂| 男女下面进入的视频免费午夜| 中国国产av一级| 久久久色成人| 国产91av在线免费观看| 色综合色国产| 婷婷六月久久综合丁香| 日韩成人av中文字幕在线观看| 国产中年淑女户外野战色| 老女人水多毛片| 九草在线视频观看| 黄片wwwwww| 亚洲av一区综合| 插阴视频在线观看视频| 亚洲久久久久久中文字幕| 熟妇人妻久久中文字幕3abv| av播播在线观看一区| 亚洲av成人av| 国产老妇伦熟女老妇高清| 老师上课跳d突然被开到最大视频| 白带黄色成豆腐渣| 色综合亚洲欧美另类图片| 亚洲av一区综合| 桃色一区二区三区在线观看| a级一级毛片免费在线观看| 亚洲欧美精品自产自拍| 我的女老师完整版在线观看| 日本欧美国产在线视频| 亚洲三级黄色毛片| 国产免费一级a男人的天堂| 国产精品人妻久久久影院| 一级毛片我不卡| 99久久人妻综合| 成年版毛片免费区| 亚洲av男天堂| 18禁裸乳无遮挡免费网站照片| av线在线观看网站| 精品熟女少妇av免费看| 国产黄a三级三级三级人| 亚洲最大成人手机在线| 国产成人精品一,二区| 熟妇人妻久久中文字幕3abv| 成人国产麻豆网| 一区二区三区四区激情视频| 国产91av在线免费观看| 波野结衣二区三区在线| 日韩三级伦理在线观看| 国产精品久久久久久精品电影小说 | 国产精品综合久久久久久久免费| 国产国拍精品亚洲av在线观看| 午夜福利视频1000在线观看| 欧美潮喷喷水| 中文字幕av成人在线电影| 99在线人妻在线中文字幕| 久久国内精品自在自线图片| 国产免费又黄又爽又色| 日韩一本色道免费dvd| 国产黄a三级三级三级人| 简卡轻食公司| 国产精品99久久久久久久久| 亚洲精品日韩在线中文字幕| 嫩草影院新地址| 男人狂女人下面高潮的视频| 免费无遮挡裸体视频| 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区成人| 女的被弄到高潮叫床怎么办| 欧美不卡视频在线免费观看| 高清日韩中文字幕在线| videossex国产| 国产精品永久免费网站| 九九在线视频观看精品| 七月丁香在线播放| 国产精品熟女久久久久浪| 国产日韩欧美在线精品| 插逼视频在线观看| 九九久久精品国产亚洲av麻豆| 国产成人a∨麻豆精品| 免费观看的影片在线观看| 精品人妻一区二区三区麻豆| 男的添女的下面高潮视频| 欧美日韩在线观看h| 成人漫画全彩无遮挡| 最近2019中文字幕mv第一页| 国产成人freesex在线| 在线观看一区二区三区| 午夜福利视频1000在线观看| 免费av观看视频| 日本免费一区二区三区高清不卡| 欧美性猛交╳xxx乱大交人| 国产精品国产三级国产专区5o | 日日干狠狠操夜夜爽| 极品教师在线视频| 日本-黄色视频高清免费观看| 亚洲国产欧美在线一区| 日本黄色片子视频| 亚洲欧美日韩高清专用| 久久久欧美国产精品| 日日啪夜夜撸| 国产精品女同一区二区软件| 欧美成人午夜免费资源| 欧美日韩综合久久久久久| 亚洲精品日韩av片在线观看| 午夜老司机福利剧场| 久久久久久久亚洲中文字幕| 午夜日本视频在线| 丝袜美腿在线中文| 老女人水多毛片| 纵有疾风起免费观看全集完整版 | 我要看日韩黄色一级片| 国产91av在线免费观看| 九九在线视频观看精品| 亚洲国产欧美人成| 亚洲av电影不卡..