• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transition and self-sustained turbulence in dilute suspensions of finite-size particles

    2015-11-18 05:41:56LshgriPicnobBrndt

    I.Lshgri?,F(xiàn).Picnob,L.Brndt

    aLinné FLOW Centre and SeRC,KTH Mechanics,Stockholm,Sweden

    bIndustrial Engineering Department,University of Padova,Padova,Italy

    Transition and self-sustained turbulence in dilute suspensions of finite-size particles

    I.Lashgaria,?,F(xiàn).Picanoa,b,L.Brandta

    aLinné FLOW Centre and SeRC,KTH Mechanics,Stockholm,Sweden

    bIndustrial Engineering Department,University of Padova,Padova,Italy

    a r t i c l e i n f o

    Article history:

    Received 8 December 2014

    Accepted 22 January 2015

    Available online 24 April 2015

    Flow transition

    Suspension

    Finite-size particles

    Lift-up effect

    We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction,i.e.,Φ ≈ 0.001.The critical Reynolds number above which turbulence is sustained reduces to Re≈1675,in the presence of few particles,independently of the initial condition,a value lower than that of the corresponding single-phase flow,i.e.,Re≈1775.In the dilute suspension,the initial arrangement of the particles is important to trigger the transition at a fixed Reynolds number and particle volume fraction.As in single phase flows,streamwise elongated disturbances are initially induced in the flow. If particles can induce oblique disturbances with high enough energy within a certain time,the streaks breakdown,flow experiences the transition to turbulence and the particle trajectories become chaotic. Otherwise,the streaks decay in time and the particles immigrate towards the channel core in a laminar flow.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Understanding the characteristics of suspension flows is of fundamental and practical importance in natural phenomena,e.g.particles in the atmosphere and water,and industry,e.g.transportation and mixing.The focus of this paper is therefore on the transition from the laminar to the turbulent flow of dilute suspensions of finite-size particles,particles larger than the smallest flow scales,a process associated to a significant(usually sudden)alteration of the nature of the flow.Although the dynamics is governed by a single non-dimensionalparameter—the Reynolds number,the ratio ofinertia to viscous forces,transition ofsingle phase flows has challenged the scientists fora long time and itis notyetcompletely understood.The behavior of suspensions is more complicated because ofthe various particle properties such as size,number,shape,deformability,density.

    To the best of our knowledge,there exist only few studies of the transition to turbulence of suspensions of finite-size particles(for the case of point particles the reader is referred to Ref.[1]and references therein).The experiments by Matas et al.[2]examine the effects of finite-size neutrally buoyant particles on the transition in pipe flow.These authors report that suspensions of large particles exhibita non-monotonic behavior ofthe criticalReynolds number when increasing the particle volume fraction.The different regimes are identified by the pressure drop between the inlet and outlet of the pipe.A decade later and thanks to the improvement of computational algorithms and resources,numerical simulations of finite-size particle suspensions start to emerge.Yu et al.[3]partially simulate the experiments in Ref.[2].Since the flow is always perturbed by the presence of the particles,the level of streamwise velocity fluctuations is used to define a threshold to distinguish between laminarand turbulentflow.The experimental behavior in Ref.[2]could be reproduced by tuning this threshold parameter,showing the difficulties to define the transition threshold in suspensions.A more detailed analysis ofthe flow in the transitional regime is reported by Loisel et al.[4]where a fixed particle volume fraction is examined,Φ≈5%.These authors show that the coherentstructures ofthe flow are broken by the presence offinite size particles and smallereddies(more energetic)prevents the flow from relaminarization when decreasing the Reynolds number;this effect promotes therefore turbulence.

    Summarizing,transition delay is attributed to the enhancement of the effective viscosity of the suspensions for smaller particles[2],whereas promotion of transition is,instead,qualitatively attributed to large disturbances induced by particles of large enough size.

    Recently Lashgari et al.[5]studied suspensions of spherical neutrally buoyant particles for a wide range of Reynolds numbers,Re,and box-averaged volume fractions,Φ.These authors examinethe globalmomentum balance[6]and reportthe existence ofthree different regimes when varyingΦand Re.For lowΦand Re,the flow is laminar and the viscous stress dominates.For high Re and sufficiently lowΦ,the flow is turbulent and the Reynolds stress contributes the most to the momentum transport as in classic single-phase turbulence.The flow is dominated by the particle stress at moderateΦ.

    For the cases at lowΦ,transition is sharp when increasing the Reynolds number and can be easily identified,e.g.by the level of fluctuations and wall shear stress;at highΦ,however,all the observables vary smoothly with Re.The latter case is denoted as inertial shear-thickening since it is characterized by a significant increase of the wall friction that is not attributed to an increase of the Reynolds stress butto the enhancementofthe particle-induced stress.

    The aim of this letter is to examine the reduction of the critical Reynolds number above which turbulence exists in very dilute suspensions offinite size particles.We study in details the mechanism behind the transition promotion and relate this to self-sustained turbulence by analyzing the kinetic energy induced by the particles and transferred from small scales to large scales.

