• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experiment and numerical simulation on the characteristics of fluid-structure interactions of non-rigid airships

    2015-11-10 11:23:47XiaocuiWuYiweiWangChenguangHuangYubiaoLiuLinglingLu

    Xiaocui Wu,Yiwei Wang,Chenguang Huang,Yubiao Liu,Lingling Lu

    Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    Experiment and numerical simulation on the characteristics of fluid-structure interactions of non-rigid airships

    Xiaocui Wu,Yiwei Wang?,Chenguang Huang,Yubiao Liu,Lingling Lu

    Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    A R T I C L EI N F O

    Article history:

    Accepted 18 November 2015

    Available online 28 November 2015

    Fluid-structure interaction Non-rigid airships

    Fluid-structure interaction is an important issue for non-rigid airships with inflated envelopes.In this study,a wind tunnel test is conducted,and a loosely coupled procedure is correspondingly established for numerical simulation based on computational fluid dynamics and nonlinear finite element analysis methods.The typical results of the numerical simulation and wind tunnel experiment,including the overall lift and deformation,are in good agreement with each other.The results obtained indicate that the effect of fluid-structure interaction is noticeable and should be considered for non-rigid airships.Flowinduced deformation can further intensify the upward lift force and pitching moment,which can lead to a large deformation.Under a wind speed of 15 m/s,the lift force of the non-rigid model is increased to approximately 60%compared with that of the rigid model under a high angle of attack.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    As a lighter-than-air aircraft,airships are important platforms for transport and observation in the air.On the basis of their hull structure configuration,airships can be classified into three categories,namely,rigid,non-rigid,and semi-rigid airships[1]. Among all types of airships,non-rigid airships with inflated envelopes are the most common.Given that airships can be easily deformed,two aspects of fluid-structure coupling issues should be considered,i.e.,the deformation of airships in flight and the influences of this deformation on the aerodynamic characteristics of airships.

    Numericalsimulationisthemainapproachforanalyzingtheeffects of the fluid-structure interaction(FSI)of airships.Bessert[2]presented a coupling scheme based on the standard solvers of ABAQUS and VSAERO to investigate the nonlinear aeroelastic behavior of an airship(i.e.,CL160).The lift curve slope of the nonlinear elastic model was noticeably larger than those of the rigid and linear elastic models.Liu[3,4]numerically investigated the aeroelasticity of a nonlinear airship with consideration of its aerodynamics and structure coupling by combining a nonlinear finite element analysis(FEA)model and a computational fluid dynamics(CFD)model.The elasticity of the airship hull exerted relatively small effects on the lift.Other works[5,6]and relevant researches on airship envelopes have considered the effects of FSI[7,8].

    Intheirreviewarticle,Lietal.[9]comprehensivelysummarized the effects of FSI.They noted that they could hardly draw any definitive conclusions about the influence and importance of airshipdeformationonaerodynamicsbecauseoftworeasons.First,such difficulty is caused by the differences in the models from different studies and the possible variations in the accuracies of the coupling methods used.Second,the quantitative experimental data on airships with FSI are extremely limited;the same is true for wind tunnel and flight measurement tests.Furthermore,only a few qualitative observations have been made in the literature,and such observations demonstrate that airship deformation could be approximated in the form of beam bending.

    In the present study,wind tunnel test measurements are performed with a typical non-rigid airship model.On the basis of CFD and nonlinear FEA methods,a loosely coupled procedure is established for the FSI of airships.The deformation characteristics of the typical conditions of an airship are analyzed,and the variations in the overall aerodynamic characteristics caused by deformation are investigated.

    A wind tunnel test with a non-rigid airship is accomplished in the low-speed wind tunnel of the China Academy of Aerospace Aerodynamics with a 3 m×3 m section(as shown in Fig.1).The length of the airship model is 2.3 m,and its maximum diameter is 0.6 m.The arrangement of the rudders follows the Y type,and the airship is fixed on the tail in the experiment.The inflow velocity is 15m/s,andtheattackangleoftheairshipvariesfrom0°to12°.The airship envelope is made of a polyvinyl chloride(PVC)thin film.

