• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Near continuum boundary layer flows at a flat plate

    2015-11-18 05:41:59ChunpeiCai

    Chunpei Cai

    Department of Mechanical and Aerospace Engineering,New Mexico State University,Las Cruces,NM 88003,USA

    Near continuum boundary layer flows at a flat plate

    Chunpei Cai

    Department of Mechanical and Aerospace Engineering,New Mexico State University,Las Cruces,NM 88003,USA

    a r t i c l e i n f o

    Article history:

    Received 17 December 2014

    Accepted 25 December 2014

    Available online 11 March 2015

    Boundary layer

    The problem of boundary layer flows at a flat plate surface with velocity-slip and temperature-jump boundary conditions is analyzed.With the velocity slip conditions,there are multiple physical factors lumpedtogether,andtheboundarylayersolutionssignificantlychangetheirbehaviors.Theself-similarity in the solutions degenerates,however,the problem is still an ordinary differential equation which can be solved.Shooting methods are applied to solve the flowfield.The results include velocity and temperature for both the surface and flowfield.Unlike the traditional Blasius flat plate boundary layer solutions which areself-similarthroughalltheplateboundarylayer,thenewsolutionsindicatethatthefronttipisactually a singularity point,especially at locations within one mean free path from the leading edge.

    ?2015 The Author.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The problem of incompressible boundary layer at a flat plate withnon-slipandconstantheatflux/temperaturewasinvestigated successfully.Blasius et al.[1,2]introduced a coordinate transformation method,and the governing Navier-Stokes partial differential equations(NSEs)for incompressible flows were transformed into a single ordinary differential equation,from which a universal velocity profile can be obtained for the whole flowfield.In addition,surface properties,such as the friction coefficients,are obtained theoretically.In the literature,there are many numerical and experimental studies as well.The solutions for boundary layer alongaflatplatewerederivedandtheycanfindmanyapplications,e.g.,crude estimations for drags over an airfoil.

    As technologies and sciences advance,many new applications involvingboundarylayersemerge,andrarefication effectsmust be considered.For these flows,the traditional NSEs are not directly applicable.The rarefication effects are described by the Knudsen(Kn)number[3]

    whereλisthemoleculemeanfreepath(MFP),andLthecharacteristic length.Larger Kn number flows can be created by large MFP(e.g.,in space engineering),or small characteristic lengths,e.g.,shock waves,gas flows inside micro-electro-mechanical systems/ nano-electro-mechanical system (MEMS/NEMS).For example,Tretheway and Meinhart[4]reported in a micro-channel,with a very thin coating,the velocity slip can be quite apparent.Within the continuum flow regime(Kn< 0.001)with a small MFP,the NSEsapplywellwiththenon-slipvelocityboundaryconditions.As the Kn number continues to increase,flows change to the velocityslip and temperature-jump(0.001< Kn< 0.01)regime.With further larger MFPs,flows can be transitional(0.01< Kn< 10)and free molecular(10<Kn).Within the continuum flow regime,Blasius’s solutions are well developed;within the free molecular flow regime,the surface and flowfield solutions were obtained by Schaaf and Chambre[3]and Cai[5].Within the transitional flow regime,we rely on numerical simulation methods.With the velocity slip and temperature jump regime,there has been some progress[6,7],and the major goal of this paper aims to continue the discussions on flows within this regime.

    The Blasius boundary layer on a flat plate with non-slip boundary conditions It is well known that for an incompressible gas flow over a flat plate,the NSEs can be simplified as

    The plate surface conditions are listed as

    The exact solutions to boundary layer flows over a flat plate were developed by Blasius,and were explained more conveniently by White[8].A stream functionψ(x,η)can be adopted via a variabletransformation from(x,y)to(x,η)

    whereνis the kinetic viscosity,and U the free stream velocity,f is a single variable function,The above new equation is a concise ordinary differential equation(ODE),not a partial differential equation(PDE).As a result,there are exact solutions,and the solving procedure is simple.By using the shooting method[8],the above two-point boundary value problem can be solved numerically.Some plate surface properties,such as friction coefficients,can be obtained analytically.

    For the temperature field,with a transformation of variable[8]the governing equation and boundary conditions for temperature are

    where Pr is the Prandtl number.The exact solution is

    Slip velocity boundary conditions(0.001< Kn< 0.01)The previous section is the foundation for the work in this paper on velocity-slip and temperature jump boundary conditions.There is much related work in the literature,and they are reviewed as follows.

    The first category of work concentrated on explanations of the velocity-slip and temperature-jump boundary conditions. Maxwell was the first one(1890)who discovered that due to the existence of the Knudsen layer close to the surface,the boundary condition at the plate surface shall have discontinuity effects,the velocity and temperature boundary conditions shall be modified[9,10].Very soon,Smoluchowski[11,12]published two papers reporting similar results but with a separate method.Payne[13]relaxed Smoluchowski’s assumption,and provided more general results where a Maxwellian type boundary condition is merely a special scenario.By using the gaskinetic theory,and a multi-scale expansion method,Wu et al.[14]provided a slightly different,detailed explanation on the inner and outer solutions for flows in the velocity slip regime.It was emphasized by many researchers[15-17],that when surface curvatures exist,then extra terms shall also be included in the velocity-slip boundary condition.Such past work concentrated on derivations for these velocity-slip boundary condition,rather than applying these new boundary conditions to the similarity solutions for boundary layer flows.Higher order slip boundary conditions[16]were also proposed.