    We perform direct numerical simulation of suspensions laden with rigid spherical neutrally buoyant particles.We employ an immersed boundary solver based on the original formulation by Uhlmann[7]and developed by Breugem [8].The code couples a fixed uniform Eulerian mesh for the fluid phase with a quasiuniform Lagrangian mesh representing the surface of the particles. The fluid velocity is interpolated on the Lagrangian grids,the immersed boundary forcing is computed based on the difference between the particle velocity and the interpolated fluid velocity at each Lagrangian grid point and finally the forcing spread out from the Lagrangian to the Eulerian mesh.The near field interactions are treated by means of lubrication forces and soft-sphere collision models.The code has been validated against several test cases in Refs.[5,8].

    We simulate the flow in a pressure-driven channel flow with streamwise and spanwise periodic boundary condition and no slip condition at the walls.The box size is 2h×3h×6h in the wallnormal,spanwise,and streamwise directions where h is the half channel height.The domain is larger than the minimal unit channels used for transition in Newtonian fluids[9]and polymer suspensions[10].The numberofEulerian grid points is 160×240×480 with 746 Lagrangian points used to resolve the surface of each particle.The ratio between the channel height and particle diameters is fixed to 10(with 16 grid points per particle diameter).The particle diameter is that pertaining the case in the experiment[2]where the strongest non-monotonic behavior of the critical transition threshold is observed.We denote streamwise coordinate and velocity by v and y,wall normal by w and z,and spanwise by x and u.The simulations are performed imposing a constant mass flux,with the bulk velocity denoted by Ub.The Reynolds number is defined as Re=2Ubh/νwhereνis the fluid kinematic viscosity.In order to calculate the characteristics of the two-phase flow,a phase field indicator(mask),ξ,is created for the total field such thatξ=1 indicates the solid phase andξ=0 the fluid phase. The parameters ofthe fluid phase,e.g.rootmean squared(rms)velocities,are then obtained by taking average over all the Eulerian points withξ=0 and similar for the particle phase withξ=1.

    In this work,we study the transition and self-sustained turbulence in a channel flow laden with few finite-size neutrallybuoyant particles(dilute regime)and compare the results with the one ofthe single-phase(Newtonian)flow.We use only 10 particles corresponding to a particle volume fractionΦ≈0.001.

    It is known that the transition threshold in Poiseuille flow depends on the initial disturbance;one strategy to obtain the threshold for sustained turbulence is to decrease the Reynolds number ofthe turbulent flow until the flow re-laminarizes(see among others[11,12]).For the single phase flow,we use as initial disturbance high amplitude localized stream-wise vortices,see Ref.[13]for the analyticalexpression ofthe disturbance velocity field.The time histories of the streamwise rms perturbation velocity of the unladen flow are depicted in Fig.1(a).Note that the rms velocities are normalized by Uband time in units of h/Ub.The criticalReynolds number is found to be 1750< Rec< 2000 for this particular flow domain and a maximum wall normal velocity of the initial disturbance equal to 10 times of the bulk velocity;fluctuations are sustained at Re=2000 but they decay and eventually vanish at Re=1750.In the next step,we initiate the simulations with a turbulent velocity field at Reb=2000,decrease the Reynolds number to 1800 and run the simulation for a long time:the fluctuations remain and therefore the threshold value ofthe sustained turbulence of the unladen flow is identified approximately,Rec≈1775.

    Fig.1.(Color online)Time history of the streamwise velocity fluctuations for(a)Newtonian flow and(b,c)two different paths in particle laden flow(See text).

    The initial condition for the particle-laden flow is given by a random arrangement of the particles,all moving with the local fluid velocity and initial angular velocity equal to half the value of the local vorticity.The initial disturbance source is due to the flow adjustments to the particle presence and therefore depends on the particle position.We initially keep the same initial condition and run simulations at different Reynolds numbers.We observe that the fluctuations,induced by the particles,eventually decay at Re<1800 while they grow to the turbulent regime at Re> 1850(see the fluid streamwise rms velocity in Fig.1(b)).Note that the initial particle arrangement strongly affects the disturbance growth and transition.Therefore,the threshold value of 1800< Rec< 1850 is only valid for this particular initial configuration;a different behavior is most likely to be observed with another random initial distribution.We will come back to this point when we analyze the trajectory of the particles.As for the unladen flow,we therefore reduce the Reynolds number of the particulate turbulent flow and monitor the Reynolds number at which flow re-laminarizes. The results in the figure reveal that turbulence is sustained at Re=1700 while it decays at Re=1650.Based on these set of simulations,the critical value for sustained turbulence in theparticle laden flow is Re≈ 1675,a value lower than that of the unladen flow in agreement with the experimental data by Matas et al.[2].The finite-size particles do not only trigger the transition to turbulence but also keep the turbulence at Reynolds number lower than that of the unladen flow.Note that the simulations at which turbulence is sustained are integrated for a time longer than that shown in Fig.1.

    To further highlight the difference between laden and unladen flow,we perform a third set of simulations,see Fig.1(c).In this case starting with a turbulent flow at Re=1850,we first remove the particles and then reduce the Reynolds number until the flow re-laminarizes.The flow sustains turbulence at Re=1800 and it re-laminarizes at Re=1750 providing additional evidence that the threshold for unladen flow is about Re≈ 1775 and that the presence of particles is important to sustain turbulence.For all the cases studied,the fluctuations decay at similar rate once the flow re-laminarizes.We have compared the statistics of the turbulent laden and unladen flows atthe same Reynolds number and observe small differences(not shown here).