在线观看| 美女脱内裤让男人舔精品视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av.av天堂| 国语对白做爰xxxⅹ性视频网站| 国产高清三级在线| 国产爱豆传媒在线观看| 欧美激情在线99| 99久久成人亚洲精品观看| 国产精品久久久久久久电影| 亚洲最大成人av| a级毛色黄片| 国产精品乱码一区二三区的特点| 国内揄拍国产精品人妻在线| 国产人妻一区二区三区在| 中国美白少妇内射xxxbb| 免费观看a级毛片全部| 美女内射精品一级片tv| 久久这里有精品视频免费| 日本五十路高清| 最近中文字幕高清免费大全6| 日本三级黄在线观看| 亚洲中文字幕一区二区三区有码在线看| 麻豆国产97在线/欧美| 国产中年淑女户外野战色| 伊人久久精品亚洲午夜| 国产国拍精品亚洲av在线观看| 三级国产精品片| 国产成人freesex在线| 菩萨蛮人人尽说江南好唐韦庄 | 国产毛片a区久久久久| 美女黄网站色视频| 免费在线观看成人毛片| 欧美人与善性xxx| 国产伦精品一区二区三区视频9| videossex国产| 成人一区二区视频在线观看| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久av不卡| 成年av动漫网址| 亚洲国产高清在线一区二区三| 欧美一区二区国产精品久久精品| 99久久人妻综合| 我的老师免费观看完整版| 听说在线观看完整版免费高清| 麻豆av噜噜一区二区三区| 波野结衣二区三区在线| 国产成人福利小说| 内地一区二区视频在线| 亚洲av日韩在线播放| 中文字幕熟女人妻在线| 欧美成人午夜免费资源| 国产精品国产三级专区第一集| 18禁在线播放成人免费| 免费看日本二区| 国产白丝娇喘喷水9色精品| 亚洲国产欧美在线一区| 99热这里只有精品一区| 中文字幕av成人在线电影| 岛国在线免费视频观看| 欧美97在线视频| 亚洲欧美精品专区久久| 国产片特级美女逼逼视频| 免费一级毛片在线播放高清视频| 26uuu在线亚洲综合色| 午夜精品在线福利| 亚洲在久久综合| 日本与韩国留学比较| 久久韩国三级中文字幕| 亚洲人成网站在线观看播放| 久久久久久伊人网av| 久99久视频精品免费| 亚洲在久久综合| 日韩大片免费观看网站 | 亚洲中文字幕日韩| 久久99热这里只频精品6学生 | 亚洲成人中文字幕在线播放| 日韩 亚洲 欧美在线| 国产精品乱码一区二三区的特点| 成人特级av手机在线观看| 晚上一个人看的免费电影| 身体一侧抽搐| 少妇猛男粗大的猛烈进出视频 | 亚洲久久久久久中文字幕| 成人毛片60女人毛片免费| 18禁在线播放成人免费| 国产成人a区在线观看| 只有这里有精品99| 亚洲四区av| 91狼人影院| 亚洲av成人精品一二三区| 精品一区二区三区视频在线| 小说图片视频综合网站| 日日干狠狠操夜夜爽| 啦啦啦观看免费观看视频高清| 深夜a级毛片| 99久国产av精品国产电影| 国产在线男女| 国产乱人视频| 97在线视频观看| 亚洲最大成人手机在线| 国产综合懂色| 不卡视频在线观看欧美| 蜜臀久久99精品久久宅男| 日韩av在线大香蕉| 国产免费又黄又爽又色| 久久亚洲精品不卡| 国产单亲对白刺激| 天堂中文最新版在线下载 | 亚洲精品亚洲一区二区| 久久久久九九精品影院| 黄色配什么色好看| 狂野欧美激情性xxxx在线观看| 国产乱人偷精品视频| 日韩av在线免费看完整版不卡| 亚洲aⅴ乱码一区二区在线播放| 亚洲丝袜综合中文字幕| 国产精品久久久久久精品电影| 久久精品夜色国产| 亚洲中文字幕一区二区三区有码在线看| 日本免费a在线| 中文在线观看免费www的网站| 国产av在哪里看| 国产亚洲精品久久久com| 男人的好看免费观看在线视频| 最近最新中文字幕大全电影3| 亚洲成人精品中文字幕电影| 亚洲欧美中文字幕日韩二区| 