    A comprehensive review on experiments and numerical simulations of rarefied gas flows over a flat plate is available in the literature[18].The non-equilibrium effects on the leading edge of a flat plate is reported[19].Those work did not follow the approach for similarity solutions by Blasius.Recently,Matthews and Hill[20,21]discussed their work on slip flows over a flat plate with more general slip boundary conditions.In their work,no variable transformation was introduced,and the work did not include temperature jump boundary conditions.Martin and Boyd[6]reported their work on similarity solutions for flows over a flat plate with velocity-slip and temperature-jump conditions.They introduced an extra parameter K1which is related to x1/2,in addition to the two transformed variables(x,η).

    The velocity-slip boundary conditions can be expressed as

    where usis the wall slip velocity,i.e.,the velocity difference between gas and the wall surface,ugthe gas bulk velocity adjacent to the wall,uwthe wall surface velocity,?u/?n the gas velocity gradient normal to the wall,σMa tangential momentum accommodation coefficient,Tgthe gas temperature,λthe MFP for a gas flow and can be described by the hard sphere modelfor a molecule of a diameter d,m the molecular mass,andρthe gas density which is usually of an ordinary value for gas flows inside MEMS.In general,the term containing temperature gradient in Eq.(11)is negligible when compared with the velocity gradient term.

    With the same coordinate transformations,Eq.(4),the new velocity boundary condition changes

    By using a crude gaskinetic estimation[22]

    Eq.(12)can be transformed as

    where the right hand side of the expression is defined as the slip coefficient,M0is the free-stream Mach number,andγthe specific heat ratio.Since several factors are combined together,it is evident that different changes of variables may achieve the same effect;for example,with a largerσM,or at a station x/λfurther downstream from the leading edge.Boundary conditions,Eq.(14),involve a normalized factor of x/λ.Hence,at different stations,the boundary conditions vary.Equations(5)and(14)are compatible,with the transformed coordinate system of(x,η).The governing equation contains x implicitly throughη.Martin&Boyd[6]introduced an extra parameter K1which involves the Knxand Reynolds Rexnumber.The characteristic length for both is the distance from the leading edge,i.e.,x.As can be derived,K1∝KnxRe1/2x∝x?1/2,and it is improper to apply the derivative computation,due to the chain rule between the old coordinates(x,y)to the new coordinate system(x,η)Kumaran and Pop[23]investigated one related isothermal flow problem with a moving plate.Different from introducing a new parameter K1as Martin’s work,they performed a small parameter expansion method.Their approach is obviously improper because the slip coefficient which is defined in Eq.(14)includes a variable x which cannot be considered as a constant.

    For gas flows inside MEMS/NEMS,or over a flat plate,the gas density is actually relatively constant;hence,the MFP does notchange much at room conditions.Due to this reason,a further introduction of Kn will not aid formulating the problem;the role of Kn number is minor and does not contribute much.The Re number is still crucial due to the inherited variable transformations.

    For the temperature field,the boundary conditions are

    which can be transformed as,by using Eq.(13)and the definition ofηHere K0is a parameter which clearly displays all related factors,and if evaluated at a specific locationλ/x,then it can be treated as a constant.The work in this paper stillsolves Eq.(5)with the above new fixed boundary conditions,while Martin’s treatment actually alternate the governing equation and boundary conditions.

    Equations(8)and(17)lead to the following exact solutions

    It is evident that properties at different stations x/λalong the plate surface,such as the gas temperature jumpΘ(0)can be computed with Eq.(19).Further Eq.(17)leads toΘ′(0),which is related to the heat flux along the plate surface.

    Discussions Equations(5)and(14)are in the transformed coordinate system of(x,η),and form one problem involving an ODE which can be solved numerically.For gas flows in MEMS,λ is relatively constant because the density is assumed to be almost constant.For the temperature solutions,they can be obtained from solutions of Eqs.(18)and(19)directly if the velocity solutions f()are available.As can be understood,due to the introduction of the velocity slip condition,the self-similarity in the solutions degrades. Several factors and parameters,x/λ,γ,M0,andσu,are explicitly displayed,and a combination ofthem may lead to the same results.

    A shooting method is adopted to solve Eqs.(5)and(14),by adjusting f′′(0)and f′(0).Subsequently,the temperature and temperature gradient results are obtained without the shooting method.This section illustrates several results,and here the gas is assumed to be air withγ=1.4,and the free stream Mach number is set to 0.1 to satisfy the incompressible air flow assumption.

    Severalvelocity profiles with different x/λvalues are illustrated in Fig.1.TheσMis set to 0.8.Further away from the plate leading point,flows behave more like incompressible with a non-slip velocity boundary condition,and the plate surface slip-velocity f′(0)decreases quickly.At the leading edge,the velocity changes significantly;essentially,the u-and v-components are of the same order,the flow is free molecular,and NSEs are not applicable.This is a well discussed topic with many papers in the literature[24]. Far from the leading edge,NSEs are applicable and the solution of f becomes more self-similar.This figure indicates that the solution at x/λ=102,or Knx=λ/x=0.01,is almost the same to the one at x/λ=106,or Knx=10?6.This is because Eqs.(14)and(17)degenerate to non-slip and constant temperature boundary conditions quite rapidly asλ/x→ 0.The velocity gradient profilesat different stations are presented in Fig.2.Asηincreases,the velocity profiles approach the outer stream value and the gradients decrease to zero at the edge of the boundary layer.Due to the existence of the velocity slip boundary condition,the flow reaches the free stream values faster than the corresponding results with the non-slip boundary conditions.For example,the boundary edge can be considered atη=5.0,while the non-slip one is atη=6.0. The gradients atthe surface converge rapidly fromthe leading edge point as well.Closer to the leading edge,the boundary layer thickness approaches to zero.