    The initial particle configuration plays a vital role to determine the final state of the flow.The flow can become either laminar or turbulent at fixed Reynolds number and number of particles for different initial arrangement of the particles.

    To gain physical understanding on the particle influence,we compare the flows at Re=1850 andΦ≈0.001,Re=1800 and Φ≈0.001 and the same initial random arrangement of the particles(denoted as case-Iand case-II),with a simulation at Re=1850 andΦ≈0.001 and a different initial random arrangement(case-III).Out of these three flows,only case-I is turbulent whereas the other two are laminar.Although the threshold for sustained turbulence for the particle-laden flow is Re≈1675,the disturbances produced by the particles may not be strong enough to bring the system to turbulence.

    The time histories of the wall-normal particle position are reported in Fig.2(a)for the three cases introduced above.The particles of case-I(green symbols)and case-II(red symbols),with same initial distribution,initially follow the same path.At t≈300,the trajectories start to deviate and exhibit a completely different behavior at t>500.Case-I is characterized by a chaotic particle motion,whereas particles migrate towards the center of the channel in case-II;they are eventually found at about 10% of the channel height,from either side of the channel centerline,z≈ 0.45-0.55.This migration is explained by the action of the Saffman lift force(see Refs.[14,15]).A similar behavior is observed for case-III(blue symbols)when the flow returns to the laminar state although Re=1850.A detailed analysis of the particle final equilibrium position in the presence of inertia and as a function of particle size can be found in the work by Matas et al.[16]for laminar flows.

    We display the particle trajectories in the spanwise directions in Fig.2(b).Forthe laminarcases(case-IIand case-III),the trajectories are almost spanwise independent:particle are transported by the laminar fluid and do not experience strong lateral motions. Significant lateral motions occur,on the contrary,in a turbulent flow.The streamwise particle velocity is shown in Fig.2(c).Here we observe a final streamwise velocities of about 1.44 at the equilibrium position in the laminar cases,a value larger than the mean velocity(about 1.12)of the turbulent case.

    We also examine the particle trajectories in suspensions of higher volume fractions and observe a similar final arrangement of the particles when the flow remains laminar.In other words,particles perturb the flow while migrating towards their equilibrium position.If the flow becomes turbulent during this transient phase,particles will be subject to strong hydrodynamics forces and start to move chaotically;thus,in turn,they contribute to maintain the turbulence.

    Fig.2.(Color online)Particle trajectories in:(a)wall normal and(b)spanwise directions,and(c)particle streamwise velocity for case-I(green symbols),case-II(red symbols),and case-III(blue symbols).See text for the definition.

    In order to better understand the mechanism behind the transition in the presence of few particles,we examine the twodimensional spectra of the perturbation kinetic energy,integrated in the wall-normal direction.We shall denote by(α,β)the streamwise and spanwise wavenumbers.The number of Fourier modes employed for each case is enough to reproduce the original field with less than 1%error.

    We report the energy spectra pertaining case-I,case-II,and case-III in Fig.3 at three different times in the interval when the behavior of the flow changes considerably,t∈ [300,500](see Fig.2).The contours on the top/middle/low panel correspond to case-I/case-II/case-III.The energy spectra at early times clearly reveal that particles contribute to introduce energy to small scales(not shown here);the modes with high streamwise and spanwise wavenumbers contain non-negligible energy when particles are introduced in the flow.By the time t=300,the energy is transferred back to the larger scales for all cases(see Fig.3(a,d,g)).The peak of the spectra are located atα=0,corresponding to the formation of elongated streaks by the lift-up effect.As discussed in Ref.[17],the linear lift-up effect,responsible for the streak formation,is hardly affected by the particle presence.Once the streaks have formed,the difference between the three cases is in the energy content of modes withα ≥ 1(this is found to be larger for case-I,the only turbulent flow).It is likely due to the particular initial condition(case-I vs.case-III)and to the slightly larger Reynolds numbers(case-I vs.case-II).This is more evident at t= 400,F(xiàn)ig.3(b),where oblique modes are strong enough to destroy the streaks and promote transition.The flow becomes streamwise dependent and the disturbance energy cascades to modes of higher and higher wavenumbers,see Fig.3(c).The opposite is true for case-II and case-III,F(xiàn)ig.3(e,f,h,i).Here a single streak resists against the perturbations induced by the particles until it eventually decays.Examining the evolution ofthe perturbation kinetic energy,we thus infer thatthe particles induce streamwise dependentmodes(oblique waves).If these oblique modes have high enough energy,they promote the streak breakdown and the flow undergoes the transition to turbulence.Conversely,the streaks decay and particles migrate towards their equilibrium position,close to the channel centerline.The initial arrangement of the particles is thus directly connected to the streak breakdown and transition.In the future,it would be interesting to investigate the relative position between vortices/streaks and the particles to access a mechanistic model of their interactions.

    Fig.3.Energy spectra for the flow case-I(a-c),case-II(d-f),and case-III(g-i).(a,d,g):t=25,(b,e,h):t=300,(c,f,i):t=500.

    We study the transition to turbulence in channel flow of dilute suspensions of finite-size neutrally buoyant particles and compare the results with those ofthe single-phase flow.The particle volume fraction studied isΦ ≈ 0.001.An immersed boundary solver is used to simulate the particulate flow where lubrication forces and soft sphere collision models are implemented for the near field interactions.