    To obtain and compare the results,a loose coupling method is adopted in solving the FSI of the airship.The surface force is obtained by solving the Reynolds-averaged Navier-Stokesequations(RANS)in the commercial software FLUENT.The shear stress transport(SST)k-ωturbulence mode and an unstructured mesh with prism-type boundary layer elements are also used. The CFD method is validated by comparing its results with the wind tunnel experimental data of the LOTTE airship.The LOTTE airship is a remote-controlled solar-powered airship,which serves both as reference configuration for theoretical investigations and as a flying test bed.More details about LOTTE can be referred to Refs.[10,11].The CFD method is comprehensively explained in Ref.[12].For the structure solver,the boundary displacement is obtained by using the finite element method with consideration of the large,nonlinear deformation in ANSYS.A thin plate spline interpolation scheme is adopted as the interface to facilitate the exchange of information between the fluid and structure solvers. Figure2showsthestrategyofthefluid-structurecouplingmethod. The results in every iterative loop are convergent for each solver. The whole coupling process is considered to be convergent if the structure deformation difference between two adjacent iterative loops is less than the criterion.For each calculation condition,the iterative loops less than 100 are needed.

    Fig.1.The soft airship model wind tunnel test.

    Fig.2.The strategy of fluid-structure coupling.

    Fig.3.The lift coefficient curve of non-rigid airship model.

    Fig.4.Lift coefficient curve compared rigid model with non-rigid model in wind tunnel test.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Figure 3 presents a comparison of the lift coefficient curves obtained from the wind tunnel test and numerical simulation. The final result for each condition is obtained using 50 iterative loops.The computation values are in good agreement with the experimental values;the largest error is within 15%.

    The lift coefficient curves in the experiments withnon-rigid and rigid models are shown in Fig.4.In this figure,the black line represents the results obtained with the rigid model,which cannot bedeformed,andtheredlinedenotestheresultsobtainedwiththe non-rigidmodelwithconsiderationofFSI.Forthenon-rigidmodel,the lift force nonlinearly increases with the attack angle under a certain wind speed.When flexible deformation is considered,the slope of the lift angle of the non-rigid model is notably higher than that of the rigid model.This observation is similar to the results obtained by Bessert[2].The lift coefficient of the non-rigid model isincreaseduptonearly60%comparedwiththatoftherigidmodel at a high angle of attack.

    The errors observed in the wind tunnel experiments(Figs.3 and 4)may be due to the errors of the force measurementdevice,wind speed,and attack angle control systems.It is difficult to obtain the quantitatively accurate results due to experiment errors.Nevertheless,the whole system employed in the wind tunnel test has been successfully used in other experiments in the aerodynamicfields.Hence,theaccuracyofthevalidationprocesses for the numerical method in this study can be guaranteed.

    Fig.5.The pressure distribution and deformation of airship.

    The surface pressure distributions of the rigid and non-rigid models under the aforementioned maximum attack angle of 12° are shown in Fig.5(a)and(b),respectively.These figures also demonstrate the deformation of a non-rigid airship.The plots showing the absence and presence of flow-induced deformation are presented in Fig.5(c)and(d),respectively.The numerical and experimental results shown in Fig.5(b)and(d)are obtained under the same flow conditions.That is,the numerically predicted deformationagreeswellwiththeexperimentalobservation.Under this large attack angle condition,an airship achieves a great overall upward lift and pitching moment.This effect results in the upward bending deformation of the airship,which becomes its primary form.Bending can cause further feedback effects. The high-pressure area increases at the bottom side,and the intensity and area of the low-pressure region both increase at the upper side.These conditions further increase the upward lift force and pitching moment.Consequently,the FSI leads to the final balanceddeformationofnotableupwardbending,accompaniedby a remarkable increase in lift force.

    The maximum displacement of the airship H in the Y direction isobtainedbyperformingpixelanalysisonthephotographsshown in Fig.5(b)and(d),which shows the maximum displacements of 0.43 m and 0.45 m in the numerical and experimental results,respectively.The displacement deviation between the experiment and simulation results is about 4.4%.

    ThesurfacepressuredistributionsarealsopresentedinFig.5(a)and(b).The FSI causes the stagnation point to move down,which in turn increases the pitching moment of the airship.The airship displays an upward bending deformation.The frontal area of the airship is increased,which implies that the deformation of the airship is significantly enlarged by the FSI.

