• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anomalous friction of graphene nanoribbons on waved graphenes

    2015-11-10 11:23:40JunFngBinChenHuiPn

    Jun Fng,Bin Chen,?,Hui Pn?

    aDepartment of Engineering Mechanics,Zhejiang University,Hangzhou 310027,China

    bInstitute of Applied Physics and Materials Engineering,F(xiàn)aculty of Science and Technology,University of Macau,Macao SAR,China

    Anomalous friction of graphene nanoribbons on waved graphenes

    Jun Fanga,Bin Chena,?,Hui Panb,?

    aDepartment of Engineering Mechanics,Zhejiang University,Hangzhou 310027,China

    bInstitute of Applied Physics and Materials Engineering,F(xiàn)aculty of Science and Technology,University of Macau,Macao SAR,China

    H I G H L I G H T S

    ·The friction increases with the amplitude at a fixed period.

    ·The friction anomalously increases and then decreases with the period.

    ·A theory is proposed to explain the simulation results.

    A R T I C L EI N F O

    Article history:

    6 August 2015

    Accepted 9 September 2015

    Available online 25 September 2015

    Friction

    Small scale

    Graphene

    Molecular dynamics

    Friction plays a critical role in the function and maintenance of small-scale structures,where the conventional Coulomb friction law often fails.To probe the friction at small scales,here we present a molecular dynamics study on the process of dragging graphene nanoribbons on waved graphene substrates.The simulation shows that the induced friction on graphene with zero waviness is ultra-low and closely related to the surface energy barrier.On waved graphenes,the friction generally increases with the amplitude of the wave at a fixed period,but anomalously increases and then decreases with the period at a fixed amplitude.These findings provide insights into the ultra-low friction at small scales,as well as some guidelines into the fabrication of graphene-based nano-composites with high performance.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Friction is very important to the function and maintenance of small scale structures due to their large specific area ratios. Conventionally,the friction is described by the Coulomb law and inlinearproportiontothenormalcompressiveforce.However,the Coulomb law often fails at small scales because the friction can be coupled with adhesion or be significant even under a normal tensile force[1].Recently,significant scientific efforts have been devoted to uncover the hidden principles for friction at small scales[2],which,nevertheless,may have already been employed in nature.For example,a large pretension in the spatula pad under gecko toe can be induced through sliding movement,which can lead to highly reversible adhesion of gecko adhesion[3].

    Due to the remarkable properties[4-7]and probably also the simplicity,the friction of graphene-based small scale structures has attracted extensive interests[8-12].With atomic force microscopy(AFM),the friction on SiO2covered with a layer of graphenewasfoundtobemuchlowerthanthatwithoutgraphene, while the adhesion of the former was much larger than that of the latter[13].The friction between an AFM tip and a graphene substrate was showed to be mainly due to van der Waals force[13].It was reported that the friction of a supported graphene depends on the supported height with a higher friction at a larger height[14]. Monte Carlo simulation indicated that the friction of a graphene layer manifested with a stick-slip pattern[15].For multiple layers,the friction was found to be relatively stable and its average value was relatively small[15].

    A graphene layer is extremely flexible and can develop waviness on the surface due to thermal fluctuation[16-18].The waviness can also be introduced in a graphene layer through mechanical compression or through cyclic heating and cooling[19].Such waviness can dramatically change the properties of graphenes.For example,the electric conductivity of waved graphenes decreased due to the separation of electrons while the ferroelectricity could be highly improved[19].The local chemistry of a waved graphene can even be different from a flat graphene[19].Waved graphene layers were also observed in graphene based nano-composites[20].

    Here,we employ the molecular dynamics method to simulate theprocessofdragginggraphenenanoribbons(GNRs)ongraphenesubstrates with or without waviness.We find that the friction of GNRsonasuspendedgraphenelayerwithoutwavinessisultra-low and proportional to the width of a GNR.We show that,on waved graphenes,the friction generally increases with the amplitude of the waves at a fixed period,but anomalously increases and then intriguingly decreases with the period at a fixed amplitude.We further develop a theory to explain the simulation results.

    Fig.1.Variation of the friction with the width of the GNR at a fixed length,L=12·7 nm(a),with the length of the GNR at a fixed width,W=1·23 nm(b),with the perimeter of the GNR(c)and with the area of the GNR(d).Solid line in plot(a)is a linear fit to the simulation results.Inset in plot(a)illustrates the dragging of a GNR on a flat graphene substrate.Inset in plot(b)displays the stick-slip phenomenon observed in the simulation.

    The molecular dynamics simulations are carried out with LAMMPS.In all simulations,the reactive empirical bond order(REBO)potential is adopted to describe the carbon-carbon interaction within each layer[21],while the Lennard-Jones potential withσcc=3·4 ? andεcc=0·00284 eV[22]is used to describe the carbon-carbon interaction between neighboring layers.In the simulation,the temperature of the system is maintained at~300 K.