    The critical Reynolds number above which turbulence is sustained is Re≈ 1775 for the single-phase flow.It decreases to Rec≈ 1675 for the particulate flow withΦ ≈ 0.001.The disturbances induced by the particles are therefore enough to sustain turbulence at lower Reynolds numbers.The same threshold for the single-phase flow is also obtained,Re≈ 1775,by removing the particles from a turbulent particle-laden flow and decreasing the Reynolds number.

    We show that the initial random arrangement of the particles is important to determine whether the flow becomes turbulent. If the flow undergoes transition to turbulence,the particles move chaotically whereas they migrate towards their equilibrium position,close to the centerline,in a laminar flow.This is also observed for flows with a higher number of particles(e.g.50 particles,Φ≈0.005).

    We further examine the two-dimensional energy spectra for three cases:turbulent case-I(Re= 1850)and laminar case-II(Re=1800)with the same initial random arrangement of particles and laminar case-III(Re=1850)but with a different initial arrangement.The results indicate that the transition in case-I is due to higher energy content in oblique disturbance modes.The particles can trigger strong enough oblique modes that promote the streak breakdown.The streaks undergo secondary instabilities and breakdown to turbulence,before being regenerated by non-linear interactions in a self-sustaining cycle[9].In the other two cases,the streaks induced initially by the lift-up effect decay slowly in time and the particles migrate towards the centerline.

    Acknowledgments

    This work was supported by the European Research Council Grant No.ERC-2013-CoG-616186,TRITOS and by the Swedish Research Council(VR).The authors acknowledge computer time provided by SNIC(Swedish NationalInfrastructure for Computing).

    [1]J.Klinkenberg,G.Sardina,H.C.De Lange,L.Brandt,Numericalstudy oflaminarturbulent transition in particle-laden channel flow,Phys.Rev.E 86(2013)043011.http://dx.doi.org/10.1103/PhysRevE.87.043011.

    [2]J.P.Matas,J.F.Morris,é Guazzelli,Transition to turbulence in particulate pipe flow,Phys.Rev.Lett.90(2003)1. http://dx.doi.org/10.1103/PhysRevLett.90.014501.

    [3]Z.Yu,T.Wu,X.Shao,J.Lin,Numerical studies of the effects of large neutrally buoyant particles on the flow instability and transition to turbulence in pipe flow,Phys.Fluids 25(2013)043305.http://dx.doi.org/10.1063/1.4802040.

    [4]V.Loisel,M.Abbas,O.Masbernat,E.Climent,The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime,Phys.Fluids 25(2013)123304.http://dx.doi.org/10.1063/1.4848856.

    [5]I.Lashgari,F(xiàn).Picano,W.-P.Breugem,L.Brandt,Laminar,turbulent and inertialshear-thickening regimes in channelflow ofneutrally buoyantparticle suspensions,Phys.Rev.Lett.113(2014)254502. http://dx.doi.org/10.1103/PhysRevLett.113.254502.

    [6]Q.Zhang,A.Prosperetti,Physics-based analysis of the hydrodynamic stress in a fluid-particle system,Phys.Fluids 22(2010)03330. http://dx.doi.org/10.1063/1.3365950.

    [7]M.Uhlmann,An immersed boundary method with direct forcing for the simulation of particulate flows,J.Comput.Phys.209(2005)448-476. http://dx.doi.org/10.1016/j.jcp.2005.03.017.

    [8]W.-P.Breugem,A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows,J.Comput.Phys.231(2012)4469-4498.http://dx.doi.org/10.1016/j.jcp.2012.02.026.

    [9]J.M.Hamilton,J.Kim,F(xiàn).Waleffet,Regeneration mechanisms of near-wall turbulence structures,J.Fluid Mech.287(1995)317-348. http://dx.doi.org/10.1017/S0022112095000978.

    [10]L.Xi,M.D.Graham,Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids,Phys.Rev.Lett.104(2010)218301. http://dx.doi.org/10.1103/PhysRevLett.104.218301.

    [11]A.Schmiegel,B.Eckhardt,Persistent turbulence in annealed plane Couette flow,Europhys.Lett.51(2000)395-400.http://dx.doi.org/10.1209/epl/i2000-00507-2.

    [12]J.Philip,P.Manneville,F(xiàn)rom temporal to spatiotemporal dynamics in transitional plane Couette flow,Phys.Rev.E 83(2011)036308. http://dx.doi.org/10.1103/PhysRevE.83.036308.

    [13]D.S.Henningson,J.Kim,On turbulent spots in plane Poiseuille flow,J.Fluid Mech.228(1991)183-205.http://dx.doi.org/10.1017/S0022112091002677.

    [14]P.G.Saffman,The lift on a small sphere in a slow shear flow,J.Fluid Mech.22(1965)385-400.http://dx.doi.org/10.1017/S0022112065000824.

    [15]G.Segre,A.Sliberberg,Radial particle displacements in Poiseuille flow of suspensions,Nature 189(1961)209-210.http://dx.doi.org/10.1038/189209a0.

    [16]J.P.Matas,J.F.Morris,é Guazzelli,Inertial migration of rigid spherical particles in Poiseuille flow,J.Fluid Mech.515(2004)171-195. http://dx.doi.org/10.1017/S0022112004000254.

