• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct and noisy transitions in a model shear flow

    2015-11-18 05:41:55MarinaPauschBrunoEckhardtb

    Marina Pausch?,Bruno Eckhardtb

    aFachbereich Physik,Philipps-Universit?t Marburg,35032 Marburg,Germany

    bJ.M.Burgerscentrum,Delft University of Technology,2628 CD Delft,The Netherlands

    Direct and noisy transitions in a model shear flow

    Marina Pauscha,?,Bruno Eckhardta,b

    aFachbereich Physik,Philipps-Universit?t Marburg,35032 Marburg,Germany

    bJ.M.Burgerscentrum,Delft University of Technology,2628 CD Delft,The Netherlands

    a r t i c l e i n f o

    Article history:

    Received 15 August 2014

    Received in revised form

    5 December 2014

    Accepted 22 January 2015

    Available online 23 April 2015

    Transition to turbulence

    Shear flows

    Noise driven

    Optimal initial conditions

    The transition to turbulence in flows where the laminar profile is linearly stable requires perturbations of finite amplitude.‘‘Optimal’’perturbations are distinguished as extrema of certain functionals,and different functionals give different optima.We here discuss the phase space structure of a 2D simplified model of the transition to turbulence and discuss optimal perturbations with respect to three criteria: energy of the initial condition,energy dissipation of the initial condition,and amplitude of noise in a stochastic transition.We find that the states triggering the transition are different in the three cases,but show the same scaling with Reynolds number.

    ?2015 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/ by-nc-nd/4.0/).

    1.Introduction

    In parallel shear flows like pipe flow,plane Couette flow or Poiseuille flow and in boundary layers like the asymptotic suction boundary layer or the Blasius profile,turbulence appears when the laminar profile is linearly stable against perturbations[1].Accordingly,finite amplitude perturbations are required to trigger turbulence,a scenario referred to as by-pass transition[2].Many studies in the above flows have shown that the transition to turbulence is associated with the presence of 3D exact coherent states[3]. They appear in saddle-node bifurcations which in the state space of the system create regions of initial conditions that do not decay to the laminar profile,but instead are attracted towards the nodestate[4].As the Reynolds number increases,the region widens,the node state undergoes further bifurcations and chaotic attractors or saddles are formed[5-7].Initial conditions can only trigger turbulence when they reach into thatinterior region,i.e.,cross the stable manifold of the saddle state on the boundary of the region[8].An‘‘optimal’’perturbation is one that can trigger turbulence and at the same time is a minimum of a prescribed functional.Popular is an optimization based on amplification or energy gain over a given interval in time[9-17]or on the total time-averaged dissipation[18,19].Because they take the time-evolution into account,they connect to optimization problems in control theory[20,21].

    We simplify matters here and focus on a geometric optimization by identifying initial conditions that will eventually become turbulent,without regard of the time it takes for them to become turbulent.The states are optimized so thata certain quadratic function,such as energy content or dissipation,is extremal:it is a maximum in the sense that all initial conditions with a lower value of the quadratic function will not become turbulent,and it is minimal in that the first initial conditions that become turbulent have values larger than this optimum.At the optimal value there will then be at least one trajectory which neither becomes turbulent nor returns to the laminar profile:it lies on the stable manifold of the edge state[8],so that the optimum is reached when the isocontours of the optimization functional touch the stable manifold of the edge state(similar descriptions of the state space structure can be found in Refs.[17,19,22,23]).

    2.The Model

    To fix ideas and to keep the mathematics as simple as possible,we take the 2D model introduced by Baggett and Trefethen[24]. The model we use is one of a set of many low-dimensional models of various levels of complexity[20,22,25-31].It has a non-normal linear part and an energy conserving nonlinearity,and,this being the most important feature for the present application,it is 2D so that the entire phase space can be visualized(a property it shares with the illustrative model of Ref.[20]).Despite its simplicity,the model can be used to illustrate several features of the transition mechanisms in shear flows.

    Fig.1.(Color online)State space of the 2D model for the transition to turbulence for R=3.The open symbols mark the stable fixed point at the origin(‘‘laminar’’state)and the two nodes from the bifurcation(‘‘turbulent’’states).The full symbols are the edge states,and the red lines indicate the stable manifolds ofthe edge states. The black circle and the gray ellipsoid indicate the states where the energy(7)and the noise functional(12)are minimal,respectively.The points where they touch the stable manifolds are indicated by stars.

    The model has two variables,which may be thought of as measuring the amplitudes of streaks x and vortices y(see also Ref.[32]),and one parameter R that plays the role of the Reynolds number

    In order to highlight more clearly what happens near the origin,we magnify by rescaling the variables with the Reynolds number R(see Ref.[33]),i.e.,we redefine the amplitudes x=x′/R2,y=y′/R2and the time t=Rt′such that(with the primes dropped)

    For R→ ∞,the saddles are to leading order in 1/R located at±(2,2/R),which in the original coordinates represents an approach to the origin like±(2/R2,2/R3).The stable manifolds

    Fig.2.(Color online)Optimal states in energy for different R.The open symbol in the middle is the laminar state.States of fixed energy are indicated by circles,and the points where they touch the stable manifolds(red lines)of the edge states(indicated as full symbols)are the points marked by stars.One notes that as R increases,the manifolds become more parallelto the x-axis,and the pointofcontact approaches the origin from the y-axis.

    rotate so as to become parallel to the x-axis,as we will see in the following.

    3.Optimal Initial Conditions of Minimal Energy

    The Euclidean distance to the origin can be obtained from a quadratic form

    which has the form of kinetic energy.This assignment is further supported by the observation that E is preserved under time evolution by the nonlinear terms alone.In the sense described in the introduction,optimality with respect to this energy functional thus means the largest value up to which all trajectories return to the laminar state,and the smallest one where the first trajectories that evolve towards the turbulent state become possible.On the boundary between these two cases are states that neither return to laminar nor become turbulent,that lie on the stable manifold of the edge state.Geometrically,we are thus looking for the circle with the largest radius that we can draw around the origin that justtouches the stable manifold.Algorithmically,we find this point by a modified edge tracking which minimizes the energy(7)as described in the Appendix.