    We firstly investigate the dragging of a GNR on a flat graphene substrate.The GNR has a width of W and a length of L.As shown in the inset of Fig.1(a),the right edge of the GNR layer is horizontally pulled at a constant velocity of 0.1 ?/ps.The calculated total resisting force on the GNR along the pulling direction(inset of Fig.1(b))has a period close to the size of the crystal lattice of a graphene.Though local out-of-plane bending of nanoribbons may be very small,local non-uniform in-plane shearing deformation of nanoribbonsisclearlyobservedinthesimulation.Intheslipphase,local interaction energy between the nanoribbon and graphene substrate is considered to be downhill,which leads us to believe thattheforcetraceshownintheinsetofFig.1(b)involvesunstable slip motion.The friction calculated from the average value of the negative peak of this resisting force along the pulling direction within multiple periods is very small.Figure 1(a)shows that the friction increases almost linearly with the width of the GNR at a slope of~0·15 nN/nm.Such a linear relation is robust.For example,when W=20 nm,the simulated friction is 3.11 nN.As shown in Fig.1(b),the friction initially increases with the length of theGNRuntilitsaturatesforlongGNRs.Thedependenceoffriction on perimeter or area will be affected by how these two parameters change in the simulation.As indicated in Figs.1(c)and(d),the friction significantly scatters around a fixed perimeter or around a fixed area,which leads us to conclude that the friction does not correlate with either the perimeter or the area of GNRs.

    WetheninvestigatethedraggingofaGNRonawavedgraphene substrate,as illustrated in the inset of Fig.2(a).The waviness is described by where A is the amplitude andλis the period.We vary A andλ in the simulation.The total resisting force on the GNR along the pulling direction is obtained in the simulation,which also exhibits a stick-slip phenomenon(Fig.2(b)).When A is relatively small,the period of the stick-slip is close to the size of the crystal lattice of a graphene.For a relatively large A,the period of the stick-slip is close to the period of the wave.The friction is subsequently calculated from the average value of the negative peak of the resisting force along the pulling direction within multiple periods. Similarly,we find that the friction is also very low.As shown in Fig.2(b),the friction generally increases with the amplitude of the waves at a fixed period.As shown in Fig.2(c),the friction increases and then decreases with the period at a fixed amplitude.Figures 2(b)and(c)indicate that the friction of GNRs on waved graphenes can be several times higher than that on flat graphene.

    Recently,the peeling of a thin film adhering on a corrugated substrate was investigated[23].For the special case of a thin filmadhering on a flat substrate,the theoretical prediction[23]was the same as that of the Kendall's peeling model[24],which is different from the current model.The Kendall's peeling model[24]predictsthattherequiredpullingforceforaGNRonaflatgraphene substrate,F(xiàn)K,is given by

    where E is the Young's modulus of a GNR,~1 TPa[4],γis the surface energy density,~0·16 N/m[25],and t is its thickness,~0·334 nm[23].With Eq.(2),we find the Kendall's prediction would be at least one order of magnitude higher than our simulation results in Fig.1(a).

    Fig.2.Dragging of GNRs on waved graphene substrates.(a)Schematics of dragging of a GNR on a waved substrate with 1 eV/? being 1.6 nN;(b)time evolution of the total resisting force onthe GNRalong thepulling direction withλ=1·5nm;(c)variation of the frictionwith A;(d)variation of thefriction withλ.In the simulation,W=1·23 nm and L=12·7 nm are defaulted values.

    Fig.3.Theoretical model for the friction of GNRs when being dragged along a waved graphene substrate.

    However,the ultra-low value of friction between GNRs and the graphene substrate found in our simulation is consistent with previous report of the inter-shell friction of double-walled carbon nanotubes(DWCNT)[25].In the process of pulling the inner tube out of the DWCNT,it was suggested that the shear stress vanished within the overlapped region and only the shear stress near the edge of the tube was responsible for the intershell friction.