    Fig.1.f′(η)at different stations,σM=0.8,M0=0.1,γ=1.4.

    Fig.2.f′′(η)at different stations,σM=0.8,M0=0.1,γ=1.4.

    Surface slip velocities due to differentσMare shown in Fig.3. The leading edge essentially is a singularity point with quite large slip velocities.AsσMincreases,the slip velocity decreases;this phenomenon indicates that largerσMresults in less rarefied gas flows.It is shown in Fig.4 that f′′(0)changes with a variation of σM.This property is closely related to the surface frictions Cf(x/λ),CD(x/λ),and normalized momentum displacement thickness θ(x/λ)/δ(x/λ).Hereδ(x/λ)is a reference value from the non-slip boundary condition.WhenσMbecomes larger,those properties approach constant properties quickly.As illustrated in Fig.5,the surface boundary layer thickness,further away from the leading edge,continues to increase downstream-wisely.As the surface accommodation coefficient decreases,the boundary layer thicknessdecreases,and behaves more like the results from the non-slip boundary conditions.

    Fig.3.σMeffects on f′(0),M0=0.1,γ=1.4.

    Fig.4.σMeffects on f′′(0)distributions,M0=0.1,γ=1.4.

    Fig.5.σMeffects on boundary layer thickness(specificηcorresponding to f′= 0.99)at different station x/λ.

    Fig.6.DifferentσTeffects on thermal boundary layer profiles,σM=0.8,γ=1.4,Pr=0.72,M0=0.1,x/λ=104.

    Fig.7.Temperature profiles at different stations,σM = σT=0.8,γ =1.4,Pr=0.72,M0=0.1.

    The next two figures illustrate some properties related to the temperature jump.Equation(18)illustrates that exact solutions for the temperature distributions are closely related to the velocity profile f.Equation(17)indicates thatλ/x andσTprovide similar effects to the thermal boundary layer,as both are in the denominators.We can see in Fig.6 the thermal boundary layer profiles at a specific location x/λ=104,but with differentσT,which cannot create appreciable temperature differences.This indicates that at this specific condition,even with velocity slip and temperature jump boundary conditions,the flow is almost the same as the traditional none temperature jump Blasius boundary layer temperature distributions.Temperature profiles at different stations are shown in Fig.7.It illustrates that the temperature profiles change significantly from station x/λ=0.5 to station x/λ=20,or we can conclude that the traditional boundary layer solutions are recovered.These two figures clearly recovered the thermalboundary layer relation at the other region,Θ(∞)=0.

    Figure 8 shows different surface temperatureΘ(0)at the plate surface under the effects of differentσT.The classical Blasiusboundary layer solutions shall provideΘ(0)=1 at the plate surface,and this figure clearly demonstrates that at locations further from the leading edge,this fact recovers.By using the relations between surface jump,Eq.(17),we can obtain the surface temperature gradientsΘ′(0)under the effects of differentσT.This relation linksΘ(x,0)andΘ′(x,0);hence,they can be mapped from one to the other conveniently.The solutions for the temperature profiles are analytical;hence,no shooting method is needed.Instead,a simple integration of solved f()shall be sufficient.Further,there are two sources which lead to different temperature results from this paper and those in the literature[6].The first source is via different f()which is inherited and explicitly included in Eqs.(18)and(19),and the second source is the new treatment in the temperature boundary condition,via Eq.(17).

    Table 1 Velocity slip boundary layer solutions f′′(0),γ=1.4,M0=0.1(the Blasius boundary layer solution[8]value is 0.4696).

    Fig.8.DifferentσTeffects on temperature profilesΘ(0)along plate surface,σM= 0.8,γ=1.4,Pr=0.72,M0=0.1.

    It is well known that the Blasius boundary layer solutions are not valid at the leading edge,especially within a distance of one mean free path.One of several reasons for this is the velocity components u and v are of the same orders;hence,one important assumption to simplify the Navier-Stokes equations becomes invalid.However,the current solutions partially alleviated the problembecause rarefication effects are achieved by adding rarefication effect through the boundary conditions,as such,it can be expected thatthe analyticalsolutions in this work is more general.However,to validate the solutions is rather challenging because both numerically and experimentally we have difficulties in probing into regions of one mean free path.For numerical simulations,high resolutions require fine grids;for experiments,the diameter of a hot wire can be easily larger than one mean free path.Validating the results may demand long term effort;at this stage,we can examine whether downstream-wise these carefully derived solutions can degenerate to incompressible boundary layer solutions. Table 1 demonstrates thatconvergence to the traditionalboundary layersolutions is evident.The K0parameterin Eq.(17)predicts that increasing x/λwithσTunchanged can achieve similar effects as increasingσTwith x/λunchanged,and this table confirms this prediction.