    An example of such an optimal circle is given in Fig.1,and its variation with R is shown in Fig.2.As the Reynolds number increases,the fixed point moves towards(2,0)on the abscissa,and the stable manifold rotates to being parallel to the abscissa. The point of contact between circles of equal energy and the stable manifold moves away from the edge state,approaches the y-axis and moves inwards to the origin like 1/R.

    In an insightful discussion of the energy functional,Cossu[23]notes that in the time-derivative of the energy functional only the linear parts of the equations of motion remain and that the nonlinear ones drop out because energy is preserved.This observation allows to define a necessary condition for the location

    Fig.3.(Color online)Optimal states with respect to the dissipation functional for different R.States offixed dissipation are indicated by ellipses,and the points where they touch the stable manifolds(red lines)of the edge states(full symbols)are marked by stars.The open symbol in the middle is the laminar state.One notes that as R increases,the point of contact moves very much as in the case of the energy functional.

    of the extremum,which for the 2D example studied here implies thatthe optimumlies along the line connecting the laminarand the turbulent fixed points.One could then find the optimum by a onedimensional search along this line.However,we did not pursue this further,as we also want to find optima with respect to other functionals that are not preserved by the nonlinear terms.

    4.Optimal Initial Conditions of Minimal Energy Dissipation

    The diagonal terms in the linear part of the equations of motion correspond to the dissipation in the original Navier-Stokes equation.Accordingly,we can define a dissipation functional[18]?=(1/2)(x2+2y2) (8)and study initial conditions that are minimal or optimal with respect to this functional.As in the previous example,the geometrical condition is that we now have to find the point where an ellipse touches the stable manifolds.This gives the ellipses shown for different R in Fig.3.Note that the points where the ellipses touch the stable manifolds are different from the ones of the energy functional,but their asymptotic behavior for large R seems to be similar(see below).

    5.Optimal Noisy Transitions

    As a third example we consider noise-driven transitions.To this end,the equations of motion are expanded to include a stochastic forcing of the individual terms,

    where the noise is characterized by〈ξi〉=0 and〈ξi(t)ξj(t′)〉= Dijδi,j.We consider the case D11=D22=D,so that both components are driven with equal noise amplitude.In a linear approximation around the laminar fixed point,the non-normal coupling

    Fig.4.Probability density for the linearized equations with noise for R=6 in the region of phase space where the transition is expected to occur.For the statistics we calculated the time evolution of 20000 initial conditions starting at the laminar state for 20 time units with a step size of d t=10?3.It can be seen that the isocontours p=const.are of elliptical shape.The star indicates the point where the noise functional touches the stable manifold of the edge state.

    Fig.5.Probability density as in Fig.4,but for the full nonlinear equations with noise.Note that the iso-contours of equal probability are stretched out towards the turbulent state and that they cross the stable manifold close to the point of contact indicated as the optimal state.

    between the two components results in a probability density function(pdf)for the two components that is Gaussian with a covariance matrix[34]given by

    Asymptotically,for R→∞,the quadratic form becomes QN(x,y)→3y2/2,so that the Gaussian stretches out along the x-direction for increasing R.

    In the noisy case,transition is induced when a fluctuation carries the system across the stable manifold.A good estimate of the likelihood of transition can be obtained by considering the probability density at the transition point.Given the functional form of the pdf,the biggest contribution to its variations comes from the quadratic form in the exponent.The equation shows that the iso-contours p = const.are ellipsoids determined by QN=const.that decrease or increase with the noise amplitude D.Therefore,if we want to describe where a noisy trajectorycrosses over to the turbulent state,we again have to study isocontours of a quadratic form,QN=const.,and determine where they touch the stable manifold of the saddle state.In contrast to the energy functional(7)and the dissipation functional(8),the fluctuation functional QNdepends on the Reynolds number. The point of contact between the probability iso-contours and the stable manifold then corresponds to the point where trajectories are most likely to cross over the stable manifold and to become turbulent.Alternatively,ifone wants to push the system to become turbulent,small perturbations in that region are most effective because the border is so close.

    Figures 4 and 5 show the relative probability density to be at(x,y)in the region where the transition is expected to occur.It is obtained by integrating 20000 initial conditions in time for 20 time units starting at the laminar state with a step size of d t= 10?3.As the phase space is symmetric with respect to the origin,trajectories from the third quadrant are mirrored into the first quadrant.Figure 4,obtained without the nonlinear part,shows the Gaussian shape ofthe iso-contours.Outofthe 400×106calculated points of the trajectories,more than 108×106lay in the plotted region of phase space.In Fig.5 the nonlinear part is added and the pdf stretches out along the path to the turbulent state.The figure shows clearly that this happens close to the point where the ellipsoid QN(x,y)=const.touches the stable manifold.Here more than 75×106points lay in the interesting region ofphase space.We note that the shape of the iso-contours of the pdf is independent of the noise amplitude D(within the linear approximation),so that changes in D will predominantly influence the likelihood of a transition,but not the path it takes.

    More examples of such iso-contours are shown in Figs.1 and 6 for different values of R.With increasing R the ellipsoids become more elongated in x-direction,as a resultofthe asymptotic behavior of the quadratic form noticed above(14).As they are rotated in the direction opposite to the rotation of the stable manifolds,the point of contact stays close to the edge state.Within the hydrodynamic interpretation,the transition is dominated by the streaks(x-component)that form as a result of the vortices(ycomponent),not by the vortices themselves.

    6.Summary and Conclusions

    The calculations illustrate how different optimization criteria select different optimal initial conditions for the transition to turbulence.Geometrically,this is to be expected since different quadratic forms give rise to different ellipsoids in their isocontours and hence also different points of contact with the stable manifolds.We note that the results of Ref.[13]suggest that for optimization with a time-integrated functional the difference between energy and dissipation functionals is smaller and may actually vanish.However,we have not pursued this question further.