    To understand our simulation results,a simple model is proposed.As schematically shown in Fig.3,a dragging force,P,which is parallel to the pulling direction,is required to move a GNR along a curved surface.As indicated in Fig.1(b),the friction force is saturated when the ribbon is longer than~6 nm,which leads us to adopt a local criteria by assuming that the local friction,f,is equal to the local energy barrier along the moving path,Δγ.Such a local energy theory to evaluate the friction force can be similar to Griffith's approach for a crack problem.Due to the geometrical constraint,there may exist local normal force,F(xiàn)N,along the interface.Based on the force equilibrium,we can approximately get

    whereθis the angle between the local tangential direction of the interface and the pulling direction andαreflects the edge effect,which is~1.Note that P may vary as the GNR is dragged along the substrate and the friction is then taken to be

    It should be pointed out that local normal force can affect local Δγalong the interface,which may also depend on the pulling direction.For simplicity,letΔγbe a constant andαbe 1,and we get

    Suppose that a GNR can be in perfect contact with the underlying graphene substrate.With Eqs.(2),(5),we find that

    According to Eq.(6),the friction is independent of the length and is close toΔγ.For a flat graphene substrate,A=0 and F=ΔγW,which is consistent with our simulation results shown in Fig.1(a).According to Fig.1(a),Δγ=0·15 N/m.It is interesting to note that the intershell cohesive energy density of DWCNT is~0·16 N/m[25].We attribute the variation of friction with the length of the GNR at small lengths in the simulation(Fig.1(b))to the size effect.

    According to Eq.(6),the friction on a waved graphene substrate increases with the amplitude,which is consistent with the results given in Fig.2(c).However,the friction should decease with the period according to Eq.(6),which is not consistent with the results shown in Fig.2(d).When quantifying surface roughness with the average absolute slope of the surface profile within a sampling length,the roughness of the waved graphene substrate would increase with the amplitude at a fixed period and decrease with the period at a fixed amplitude.Thus,F(xiàn)ig.2(d)indicates that the friction anomalously increases and then decreases with the roughness.As observed in simulations,the GNR can only attach to the top part of the waved graphene when the period of the waved graphene substrate is too small.In fact,the friction on such a graphene substrate approaches to that on a flat graphene substrate,as seen in Fig.2(d).Thus,the inconsistency between the simulation and the theory is because that the GNR cannot make perfect contact with the substrate when the period of the waved graphene substrate is very small.

    In conclusion,the process of dragging a GNR on graphenes with or without waviness is investigated with molecular dynamics simulation.It is found that the induced friction per unit width on GNRs in the current analysis is approximately the surface energy on graphenes without waviness.On waved graphenes,the friction on GNRs generally increases with the amplitude of the waves at a fixed period,but anomalously increases and then decreases with the period at a fixed amplitude.These results cannot be explained by the conventional Coulomb friction law or the Kendall's model[24].This work should help understand the friction at small scales,as well as provide some guidance in fabricating graphenebased nano-composites with high performance.

    Acknowledgments

    Hui Pan thanks the support of the Science and Technology Development Fund from Macau SAR(FDCT-068/2014/A2 and FDCT-132/2014/A3)and Multi-Year Research Grants(MYRG2014-00159-FST and MYRG2015-00017-FST)from Research&Development Office at University of Macau.Bin Chen thanks the support of the National Natural Science Foundation of China(Grant No. 11372279).Bin Chen also thanks Dr.Qunyang Li for helpful discussions.

    [1]X.-Z.Liu,Q.Li,P.Egberts,et al.,Nanoscale adhesive properties of graphene:the effect of sliding history,Adv.Mater.Interfaces 1(2014)1-9.

    [2]Y.Mo,K.T.Turner,I.Szlufarska,F(xiàn)riction laws at the nanoscale,Nature 457(2009)1116-1119.

    [3]B.Chen,P.Wu,H.Gao,Pre-tension generates strongly reversible adhesion of a spatula pad on substrate,J.R.Soc.Interface 6(2009)529-537.

    [4]P.A.Dawson,R.B.Gordon,D.T.Keough,et al.,Measurement of the elastic properties and intrinsic strength of monolayer graphene,Mol.Genet.Metab. 85(2005)78-80.

    [5]W.Gao,R.Huang,Thermomechanics of monolayer graphene:Rippling,thermal expansion and elasticity,J.Mech.Phys.Solids 66(2014)42-58.

    [6]Y.M.Lin,C.Dimitrakopoulos,K.A.Jenkins,100-GHz transistors from waferscale epitaxial graphene,Science 327(2010)662.

    [7]Y.Han,Z.Xu,C.Gao,Ultrathin graphene nanofiltration membrane for water purification,Adv.Funct.Mater.23(2013)3693-3700.

    [8]C.Lee,X.Wei,Q.Li,Elastic and frictional properties of graphene,Phys.Status Solidi B 246(2009)2562-2567.

    [9]T.Filleter,J.L.Mcchesney,A.Bostwick,F(xiàn)riction and dissipation in epitaxial graphene films,Phys.Rev.Lett.102(2009)086102.

    [10]Q.Li,C.Lee,R.W.Carpick,et al.,Substrate effect on thickness-dependent friction on graphene,Phys.Status Solidi B 247(2010)2909-2914.

    [11]A.Klemenz,L.Pastewka,S.G.Balakrishna,Atomic scale mechanisms of friction reduction and wear protection by graphene,Nano Lett.14(2014)7145-7152.