    Inthisstudy,alooselycoupledapproachforanalyzingtheFSIof non-rigid airships is established.The typical results obtained from the numerical simulation and wind tunnel experiment,including the overall lift and deformation,are in good agreement with each other.The maximum displacement deviation between the experiment and simulation results in the Y direction is about 4.4%. The results obtained are listed as follows:

    (1)Underacertainwindspeed,theliftforceofthenon-rigidmodel increases nonlinearly at the attack angle up to approximately 60%compared with that of the rigid model at a high angle of attack.

    (2)The effect of FSI is notable and should be considered for nonrigid airships.Flow-induced deformation can further intensify the upward lift force and pitching moment and cause a large deformation.The deformation of the airship is significantly enlarged by the FSI.

    BothexperimentalandnumericalmethodsforsolvingFSIproblems of non-rigid airships can be further improved.For experimental method,contacting measurement sensor should be used for measuring large deformation,and better restraint condition of wind tunnel tests should be developed to reproduce the relationship of displacement and deformation of airships in flight.For numerical method,establishing closely coupling approach is an important issue to obtain unsteady responses of airships.

    Acknowledgments

    The authors are grateful to the National Natural Science Foundation of China(11202215 and 11332011)and the Youth Innovation Promotion Association of CAS(2015015).

    [1]L.Liao,I.Pasternak,A review of airship structural research and development,Prog.Aerosp.Sci.45(2009)83-96.

    [2]N.Bessert,O.Frederich,Nonlinear airship aeroelasticity,J.Fluids Struct.21(2005)731-742.

    [3]J.Liu,C.Lu,L.Xue,Investigation of airship aeroelasticity using fluid-structure interaction,J.Hydrodyn.Ser.B 20(2008)164-171.

    [4]J.M.Liu,C.J.Lu,L.P.Xue,Numerical investigation on the aeroelastic behavior of an airship with hull-fin configuration,J.Hydrodyn.Ser.B 22(2010)207-213.

    [5]G.A.Amiryants,V.D.Grigorive,F(xiàn).Z.Ishmuratov,et al.Investigations of airship aeroelasticity,in:23rd International Congress of Aerospace Sciences,Toronto,Canada,2002.

    [6]K.Omari,E.Schall,B.Koobus,et al.Inviscid flow calculation around a flexible airship,in:8th Conference of Applied Mathematics and Statistics,Jaca,Spain,September 15-18,2004.

    [7]C.Wang,X.Du,Z.Wan,An experimental study on wrinkling behaviours andcharacteristicsofgossamerspacestructures,Strain43(2007)332-339.

    [8]W.G.Kang,Y.W.Suh,K.Woo,et al.,Mechanical property characterization of film-fabric laminate for stratospheric airship envelope,Compos.Struct.75(2006)151-155.

    [9]Y.Li,M.Nahon,I.Sharf,Airship dynamics modeling:A literature review,Prog. Aerosp.Sci.47(2011)217-239.

    [10]P.Funk,T.Lutz,S.Wagner,Experimental investigations on hull-fin interferences of the LOTTE airship,Aerosp.Sci.Technol.8(2003)603-610.

    [11]T.Lutz,P.Funk,A.Jakobi,et al.Summary of aerodynamic studies on the lotte airship,in:4th International Airship Convention and Exhibition.Cambridge,England,2002,pp.101-110.

    [12]X.C.Wu,Y.W.Wang,C.G.Huang,et al.,Aerodynamic simulation of airship ambient flows with high attack angles and analysis on turbulence models and parameters,Eng.Mech.31(2014)24-31.(in Chinese).

    3 June 2015

    .