    The variation of the optimal points of contact is summarized in Fig.7.The data indicates that while the optimal perturbations are vortex like for the energy and the dissipation functional,they are streak like for the noisy transition.The difference can be rationalized by the different dynamics.In the deterministic cases,with the energy and the dissipation functional,small vortex like initial conditions can grow in time to develop the streaks which then drive the transition.The noisy system is always exposed to small perturbations which can grow to develop streaks,so that the pdf is elongated in the streak direction by non-normal amplification.Therefore,the transition happens on top of the already existing streaks and noise driven flows[35-37]may show different structures at the point of transition than flows driven by judiciously chosen initial conditions.

    Fig.6.(Color online)Isocontours of the probability density function for different R.Note that as R increases,the ellipsoids of the iso-contour become narrower in the y-direction and stretch out along the x-direction.In combination with the rotation of the stable manifolds(red lines)the point of contact(stars)now stays close to the edge state(full symbols)and moves towards the x-axis.This is physically plausible,as a small perturbation in y(in the vortex direction)will produce a strong streak in the x-direction,and it is then the streak that triggers the transition.

    Fig.7.(Color online)Location ofthe points ofcontact.The top graph shows that for the energy and dissipation functional the optimal perturbations are vortex like and move towards the origin along the y-axis.The noise-optimals are more streak-like and move towards the x-axis,and actually remain close to the edge state.The edge state(red bullets)approaches(2,0)with R→∞.

    A final quantity to study is the scaling of the functional with Reynolds number,as shown in Fig.8.Despite the differences in dynamics,the functionals scale in all three cases like 1/R2for large R. The particular exponent is specific to the model studied here and the type and formofthe nonlinearinteractions,as othernonlinearities can require a rescaling near the origin[38].However,the fact that all three cases show the same scaling could also apply to the full flow cases,as it is a consequence of the measure used and notthe particular nonlinearity at play.What the model also shows is that deviations from the asymptotic behavior appear close to the point of bifurcation.It is tempting to speculate that such effects may be responsible for the different critical exponents that have been observed in pipe flow or plane Couette flow,but that clearly requires the transfer of the present analysis to realistic flow simulations and a careful analysis of the asymptotic properties.

    Fig.8.Scaling of the functionals for the optimal perturbations.Even though the point of contact moves differently,the critical values decay like 1/R2in all three cases.

    The analysis of simple models has repeatedly helped to elucidate many features of the transition to turbulence in shear flows,and to develop tools to explore them [20,22,25-31].It is in this spirit that we have used a forward integration technique to find the optimal points on the stable manifolds for different functionals and to explore the changes with Reynolds number. We expect that many of the features described here can also be found in the high-dimensional state spaces of realistic shear flows,perhaps after suitable modifications and adaptations of the methods used to explore the high-dimensional spaces.

    Acknowledgments

    This work was supported in part by the German Research Foundation within FOR 1182.

    Appendix

    In this appendix we discuss the modification of the edge tracking algorithm [8]used for the determination of the initial conditions on the edge that optimize a prescribed quadratic functional QN(x,y).The functional may be the energy(7),the dissipation(8)orthe argumentin the pdf(12).To keep the notation compact,we denote the equations of motion in vectorial notation as˙x=f.

    We begin with an arbitrary initialcondition in the vicinity ofthe edge and we let it evolve in time towards the edge state.Unlike other edge tracking methods,where trajectories are integrated until they are sufficiently close to the laminar or the turbulent state,we here stop the integration at the time when the distance to the edge state is minimal.The trajectory’s velocity at the turning pointis then projected onto the normalofthe stable eigenvector to decide ifthe tested initialcondition moves upwards ordownwards,towards the turbulent or the laminar state.With this criterion we can determine a point x0on the edge also when the point is very close to the edge and the time needed to pass the edge state becomes excessively large.

    We then propagate this point along the time direction,x1= x0+s f(x0)by an amount s that is chosen such that Q(s)is minimized.Formally,

    In numerical implementations,∥s f∥is kept below a certain threshold to stay in a region where linear approximations are possible.Then a new edge tracking is started from x1and the process is repeated untilthe norm ofthe totalshift∥s f∥falls below a convergence threshold,here 10?5.

    [1]S.Grossmann,The onset ofshear flow turbulence,Rev.Modern Phys.72(2000)603-618.http://dx.doi.org/10.1103/RevModPhys.72.603. http://adsabs. harvard.edu/cgi-bin/nph-data_query?bibcode=2000RvMP...72..603G&link_ type=ABSTRACT.

    [2]M.V.Morkovin,Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies.DTIC Document,1969.http://oai.dtic.mil/oai/oai?verb=getRecord& metadataPrefix=html&identifier=AD0686178.

    [3]B.Eckhardt,Turbulence transition in pipe flow:some open questions,Nonlinearity 21 (2007) T1-T11.http://dx.doi.org/10.1088/0951-7715/ 21/1/T01. http://stacks.iop.org/0951-7715/21/i=1/a=T01?key=crossref. d91cf9a0cfb29103f99ef13e660a4248.

    [4]T.Kreilos,B.Eckhardt,Periodic orbits near onset of chaos in plane Couette flow,Chaos 22(2012)047505.http://dx.doi.org/10.1063/1.4757227. http://link.aip.org/link/CHAOEH/v22/i4/p047505/s1&Agg=doi.

    [5]F.Mellibovsky,B.Eckhardt,Takens-Bogdanov bifurcation of travelling-wave solutions in pipe flow,J.Fluid Mech.670(2011)96-129.http://dx.doi.org/ 10.1017/S0022112010005239.http://www.journals.cambridge.org/abstract_ S0022112010005239.

    [6]F.Mellibovsky,B.Eckhardt,F(xiàn)rom travelling waves to mild chaos:a supercritical bifurcation cascade in pipe flow,J.Fluid Mech.709(2012)149-190.http://dx.doi.org/10.1017/jfm.2012.326. http://www.journals.cambridge.org/abstract_S0022112012003266.

    [7]J.Halcrow,J.F.Gibson,P.Cvitanovi?,D.Viswanath,Heteroclinic connections in plane Couette flow,J.Fluid Mech.621(2009)365-376.http://dx.doi.org/ 10.1017/S0022112008005065.http://www.journals.cambridge.org/abstract_ S0022112008005065.