    Atthe end ofthis section,the majordifferences among this work and those in other two recent papers[6,25]are emphasized as follows.The work in these three papers concentrated on the Blasius boundary layer problems with the velocity-slip boundary conditions;hence,they are in the same vein.Martin[6]introduced a new parameter K1as one extra variable.Actually by doing that,the governing equation for the velocity profile changes from a singlevariable function f(η)to a new two-variable function f(η,K1),and according to the chain rule for derivatives,a correctfinalgoverning equation shall be a partial differential equation.This work and that by Aziz[25]are quite close,both still concentrate on the ordinary differentialequation,neither introduce such an extra parameter K1as Martin proposed.This work further demonstrates that many exact physical factors can be combined into an explicit factor K0.Aziz assumed a constant heat flux at the plate surface with?T/?n= constant;while this work solved the temperature jump condition,Eq.(17),and an explicit temperature profile solution,Eq.(18),is obtained in this work.This new solution illustrates strong connections between the temperature and velocity profiles.

    Summary Boundary layers at a flat plate with a velocity-slip and temperature-jump surface conditions are analyzed.The velocity profiles can be solved as an ODE,and the results are different from the previous ones in the literature.Even though the general similarity properties are lost due to the new boundary conditions,the problemcan be solved relatively easier than a PDE.With the velocity profiles obtained,the corresponding temperature distributions can be obtained by integrations numerically without a need of the shooting method,and the results are different from the previous ones in the literature,because the involved velocity profiles are different.Detailed parameters from the boundaries are listed separately,and their impacts can be monitored parameter by parameter.

    [1]H.Blasius,Grezschichten in flüssikeiten Mit kleiner reibung,Z.Angew.Math. Phys.56(1908)1534-1535(in German).

    [2]H.Schlichting,K.Gersten,Boundary Layer Theory,second ed.,McGraw-Hill,Columbus,1962.

    [3]S.A.Schaaf,P.L.Chambre,F(xiàn)low ofRarefied Gas,Princeton University Press,New Jersey,1961.

    [4]D.C.Tretheway,C.D.Meinhart,Apparent fluid slip at hydrophobic microchannel walls,Phys.Fluids 14(2001)L9.

    [5]C.Cai,F(xiàn)ree-molecular gas flow over a flat plate,in:Proceedings of the 29th International Symposium on Rarefied Gasdynamics,Xi’an,July,2014,China.

    [6]M.Martin,I.D.Boyd,Momentumand heattransferin a laminar boundary layer with slip velocity,J.Thermophys.Heat Transfer 20(2006)710-719.

    [7]M.H.Yazdi,S.Abdullah,I.Hashim,A.Zaharim,K.Sopian,F(xiàn)riction and heat transfer in slip flow boundary layer at constant heat flux boundary conditions,Math.Comput.Sci.Eng.(2008)207-212.

    [8]F.White,Viscous Fluid Flow,first ed.,McGraw-Hill,New York,1991.

    [9]E.H.Kennard,Kinetic Theory of Gases,McGraw-Hill,New York,1939.

    [10]M.N.Kogan,Rarefied Gas Dynamics,Plenum Press,New York,1969,pp.386-400.

    [11]M.V.Smoluchowski,Sitz.ber.,Oesterr.Akad.Wiss.Math.-Nat.wiss.Kl.II 107(1898)304.

    [12]M.V.Smoluchowski,Sitz.ber.,Oesterr.Akad.Wiss.Math.-Nat.wiss.Kl.II 108(1899)5.

    [13]H.Payne,Temperature jump and velocity slip at the boundary of a gas,J.Chem.Phys.21(1953)2127,http://dx.doi.org/10.1063/1.1698798.

    [14]Q.F.Wu,W.F.Chen,L.Huang,Y.Z.Shi,Rarefied Gasdynamics(in Chinese),National Defense University Press,2004.

    [15]X.Chen,Gasdynamics and Its Application in Heat Transfer and Gas Flows(in Chinese),Tsinghua University Press,Beijing,1996.

    [16]D.A.Lockerby,J.M.Reese,D.R.Emerson,R.W.Barber,The velocity boundary condition at solid walls in rarefied gas calculations,Phys.Rev.E.70(2004)017303.

    [17]X.Sun,R.W.Barber,D.R.Emerson,The impact of accommodation coefficient on concentric Couette flow,in:24th International Symposium on Rarefied Gasdynamics,Bari,Italy,2004.

    [18]J.L.Potter,The transitional rarefied flow regime,in:Proceedings of 5th International Symposium on Rarefied Gasdynamics,vol II,Academic Press,1967.

    [19]J.A.Laurmann,Structure ofthe boundary layeratthe leading edge ofa flatplate in hypersonic slip flow,AIAA J.2(1964)1655-1657.

    [20]M.T.Matthews,J.M.Hill,Nano boundary layer equation with nonlinear Navier boundary condition,J.Math.Anal.Appl.333(2006)381-400.

    [21]M.T.Matthews,J.M.Hill,A note on the boundary layer equations with linear slip boundary condition,Appl.Math.Lett.21(2008)810-813.

    [22]W.G.Vincenti,C.H.Kruger,An Introduction to Physical Gasdynamics,first ed.,John Wiley and Sons,New Jersey,1965.