    E-mail address:wangyw@imech.ac.cn(Y.Wang).

    http://dx.doi.org/10.1016/j.taml.2015.11.001

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Numerical simulation

    Wind tunnel test

    *This article belongs to the Fluid Mechanics

    日本免费a在线| 国产精品精品国产色婷婷| 亚洲性夜色夜夜综合| 嫩草影院精品99| 亚洲中文av在线| 国产黄色小视频在线观看| 欧美黑人巨大hd| 中亚洲国语对白在线视频| 欧美日韩亚洲综合一区二区三区_| 18禁美女被吸乳视频| 一夜夜www| a在线观看视频网站| www.www免费av| 久久久久九九精品影院| 国产熟女午夜一区二区三区| 两人在一起打扑克的视频| 人妻久久中文字幕网| 九色国产91popny在线| 亚洲在线自拍视频| 中文资源天堂在线| 婷婷精品国产亚洲av| 一区二区三区激情视频| 久久精品人妻少妇| 国产在线观看jvid| 国产精品久久久人人做人人爽| 午夜免费观看网址| 久久精品影院6| 少妇裸体淫交视频免费看高清 | www.999成人在线观看| videosex国产| 亚洲精品中文字幕一二三四区| 丝袜人妻中文字幕| 在线观看免费午夜福利视频| 亚洲一区高清亚洲精品| 中文在线观看免费www的网站 | 中文字幕精品免费在线观看视频| 国产精品99久久99久久久不卡| 99久久久亚洲精品蜜臀av| 国产av在哪里看| 国产欧美日韩精品亚洲av| 国产成人精品无人区| 亚洲国产欧美一区二区综合| 国产黄色小视频在线观看| 97人妻精品一区二区三区麻豆 | 999精品在线视频| 97人妻精品一区二区三区麻豆 | 岛国在线观看网站| 身体一侧抽搐| 欧美一区二区精品小视频在线| 国产在线观看jvid| 一级a爱视频在线免费观看| 亚洲五月色婷婷综合| 日本免费一区二区三区高清不卡| 亚洲第一av免费看| 天堂动漫精品| 久久中文字幕人妻熟女| 91国产中文字幕| www国产在线视频色| 国产成人av激情在线播放| 亚洲最大成人中文| 老司机靠b影院| 美女免费视频网站| 亚洲精品粉嫩美女一区| 黑丝袜美女国产一区| 中国美女看黄片| 夜夜夜夜夜久久久久| 国产片内射在线| 一本精品99久久精品77| 中文字幕久久专区| 日韩精品中文字幕看吧| 999精品在线视频| 精品国产一区二区三区四区第35| 日韩欧美三级三区| 国产精品精品国产色婷婷| a在线观看视频网站| 亚洲免费av在线视频| 成人18禁高潮啪啪吃奶动态图| 亚洲av成人一区二区三| 一级黄色大片毛片| 国产精品久久久久久亚洲av鲁大| 国产高清激情床上av| 琪琪午夜伦伦电影理论片6080| 免费人成视频x8x8入口观看| 欧美人与性动交α欧美精品济南到| 亚洲成国产人片在线观看| 黄片播放在线免费| 在线十欧美十亚洲十日本专区| 亚洲国产欧美日韩在线播放| 男人舔女人下体高潮全视频| av有码第一页| 欧美成人一区二区免费高清观看 | 欧美黄色片欧美黄色片| 亚洲av电影在线进入| 18美女黄网站色大片免费观看| 国产亚洲av嫩草精品影院| 国产亚洲欧美在线一区二区| 天堂√8在线中文| 亚洲熟妇熟女久久| 久久精品影院6| 麻豆一二三区av精品| 一个人免费在线观看的高清视频| 可以免费在线观看a视频的电影网站| 欧美日韩中文字幕国产精品一区二区三区| 黄色成人免费大全| 两性午夜刺激爽爽歪歪视频在线观看 | 99热6这里只有精品| 黄色丝袜av网址大全| av电影中文网址| 黄色 视频免费看| 国产精品久久久久久精品电影 | 久久精品亚洲精品国产色婷小说| 亚洲精品国产区一区二| 国产又色又爽无遮挡免费看| 久久香蕉国产精品| 视频在线观看一区二区三区| 香蕉国产在线看| 国产成人精品无人区| 中文字幕精品亚洲无线码一区 | 熟女少妇亚洲综合色aaa.