    [12]Q.Li,K.-S.Kim,Micromechanics of friction:effects of nanometre-scale roughness,Proc.R.Soc.Lond.Ser.A Math.Phys.Eng.Sci.464(2008)1319-1343.

    [13]Z.Deng,N.N.Klimov,S.D.Solares,Nanoscale interfacial friction and adhesiononsupportedversussuspendedmonolayerandmultilayergraphene,Langmuir 29(2013)235-243.

    [14]M.Reguzzoni,A.Fasolino,E.Molinari,et al.,F(xiàn)riction by shear deformations in multilayer graphene,J.Phys.Chem.C 116(2012)21104-21108.

    [15]H.Washizu,S.Kajita,M.Tohyama,Mechanism of ultra low friction of multilayer graphene studied by coarse-grained molecular simulation,F(xiàn)araday Discuss.156(2012)279-291.

    [16]J.C.Meyer,A.K.Geim,M.I.Katsnelson,The structure of suspended graphene sheets,Nature 446(2007)60-63.

    [17]V.Geringer,M.Liebmann,T.Echtermeyer,Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2,Phys.Rev.Lett.102(2009)076102.

    [18]A.Deshpande,W.Bao,F(xiàn).Miao,et al.,Spatially resolved spectroscopy of monolayer graphene on SiO2,Phys.Rev.B 79(2009)205411.

    [19]H.Pan,B.Chen,Ultra-flexibilityandunusualelectronic,magneticandchemical properties of waved graphenes and nanoribbons,Sci.Rep.4(2014).

    [20]Z.Liu,Z.Li,Z.Xu,Wet-spun continuous graphene films,Chem.Mater.26(2014)6786-6795.

    [21]Y.Wei,B.Wang,J.Wu,et al.,Bending rigidity and gaussian bending stiffness of single-layered graphene,Nano Lett.13(2012)26-30.

    [22]B.Chen,M.Gao,J.M.Zuo,Binding energy of parallel carbon nanotubes,Appl. Phys.Lett.83(2003)3570-3571.

    [23]Z.H.Ni,H.M.Wang,J.Kasim,Graphene thickness determination using reflection and contrast spectroscopy,Nano Lett.7(2007)2758-2763.

    [24]K.Kendall,Thin-film peeling-the elastic term,J.Phys.D:Appl.Phys.8(1975)1449.

    [25]R.Zhang,Z.Ning,Y.Zhang,Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions,Nat.Nanotechnology 8(2013)912-916.

    3 July 2015

    s.

    E-mail addresses:chenb6@zju.edu.cn(B.Chen),huipan@umac.mo(H.Pan).