    [8]J.D.Skufca,J.A.Yorke,B.Eckhardt,Edge of chaos in a parallel shear flow,Phys.Rev.Lett.96(2006)174101.http://dx.doi.org/10.1103/PhysRevLett.96. 174101.http://link.aps.org/doi/10.1103/PhysRevLett.96.174101.

    [9]D.Biau,A.Bottaro,An optimal path to transition in a duct,Phil.Trans.R.Soc.A 367(1888)(2009)529-544.http://dx.doi.org/10.1126/science.261.5121.578. http://rsta.royalsocietypublishing.org/cgi/doi/10.1098/rsta.2008.0191.

    [10]C.C.T.Pringle,R.R.Kerswell,Using nonlinear transient growth to construct the minimal seed for shear flow turbulence,Phys.Rev.Lett. 105 (2010) 154502.http://dx.doi.org/10.1103/PhysRevLett.105.154502. http://link.aps.org/doi/10.1103/PhysRevLett.105.154502.

    [11]C.C.T.Pringle,A.P.Willis,R.R.Kerswell,Minimal seeds for shear flow turbulence:using nonlinear transient growth to touch the edge of chaos,J.Fluid Mech.702(2012)415-443.http://dx.doi.org/10.1017/jfm.2012.192. http://www.journals.cambridge.org/abstract_S0022112012001929.

    [12]S.M.E.Rabin,C.P.Caulfield,R.R.Kerswell,Variational identification of minimal seeds to trigger transition in plane Couette flow,2011. http://arxiv.org/abs/1111.6654.

    [13]S.M.E.Rabin,C.P.Caulfield,R.R.Kerswell,Triggering turbulence efficiently in plane Couette flow,J.Fluid Mech.712(2012)244-272.http://dx. doi.org/10.1017/jfm.2012.417.http://www.journals.cambridge.org/abstract_ S002211201200417X.

    [14]S.Cherubini,J.C.Robinet,A.Bottaro,P.De Palma,Optimal wave packets in a boundary layer and initial phases of a turbulent spot,J.Fluid Mech.656(2010)231-259.http://dx.doi.org/10.1017/S002211201000114X. http://www.journals.cambridge.org/abstract_S002211201000114X.

    [15]S.Cherubini,P.De Palma,J.C.Robinet,A.Bottaro,Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow,Phys. Rev.E 82(2010)066302.http://dx.doi.org/10.1103/PhysRevE.82.066302. http://link.aps.org/doi/10.1103/PhysRevE.82.066302.

    [16]S.Cherubini,P.De Palma,Nonlinear optimal perturbations in a Couette flow:bursting and transition,J.Fluid Mech.716(2013)251-279. http://dx.doi.org/10.1017/jfm.2012.544. http://adsabs.harvard.edu/cgibin/nph-data_query?bibcode=2013JFM...716..251C&link_type=EJOURNAL.

    [17]S.Cherubini,P.De Palma,Minimal perturbations approaching the edge of chaos in a Couette flow,F(xiàn)luid Dyn.Res.46(2014)http://dx.doi.org/10.1088/ 0169-5983/46/4/041403.http://stacks.iop.org/1873-7005/46/i=4/a=041403.

    [18]A.Monokrousos,A.Bottaro,L.Brandt,A.Di Vita,D.S.Henningson,Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows,Phys.Rev.Lett.106(2011)134502.http://dx.doi.org/10.1103/PhysRevLett. 106.134502.http://link.aps.org/doi/10.1103/PhysRevLett.106.134502.

    [19]Y.Duguet,A.Monokrousos,L.Brandt,D.S.Henningson,Minimal transition thresholds in plane couette flow,Phys.Fluids 25(2013)084103.http://dx.doi. org/10.1063/1.4817328.http://scitation.aip.org/content/aip/journal/pof2/25/ 8/10.1063/1.4817328.

    [20]R.R.Kerswell,C.C.T.Pringle,A.P.Willis,An optimisation approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar,Rep. Progr.Phys.77(2014)http://dx.doi.org/10.1088/0034-4885/77/8/085901. http://stacks.iop.org/0034-4885/77/i=8/a=085901.

    [21]P.Luchini,A.Bottaro,Adjoint equations in stability analysis,Annu.Rev. Fluid Mech.46(2014)493-517.http://dx.doi.org/10.1146/annurev-fluid-010313-141253.http://www.annualreviews.org/doi/abs/10.1146/annurevfluid-010313-141253.

    [22]O.Dauchot,P.Manneville,Local v ersus global concepts in hydrodynamic stability theory,J.Phys.II France 7(1997)371-389.http://dx.doi.org/10.1051/ jp2:1997131.http://dx.doi.org/10.1051/jp2:1997131.

    [23]C.Cossu,An optimality condition on the minimum energy threshold in subcritical instabilities,C.R.Mécanique 333(2005)331-336.http://dx. doi.org/10.1016/j.crme.2005.02.002.http://www.sciencedirect.com/science/ article/pii/S1631072105000379.

    [24]J.S.Baggett,L.N.Trefethen,Low-dimensional models of subcritical transition to turbulence,Phys.Fluids 9(1997)1043-1053.http://dx.doi.org/ 10.1063/1.869199. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997PhFl....9.1043B&link_type=EJOURNAL.

    [25]T.Gebhardt,S.Grossmann,Chaos transition despite linear stability,Phys. Rev.E 50(1994)3705-3711.http://dx.doi.org/10.1103/PhysRevE.50.3705. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1994PhRvE..50. 3705G&link_type=ABSTRACT.

    [26]F.Waleffe,Transition in shear flows.Nonlinear normality versus nonnormal linearity,Phys.Fluids 7 (1995)3060-3066.http://dx.doi.org/ 10.1063/1.868682. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995PhFl....7.3060W&link_type=EJOURNAL.

    [27]B.Eckhardt,A.Mersmann,Transition to turbulence in a shear flow,Phys.Rev. E 60(1999)509-517.http://dx.doi.org/10.1103/PhysRevE.60.509.http:// adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999PhRvE..60..509E& link_type=ABSTRACT.