| 国产精品久久电影中文字幕| 午夜福利成人在线免费观看| 亚洲激情在线av| 村上凉子中文字幕在线| 身体一侧抽搐| 草草在线视频免费看| 精品国产乱码久久久久久男人| 欧美色视频一区免费| 一本精品99久久精品77| 天天一区二区日本电影三级| 女人爽到高潮嗷嗷叫在线视频| 每晚都被弄得嗷嗷叫到高潮| 黄色成人免费大全| 亚洲国产精品999在线| 超碰成人久久| 啦啦啦韩国在线观看视频| 69av精品久久久久久| 午夜免费激情av| 精品乱码久久久久久99久播| 成人午夜高清在线视频 | www.熟女人妻精品国产| 精品卡一卡二卡四卡免费| 怎么达到女性高潮| 久久久久久久久中文| 精品少妇一区二区三区视频日本电影| 久久久久久人人人人人| 欧美黑人欧美精品刺激| 深夜精品福利| а√天堂www在线а√下载| 一级片免费观看大全| 亚洲成人久久爱视频| 日韩大码丰满熟妇| 啪啪无遮挡十八禁网站| 亚洲成人国产一区在线观看| 亚洲av成人不卡在线观看播放网| 亚洲精品美女久久av网站| 欧美成人一区二区免费高清观看 | 久久精品国产综合久久久| 麻豆久久精品国产亚洲av| 巨乳人妻的诱惑在线观看| 黑人欧美特级aaaaaa片| 午夜免费观看网址| 精品久久久久久久久久免费视频| 桃色一区二区三区在线观看| 黄色a级毛片大全视频| 一进一出抽搐gif免费好疼| 手机成人av网站| 国产亚洲精品久久久久久毛片| 久久精品国产99精品国产亚洲性色| 精品电影一区二区在线| 日韩成人在线观看一区二区三区| 啦啦啦观看免费观看视频高清| 麻豆成人av在线观看| 日韩 欧美 亚洲 中文字幕| 久久中文字幕一级| 99久久国产精品久久久| 窝窝影院91人妻| 亚洲国产欧美日韩在线播放| 亚洲成人国产一区在线观看| 麻豆av在线久日| 亚洲av电影不卡..在线观看| 99国产精品一区二区三区| 久久久久亚洲av毛片大全| 国产精品日韩av在线免费观看| 午夜精品在线福利| xxx96com| 午夜两性在线视频| 91麻豆精品激情在线观看国产| 男女视频在线观看网站免费 | 国产极品粉嫩免费观看在线| 操出白浆在线播放| 国产久久久一区二区三区| 岛国在线观看网站| 欧美性长视频在线观看| 嫩草影视91久久| 亚洲精品美女久久久久99蜜臀| 性色av乱码一区二区三区2| xxxwww97欧美| 啦啦啦韩国在线观看视频| 欧美日韩黄片免| 97碰自拍视频| 久热这里只有精品99| 99国产精品一区二区蜜桃av| 99久久国产精品久久久| 久久亚洲真实| 国产av一区在线观看免费| 中文字幕av电影在线播放| 国产爱豆传媒在线观看 | 亚洲人成网站在线播放欧美日韩| 欧美黑人精品巨大| 90打野战视频偷拍视频| 禁无遮挡网站| 麻豆av在线久日| 在线观看免费日韩欧美大片| 人人澡人人妻人| 国产午夜福利久久久久久| 99精品欧美一区二区三区四区| 久久久久亚洲av毛片大全| 欧美激情高清一区二区三区| 精品一区二区三区四区五区乱码| 国产视频内射| 99精品在免费线老司机午夜| 亚洲精品中文字幕在线视频| 国产精品国产高清国产av| 麻豆久久精品国产亚洲av| 色综合亚洲欧美另类图片| 欧美激情 高清一区二区三区| 国内毛片毛片毛片毛片毛片| 亚洲成a人片在线一区二区| 午夜免费激情av| 淫妇啪啪啪对白视频| 欧美最黄视频在线播放免费| 在线观看免费视频日本深夜| 香蕉av资源在线| 欧美激情 高清一区二区三区| 