你懂的网址亚洲精品在线观看 | 亚洲av二区三区四区| 国产av不卡久久| 国产视频内射| 欧美精品一区二区大全| 国产亚洲av嫩草精品影院| 国产午夜精品论理片| 久久精品国产自在天天线| 在线免费十八禁| h日本视频在线播放| 狂野欧美激情性xxxx在线观看| 最近最新中文字幕大全电影3| 男人舔奶头视频| 高清av免费在线| 最近2019中文字幕mv第一页| 精品久久久久久久人妻蜜臀av| 91av网一区二区| 一本一本综合久久| 在线观看66精品国产| 深爱激情五月婷婷| 午夜久久久久精精品| 欧美日韩在线观看h| 午夜爱爱视频在线播放| 日本-黄色视频高清免费观看| 岛国在线免费视频观看| 伦精品一区二区三区| 99在线人妻在线中文字幕| 亚洲国产精品国产精品| eeuss影院久久| 精品无人区乱码1区二区| 国产午夜福利久久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美成人精品一区二区| 成年女人永久免费观看视频| 午夜精品一区二区三区免费看| 免费播放大片免费观看视频在线观看 | 日韩视频在线欧美| 久久这里只有精品中国| 久久久久久久国产电影| av国产免费在线观看| 99热6这里只有精品| 身体一侧抽搐| 国产精品熟女久久久久浪| 看十八女毛片水多多多| 校园人妻丝袜中文字幕| 国产伦一二天堂av在线观看| 久久久久久大精品| 成人一区二区视频在线观看| 国产成人精品婷婷| 亚洲人成网站高清观看| 亚洲伊人久久精品综合 | 国产三级中文精品| 久99久视频精品免费| 熟女电影av网| 插阴视频在线观看视频| 九九在线视频观看精品| av国产久精品久网站免费入址| 亚洲最大成人中文| 69人妻影院| 亚洲欧美成人精品一区二区| 中文字幕熟女人妻在线| 日韩一区二区视频免费看| av免费在线看不卡| 国产综合懂色| 国产精品,欧美在线| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 国产精品国产三级国产专区5o | 亚洲欧美精品综合久久99| 久久欧美精品欧美久久欧美| 免费黄色在线免费观看| 在线观看av片永久免费下载| 99在线视频只有这里精品首页| 一级黄色大片毛片| 欧美成人一区二区免费高清观看| .国产精品久久| 久久6这里有精品| 色5月婷婷丁香| 国产av不卡久久| 国产高清三级在线| 亚洲精品色激情综合| 蜜桃久久精品国产亚洲av| 日本色播在线视频| 老司机福利观看| 国产真实伦视频高清在线观看| 非洲黑人性xxxx精品又粗又长| 一区二区三区高清视频在线| 日韩亚洲欧美综合| 寂寞人妻少妇视频99o| 午夜老司机福利剧场| 看十八女毛片水多多多| 亚洲高清免费不卡视频| 亚洲经典国产精华液单| 免费搜索国产男女视频| 波野结衣二区三区在线| 国模一区二区三区四区视频| 插逼视频在线观看| videossex国产| 亚洲经典国产精华液单| 97热精品久久久久久| 伦理电影大哥的女人| 校园人妻丝袜中文字幕| 亚洲国产精品合色在线| 欧美激情在线99| 少妇熟女aⅴ在线视频| 一个人免费在线观看电影| 欧美日韩国产亚洲二区| 激情 狠狠 欧美| 联通29元200g的流量卡| 床上黄色一级片| 精品久久久噜噜| 亚洲自偷自拍三级| 青春草视频在线免费观看| 亚洲精品色激情综合| 国产高清三级在线| 久久人人爽人人爽人人片va| 联通29元200g的流量卡| 欧美一区二区国产精品久久精品| 亚洲成av人片在线播放无| 欧美性猛交黑人性爽| 国产在线男女| 成人漫画全彩无遮挡| 国产伦理片在线播放av一区| 