    [28]J.Moehlis,H.Faisst,B.Eckhardt,A low-dimensional model for turbulent shear flows,New J.Phys.6(2004)56-56.,http://stacks.iop.org/1367-2630/6/i=1/ a=056?key=crossref.9a9df4ab9f646cd3ca0a9aacaaaa7597.

    [29]J.Moehlis,H.Faisst,B.Eckhardt,Periodic orbits and chaotic sets in a low-dimensional model for shear flows,SIAM J.Appl.Dyn.Syst.4(2005)352-376.http://dx.doi.org/10.1137/040606144.http://epubs.siam.org/doi/ abs/10.1137/040606144.

    [30]N.R.Lebovitz,Shear-flow transition:the basin boundary,Nonlinearity 22(2009)2645-2655.http://dx.doi.org/10.1088/0951-7715/22/11/004. http://stacks.iop.org/0951-7715/22/i=11/a=004?key=crossref. 0e58a5bcc8174f507f138b3f9267a33c.

    [31]N.Lebovitz,G.Mariotti,Edges in models of shear flow,J.Fluid Mech.721(2013)386-402.http://dx.doi.org/10.1017/jfm.2013.38. http://adsabs. harvard.edu/cgi-bin/nph-data_query?bibcode=2013JFM...721..386L&link_ type=EJOURNAL.

    [32]B.Eckhardt,R.Pandit,Noise correlations in shear flows,Eur.Phys.J. B 33 (2003) 373-378. http://dx.doi.org/10.1140/epjb/e2003-00178-3. http://www.springerlink.com/Index/10.1140/epjb/e2003-00178-3.

    [33]B.Eckhardt,K.Marzinzik,A.Schmiegel,Transition to turbulence in shear flows,in:A Perspective Look at Nonlinear Media,Springer,1998,pp.327-338.http: //dx.doi.org/10.1007/BFb0104973.http://link.springer.com/chapter/10.1007/ BFb0104973.

    [34]H.Risken,The Fokker-Planck Equation,third ed.,in:Springer Series in Synergetics,Springer,1996.

    [35]J.V.Sengers,J.M.Ortiz de Zárate,Velocity fluctuations in laminar fluid flow,J.Non-Newton.Fluid Mech.165(2010)925-931.http://dx.doi.org/ 10.1016/j.jnnfm.2010.01.020. http://linkinghub.elsevier.com/retrieve/pii/ S0377025710000224.

    [36]J.M.Ortiz de Zárate,J.V.Sengers,Hydrodynamic fluctuations in laminar fluid flow.I.Fluctuating Orr-Sommerfeld equation,J.Stat.Phys.144(2011)774-792.http://dx.doi.org/10.1007/s10955-011-0256-1. http://link.springer.com/10.1007/s10955-011-0256-1.

    [37]J.M.Ortiz de Zárate,J.V.Sengers,Hydrodynamic fluctuations in laminar fluid flow.II.Fluctuating squire equation,J.Stat.Phys.150(2012)540-558. http://dx.doi.org/10.1007/s10955-012-0495-9. http://link.springer.com/10.1007/s10955-012-0495-9.

    [38]B.Eckhardt,D.P.Lathrop,Nonlinear normal forms for non-normal fixed points,Nonlinear Phenom.Complex Syst.9(2006)133-140.http://www.jnpcs.org/abstracts/vol2006/v9no2/v9no2p133.html.

    ?Corresponding author.

    E-mail address:marina.pausch@physik.uni-marburg.de(M.Pausch).