    [17]L.Brandt,The lift-up effect:The linear mechanism behind transition and turbulence in shear flows,Eur.J.Mech.B Fluids 47(2014)80-96. http://dx.doi.org/10.1016/j.euromechflu.2014.03.005.

    ?Corresponding author.

    E-mail address:imanl@mech.kth.se(I.Lashgari).

    http://dx.doi.org/10.1016/j.taml.2015.04.004

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    久9热在线精品视频| 看片在线看免费视频| 亚洲欧美精品综合一区二区三区| 巨乳人妻的诱惑在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区国产精品乱码| 黄网站色视频无遮挡免费观看| 日本欧美视频一区| 免费观看人在逋| 国产精品秋霞免费鲁丝片| 怎么达到女性高潮| 黑人巨大精品欧美一区二区mp4| 日本欧美视频一区| 母亲3免费完整高清在线观看| 免费不卡黄色视频| 亚洲专区字幕在线| 免费少妇av软件| 亚洲av电影在线进入| 99香蕉大伊视频| xxx96com| 亚洲精品中文字幕在线视频| 日韩欧美三级三区| 成年人黄色毛片网站| 正在播放国产对白刺激| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩亚洲国产一区二区在线观看 | 久久天躁狠狠躁夜夜2o2o| 精品免费久久久久久久清纯 | 久久青草综合色| 亚洲精品国产色婷婷电影| 成人18禁高潮啪啪吃奶动态图| 高潮久久久久久久久久久不卡| 怎么达到女性高潮| 亚洲成人手机| 女人爽到高潮嗷嗷叫在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩福利视频一区二区| 啦啦啦视频在线资源免费观看| 热re99久久精品国产66热6| 久久狼人影院| 久久精品国产亚洲av高清一级| 精品一区二区三区四区五区乱码| 欧美 亚洲 国产 日韩一| 99国产极品粉嫩在线观看| 大香蕉久久网| 两人在一起打扑克的视频| 久久国产亚洲av麻豆专区| 午夜精品国产一区二区电影| 国产av精品麻豆| 电影成人av| tocl精华| 91大片在线观看| 久久青草综合色| 飞空精品影院首页| 大香蕉久久网| 国产精品亚洲av一区麻豆| 午夜91福利影院| 韩国精品一区二区三区| 香蕉丝袜av| e午夜精品久久久久久久| 亚洲av片天天在线观看| 精品人妻1区二区| 一个人免费在线观看的高清视频| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美网| 91字幕亚洲| 亚洲av日韩精品久久久久久密| 欧美日韩一级在线毛片| 亚洲欧美一区二区三区久久| 亚洲少妇的诱惑av| 国产成人精品久久二区二区91| 久久草成人影院| 老司机深夜福利视频在线观看| 波多野结衣av一区二区av| 香蕉丝袜av| 精品久久蜜臀av无| 欧美不卡视频在线免费观看 | 亚洲九九香蕉| 欧美黄色淫秽网站| 欧美不卡视频在线免费观看 | 中文字幕人妻丝袜一区二区| 国产国语露脸激情在线看| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区蜜桃| 久久久国产精品麻豆| 99久久国产精品久久久| av不卡在线播放| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av高清一级| 欧美另类亚洲清纯唯美| 建设人人有责人人尽责人人享有的| 久久天堂一区二区三区四区| 一进一出抽搐动态| 中文字幕精品免费在线观看视频| 精品国产一区二区三区四区第35| 亚洲人成电影观看| 免费一级毛片在线播放高清视频 | 国产视频一区二区在线看| 国产欧美日韩一区二区三| 18禁裸乳无遮挡免费网站照片 | 欧美精品高潮呻吟av久久| 天天添夜夜摸| 免费久久久久久久精品成人欧美视频| 一边摸一边做爽爽视频免费| 久热这里只有精品99| 国产免费现黄频在线看| 在线观看免费视频日本深夜| 欧美乱码精品一区二区三区| 精品一区二区三区视频在线观看免费 | 免费观看a级毛片全部| 十分钟在线观看高清视频www| 美女扒开内裤让男人捅视频| 看黄色毛片网站| 色老头精品视频在线观看| 久久人人97超碰香蕉20202| 成人国产一区最新在线观看| 在线观看免费视频网站a站| 极品教师在线免费播放| 国产色视频综合| 可以免费在线观看a视频的电影网站| 久久久久久久久免费视频了| 两性午夜刺激爽爽歪歪视频在线观看 | 日本一区二区免费在线视频| 国产精品一区二区在线不卡| 大型黄色视频在线免费观看| 狠狠狠狠99中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩一区二区三区在线| 天天添夜夜摸| 法律面前人人平等表现在哪些方面| 女同久久另类99精品国产91| 90打野战视频偷拍视频| 午夜成年电影在线免费观看| 老司机靠b影院| 视频区欧美日本亚洲| 国产亚洲欧美98| 午夜福利影视在线免费观看| 18禁观看日本| 香蕉久久夜色| 日韩免费高清中文字幕av| 精品国产超薄肉色丝袜足j| 国产蜜桃级精品一区二区三区 | 亚洲精品av麻豆狂野| 一级毛片精品| 一边摸一边抽搐一进一出视频| 悠悠久久av| 少妇被粗大的猛进出69影院| 国产欧美日韩综合在线一区二区| 曰老女人黄片| 精品人妻熟女毛片av久久网站| 久久这里只有精品19| 免费日韩欧美在线观看| 国产一卡二卡三卡精品| 无人区码免费观看不卡| 九色亚洲精品在线播放| 天天添夜夜摸| 两个人看的免费小视频| 午夜福利视频在线观看免费| 桃红色精品国产亚洲av| 日韩免费高清中文字幕av| 人妻 亚洲 视频| 麻豆国产av国片精品| 欧美乱码精品一区二区三区| 久久天堂一区二区三区四区| 十分钟在线观看高清视频www| 午夜激情av网站| 99精品欧美一区二区三区四区| 很黄的视频免费| 欧美日韩瑟瑟在线播放| 国产91精品成人一区二区三区| 精品熟女少妇八av免费久了| 9热在线视频观看99| 亚洲,欧美精品.| 在线观看日韩欧美| 免费在线观看视频国产中文字幕亚洲| 在线免费观看的www视频| 亚洲色图 男人天堂 中文字幕| 日日夜夜操网爽| 国产深夜福利视频在线观看| 国产亚洲精品久久久久5区| 婷婷丁香在线五月| 黄色成人免费大全| 90打野战视频偷拍视频| 免费av中文字幕在线| 国产99白浆流出| 大香蕉久久网| 久久久国产成人精品二区 | 不卡一级毛片| 成人免费观看视频高清| 亚洲第一欧美日韩一区二区三区| 妹子高潮喷水视频| 香蕉丝袜av| 亚洲精品国产色婷婷电影| 国产成人欧美| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 动漫黄色视频在线观看| 亚洲九九香蕉| 久久久久久久久免费视频了| 亚洲欧美色中文字幕在线| 国产精品 国内视频| 黄片播放在线免费| 免费看a级黄色片| 国产一区二区三区视频了| 国产一区二区三区综合在线观看| 可以免费在线观看a视频的电影网站| 国产精品98久久久久久宅男小说| 久久精品人人爽人人爽视色| 午夜久久久在线观看| 精品一区二区三区视频在线观看免费 | 亚洲精品成人av观看孕妇| 女性生殖器流出的白浆| 两个人看的免费小视频| 亚洲精品国产区一区二| 精品乱码久久久久久99久播| 中亚洲国语对白在线视频| av天堂久久9| 不卡一级毛片| 欧美黑人精品巨大| 国产成人精品久久二区二区91| 色综合欧美亚洲国产小说| 老熟妇乱子伦视频在线观看| 日韩成人在线观看一区二区三区| 精品国产一区二区三区久久久樱花| 夫妻午夜视频| 天天躁夜夜躁狠狠躁躁| 国产黄色免费在线视频| 咕卡用的链子| 国产亚洲欧美在线一区二区| 久久国产精品人妻蜜桃| 国产高清激情床上av| 日韩有码中文字幕| 热re99久久精品国产66热6| 亚洲av第一区精品v没综合| 91老司机精品| av视频免费观看在线观看| 女警被强在线播放| 不卡一级毛片| 99riav亚洲国产免费| 日韩免费高清中文字幕av| 亚洲熟妇中文字幕五十中出 | 成人精品一区二区免费| 侵犯人妻中文字幕一二三四区| 国产人伦9x9x在线观看| 国产精品98久久久久久宅男小说| 啦啦啦免费观看视频1| 国内毛片毛片毛片毛片毛片| 久久精品91无色码中文字幕| 欧美最黄视频在线播放免费 | 日本五十路高清| 国产成人影院久久av| 亚洲欧美一区二区三区久久| 岛国毛片在线播放| 国产高清videossex| 无遮挡黄片免费观看| 麻豆国产av国片精品| 国产乱人伦免费视频| 国产男女超爽视频在线观看| 看免费av毛片| 国产精品免费一区二区三区在线 | 午夜视频精品福利| 免费看十八禁软件| 欧美日韩av久久| 国产av精品麻豆| 亚洲欧美日韩高清在线视频| 国产淫语在线视频| 亚洲一区高清亚洲精品| 亚洲精品在线观看二区| 国产国语露脸激情在线看| 午夜两性在线视频| 色精品久久人妻99蜜桃| 色老头精品视频在线观看| 久久国产精品大桥未久av| 久久热在线av| 一进一出好大好爽视频| 多毛熟女@视频| 极品少妇高潮喷水抽搐| bbb黄色大片| 午夜两性在线视频| 久久久久国内视频| 女性被躁到高潮视频| 视频区欧美日本亚洲| 国产在线精品亚洲第一网站| 亚洲成人国产一区在线观看| 国产精品欧美亚洲77777| 色在线成人网| 最新在线观看一区二区三区| 成人国产一区最新在线观看| 