    [23]V.Kumaran,I.Pop,Nearly parallel Blasius flow with slip,Commun.Nonlinear Sci.16(2011)4614-4619.

    [24]J.Morito,R.Street,The incipient continuum flow near the leading edge of a flat plate,in:Proceedings of The 4th International Symposium on Rarefied Gasdynamics,July,Toronto,Canada,1965,pp.416-432.

    [25]A.Aziz,Hydrodynamic and thermal slip flow boundary layers over a flat plate with constantheatflux boundary condition,Commun.Nonlinear Sci.15(2010)573.

    E-mail address:ccai@nmsu.edu.

    http://dx.doi.org/10.1016/j.taml.2015.03.005

    2095-0349/?2015 The Author.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Rarefication

    Slip flows

    *This article belongs to the Fluid Mechanics

    男女国产视频网站| 少妇 在线观看| 久久精品国产a三级三级三级| 青草久久国产| 亚洲成人国产一区在线观看 | 一级毛片黄色毛片免费观看视频| 最近的中文字幕免费完整| 午夜福利影视在线免费观看| 亚洲精品乱久久久久久| 18在线观看网站| 亚洲成色77777| 秋霞伦理黄片| 国产亚洲av高清不卡| 亚洲av中文av极速乱| 亚洲国产精品一区三区| 最近最新中文字幕大全免费视频 | 国产精品三级大全| 黄色视频不卡| 国产精品一区二区精品视频观看| 亚洲国产精品一区三区| 欧美亚洲 丝袜 人妻 在线| 少妇被粗大的猛进出69影院| 久久青草综合色| 一区二区av电影网| 99国产综合亚洲精品| 久久久久久久国产电影| 国产片特级美女逼逼视频| 我的亚洲天堂| 午夜激情久久久久久久| 国产福利在线免费观看视频| 精品一区二区三卡| 日日啪夜夜爽| netflix在线观看网站| 亚洲av电影在线观看一区二区三区| 国产精品 欧美亚洲| 少妇被粗大猛烈的视频| 在线观看免费日韩欧美大片| 国产精品一区二区在线观看99| 巨乳人妻的诱惑在线观看| 黑人欧美特级aaaaaa片| 天天添夜夜摸| 99久国产av精品国产电影| 欧美人与性动交α欧美精品济南到| 午夜精品国产一区二区电影| 成人国产av品久久久| av卡一久久| 国产有黄有色有爽视频| 亚洲图色成人| 啦啦啦在线免费观看视频4| 久久99一区二区三区| 欧美黄色片欧美黄色片| 欧美激情 高清一区二区三区| 热99久久久久精品小说推荐| 天天影视国产精品| 久久久国产欧美日韩av| 热re99久久精品国产66热6| 国产精品99久久99久久久不卡 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品二区激情视频| 日韩欧美一区视频在线观看| 人人妻,人人澡人人爽秒播 | 波多野结衣一区麻豆| 亚洲av中文av极速乱| 视频在线观看一区二区三区| 亚洲人成77777在线视频| 大陆偷拍与自拍| 99国产综合亚洲精品| 国产在线免费精品| 黄色一级大片看看| 欧美黑人欧美精品刺激| 在线精品无人区一区二区三| 亚洲成人国产一区在线观看 | 国精品久久久久久国模美| 国产成人a∨麻豆精品| 高清不卡的av网站| 亚洲精品国产av成人精品| 免费观看性生交大片5| 欧美乱码精品一区二区三区| 最近中文字幕高清免费大全6| 啦啦啦中文免费视频观看日本| 观看美女的网站| 啦啦啦在线免费观看视频4| 2018国产大陆天天弄谢| 自拍欧美九色日韩亚洲蝌蚪91| 91国产中文字幕| 永久免费av网站大全| av.