    http://dx.doi.org/10.1016/j.taml.2015.09.001

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    in revised form

    *This article belongs to the Biomechanics and interdiscipline

    在线观看人妻少妇| 久热这里只有精品99| 久久精品人人爽人人爽视色| 69精品国产乱码久久久| 国产成人av激情在线播放| 超碰成人久久| 国产一区有黄有色的免费视频| 亚洲成人国产一区在线观看| 这个男人来自地球电影免费观看| 精品久久蜜臀av无| 9191精品国产免费久久| 在线亚洲精品国产二区图片欧美| 欧美老熟妇乱子伦牲交| 香蕉国产在线看| 男女国产视频网站| 成年人午夜在线观看视频| videos熟女内射| 人人妻人人爽人人添夜夜欢视频| 又大又爽又粗| 国产高清国产精品国产三级| 黑人巨大精品欧美一区二区mp4| 美女午夜性视频免费| 亚洲性夜色夜夜综合| 亚洲熟女精品中文字幕| 欧美精品av麻豆av| 激情视频va一区二区三区| 久久久欧美国产精品| 国产福利在线免费观看视频| 免费av中文字幕在线| 五月天丁香电影| 国产精品影院久久| 久久久国产精品麻豆| 国产欧美日韩一区二区精品| 精品第一国产精品| 动漫黄色视频在线观看| 久久av网站| 俄罗斯特黄特色一大片| 国产免费现黄频在线看| 亚洲三区欧美一区| av线在线观看网站| 久久毛片免费看一区二区三区| 欧美变态另类bdsm刘玥| 欧美97在线视频| 日本精品一区二区三区蜜桃| 少妇裸体淫交视频免费看高清 | 大型av网站在线播放| 亚洲天堂av无毛| 高清av免费在线| 日日夜夜操网爽| 精品久久久精品久久久| 久久国产精品影院| 精品少妇一区二区三区视频日本电影| 啦啦啦啦在线视频资源| av线在线观看网站| 精品一品国产午夜福利视频| 国产在线免费精品| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久| 亚洲欧美精品综合一区二区三区| 亚洲,欧美精品.| 嫁个100分男人电影在线观看| 欧美另类一区| 日韩 亚洲 欧美在线| 日本欧美视频一区| 日韩人妻精品一区2区三区| 两性夫妻黄色片| 亚洲第一av免费看| 下体分泌物呈黄色| 色老头精品视频在线观看| 欧美精品啪啪一区二区三区 | 亚洲专区中文字幕在线| 日本五十路高清| 国产免费av片在线观看野外av| 久久久水蜜桃国产精品网| 国产精品.久久久| 啪啪无遮挡十八禁网站| 色婷婷av一区二区三区视频| 色综合欧美亚洲国产小说| 欧美少妇被猛烈插入视频| 午夜免费鲁丝| av不卡在线播放| 国产成人欧美| 国产精品久久久人人做人人爽| 亚洲av日韩在线播放| 亚洲综合色网址| 男人爽女人下面视频在线观看| 国产成人a∨麻豆精品| 少妇粗大呻吟视频| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 久久久久精品国产欧美久久久 | 精品国产国语对白av| 天天躁日日躁夜夜躁夜夜| 少妇 在线观看| 婷婷成人精品国产| 午夜福利视频在线观看免费| 欧美久久黑人一区二区| 久久人人爽av亚洲精品天堂| a级毛片黄视频| 涩涩av久久男人的天堂| 国产成人精品在线电影| 美女主播在线视频| 久久影院123| 欧美人与性动交α欧美软件| 美女视频免费永久观看网站| av在线app专区| 少妇被粗大的猛进出69影院| 人人妻人人澡人人爽人人夜夜| 久久久久久久久久久久大奶| 菩萨蛮人人尽说江南好唐韦庄| 久久影院123| 岛国在线观看网站| 国产伦理片在线播放av一区| 久9热在线精品视频| 精品高清国产在线一区| 国产野战对白在线观看| 18在线观看网站| 亚洲欧美日韩高清在线视频 | 日韩视频在线欧美| 成人手机av| xxxhd国产人妻xxx| 亚洲av成人不卡在线观看播放网 | 久久久久国产精品人妻一区二区| 亚洲中文av在线| 女人精品久久久久毛片| 国产亚洲av高清不卡| 欧美黑人欧美精品刺激| 久久久久视频综合| 建设人人有责人人尽责人人享有的| 久久久精品免费免费高清| 国产精品九九99| 日本a在线网址| 黄色毛片三级朝国网站| 悠悠久久av| 19禁男女啪啪无遮挡网站| 国产精品偷伦视频观看了| 美女扒开内裤让男人捅视频| 中文字幕精品免费在线观看视频| 午夜免费成人在线视频| 男女床上黄色一级片免费看| 免费观看av网站的网址| 一级片免费观看大全| 欧美一级毛片孕妇| 精品少妇久久久久久888优播| 国产99久久九九免费精品| 飞空精品影院首页| 