    http://dx.doi.org/10.1016/j.taml.2015.04.003

    2095-0349/?2015 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    中文亚洲av片在线观看爽| 两性夫妻黄色片| 精品午夜福利视频在线观看一区| 国产精品乱码一区二三区的特点| 亚洲欧美日韩无卡精品| 嫩草影院精品99| 亚洲精品久久国产高清桃花| 亚洲精品乱码久久久v下载方式 | 麻豆成人av在线观看| 精华霜和精华液先用哪个| 琪琪午夜伦伦电影理论片6080| 午夜福利视频1000在线观看| 精品一区二区三区av网在线观看| 一二三四在线观看免费中文在| 无遮挡黄片免费观看| 90打野战视频偷拍视频| 狂野欧美白嫩少妇大欣赏| 午夜精品一区二区三区免费看| 女同久久另类99精品国产91| 久久久久久久久久黄片| 精品欧美国产一区二区三| 日韩欧美国产在线观看| 亚洲电影在线观看av| 久久99热这里只有精品18| 两个人视频免费观看高清| 国产亚洲欧美98| 在线国产一区二区在线| 午夜福利18| 天天添夜夜摸| 精品久久蜜臀av无| 国产精品一区二区三区四区免费观看 | 村上凉子中文字幕在线| 一个人免费在线观看电影 | 草草在线视频免费看| 欧美激情在线99| www国产在线视频色| 中文资源天堂在线| 一区二区三区高清视频在线| 视频区欧美日本亚洲| 久久性视频一级片| 99精品在免费线老司机午夜| www.自偷自拍.com| 精品国产乱码久久久久久男人| 免费在线观看成人毛片| 老司机深夜福利视频在线观看| 男女午夜视频在线观看| 在线观看美女被高潮喷水网站 | av在线天堂中文字幕| 国内精品久久久久久久电影| 欧美高清成人免费视频www| 国产乱人视频| 久久久久久久午夜电影| 很黄的视频免费| 欧美高清成人免费视频www| 久久久久亚洲av毛片大全| a级毛片a级免费在线| tocl精华| 美女被艹到高潮喷水动态| 999精品在线视频| 久久精品影院6| 国产真实乱freesex| 99热精品在线国产| 女人高潮潮喷娇喘18禁视频| 欧美成人性av电影在线观看| 精品久久久久久久久久久久久| 一个人看的www免费观看视频| 午夜a级毛片| 91久久精品国产一区二区成人 | 啦啦啦观看免费观看视频高清| 欧美日韩黄片免| 免费高清视频大片| av片东京热男人的天堂| 亚洲专区字幕在线| 美女免费视频网站| 一个人观看的视频www高清免费观看 | 婷婷亚洲欧美| 精品乱码久久久久久99久播| 无人区码免费观看不卡| 不卡av一区二区三区| 99re在线观看精品视频| 嫁个100分男人电影在线观看| 制服人妻中文乱码| 18禁观看日本| 综合色av麻豆| 午夜福利成人在线免费观看| 国产午夜福利久久久久久| 天堂动漫精品| 国内精品久久久久久久电影| h日本视频在线播放| 丰满的人妻完整版| 麻豆成人午夜福利视频| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩无卡精品| 日本 欧美在线| 亚洲欧洲精品一区二区精品久久久| 国产视频一区二区在线看| 99热只有精品国产| 国内精品久久久久久久电影| 国产黄片美女视频| АⅤ资源中文在线天堂| 夜夜夜夜夜久久久久| 特级一级黄色大片| 久久婷婷人人爽人人干人人爱| 久久久久国内视频| 久久久久久久久中文| 人人妻人人澡欧美一区二区| 国产精品 国内视频| 最新美女视频免费是黄的| 悠悠久久av| 成年女人永久免费观看视频| 国产精品亚洲av一区麻豆| 又黄又爽又免费观看的视频| 深夜精品福利| 亚洲成a人片在线一区二区| 特级一级黄色大片| 久久精品aⅴ一区二区三区四区| 色精品久久人妻99蜜桃| 99久久精品一区二区三区| 午夜福利在线在线| 国产精品久久视频播放| 真人做人爱边吃奶动态| 国产精品香港三级国产av潘金莲| 最近在线观看免费完整版| 真人做人爱边吃奶动态| 中文字幕人成人乱码亚洲影| 嫁个100分男人电影在线观看| 亚洲 欧美一区二区三区| 人人妻,人人澡人人爽秒播| 欧美成人性av电影在线观看| 99精品在免费线老司机午夜| 久久国产乱子伦精品免费另类| 国产精品久久久久久人妻精品电影| 天堂影院成人在线观看| 女人高潮潮喷娇喘18禁视频| 桃红色精品国产亚洲av| 亚洲成av人片在线播放无| 美女大奶头视频| 99久久无色码亚洲精品果冻| 国产伦精品一区二区三区四那| 最好的美女福利视频网| 成人午夜高清在线视频| 中文字幕最新亚洲高清| 成人国产一区最新在线观看| 中亚洲国语对白在线视频| 亚洲人成网站高清观看| 村上凉子中文字幕在线| 一本一本综合久久| 成人国产综合亚洲| 亚洲av美国av| www国产在线视频色| 在线a可以看的网站| 国产av不卡久久| 国产69精品久久久久777片 | 久99久视频精品免费| 国产熟女xx| 久久精品国产亚洲av香蕉五月| 1024手机看黄色片| www日本在线高清视频| 国产精品久久久久久精品电影| 1024手机看黄色片| 免费看光身美女| 国产91精品成人一区二区三区| 午夜精品久久久久久毛片777| 亚洲国产日韩欧美精品在线观看 | 日本 欧美在线| 99热精品在线国产| 九九久久精品国产亚洲av麻豆 | 又紧又爽又黄一区二区| 99国产综合亚洲精品| 亚洲精品乱码久久久v下载方式 | 亚洲无线在线观看| 一本精品99久久精品77| 99国产极品粉嫩在线观看| 亚洲国产精品成人综合色| 亚洲在线自拍视频| 久久国产乱子伦精品免费另类| 欧美成人一区二区免费高清观看 | 一夜夜www| 一本精品99久久精品77| 一级a爱片免费观看的视频| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| 久久中文看片网| 在线免费观看不下载黄p国产 | 欧美日韩福利视频一区二区| 国产精品1区2区在线观看.