在线天堂| 精品福利永久在线观看| 国产精品 国内视频| 1024视频免费在线观看| 电影成人av| 男女之事视频高清在线观看 | 一区二区三区乱码不卡18| 午夜av观看不卡| 亚洲av中文av极速乱| 人成视频在线观看免费观看| 纵有疾风起免费观看全集完整版| 免费女性裸体啪啪无遮挡网站| 男人添女人高潮全过程视频| 国产日韩欧美在线精品| 欧美精品高潮呻吟av久久| 美女午夜性视频免费| av在线app专区| 午夜精品国产一区二区电影| 久久精品国产a三级三级三级| 女的被弄到高潮叫床怎么办| 久久久久久久国产电影| 天堂俺去俺来也www色官网| 秋霞在线观看毛片| 国产黄色视频一区二区在线观看| a级毛片黄视频| 亚洲精品中文字幕在线视频| 国产黄色视频一区二区在线观看| 久久精品国产亚洲av涩爱| 制服丝袜香蕉在线| 久久99一区二区三区| svipshipincom国产片| 亚洲欧美激情在线| 色精品久久人妻99蜜桃| 99久久综合免费| 国产成人午夜福利电影在线观看| 夜夜骑夜夜射夜夜干| 日韩大片免费观看网站| 只有这里有精品99| 久久99一区二区三区| 久久精品亚洲av国产电影网| 只有这里有精品99| 看非洲黑人一级黄片| 日韩制服骚丝袜av| 又大又黄又爽视频免费| 99香蕉大伊视频| 欧美日韩一级在线毛片| 午夜老司机福利片| 亚洲国产中文字幕在线视频| 国产精品欧美亚洲77777| 国产成人av激情在线播放| 美女福利国产在线| 欧美少妇被猛烈插入视频| 国产亚洲最大av| 欧美中文综合在线视频| 精品午夜福利在线看| 国产成人免费观看mmmm| av网站在线播放免费| 国产1区2区3区精品| 校园人妻丝袜中文字幕| 亚洲精品日本国产第一区| 国产精品久久久久久精品电影小说| 黄网站色视频无遮挡免费观看| 国产精品一二三区在线看| 999久久久国产精品视频| 伊人久久国产一区二区| 波多野结衣av一区二区av| 日本欧美视频一区| 国产午夜精品一二区理论片| 人人妻人人爽人人添夜夜欢视频| 十八禁网站网址无遮挡| 九草在线视频观看| 国产免费现黄频在线看| 久久人妻熟女aⅴ| 欧美xxⅹ黑人| 欧美日韩一区二区视频在线观看视频在线| 在线天堂最新版资源| 国产男女超爽视频在线观看| 国产福利在线免费观看视频| 国产一区二区三区av在线| 波多野结衣一区麻豆| 中国三级夫妇交换| 日本猛色少妇xxxxx猛交久久| 精品久久久久久电影网| 欧美日韩亚洲国产一区二区在线观看 | 在线观看人妻少妇| 亚洲伊人色综图| 天天影视国产精品| 考比视频在线观看| 黄片小视频在线播放| 女性生殖器流出的白浆| 久久女婷五月综合色啪小说| 亚洲男人天堂网一区| 欧美黑人欧美精品刺激| 尾随美女入室| 久久天堂一区二区三区四区| 国产av精品麻豆| 久久99热这里只频精品6学生| 狠狠婷婷综合久久久久久88av| 久久精品国产a三级三级三级| 秋霞伦理黄片| 91精品三级在线观看| 欧美日韩综合久久久久久| 欧美精品一区二区大全| 久久天躁狠狠躁夜夜2o2o | 2021少妇久久久久久久久久久| 中文字幕精品免费在线观看视频| 午夜日韩欧美国产| 一本大道久久a久久精品| 国产日韩欧美视频二区| 国产精品久久久久久久久免| 国产免费又黄又爽又色| 80岁老熟妇乱子伦牲交| 日本黄色日本黄色录像| av有码第一页| 黄色一级大片看看| 国产伦人伦偷精品视频| 国产伦人伦偷精品视频| 亚洲一区二区三区欧美精品| 久久人妻熟女aⅴ| 黄片无遮挡物在线观看| 多毛熟女@视频| 男男h啪啪无遮挡| 在线免费观看不下载黄p国产| 国产精品蜜桃在线观看| 精品亚洲成a人片在线观看| 欧美黑人精品巨大| 捣出白浆h1v1| 少妇精品久久久久久久| 精品人妻一区二区三区麻豆| 国产野战对白在线观看| av视频免费观看在线观看| 美女高潮到喷水免费观看| avwww免费| 免费高清在线观看日韩| 久久天躁狠狠躁夜夜2o2o | 国产成人精品福利久久| 久久99一区二区三区| 美女主播在线视频| 欧美精品一区二区大全| 亚洲人成电影观看| av福利片在线| 最新在线观看一区二区三区 | 国产在视频线精品| 中文字幕av电影在线播放| av一本久久久久| www.熟女人妻精品国产| av卡一久久| a级毛片黄视频| 熟妇人妻不卡中文字幕| 亚洲人成网站在线观看播放| 欧美激情极品国产一区二区三区| 悠悠久久av| 热re99久久精品国产66热6| 国产亚洲精品第一综合不卡| 国产精品麻豆人妻色哟哟久久| 亚洲精品中文字幕在线视频| 精品人妻一区二区三区麻豆| 丝袜在线中文字幕| 久久久精品免费免费高清| 亚洲人成77777在线视频| 亚洲激情五月婷婷啪啪| 亚洲综合色网址| 国精品久久久久久国模美| 激情视频va一区二区三区| 在线观看人妻少妇| 不卡视频在线观看欧美| 曰老女人黄片| 少妇 在线观看| 极品少妇高潮喷水抽搐| 日韩欧美一区视频在线观看| 国产在线免费精品| 亚洲人成电影观看| svipshipincom国产片| 久久热在线av| 久久久久精品性色| 飞空精品影院首页| 美女中出高潮动态图| 日韩熟女老妇一区二区性免费视频| 日韩一本色道免费dvd| 极品人妻少妇av视频| 亚洲国产精品一区三区| a 毛片基地| 搡老岳熟女国产| av视频免费观看在线观看| 人体艺术视频欧美日本| 欧美精品一区二区免费开放| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利视频精品| 麻豆精品久久久久久蜜桃| 亚洲精品第二区| 国产野战对白在线观看| 伦理电影大哥的女人| 日韩大码丰满熟妇| 精品久久蜜臀av无| 精品少妇内射三级| 嫩草影视91久久| 成年人免费黄色播放视频| 欧美精品一区二区免费开放| 亚洲人成电影观看| 亚洲天堂av无毛| 男女高潮啪啪啪动态图| 中文字幕高清在线视频| 老司机靠b影院| 两个人免费观看高清视频| 国产成人精品无人区| 亚洲精品乱久久久久久| 日本爱情动作片www.