天天添夜夜摸| 国产欧美日韩一区二区精品| 亚洲美女黄色视频免费看| 国产一区二区三区在线臀色熟女 | 欧美在线一区亚洲| 99精品久久久久人妻精品| 成人影院久久| 国产精品熟女久久久久浪| 91字幕亚洲| 99re6热这里在线精品视频| 亚洲av欧美aⅴ国产| 自拍欧美九色日韩亚洲蝌蚪91| a 毛片基地| 中文字幕人妻丝袜一区二区| 日韩中文字幕视频在线看片| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 一本色道久久久久久精品综合| 搡老乐熟女国产| 窝窝影院91人妻| 一本久久精品| 美女中出高潮动态图| 免费看十八禁软件| 欧美大码av| 午夜激情av网站| 精品亚洲成a人片在线观看| 精品人妻熟女毛片av久久网站| 精品免费久久久久久久清纯 | 狂野欧美激情性bbbbbb| 国产在线观看jvid| 欧美日韩中文字幕国产精品一区二区三区 | 99精国产麻豆久久婷婷| 亚洲精品在线美女| 两个人看的免费小视频| 五月天丁香电影| 国产在线观看jvid| 国产福利在线免费观看视频| 中文字幕色久视频| 久久99热这里只频精品6学生| 国产精品久久久久久精品古装| 亚洲精品美女久久av网站| 三级毛片av免费| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 女性生殖器流出的白浆| 国产区一区二久久| 欧美乱码精品一区二区三区| 精品亚洲成a人片在线观看| 国产福利在线免费观看视频| 伦理电影免费视频| 蜜桃国产av成人99| 视频区欧美日本亚洲| 国产精品亚洲av一区麻豆| 免费观看a级毛片全部| 91麻豆av在线| 久热爱精品视频在线9| 老汉色∧v一级毛片| 另类精品久久| 97精品久久久久久久久久精品| 亚洲第一av免费看| 久久女婷五月综合色啪小说| 免费在线观看黄色视频的| 热99re8久久精品国产| 精品一区二区三区四区五区乱码| 淫妇啪啪啪对白视频 | 黄色 视频免费看| 欧美日本中文国产一区发布| 日韩人妻精品一区2区三区| 自拍欧美九色日韩亚洲蝌蚪91| 又黄又粗又硬又大视频| 亚洲伊人色综图| 午夜福利在线免费观看网站| 视频区图区小说| 国产成人精品久久二区二区免费| 99久久人妻综合| 精品国产一区二区三区久久久樱花| av又黄又爽大尺度在线免费看| 999久久久精品免费观看国产| 99国产综合亚洲精品| 久久热在线av| 男女无遮挡免费网站观看| 亚洲一卡2卡3卡4卡5卡精品中文| 水蜜桃什么品种好| 国产成人精品在线电影| 脱女人内裤的视频| 欧美老熟妇乱子伦牲交| 大码成人一级视频| 97在线人人人人妻| 久久香蕉激情| 在线观看www视频免费| 免费女性裸体啪啪无遮挡网站| 人人妻人人添人人爽欧美一区卜| 他把我摸到了高潮在线观看 | 久久久久国产一级毛片高清牌| 久久久久久久久久久久大奶| 亚洲av男天堂| 丰满少妇做爰视频| 99国产极品粉嫩在线观看| 女性生殖器流出的白浆| 久9热在线精品视频| 啦啦啦在线免费观看视频4| 韩国精品一区二区三区| www.av在线官网国产| 国产色视频综合| 国产av国产精品国产| 亚洲av成人不卡在线观看播放网 | 正在播放国产对白刺激| 黄色 视频免费看| 国产一区二区三区在线臀色熟女 | 黄色视频不卡| 夫妻午夜视频| tube8黄色片| 操出白浆在线播放| 国产精品一二三区在线看| 性色av乱码一区二区三区2| 青青草视频在线视频观看| 韩国精品一区二区三区| 少妇被粗大的猛进出69影院| 老司机影院毛片| 国产成人一区二区三区免费视频网站| 中文字幕高清在线视频| 欧美+亚洲+日韩+国产| 免费高清在线观看日韩| 日本一区二区免费在线视频| 看免费av毛片| 岛国在线观看网站| 成年动漫av网址| 国产成人影院久久av| 久久人人爽av亚洲精品天堂| 黑人巨大精品欧美一区二区蜜桃| 电影成人av| 美女福利国产在线| tube8黄色片| 视频在线观看一区二区三区| 欧美国产精品va在线观看不卡| 亚洲精品国产精品久久久不卡| av天堂久久9| 日韩视频在线欧美| 国产97色在线日韩免费| 亚洲全国av大片| 汤姆久久久久久久影院中文字幕| 男人爽女人下面视频在线观看| 国产成人精品在线电影| 国产成人a∨麻豆精品| 亚洲,欧美精品.