精品免费久久久久久久清纯| 岛国毛片在线播放| 久久午夜福利片| 成人亚洲欧美一区二区av| 欧美成人一区二区免费高清观看| 欧美日韩一区二区视频在线观看视频在线 | 小说图片视频综合网站| 亚洲欧美清纯卡通| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 1000部很黄的大片| 51国产日韩欧美| 日韩av不卡免费在线播放| 熟女人妻精品中文字幕| 欧美又色又爽又黄视频| 国产单亲对白刺激| 精品国产三级普通话版| 精品久久久久久成人av| 国产私拍福利视频在线观看| 日韩视频在线欧美| 一级毛片电影观看 | 亚洲18禁久久av| 99热这里只有是精品50| 国产av不卡久久| 99久久精品一区二区三区| 成年女人永久免费观看视频| 亚洲国产日韩欧美精品在线观看| 精品免费久久久久久久清纯| 亚洲av二区三区四区| 丰满少妇做爰视频| 亚洲中文字幕一区二区三区有码在线看| 男人和女人高潮做爰伦理| 人妻夜夜爽99麻豆av| 成人性生交大片免费视频hd| av在线观看视频网站免费| 美女高潮的动态| 成人三级黄色视频| 99热这里只有精品一区| 色吧在线观看| 成人一区二区视频在线观看| 我要看日韩黄色一级片| 亚洲国产精品合色在线| 一级毛片我不卡| 成年女人看的毛片在线观看| 成人性生交大片免费视频hd| 自拍偷自拍亚洲精品老妇| 女人被狂操c到高潮| 亚洲成人中文字幕在线播放| 在线播放国产精品三级| 国产高清视频在线观看网站| 国产午夜精品一二区理论片| 18禁在线播放成人免费| 女人久久www免费人成看片 | 国产精品国产三级专区第一集| 亚洲一区高清亚洲精品| 热99在线观看视频| 日本一本二区三区精品| 床上黄色一级片| kizo精华| 男人狂女人下面高潮的视频| 亚洲欧美成人综合另类久久久 | 一级毛片电影观看 | 国产一区二区在线av高清观看| 人人妻人人看人人澡| 成人漫画全彩无遮挡| 成人高潮视频无遮挡免费网站| 日韩av在线大香蕉| 天堂中文最新版在线下载 | 国产成人免费观看mmmm| 啦啦啦韩国在线观看视频| 国产视频首页在线观看| 久久久欧美国产精品| 午夜亚洲福利在线播放| 亚洲成人av在线免费| 欧美激情在线99| 人体艺术视频欧美日本| 精品人妻熟女av久视频| 国产 一区精品| 免费黄色在线免费观看| 欧美日韩精品成人综合77777| 99久久人妻综合| 国产精品人妻久久久影院| 日韩欧美国产在线观看| 亚洲一级一片aⅴ在线观看| 联通29元200g的流量卡| 一级毛片久久久久久久久女| av福利片在线观看| 国产精品一区www在线观看| 欧美日本亚洲视频在线播放| 内地一区二区视频在线| 久久精品影院6| 日韩成人伦理影院| 亚洲精品影视一区二区三区av| 亚洲第一区二区三区不卡| 国产黄色视频一区二区在线观看 | 国产在线一区二区三区精 | 亚洲国产精品久久男人天堂| 国产精品一区二区三区四区久久| 日韩在线高清观看一区二区三区| 丝袜美腿在线中文| av在线蜜桃| 韩国av在线不卡| 国产不卡一卡二| 国产色爽女视频免费观看| 久久久久久久午夜电影| 欧美激情久久久久久爽电影| 午夜精品在线福利| 中文欧美无线码| 国产在线一区二区三区精 | 99久久成人亚洲精品观看| 高清av免费在线| 伦精品一区二区三区| 好男人视频免费观看在线| 纵有疾风起免费观看全集完整版 | 亚洲国产精品久久男人天堂| 变态另类丝袜制服| 国产精品乱码一区二三区的特点| 日本一二三区视频观看| av在线观看视频网站免费| 欧美成人午夜免费资源| 