在线观看| 美女国产高潮福利片在线看| 亚洲国产精品国产精品| 成年人免费黄色播放视频| 在线观看免费日韩欧美大片| 色视频在线一区二区三区| 国产成人欧美| 欧美黄色片欧美黄色片| 成人手机av| 天美传媒精品一区二区| 亚洲精品第二区| 国产精品二区激情视频| 国产熟女午夜一区二区三区| 欧美日韩视频高清一区二区三区二| 激情视频va一区二区三区| 国产一区二区三区综合在线观看| 国产黄频视频在线观看| 久久影院123| 国产精品熟女久久久久浪| 丁香六月天网| 成人免费观看视频高清| 中文欧美无线码| 在线观看国产h片| 国产片特级美女逼逼视频| 国产日韩欧美亚洲二区| 久久久久久人人人人人| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线观看99| 国产一区二区在线观看av| 国产成人免费无遮挡视频| 亚洲欧美激情在线| 深夜精品福利| 国产精品国产三级专区第一集| 高清av免费在线| 亚洲综合精品二区| 国产在线一区二区三区精| 成年人免费黄色播放视频| 丝袜人妻中文字幕| 欧美日韩成人在线一区二区| 亚洲国产av影院在线观看| 亚洲国产欧美网| 亚洲伊人色综图| 亚洲成人av在线免费| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久久久人妻精品电影 | 婷婷色麻豆天堂久久| 日日爽夜夜爽网站| av在线老鸭窝| 亚洲精品aⅴ在线观看| 久久综合国产亚洲精品| 国产成人欧美| 国产一区二区激情短视频 | 亚洲国产成人一精品久久久| 日本黄色日本黄色录像| 亚洲欧洲国产日韩| 久久99热这里只频精品6学生| 中文字幕制服av| 90打野战视频偷拍视频| 性少妇av在线| 我的亚洲天堂| 国产精品久久久久久久久免| 亚洲男人天堂网一区| 男人操女人黄网站| 高清不卡的av网站| 精品亚洲乱码少妇综合久久| 99国产综合亚洲精品| 十分钟在线观看高清视频www| 国产精品一区二区精品视频观看| 亚洲国产精品999| 99精品久久久久人妻精品| 久久韩国三级中文字幕| videos熟女内射| 免费观看av网站的网址| 如日韩欧美国产精品一区二区三区| av国产精品久久久久影院| 亚洲国产精品国产精品| 狠狠婷婷综合久久久久久88av| 一级毛片 在线播放| 亚洲欧美一区二区三区久久| 丁香六月天网| 美女大奶头黄色视频| 亚洲欧洲精品一区二区精品久久久 | 一区二区三区四区激情视频| 纯流量卡能插随身wifi吗| 看免费成人av毛片| 1024视频免费在线观看| 久久午夜综合久久蜜桃| 日韩 亚洲 欧美在线| 久久久欧美国产精品| 亚洲一区中文字幕在线| 巨乳人妻的诱惑在线观看| 男女免费视频国产| 2018国产大陆天天弄谢| 国产精品欧美亚洲77777| 如何舔出高潮| 色94色欧美一区二区| 性少妇av在线| svipshipincom国产片| 一级黄片播放器| 国产精品香港三级国产av潘金莲 | netflix在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产一区二区三区久久久樱花| 可以免费在线观看a视频的电影网站 | 一区二区三区四区激情视频| 国产深夜福利视频在线观看| 人妻 亚洲 视频| 成人亚洲精品一区在线观看| 波多野结衣一区麻豆| 精品少妇内射三级| 日韩 欧美 亚洲 中文字幕| 1024视频免费在线观看| 国产成人av激情在线播放| 秋霞在线观看毛片| 成人免费观看视频高清| 国产一区亚洲一区在线观看| 亚洲欧美精品综合一区二区三区| 尾随美女入室| 大话2 男鬼变身卡| 亚洲成国产人片在线观看| 高清不卡的av网站| 另类精品久久| 伦理电影大哥的女人| 美女主播在线视频| 中文字幕精品免费在线观看视频| 精品人妻在线不人妻| 日本av免费视频播放| 午夜91福利影院| 热99久久久久精品小说推荐| 啦啦啦 在线观看视频| 如日韩欧美国产精品一区二区三区| 嫩草影院入口| 欧美黑人精品巨大| 日本一区二区免费在线视频| 亚洲婷婷狠狠爱综合网| 亚洲四区av| 另类亚洲欧美激情| 看非洲黑人一级黄片| 在现免费观看毛片| 久久精品熟女亚洲av麻豆精品| 欧美精品一区二区免费开放| 天堂8中文在线网| 免费黄网站久久成人精品| av视频免费观看在线观看| 亚洲av电影在线进入| 国产精品免费大片| 国产成人欧美| 亚洲第一区二区三区不卡| 久久ye,这里只有精品| 精品久久久精品久久久| 久久婷婷青草| 别揉我奶头~嗯~啊~动态视频 | 超碰97精品在线观看| 日韩熟女老妇一区二区性免费视频| 69精品国产乱码久久久| 别揉我奶头~嗯~啊~动态视频 | 18在线观看网站| 99久久综合免费| 国产精品久久久人人做人人爽| 日本av免费视频播放| 秋霞伦理黄片| 亚洲精品美女久久av网站| 精品国产一区二区久久| 久久这里只有精品19| 国产精品久久久久久精品电影小说| 波野结衣二区三区在线| 青青草视频在线视频观看| 日韩 欧美 亚洲 中文字幕| 精品一区二区免费观看| 日韩中文字幕欧美一区二区 | 亚洲精品美女久久av网站| 99久久精品国产亚洲精品| 最近的中文字幕免费完整| 久久婷婷青草| 操出白浆在线播放| 我要看黄色一级片免费的| 在线天堂中文资源库| 亚洲欧洲精品一区二区精品久久久 | 我要看黄色一级片免费的| 日本欧美视频一区| 欧美日韩视频精品一区| 中文字幕亚洲精品专区| av.