| 美女扒开内裤让男人捅视频| 日韩视频在线欧美| 777米奇影视久久| 亚洲av成人不卡在线观看播放网 | 日韩制服丝袜自拍偷拍| 操出白浆在线播放| 天堂俺去俺来也www色官网| 老鸭窝网址在线观看| 高清欧美精品videossex| 国产在线免费精品| 亚洲精品久久午夜乱码| 欧美黑人欧美精品刺激| 亚洲国产精品一区三区| 久久天堂一区二区三区四区| 精品久久蜜臀av无| 乱人伦中国视频| 麻豆av在线久日| 国产成人欧美在线观看 | 日韩有码中文字幕| av在线播放精品| 精品少妇一区二区三区视频日本电影| 欧美 亚洲 国产 日韩一| 国产主播在线观看一区二区| 欧美成狂野欧美在线观看| 国产免费一区二区三区四区乱码| 午夜福利乱码中文字幕| 麻豆国产av国片精品| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品成人在线| 在线十欧美十亚洲十日本专区| 捣出白浆h1v1| 国产精品香港三级国产av潘金莲| 欧美黑人精品巨大| 亚洲美女黄色视频免费看| 女人爽到高潮嗷嗷叫在线视频| 久久中文看片网| 欧美黄色淫秽网站| 热re99久久精品国产66热6| 美女脱内裤让男人舔精品视频| 国产精品影院久久| 国产成人精品久久二区二区91| 国产精品一区二区免费欧美 | 欧美人与性动交α欧美精品济南到| 成年人午夜在线观看视频| 亚洲精品粉嫩美女一区| 可以免费在线观看a视频的电影网站| 美女视频免费永久观看网站| 美女大奶头黄色视频| 99九九在线精品视频| kizo精华| 老司机午夜福利在线观看视频 | 亚洲欧美清纯卡通| 日韩欧美一区视频在线观看| 99香蕉大伊视频| 国产精品一区二区精品视频观看| 国产三级黄色录像| 男女高潮啪啪啪动态图| 12—13女人毛片做爰片一| 亚洲精品中文字幕一二三四区 | 黄片播放在线免费| 亚洲伊人色综图| 亚洲av国产av综合av卡| 男男h啪啪无遮挡| 午夜福利一区二区在线看| 热99re8久久精品国产| 97精品久久久久久久久久精品| 人成视频在线观看免费观看| 曰老女人黄片| 亚洲国产欧美一区二区综合| 一二三四在线观看免费中文在| 美女大奶头黄色视频| 曰老女人黄片| 欧美精品一区二区大全| a 毛片基地| av网站免费在线观看视频| 老熟妇乱子伦视频在线观看 | 日韩 欧美 亚洲 中文字幕| 久久久久视频综合| 国产精品香港三级国产av潘金莲| 欧美另类一区| 亚洲视频免费观看视频| 精品一区二区三区av网在线观看 | 精品国产一区二区三区久久久樱花| 亚洲av成人一区二区三| 视频区欧美日本亚洲| 中文字幕高清在线视频| 亚洲九九香蕉| 欧美 亚洲 国产 日韩一| 性色av乱码一区二区三区2| 欧美人与性动交α欧美软件| 日本a在线网址| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 高清欧美精品videossex| 国产亚洲精品久久久久5区| 免费在线观看视频国产中文字幕亚洲 | 免费久久久久久久精品成人欧美视频| 欧美黑人精品巨大| 亚洲av电影在线观看一区二区三区| 他把我摸到了高潮在线观看 | 韩国高清视频一区二区三区| 欧美成狂野欧美在线观看| 国产成人欧美| 精品久久久久久电影网| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产中文字幕在线视频| 在线永久观看黄色视频| 久久热在线av| 大香蕉久久网| 国产在视频线精品| 啪啪无遮挡十八禁网站| 建设人人有责人人尽责人人享有的| 青草久久国产| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频 | 中文精品一卡2卡3卡4更新| 亚洲欧美色中文字幕在线| 久久久国产一区二区| 人妻 亚洲 视频| 欧美少妇被猛烈插入视频| 国产91精品成人一区二区三区 | 美女视频免费永久观看网站| 一区二区av电影网| 亚洲第一av免费看| av一本久久久久| 91麻豆精品激情在线观看国产 | 精品久久久久久久毛片微露脸 | 女性生殖器流出的白浆| 日韩免费高清中文字幕av| 久久精品国产亚洲av高清一级| 手机成人av网站| 这个男人来自地球电影免费观看| 老司机靠b影院| bbb黄色大片| 新久久久久国产一级毛片| 久久久久视频综合| 日韩欧美一区二区三区在线观看 | tocl精华| av天堂在线播放| 亚洲成国产人片在线观看| 日韩电影二区| 久久久久久久久免费视频了| 亚洲中文av在线| 欧美乱码精品一区二区三区| 人成视频在线观看免费观看| 在线观看www视频免费| 精品国产乱码久久久久久小说| 精品人妻1区二区| 国产精品亚洲av一区麻豆| 久久狼人影院| 欧美久久黑人一区二区| 成人亚洲精品一区在线观看| 欧美精品啪啪一区二区三区 | 老司机亚洲免费影院| 国产精品久久久久久人妻精品电影 | 日韩中文字幕欧美一区二区| 美女主播在线视频| 一个人免费看片子| 久久ye,这里只有精品| 最近最新免费中文字幕在线| 热re99久久国产66热| 捣出白浆h1v1| 欧美久久黑人一区二区| 亚洲成人国产一区在线观看| 