日本猛色少妇xxxxx猛交久久| 中国美白少妇内射xxxbb| 国产成人a∨麻豆精品| 麻豆久久精品国产亚洲av| 99热这里只有是精品在线观看| 搡女人真爽免费视频火全软件| 精品久久久久久久久久久久久| 长腿黑丝高跟| 不卡视频在线观看欧美| 国产亚洲av嫩草精品影院| 汤姆久久久久久久影院中文字幕 | 欧美一级a爱片免费观看看| 乱人视频在线观看| 女人久久www免费人成看片 | 免费观看a级毛片全部| 国产大屁股一区二区在线视频| 丰满乱子伦码专区| 白带黄色成豆腐渣| 国产精品一区www在线观看| 日本午夜av视频| 别揉我奶头 嗯啊视频| 色哟哟·www| 久久久久免费精品人妻一区二区| 久久午夜福利片| 又粗又爽又猛毛片免费看| 国产精品伦人一区二区| 亚洲自偷自拍三级| 国产探花极品一区二区| 18禁在线无遮挡免费观看视频| 午夜福利在线观看免费完整高清在| 久久精品国产亚洲网站| av免费观看日本| 精品久久久噜噜| 午夜亚洲福利在线播放| 国产极品精品免费视频能看的| 桃色一区二区三区在线观看| 99久久中文字幕三级久久日本| 亚洲精华国产精华液的使用体验| videossex国产| 男人舔奶头视频| 色尼玛亚洲综合影院| 丰满乱子伦码专区| av天堂中文字幕网| 日韩一区二区三区影片| 国产私拍福利视频在线观看| 尾随美女入室| 亚洲综合精品二区| 蜜臀久久99精品久久宅男| 级片在线观看| 18禁在线播放成人免费| av.在线天堂| 女人被狂操c到高潮| 黑人高潮一二区| 精品少妇黑人巨大在线播放 | 国产女主播在线喷水免费视频网站 | 免费黄网站久久成人精品| 国产精品人妻久久久影院| 精品少妇黑人巨大在线播放 | 亚洲欧美精品专区久久| 十八禁国产超污无遮挡网站| 乱人视频在线观看| 欧美三级亚洲精品| 久热久热在线精品观看| АⅤ资源中文在线天堂| 成年版毛片免费区| 中文字幕精品亚洲无线码一区| 国产成人91sexporn| 久久久欧美国产精品| 成人无遮挡网站| 欧美三级亚洲精品| 如何舔出高潮| 国产亚洲午夜精品一区二区久久 | 日韩在线高清观看一区二区三区| 日韩高清综合在线| 免费看a级黄色片| 国产精品麻豆人妻色哟哟久久 | 国产乱来视频区| 亚洲综合色惰| 伦精品一区二区三区| 好男人在线观看高清免费视频| 91av网一区二区| 可以在线观看毛片的网站| 国产成人a∨麻豆精品| 欧美又色又爽又黄视频| av在线老鸭窝| 一个人免费在线观看电影| 永久免费av网站大全| 九九爱精品视频在线观看| 亚洲最大成人av| 久久精品91蜜桃| 如何舔出高潮| 男女边吃奶边做爰视频| 亚洲成人av在线免费| 干丝袜人妻中文字幕| 国产男人的电影天堂91| 久久久久国产网址| 热99re8久久精品国产| 最近最新中文字幕免费大全7| 两性午夜刺激爽爽歪歪视频在线观看| 国产人妻一区二区三区在| 菩萨蛮人人尽说江南好唐韦庄 | 床上黄色一级片| 夫妻性生交免费视频一级片| 青春草国产在线视频| 免费不卡的大黄色大毛片视频在线观看 | 国产精品.久久久| 在线免费观看不下载黄p国产| 亚洲怡红院男人天堂| 国产伦在线观看视频一区| 麻豆成人午夜福利视频| 久久久成人免费电影| 亚洲精华国产精华液的使用体验| 2021少妇久久久久久久久久久| 在线观看一区二区三区| 国产精品不卡视频一区二区| 国产精品嫩草影院av在线观看| 亚洲欧美精品自产自拍| 蜜桃久久精品国产亚洲av| 18禁在线播放成人免费| 午夜福利网站1000一区二区三区| 国产精品久久电影中文字幕| av在线天堂中文字幕| 纵有疾风起免费观看全集完整版 | 啦啦啦韩国在线观看视频|