在线天堂| 天堂8中文在线网| 丝袜喷水一区| 久久久久久久久久久久大奶| 欧美 亚洲 国产 日韩一| 国产av一区二区精品久久| 九九爱精品视频在线观看| 亚洲国产欧美一区二区综合| 国产在视频线精品| 国产av一区二区精品久久| 日韩人妻精品一区2区三区| 日本爱情动作片www.在线观看| 97人妻天天添夜夜摸| 香蕉丝袜av| 国产精品人妻久久久影院| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| 电影成人av| 精品一区二区三区四区五区乱码 | 色精品久久人妻99蜜桃| 夫妻午夜视频| 久久久精品94久久精品| 日韩 亚洲 欧美在线| 欧美激情高清一区二区三区 | 国产老妇伦熟女老妇高清| 人妻一区二区av| 亚洲人成电影观看| 观看美女的网站| 黄网站色视频无遮挡免费观看| 中文字幕亚洲精品专区| 国产精品成人在线| 久久久久国产精品人妻一区二区| 中文天堂在线官网| 一本大道久久a久久精品| 欧美最新免费一区二区三区| 一区二区av电影网| 成年人午夜在线观看视频| 久久99一区二区三区| 亚洲国产最新在线播放| 精品人妻在线不人妻| 色婷婷av一区二区三区视频| www日本在线高清视频| 一级毛片黄色毛片免费观看视频| 日本猛色少妇xxxxx猛交久久| 国产成人系列免费观看| 街头女战士在线观看网站| 狂野欧美激情性bbbbbb| 深夜精品福利| e午夜精品久久久久久久| 热re99久久精品国产66热6| 久久鲁丝午夜福利片| 大片电影免费在线观看免费| 免费少妇av软件| 两性夫妻黄色片| 丝袜美足系列| 午夜精品国产一区二区电影| 久久久亚洲精品成人影院| 9热在线视频观看99| 18禁国产床啪视频网站| 极品人妻少妇av视频| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人爽人人夜夜| 欧美国产精品一级二级三级| 日韩中文字幕欧美一区二区 | 王馨瑶露胸无遮挡在线观看| 国产99久久九九免费精品| 三上悠亚av全集在线观看| 久久久亚洲精品成人影院| 黄频高清免费视频| 免费在线观看视频国产中文字幕亚洲 | 只有这里有精品99| 天堂俺去俺来也www色官网| 免费高清在线观看视频在线观看| 丰满迷人的少妇在线观看| 高清视频免费观看一区二区| 黄片播放在线免费| 国产日韩欧美在线精品| 你懂的网址亚洲精品在线观看| 啦啦啦在线免费观看视频4| 久久精品国产亚洲av涩爱| 十分钟在线观看高清视频www| 国产精品国产三级国产专区5o| 纵有疾风起免费观看全集完整版| 国产精品嫩草影院av在线观看| videosex国产| 国产免费视频播放在线视频| 人妻 亚洲 视频| 日韩大片免费观看网站| 日韩免费高清中文字幕av| 久久久久精品人妻al黑| 这个男人来自地球电影免费观看 | bbb黄色大片| 狂野欧美激情性xxxx| 亚洲国产欧美在线一区| 国语对白做爰xxxⅹ性视频网站| 1024香蕉在线观看| 国产成人免费观看mmmm| 欧美av亚洲av综合av国产av | 999久久久国产精品视频| 在线观看人妻少妇| 成人国产av品久久久| www日本在线高清视频| 人妻一区二区av| 国产极品粉嫩免费观看在线| 亚洲精品国产av蜜桃| 狠狠婷婷综合久久久久久88av| 天天躁日日躁夜夜躁夜夜| 少妇被粗大的猛进出69影院| 又大又黄又爽视频免费| www日本在线高清视频| 天天添夜夜摸| 在线观看国产h片| 宅男免费午夜| 性少妇av在线| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 亚洲精品一区蜜桃| 国产成人欧美在线观看 | 一区福利在线观看| 亚洲精品aⅴ在线观看| 久久久久精品性色| 1024香蕉在线观看| 国产精品一区二区在线不卡| 日本91视频免费播放| 中文字幕色久视频| 国产精品蜜桃在线观看| 国产成人91sexporn| 97精品久久久久久久久久精品| 日本av免费视频播放| 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www| 国产精品99久久99久久久不卡 | 国产免费一区二区三区四区乱码| 亚洲成色77777| 别揉我奶头~嗯~啊~动态视频 | 国产一区二区三区综合在线观看| 国产av国产精品国产| 国产xxxxx性猛交| 777米奇影视久久| videos熟女内射| 高清av免费在线|