青青草视频在线视频观看| 视频区欧美日本亚洲| 高清欧美精品videossex| 一级片免费观看大全| 妹子高潮喷水视频| 三级毛片av免费| 国产日韩欧美在线精品| 亚洲av电影在线观看一区二区三区| 亚洲国产日韩一区二区| 欧美人与性动交α欧美软件| 亚洲精品日韩在线中文字幕| 狠狠精品人妻久久久久久综合| 久久久久久亚洲精品国产蜜桃av| 80岁老熟妇乱子伦牲交| 一级毛片女人18水好多| 少妇裸体淫交视频免费看高清 | 日韩中文字幕视频在线看片| 不卡一级毛片| 国产成人精品无人区| 精品国产乱子伦一区二区三区 | 国产黄频视频在线观看| 一边摸一边抽搐一进一出视频| 大陆偷拍与自拍| 国产1区2区3区精品| 99国产精品免费福利视频| 亚洲情色 制服丝袜| 黄片小视频在线播放| √禁漫天堂资源中文www| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人啪精品午夜网站| 亚洲男人天堂网一区| 久久久久久久精品精品| 性色av乱码一区二区三区2| 麻豆乱淫一区二区| 亚洲熟女精品中文字幕| 亚洲国产毛片av蜜桃av| 两个人看的免费小视频| 亚洲人成77777在线视频| a级毛片黄视频| 国产av又大| 免费黄频网站在线观看国产| 亚洲av电影在线观看一区二区三区| 午夜福利免费观看在线| 色老头精品视频在线观看| 国产一区二区三区av在线| 涩涩av久久男人的天堂| 久久午夜综合久久蜜桃| 黄色视频,在线免费观看| 亚洲专区国产一区二区| 热99re8久久精品国产| avwww免费| 人人妻人人添人人爽欧美一区卜| 肉色欧美久久久久久久蜜桃| 国产亚洲一区二区精品| 久久久久久亚洲精品国产蜜桃av| 亚洲成人国产一区在线观看| 欧美乱码精品一区二区三区| 汤姆久久久久久久影院中文字幕| 日本五十路高清| 男女高潮啪啪啪动态图| 亚洲av电影在线进入| 亚洲欧美精品综合一区二区三区| 一进一出抽搐动态| 日韩精品免费视频一区二区三区| 日日爽夜夜爽网站| 美女大奶头黄色视频| 亚洲精品国产av蜜桃| 2018国产大陆天天弄谢| 国产欧美日韩精品亚洲av| 夜夜骑夜夜射夜夜干| 免费人妻精品一区二区三区视频| 极品少妇高潮喷水抽搐| 正在播放国产对白刺激| 国产av精品麻豆| 亚洲成人免费电影在线观看| 亚洲免费av在线视频| 亚洲,欧美精品.| 午夜福利影视在线免费观看| 青草久久国产| 亚洲第一av免费看| 亚洲色图综合在线观看| 国产精品久久久久久人妻精品电影 | 日韩制服丝袜自拍偷拍| 国产片内射在线| 日韩视频一区二区在线观看| 亚洲欧美激情在线| 夜夜夜夜夜久久久久| 精品乱码久久久久久99久播| 国产成+人综合+亚洲专区| 两性夫妻黄色片| 在线观看一区二区三区激情| 午夜免费鲁丝| 人成视频在线观看免费观看| 亚洲 国产 在线| av一本久久久久| 大陆偷拍与自拍| 一区二区三区激情视频| 日韩中文字幕视频在线看片| 亚洲国产日韩一区二区| 黄色视频在线播放观看不卡| 亚洲国产av影院在线观看| 男女无遮挡免费网站观看| 久久国产亚洲av麻豆专区| 一级,二级,三级黄色视频| 日韩制服丝袜自拍偷拍| 欧美大码av| 黄频高清免费视频| 国产一级毛片在线| 国产精品免费大片| 亚洲av日韩精品久久久久久密| 一二三四在线观看免费中文在| 亚洲伊人久久精品综合| 美女高潮喷水抽搐中文字幕| 五月天丁香电影| bbb黄色大片| 91麻豆精品激情在线观看国产 | 91国产中文字幕| 久久国产精品男人的天堂亚洲| 国精品久久久久久国模美| 久久免费观看电影| 99国产极品粉嫩在线观看| 两个人看的免费小视频| 国产免费福利视频在线观看| 久久久久久久国产电影| 成人影院久久| 免费女性裸体啪啪无遮挡网站| 欧美日韩亚洲高清精品| 法律面前人人平等表现在哪些方面 | 亚洲国产精品一区三区| 国产免费福利视频在线观看| 男人舔女人的私密视频| 制服人妻中文乱码| 在线看a的网站| www.自偷自拍.com| 青春草亚洲视频在线观看| 少妇裸体淫交视频免费看高清 | 亚洲熟女精品中文字幕| 一区二区日韩欧美中文字幕| 欧美日韩国产mv在线观看视频| 日本av免费视频播放| 精品一区二区三卡| 美女福利国产在线| 国产黄频视频在线观看| 久久精品熟女亚洲av麻豆精品| 精品少妇内射三级| 超色免费av| 男女无遮挡免费网站观看| 久久精品国产综合久久久| 男人操女人黄网站| 久久亚洲精品不卡| 国产成+人综合+亚洲专区| 在线观看免费午夜福利视频| 国产不卡av网站在线观看| 高清欧美精品videossex| 久久精品久久久久久噜噜老黄| 久久中文看片网| 曰老女人黄片| 亚洲免费av在线视频| 大香蕉久久网| 韩国高清视频一区二区三区|