国产精华一区二区三区| 欧美国产日韩亚洲一区| 色尼玛亚洲综合影院| 亚洲欧美精品综合一区二区三区| 中文字幕精品免费在线观看视频| 欧美精品亚洲一区二区| 欧美午夜高清在线| 他把我摸到了高潮在线观看| 又大又爽又粗| √禁漫天堂资源中文www| 后天国语完整版免费观看| 一级毛片精品| 在线国产一区二区在线| 无遮挡黄片免费观看| 黄色视频不卡| 啦啦啦 在线观看视频| 美女 人体艺术 gogo| 久久午夜综合久久蜜桃| 脱女人内裤的视频| 91字幕亚洲| 久久精品夜夜夜夜夜久久蜜豆 | 久久婷婷人人爽人人干人人爱| 99re在线观看精品视频| 一个人免费在线观看的高清视频| а√天堂www在线а√下载| 欧洲精品卡2卡3卡4卡5卡区| 最近最新中文字幕大全电影3 | 亚洲五月天丁香| 成人国语在线视频| 男男h啪啪无遮挡| 亚洲一区二区三区不卡视频| 丁香欧美五月| 搡老岳熟女国产| 免费看十八禁软件| 观看免费一级毛片| 女同久久另类99精品国产91| 亚洲精品久久成人aⅴ小说| 亚洲精品美女久久av网站| 免费在线观看成人毛片| 精品日产1卡2卡| 国产视频一区二区在线看| 国产主播在线观看一区二区| 夜夜爽天天搞| xxx96com| 国产激情偷乱视频一区二区| 国产爱豆传媒在线观看 | 久久中文字幕人妻熟女| 俄罗斯特黄特色一大片| 国产精品永久免费网站| 国产亚洲av高清不卡| 国产黄片美女视频| 亚洲成av片中文字幕在线观看| 一区二区三区精品91| 久久亚洲真实| 高潮久久久久久久久久久不卡| 亚洲国产欧美网| 搡老岳熟女国产| 香蕉丝袜av| 午夜免费激情av| 成人精品一区二区免费| 日韩欧美国产一区二区入口| 成在线人永久免费视频| 日本免费a在线| 国产成人一区二区三区免费视频网站| 国产精品久久电影中文字幕| 免费无遮挡裸体视频| 老司机靠b影院| 日韩精品免费视频一区二区三区| 免费电影在线观看免费观看| 韩国精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 欧美一级毛片孕妇| 久久久久国产精品人妻aⅴ院| 一a级毛片在线观看| 亚洲色图 男人天堂 中文字幕| 精品无人区乱码1区二区| 亚洲国产精品合色在线| 亚洲激情在线av| 午夜福利免费观看在线| 欧美日韩亚洲国产一区二区在线观看| 9191精品国产免费久久| 亚洲激情在线av| 嫁个100分男人电影在线观看| 青草久久国产| 91在线观看av| 搡老岳熟女国产| 国产精品一区二区三区四区久久 | 丰满人妻熟妇乱又伦精品不卡| 在线观看免费午夜福利视频| 日日夜夜操网爽| 国产成人系列免费观看| 国产又爽黄色视频| 搡老妇女老女人老熟妇| 免费在线观看成人毛片| 日日爽夜夜爽网站| avwww免费| 国产黄色小视频在线观看| 午夜久久久久精精品| 黄色 视频免费看| av中文乱码字幕在线| 一区二区三区精品91| 久久久久久久久免费视频了| 精品无人区乱码1区二区| 国产精品一区二区精品视频观看| 黄色女人牲交| 国产精华一区二区三区| 热re99久久国产66热| 婷婷六月久久综合丁香| 亚洲久久久国产精品| 精品日产1卡2卡| 国产高清视频在线播放一区| 两个人免费观看高清视频| 一进一出抽搐动态| 久久午夜综合久久蜜桃| 午夜影院日韩av| av视频在线观看入口| 亚洲五月天丁香| 精品高清国产在线一区| 村上凉子中文字幕在线| 草草在线视频免费看| 99久久国产精品久久久| 法律面前人人平等表现在哪些方面| 亚洲一区二区三区色噜噜| 变态另类丝袜制服| 久9热在线精品视频| 亚洲欧洲精品一区二区精品久久久| 老司机靠b影院| 夜夜爽天天搞| 嫁个100分男人电影在线观看| 美国免费a级毛片| 美女高潮喷水抽搐中文字幕| 