操出白浆在线播放| 国产成人欧美| 亚洲色图 男人天堂 中文字幕| 黄色成人免费大全| 亚洲欧美一区二区三区黑人| 一本综合久久免费| 亚洲人成77777在线视频| 久久热在线av| 在线免费观看的www视频| 免费久久久久久久精品成人欧美视频| 国产真人三级小视频在线观看| 精品一区二区三区四区五区乱码| 伊人久久大香线蕉亚洲五| 成年人黄色毛片网站| 亚洲欧美精品综合一区二区三区| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 大陆偷拍与自拍| 丁香六月欧美| 在线天堂中文资源库| 国产aⅴ精品一区二区三区波| 亚洲国产看品久久| av网站在线播放免费| 色在线成人网| 亚洲成国产人片在线观看| 欧美+亚洲+日韩+国产| 亚洲熟女精品中文字幕| 久久香蕉精品热| 男女下面插进去视频免费观看| 午夜91福利影院| av有码第一页| 成人精品一区二区免费| 午夜福利免费观看在线| 99国产精品99久久久久| 美女高潮到喷水免费观看| 国产在线精品亚洲第一网站| 人人妻人人爽人人添夜夜欢视频| 久久久久久久久免费视频了| 亚洲成av片中文字幕在线观看| 男女高潮啪啪啪动态图| 精品国产美女av久久久久小说| 一级片'在线观看视频| 亚洲少妇的诱惑av| 夜夜夜夜夜久久久久| 日韩欧美国产一区二区入口| 免费在线观看亚洲国产| 新久久久久国产一级毛片| 在线观看免费午夜福利视频| 国产精品亚洲一级av第二区| 人成视频在线观看免费观看| 亚洲一区中文字幕在线| 最近最新中文字幕大全免费视频| 一级毛片精品| 精品一区二区三卡| 成人亚洲精品一区在线观看| 久久中文字幕一级| 法律面前人人平等表现在哪些方面| 成人特级黄色片久久久久久久| 19禁男女啪啪无遮挡网站| 最新在线观看一区二区三区| 久久国产精品影院| 亚洲男人天堂网一区| 免费在线观看亚洲国产| 欧美日韩av久久| 在线天堂中文资源库| 亚洲精品乱久久久久久| 久久国产精品影院| 欧美日本中文国产一区发布| 国产欧美日韩综合在线一区二区| 岛国在线观看网站| 一本一本久久a久久精品综合妖精| 免费在线观看亚洲国产| 亚洲午夜精品一区,二区,三区| 天堂√8在线中文| 十分钟在线观看高清视频www| www.精华液| 精品一区二区三区视频在线观看免费 | 久久久久久人人人人人| 日本一区二区免费在线视频| 人人妻,人人澡人人爽秒播| 日本wwww免费看| 伊人久久大香线蕉亚洲五| bbb黄色大片| 欧美+亚洲+日韩+国产| 人人妻人人澡人人看| 丰满饥渴人妻一区二区三| 亚洲精品中文字幕一二三四区| 日韩免费高清中文字幕av| 国产三级黄色录像| 久久精品国产综合久久久| 久久国产精品大桥未久av| 黑人操中国人逼视频| 国产成人精品在线电影| 无限看片的www在线观看| 性色av乱码一区二区三区2| 99国产精品一区二区三区| 99国产综合亚洲精品| 黄色怎么调成土黄色| 国产xxxxx性猛交| 欧美人与性动交α欧美精品济南到| 欧美乱码精品一区二区三区| 99国产精品免费福利视频| 亚洲黑人精品在线| 在线观看舔阴道视频| 十八禁网站免费在线| 欧美精品av麻豆av| 成人国产一区最新在线观看| 久久亚洲真实| 欧美日韩瑟瑟在线播放| 人人妻人人澡人人爽人人夜夜| 伦理电影免费视频| 欧美av亚洲av综合av国产av| 久9热在线精品视频| 又紧又爽又黄一区二区| 女性生殖器流出的白浆| 国产精品一区二区在线不卡| 丁香欧美五月| bbb黄色大片| 天堂俺去俺来也www色官网| 亚洲av日韩在线播放| 在线观看免费高清a一片| 国产不卡av网站在线观看| 99热网站在线观看| 午夜视频精品福利| 嫁个100分男人电影在线观看| 欧美乱色亚洲激情| 大香蕉久久网| 国产精品一区二区免费欧美| 在线观看免费视频网站a站| 女人精品久久久久毛片| 伊人久久大香线蕉亚洲五| 久久九九热精品免费| 国产精品1区2区在线观看. | 校园春色视频在线观看| 99久久人妻综合| 一级作爱视频免费观看| 亚洲欧美激情在线| 老鸭窝网址在线观看| 9191精品国产免费久久| 欧美黑人欧美精品刺激| www.精华液| 搡老岳熟女国产| 日本vs欧美在线观看视频| 婷婷成人精品国产| 日韩大码丰满熟妇| 欧美日韩av久久| 日本a在线网址| 亚洲一区二区三区不卡视频| 欧美日韩中文字幕国产精品一区二区三区 | 又紧又爽又黄一区二区| 男女之事视频高清在线观看| 美女福利国产在线| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久| 老司机靠b影院| 啪啪无遮挡十八禁网站| 91九色精品人成在线观看| 一本一本久久a久久精品综合妖精| √禁漫天堂资源中文www| 国产真人三级小视频在线观看| 欧美日韩一级在线毛片| 精品少妇一区二区三区视频日本电影| 黄频高清免费视频| 99国产精品99久久久久| 日韩欧美三级三区| 