| 久久久水蜜桃国产精品网| 桃色一区二区三区在线观看| 麻豆成人av在线观看| 午夜福利免费观看在线| 天堂影院成人在线观看| 18禁黄网站禁片免费观看直播| 黄片大片在线免费观看| 一级毛片高清免费大全| 丰满人妻一区二区三区视频av | 国内久久婷婷六月综合欲色啪| 一进一出抽搐gif免费好疼| 搡老妇女老女人老熟妇| 天堂av国产一区二区熟女人妻| 日韩 欧美 亚洲 中文字幕| 久久性视频一级片| 欧美日韩精品网址| 偷拍熟女少妇极品色| 色尼玛亚洲综合影院| 亚洲专区中文字幕在线| 国产精品 国内视频| 中文字幕av在线有码专区| 男人舔女人下体高潮全视频| 午夜激情福利司机影院| 国产一区二区三区视频了| 午夜亚洲福利在线播放| 亚洲在线自拍视频| 国产精品av视频在线免费观看| 亚洲人与动物交配视频| 亚洲欧美精品综合一区二区三区| 久久中文字幕一级| 啦啦啦韩国在线观看视频| 丁香欧美五月| 99久久国产精品久久久| 成年版毛片免费区| 性色av乱码一区二区三区2| 日本一本二区三区精品| 久久这里只有精品中国| 欧美3d第一页| 日韩精品青青久久久久久| 在线观看午夜福利视频| www日本在线高清视频| 久久香蕉国产精品| 欧美国产日韩亚洲一区| 五月伊人婷婷丁香| 久久久久性生活片| av在线蜜桃| 岛国在线免费视频观看| 黑人操中国人逼视频| 91麻豆精品激情在线观看国产| 很黄的视频免费| 日韩中文字幕欧美一区二区| 日本a在线网址| 窝窝影院91人妻| 99久久精品热视频| 人妻久久中文字幕网| 国内少妇人妻偷人精品xxx网站 | av天堂在线播放| 丝袜人妻中文字幕| 国产黄片美女视频| av视频在线观看入口| 一级毛片高清免费大全| 一二三四社区在线视频社区8| 亚洲av电影不卡..在线观看| 亚洲真实伦在线观看| 男人的好看免费观看在线视频| 国产成+人综合+亚洲专区| 国产精品一区二区三区四区久久| 在线播放国产精品三级| 中文字幕人成人乱码亚洲影| 性欧美人与动物交配| 1000部很黄的大片| 午夜福利视频1000在线观看| 日本成人三级电影网站| 免费人成视频x8x8入口观看| 免费在线观看视频国产中文字幕亚洲| 90打野战视频偷拍视频| 国产激情欧美一区二区| 欧美黄色片欧美黄色片| 久久久久精品国产欧美久久久| 婷婷精品国产亚洲av在线| 男人的好看免费观看在线视频| 在线十欧美十亚洲十日本专区| 国产成人福利小说| 亚洲在线自拍视频| 丰满人妻一区二区三区视频av | 怎么达到女性高潮| 美女高潮喷水抽搐中文字幕| www.熟女人妻精品国产| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 老熟妇仑乱视频hdxx| 午夜福利在线观看吧| 色综合婷婷激情| 美女高潮喷水抽搐中文字幕| 最新美女视频免费是黄的| 午夜福利欧美成人| 亚洲第一欧美日韩一区二区三区| av中文乱码字幕在线| 好男人在线观看高清免费视频| 免费av不卡在线播放| 一夜夜www| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 啦啦啦观看免费观看视频高清| 日韩欧美一区二区三区在线观看| 午夜福利成人在线免费观看| 欧美在线黄色| 狂野欧美激情性xxxx| 神马国产精品三级电影在线观看| 国产成人aa在线观看| 亚洲精品在线美女| 午夜免费激情av| 激情在线观看视频在线高清| 成人午夜高清在线视频| 欧美精品啪啪一区二区三区| 91在线精品国自产拍蜜月 | 午夜福利18| 18禁黄网站禁片午夜丰满| 欧美日韩黄片免| 又大又爽又粗| 欧美日韩综合久久久久久 | 一本综合久久免费| 香蕉丝袜av| 精品久久久久久久人妻蜜臀av| 欧美黑人欧美精品刺激| 久久人妻av系列| 国产伦精品一区二区三区视频9 | 日日摸夜夜添夜夜添小说| 18禁国产床啪视频网站| 伦理电影免费视频| 久久精品国产亚洲av香蕉五月| 婷婷丁香在线五月| 国产又色又爽无遮挡免费看| 色综合欧美亚洲国产小说| 午夜影院日韩av| 中文字幕精品亚洲无线码一区| 成人av一区二区三区在线看| 成人性生交大片免费视频hd| 18禁观看日本| 久久这里只有精品19| 色哟哟哟哟哟哟| 国产精华一区二区三区| 日本黄色视频三级网站网址| 午夜免费激情av| 一级黄色大片毛片| 这个男人来自地球电影免费观看| 女同久久另类99精品国产91| 桃红色精品国产亚洲av| 国产午夜福利久久久久久| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 欧美成人一区二区免费高清观看 | 别揉我奶头~嗯~啊~动态视频| 久久香蕉精品热| 免费看十八禁软件| 国产单亲对白刺激| 国产一区在线观看成人免费| 亚洲av电影不卡..在线观看| 国产主播在线观看一区二区| 国产av一区在线观看免费| 一a级毛片在线观看| 国产v大片淫在线免费观看| 国产av在哪里看| 精品一区二区三区四区五区乱码| av天堂在线播放| 99热6这里只有精品| 又粗又爽又猛毛片免费看| 最近在线观看免费完整版| 日本黄大片高清| tocl精华| 18禁观看日本| 欧美色欧美亚洲另类二区| 好男人电影高清在线观看| 99精品久久久久人妻精品| 日本黄大片高清| 后天国语完整版免费观看| 亚洲中文字幕一区二区三区有码在线看 | 无限看片的www在线观看| 成在线人永久免费视频| 免费在线观看视频国产中文字幕亚洲| av视频在线观看入口| 国内精品一区二区在线观看| 一个人免费在线观看的高清视频| 久久精品国产综合久久久| 90打野战视频偷拍视频| 欧美日韩国产亚洲二区| 性色av乱码一区二区三区2| 两性午夜刺激爽爽歪歪视频在线观看| 两个人视频免费观看高清| 亚洲国产精品合色在线| 久久天躁狠狠躁夜夜2o2o| 国产精品99久久99久久久不卡| 嫩草影院入口| 国产视频一区二区在线看| 久久久久九九精品影院| 欧美日韩黄片免| 99在线视频只有这里精品首页| 麻豆久久精品国产亚洲av| av女优亚洲男人天堂 | 久久草成人影院| 少妇人妻一区二区三区视频| 人妻久久中文字幕网| 一区福利在线观看| 伦理电影免费视频| 亚洲精品美女久久久久99蜜臀| 看免费av毛片| 国产亚洲欧美在线一区二区| 国产午夜精品论理片| 性色av乱码一区二区三区2| 不卡av一区二区三区| 欧美激情在线99| 国产精品99久久99久久久不卡| 麻豆av在线久日| 国产亚洲av高清不卡| 国产亚洲精品久久久com| 欧美日韩黄片免| 在线观看日韩欧美| 免费看a级黄色片| 久久草成人影院| 