高清毛片免费观看视频网站| 国产伦一二天堂av在线观看| 啦啦啦免费观看视频1| 免费高清在线观看日韩| 色av中文字幕| 999精品在线视频| 久久中文字幕一级| 可以免费在线观看a视频的电影网站| 欧美成人午夜精品| 国产黄a三级三级三级人| 亚洲五月婷婷丁香| 免费在线观看视频国产中文字幕亚洲| 日韩精品免费视频一区二区三区| 非洲黑人性xxxx精品又粗又长| 久久国产亚洲av麻豆专区| 午夜免费观看网址| 午夜福利在线观看吧| 高清在线国产一区| 亚洲精品一区av在线观看| 亚洲精华国产精华精| 狂野欧美激情性xxxx| 久久久久久免费高清国产稀缺| 色综合亚洲欧美另类图片| www.www免费av| 婷婷亚洲欧美| 好看av亚洲va欧美ⅴa在| 久久国产精品男人的天堂亚洲| 母亲3免费完整高清在线观看| 韩国av一区二区三区四区| 大型黄色视频在线免费观看| 这个男人来自地球电影免费观看| 最近最新中文字幕大全电影3 | 国产私拍福利视频在线观看| 久久草成人影院| 亚洲中文字幕一区二区三区有码在线看 | 99国产综合亚洲精品| 国内久久婷婷六月综合欲色啪| 亚洲国产高清在线一区二区三 | 亚洲一区高清亚洲精品| 在线观看www视频免费| 嫩草影院精品99| 18禁美女被吸乳视频| 校园春色视频在线观看| 波多野结衣高清无吗| 香蕉av资源在线| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品av在线| 免费电影在线观看免费观看| 性欧美人与动物交配| 午夜视频精品福利| 99riav亚洲国产免费| 免费在线观看黄色视频的| 少妇 在线观看| 亚洲七黄色美女视频| 日本在线视频免费播放| 女人高潮潮喷娇喘18禁视频| 精品欧美国产一区二区三| 中出人妻视频一区二区| 亚洲 国产 在线| 香蕉国产在线看| 变态另类成人亚洲欧美熟女| 国产一区二区激情短视频| 最近在线观看免费完整版| 国产精品一区二区精品视频观看| 国产精品免费一区二区三区在线| 中出人妻视频一区二区| 日韩免费av在线播放| 免费人成视频x8x8入口观看| 午夜久久久久精精品| 一a级毛片在线观看| 欧美黄色淫秽网站| 欧美中文日本在线观看视频| 亚洲中文字幕日韩| 一个人观看的视频www高清免费观看 | 好男人在线观看高清免费视频 | 亚洲五月婷婷丁香| 国产精品一区二区精品视频观看| 91麻豆精品激情在线观看国产| 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 久久人妻av系列| 亚洲av成人不卡在线观看播放网| 黄片大片在线免费观看| 国产视频一区二区在线看| 国产精品久久久久久精品电影 | 日韩免费av在线播放| 亚洲成av人片免费观看| 高清毛片免费观看视频网站| 变态另类成人亚洲欧美熟女| 在线永久观看黄色视频| 亚洲一区高清亚洲精品| 黄色丝袜av网址大全| 欧美黑人精品巨大| 美女 人体艺术 gogo| 色老头精品视频在线观看| 欧美激情极品国产一区二区三区| 夜夜躁狠狠躁天天躁| 草草在线视频免费看| 欧美另类亚洲清纯唯美| 成年版毛片免费区| 国产高清有码在线观看视频 | 免费高清在线观看日韩| 亚洲人成网站高清观看| 一边摸一边做爽爽视频免费| 国产精品 国内视频| 欧美性长视频在线观看| 国产主播在线观看一区二区| 欧美日韩一级在线毛片| 搡老熟女国产l中国老女人| 久久久久久国产a免费观看| 夜夜躁狠狠躁天天躁| 日本一本二区三区精品| 午夜免费观看网址| 国产人伦9x9x在线观看| 国产成人精品久久二区二区免费| 国产一区二区激情短视频| 国产片内射在线| 午夜福利一区二区在线看| 久久这里只有精品19| 99久久99久久久精品蜜桃| 90打野战视频偷拍视频| 