国产精品 欧美亚洲| 国产成人系列免费观看| av网站在线播放免费| 国产一卡二卡三卡精品| 看片在线看免费视频| 免费观看人在逋| 国产精品98久久久久久宅男小说| 波多野结衣一区麻豆| av线在线观看网站| 亚洲精品国产一区二区精华液| 宅男免费午夜| 丝袜美足系列| 69av精品久久久久久| 黑人巨大精品欧美一区二区mp4| 麻豆国产av国片精品| 女人高潮潮喷娇喘18禁视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品美女久久久久99蜜臀| 9191精品国产免费久久| 国产精品 国内视频| 身体一侧抽搐| av片东京热男人的天堂| 日韩欧美一区视频在线观看| 精品一区二区三区av网在线观看| 大陆偷拍与自拍| 曰老女人黄片| 一区在线观看完整版| 亚洲少妇的诱惑av| 成人18禁在线播放| 99在线人妻在线中文字幕 | 日韩人妻精品一区2区三区| 不卡一级毛片| 女人被狂操c到高潮| 国产精品久久久人人做人人爽| 久久青草综合色| 精品国产乱码久久久久久男人| 国产精品一区二区精品视频观看| 午夜精品久久久久久毛片777| 女人高潮潮喷娇喘18禁视频| 免费av中文字幕在线| 久久久水蜜桃国产精品网| 欧美乱码精品一区二区三区| 久久精品91无色码中文字幕| 亚洲 国产 在线| 91麻豆av在线| 深夜精品福利| 午夜91福利影院| 亚洲精华国产精华精| 飞空精品影院首页| 中出人妻视频一区二区| 99精品欧美一区二区三区四区| 亚洲欧美一区二区三区久久| 中国美女看黄片| 不卡一级毛片| 久久久久视频综合| 深夜精品福利| 欧美人与性动交α欧美软件| 国产色视频综合| 免费看a级黄色片| 伦理电影免费视频| 国产精品一区二区在线观看99| a级毛片黄视频| 久9热在线精品视频| 欧美av亚洲av综合av国产av| 久久人人爽av亚洲精品天堂| 国内毛片毛片毛片毛片毛片| 天堂俺去俺来也www色官网| 99久久精品国产亚洲精品| 国产精品久久久人人做人人爽| 看片在线看免费视频| cao死你这个sao货| 精品一区二区三区视频在线观看免费 | 一边摸一边抽搐一进一小说 | 午夜久久久在线观看| 国产欧美亚洲国产| 曰老女人黄片| 18禁黄网站禁片午夜丰满| 久久精品熟女亚洲av麻豆精品| 精品国内亚洲2022精品成人 | 真人做人爱边吃奶动态| 久久久久久久久久久久大奶| 国产高清视频在线播放一区| 久久久国产一区二区| 十八禁网站免费在线| 99国产精品一区二区三区| 免费人成视频x8x8入口观看| 精品福利观看| 欧美亚洲 丝袜 人妻 在线| 成人亚洲精品一区在线观看| 咕卡用的链子| 51午夜福利影视在线观看| 国产亚洲精品一区二区www | 啦啦啦在线免费观看视频4| 亚洲av电影在线进入| 看黄色毛片网站| 国产亚洲精品久久久久5区| a级毛片黄视频| 嫁个100分男人电影在线观看| 免费在线观看影片大全网站| 免费不卡黄色视频| 精品久久久久久,| 高清av免费在线| a级片在线免费高清观看视频| 午夜免费鲁丝| 久久香蕉国产精品| 亚洲自偷自拍图片 自拍| 国产精品 国内视频| 中文亚洲av片在线观看爽 | 黄网站色视频无遮挡免费观看| 欧美日韩成人在线一区二区| 丝袜在线中文字幕| 性少妇av在线| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 一区二区日韩欧美中文字幕| 欧美中文综合在线视频| 少妇被粗大的猛进出69影院| 午夜免费鲁丝| 免费高清在线观看日韩| 不卡av一区二区三区| 午夜福利在线观看吧| 欧美成人午夜精品| 男女下面插进去视频免费观看| 亚洲精品成人av观看孕妇| 久久久国产成人免费| 99国产极品粉嫩在线观看| 成人三级做爰电影| 久久精品aⅴ一区二区三区四区| 黑人猛操日本美女一级片| 精品乱码久久久久久99久播| 国产精品电影一区二区三区 | 日本vs欧美在线观看视频| xxxhd国产人妻xxx| 午夜福利影视在线免费观看| 免费在线观看影片大全网站| 日韩欧美一区二区三区在线观看 | 欧美亚洲日本最大视频资源| 18在线观看网站| 九色亚洲精品在线播放| 国产精品久久视频播放| www日本在线高清视频| 大型av网站在线播放| 亚洲色图av天堂| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区mp4| 天天操日日干夜夜撸| 亚洲国产精品合色在线| 国产黄色免费在线视频| 亚洲少妇的诱惑av| 国产高清国产精品国产三级| 亚洲精品国产精品久久久不卡| 亚洲欧美精品综合一区二区三区| 日本wwww免费看| 黄片小视频在线播放| 免费在线观看视频国产中文字幕亚洲| 久久午夜亚洲精品久久| 天天影视国产精品| 国产成人免费无遮挡视频| 亚洲一区二区三区欧美精品| 久久人人97超碰香蕉20202| av一本久久久久| 国内毛片毛片毛片毛片毛片|