一区福利在线观看| 两个人看的免费小视频| 国产av不卡久久| 免费一级毛片在线播放高清视频| 极品教师在线免费播放| 国产精品一区二区三区四区免费观看 | 久久九九热精品免费| 亚洲一区二区三区色噜噜| 午夜福利视频1000在线观看| 国产乱人视频| 久久精品国产99精品国产亚洲性色| 美女大奶头视频| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三| 国产又黄又爽又无遮挡在线| 女生性感内裤真人,穿戴方法视频| 99久久99久久久精品蜜桃| 一个人免费在线观看电影 | 99在线视频只有这里精品首页| 大型黄色视频在线免费观看| 国产69精品久久久久777片 | 国产精品野战在线观看| 国产精品精品国产色婷婷| 免费看光身美女| 天天躁日日操中文字幕| 亚洲国产高清在线一区二区三| 久久久国产成人免费| 日韩欧美国产一区二区入口| 亚洲精品456在线播放app | 中文字幕久久专区| 国产成人福利小说| 欧美乱色亚洲激情| 中国美女看黄片| 日本黄大片高清| 99久久国产精品久久久| 亚洲成人中文字幕在线播放| 亚洲男人的天堂狠狠| 美女黄网站色视频| 亚洲中文日韩欧美视频| 日本黄大片高清| 一进一出抽搐动态| 欧美av亚洲av综合av国产av| 国产精品久久电影中文字幕| 亚洲av美国av| netflix在线观看网站| 黄频高清免费视频| 黄色成人免费大全| 1024手机看黄色片| 久久人人精品亚洲av| 成人亚洲精品av一区二区| 欧美午夜高清在线| 国产欧美日韩精品一区二区| 搡老妇女老女人老熟妇| 亚洲人成网站在线播放欧美日韩| 国产麻豆成人av免费视频| 国产成人系列免费观看| 久久久久精品国产欧美久久久| 国产av不卡久久| 国产熟女xx| 夜夜爽天天搞| 国产高潮美女av| 国产69精品久久久久777片 | 亚洲中文日韩欧美视频| 久久久久久久精品吃奶| 身体一侧抽搐| 亚洲成a人片在线一区二区| av欧美777| 精品久久久久久久久久免费视频| 九九热线精品视视频播放| 国内精品一区二区在线观看| 香蕉国产在线看| 欧美又色又爽又黄视频| 亚洲国产中文字幕在线视频| 亚洲国产欧洲综合997久久,| 国产亚洲精品av在线| 国产成人精品无人区| 成年女人看的毛片在线观看| 夜夜夜夜夜久久久久| 99久久精品热视频| 真人做人爱边吃奶动态| 亚洲aⅴ乱码一区二区在线播放| 亚洲熟女毛片儿| 欧美日韩福利视频一区二区| 国产一区在线观看成人免费| 夜夜躁狠狠躁天天躁| 国产一区二区三区在线臀色熟女| 曰老女人黄片| 好男人在线观看高清免费视频| 免费看a级黄色片| 丰满人妻熟妇乱又伦精品不卡| 床上黄色一级片| 国产成+人综合+亚洲专区| 欧美成人一区二区免费高清观看 | 成人三级做爰电影| 长腿黑丝高跟| 在线十欧美十亚洲十日本专区| 日本一二三区视频观看| 99国产极品粉嫩在线观看| 亚洲精品乱码久久久v下载方式 | 非洲黑人性xxxx精品又粗又长| 男女下面进入的视频免费午夜| 怎么达到女性高潮| 狠狠狠狠99中文字幕| 欧美日韩黄片免| 成人鲁丝片一二三区免费| 18禁国产床啪视频网站| 在线观看舔阴道视频| 日本 欧美在线| 18禁观看日本| 亚洲精品乱码久久久v下载方式 | 免费在线观看亚洲国产| 在线永久观看黄色视频| 99久久99久久久精品蜜桃| 精品久久久久久久末码| 亚洲 国产 在线| 亚洲精品乱码久久久v下载方式 | 日本撒尿小便嘘嘘汇集6| 日韩欧美一区二区三区在线观看| 久久久久久久久中文| 亚洲精华国产精华精| 又粗又爽又猛毛片免费看| 国产久久久一区二区三区| 国产黄a三级三级三级人| www日本在线高清视频| 麻豆国产av国片精品| 色在线成人网| 久久久精品大字幕| 狠狠狠狠99中文字幕| 1000部很黄的大片| 校园春色视频在线观看| 哪里可以看免费的av片| 国产精品乱码一区二三区的特点| 欧美色视频一区免费| 亚洲国产精品999在线| 夜夜躁狠狠躁天天躁| 亚洲精品中文字幕一二三四区| 三级国产精品欧美在线观看 | 美女黄网站色视频| 国产精品99久久久久久久久| 欧美成狂野欧美在线观看| 国产精品久久久av美女十八| 国产美女午夜福利| 国产伦精品一区二区三区视频9 | 国产精品1区2区在线观看.| 国产成人av教育| 婷婷六月久久综合丁香| 99久久99久久久精品蜜桃| 国产成人影院久久av| 午夜福利18| 国内精品久久久久精免费| 成人午夜高清在线视频| 大型黄色视频在线免费观看| 久久久久精品国产欧美久久久| 亚洲性夜色夜夜综合| 黄色成人免费大全| 99久久精品国产亚洲精品| 99热只有精品国产| www日本在线高清视频| 1024手机看黄色片| 日本 av在线| tocl精华| www.自偷自拍.com| www.熟女人妻精品国产| 久久中文字幕人妻熟女| 999久久久精品免费观看国产| 亚洲第一欧美日韩一区二区三区| 九色成人免费人妻av| 国产黄片美女视频| 日本撒尿小便嘘嘘汇集6| 岛国视频午夜一区免费看| www日本在线高清视频| 一进一出抽搐动态| 91麻豆精品激情在线观看国产| 无限看片的www在线观看| 亚洲国产色片| 久久久成人免费电影| 国产精品亚洲美女久久久| 精品一区二区三区视频在线 | 少妇裸体淫交视频免费看高清| 亚洲精品在线美女| 欧美日韩亚洲国产一区二区在线观看| 久久久国产精品麻豆| 亚洲中文字幕日韩| 成年女人毛片免费观看观看9| 19禁男女啪啪无遮挡网站| 网址你懂的国产日韩在线| xxxwww97欧美| 国产欧美日韩精品亚洲av| 国产精品1区2区在线观看.| 国产97色在线日韩免费| 亚洲熟妇中文字幕五十中出| 国语自产精品视频在线第100页| 国产日本99.免费观看| 波多野结衣高清作品| 国产精品一区二区精品视频观看| 两人在一起打扑克的视频| 99精品欧美一区二区三区四区| 手机成人av网站| av片东京热男人的天堂| 亚洲精品美女久久av网站| 变态另类成人亚洲欧美熟女| 国产97色在线日韩免费| 19禁男女啪啪无遮挡网站| 99视频精品全部免费 在线 | 99精品欧美一区二区三区四区| 老熟妇乱子伦视频在线观看| av片东京热男人的天堂| 久久久水蜜桃国产精品网| 黑人巨大精品欧美一区二区mp4| 精品久久蜜臀av无|