国产1区2区3区精品| 丁香欧美五月| 亚洲成国产人片在线观看| 国产亚洲精品第一综合不卡| 好男人在线观看高清免费视频 | 99国产综合亚洲精品| 亚洲午夜理论影院| 十八禁网站免费在线| 欧美另类亚洲清纯唯美| 亚洲成人久久性| 别揉我奶头~嗯~啊~动态视频| 麻豆久久精品国产亚洲av| 久久久久久国产a免费观看| 国产1区2区3区精品| 欧美黑人精品巨大| svipshipincom国产片| 免费av毛片视频| 国内久久婷婷六月综合欲色啪| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 国产又爽黄色视频| bbb黄色大片| 波多野结衣高清无吗| 在线观看午夜福利视频| 女同久久另类99精品国产91| 男人的好看免费观看在线视频 | 日本黄色视频三级网站网址| 男女视频在线观看网站免费 | 久久香蕉精品热| 亚洲国产看品久久| 欧美中文日本在线观看视频| 美女午夜性视频免费| 97超级碰碰碰精品色视频在线观看| 男女午夜视频在线观看| or卡值多少钱| 韩国av一区二区三区四区| 一级黄色大片毛片| 90打野战视频偷拍视频| 91在线观看av| 免费在线观看完整版高清| 日韩大尺度精品在线看网址| 婷婷六月久久综合丁香| 久久午夜亚洲精品久久| 亚洲成人久久性| 制服诱惑二区| 午夜视频精品福利| 免费观看人在逋| 不卡av一区二区三区| 日本免费a在线| 国产av一区在线观看免费| 亚洲精品色激情综合| 99精品在免费线老司机午夜| 色综合站精品国产| 视频在线观看一区二区三区| 精品国产亚洲在线| 午夜精品在线福利| 不卡av一区二区三区| 亚洲五月天丁香| 国产精品亚洲一级av第二区| 精品欧美国产一区二区三| 99久久久亚洲精品蜜臀av| 国产精品精品国产色婷婷| 国产精品亚洲美女久久久| 亚洲一码二码三码区别大吗| 最新在线观看一区二区三区| 国产在线观看jvid| 国产精品自产拍在线观看55亚洲| 搡老熟女国产l中国老女人| 搡老妇女老女人老熟妇| 日本在线视频免费播放| 99热只有精品国产| 免费观看精品视频网站| 国产午夜精品久久久久久| 窝窝影院91人妻| 亚洲成人久久性| 99久久国产精品久久久| 亚洲国产毛片av蜜桃av| 国产97色在线日韩免费| 一a级毛片在线观看| 国产一区二区在线av高清观看| av电影中文网址| 91成年电影在线观看| 超碰成人久久| 久久久久久久午夜电影| 国产亚洲精品一区二区www| 久久久久久久精品吃奶| 国产1区2区3区精品| 欧美日韩乱码在线| 亚洲欧美精品综合一区二区三区| 丝袜美腿诱惑在线| 婷婷丁香在线五月| 男女做爰动态图高潮gif福利片| 午夜免费鲁丝| 天堂动漫精品| 亚洲中文日韩欧美视频| 国产亚洲精品久久久久5区| 韩国av一区二区三区四区| 一二三四社区在线视频社区8| 精品久久久久久久久久免费视频| 91成年电影在线观看| 一本一本综合久久| 韩国精品一区二区三区| 99久久综合精品五月天人人| 亚洲,欧美精品.| 国产成人精品久久二区二区免费| 免费女性裸体啪啪无遮挡网站| 黑人操中国人逼视频| 亚洲黑人精品在线| 老汉色∧v一级毛片| 最近最新免费中文字幕在线| 中文亚洲av片在线观看爽| 真人一进一出gif抽搐免费| 波多野结衣高清无吗| 国产激情久久老熟女| 欧美成人午夜精品| 无人区码免费观看不卡| 久久国产精品男人的天堂亚洲| 日本三级黄在线观看| 亚洲精品国产精品久久久不卡| 正在播放国产对白刺激| 99在线人妻在线中文字幕| av电影中文网址| 久久中文字幕一级| 日本成人三级电影网站| 一二三四社区在线视频社区8| 久久精品国产综合久久久| 中亚洲国语对白在线视频| 欧美一区二区精品小视频在线| 欧美乱妇无乱码|