• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical responses of the bio-nano interface:A molecular dynamics study of graphene-coated lipid membrane

    2015-11-10 11:23:43ZhigongSongYanleiWangZhipingXu

    Zhigong Song,Yanlei Wang,Zhiping Xu?

    Applied Mechanics Laboratory,Department of Engineering Mechanics and Center for Nano and Micro Mechanics,Tsinghua University,Beijing 100084,China

    Mechanical responses of the bio-nano interface:A molecular dynamics study of graphene-coated lipid membrane

    Zhigong Song,Yanlei Wang,Zhiping Xu?

    Applied Mechanics Laboratory,Department of Engineering Mechanics and Center for Nano and Micro Mechanics,Tsinghua University,Beijing 100084,China

    A R T I C L EI N F O

    Article history:

    Accepted 14 November 2015

    Available online 28 November 2015

    Cell membrane

    Lipid bilayer

    Graphene

    Mechanical responses Bio-nano interfaces

    Bio-nano interfaces between biological materials and functional nanodevices are of vital importance in relevant energy and information exchange processes,which thus demand an in-depth understanding. One of the critical issues from the application viewpoint is the stability of the bio-nano hybrid under mechanical perturbations.In this work we explore mechanical responses of the interface between lipid bilayer and graphene under hydrostatic pressure or indentation loads.We find that graphene coating provides remarkable resistance to the loads,and the intercalated water layer offers additional protection.These findings are discussed based on molecular dynamics simulation results that elucidate the molecular level mechanisms,which provide a basis for the rational design of bionanotechnologyenabled applications such as biomedical devices and nanotherapeutics.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Recently there have been significant interests rising in developing bionanotechnologies such as bioelectronics platforms that interface biological materials such as cells or tissues with functional nanostructures[1-6].Biosensory functions can be enabled by detecting the biophysiochemical signals transduced across at this interface,which allows extracting valuable information from biologically important reactions,as well as controlling cellular activities through nanoscale contacts with integrated devices.Bio-nano hybrids with high complexity in integration require massively interconnected arrays of processing devices,completed with integratedpowersupplyandheatremovalnetworks[7].Asaresult,the bio-nano interface that conveys energy and information exchange between biological materials and nanostructures are pivotal in designing relevant technological applications.The structural and physiological stabilities of such an interface under external mechanical perturbation are important issues to be addressed practically in order to design reliable bionanotechnologies,which are crucial not only for preserving functions of bioelectronics,but also to conduct subcellular engineering of the biological processes[8].

    Graphene and its derivatives such as graphene oxide are flexible single-atom-thick layers that are able to form compatible interface with lipid bilayers that constitute the cell membrane,which have been studied recently as functional nanostructures interfacing with biological materials.Nanocomposite structures have been constructed by depositing lipids onto graphitic layers or intercalating them into an assembly in a layer-by-layer fashion[2-4,9-11].Researchers have found that graphene layers could confine the cell as an easy-to-apply impermeable and electrontransparent encasement that retains the cellular water content[4]. More interestingly,the graphene sheet deposited on the cell wall permits a free functioning of the plasma membrane it encapsulates[3].The interface between graphitic layers and the cell membrane is the essential pathway that conveys information and energy exchange,where evidences have been reported for the existence of a layer of trapped water within this interface.The thickness of this intercalated water layer(IWL)is only a few nanometers,although its dependence on the physiological condition is still not clear.However,it effectively weakens the dielectric coupling across the interface and thus the disruptive effects to the cellular membrane[2,9].In additional to these biochemical effects,the nanostructural coating using graphene could also protect the cellunderphysicalorchemicalattacks.Thestabilityofboththeliving system and the bio-nano interface could also be broken down under external mechanical perturbations.This fact,however,has only very limited understandings in the community.

    In this work,we explore mechanical responses of the lipid bilayer-graphene interface as a model system for general bio-nano interfaces.Empirical forcefield based molecular dynamics(MD)simulations are performed to probe the nanoscale structures and dynamics of the hybrid.We find that under external loads,the graphene coating provides an outstanding protection function forthe lipid membrane.Moreover,the IWL at the lipid-graphene interface is found to play a critical role in modulating the transmission of mechanical signals and the mechanical stability of the hybrid.These conclusions are discussed with respect to their implications in designing related bionanotechnological applications.

    Fig.1.(a)The model of graphene-coated lipid bilayer membrane with intercalated water layers.(b)Number of hydrogen bonds(per water molecule)analyzed for different IWL thicknesses,tIWL.(c,d)Illustration of applied hydrostatic pressure and nanoindentation loads.

    We construct a lipid bilayer-graphene hybrid by placing the bilayer at a certain distance from the graphene sheets.Water molecules are added in between,which could enter the spaces in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)lipid bilayers with a depth of~1 nm after thermal equilibration(Fig.1(a)).The interfaces with top and bottom hydrophilic sides of thelipidbilayerareconstructedsymmetrically.Atwo-dimensional supercell is used with periodic boundary conditions(PBCs)along the interface,with lateral dimensions of 10.46 and 10.15 nm,respectively.Free boundary conditions are used in the dimension across the bilayer.Supercells with different lateral sizes are explored to characterize the size effect in the indentation tests,and wefindnotablesizeeffectinthenanoindentationtests,wheremechanical responses are weakened as the lateral membrane span increases under the same indentation force.However,our following discussions are focused on this specific system size for a quanlitative demonstration.

    All MD simulations are performed using the large-scale atomic/molecular massively parallel simulator(LAMMPS)package[12].Interatomic interactions between carbon atoms in graphene are described using the adaptive intermolecular reactive empirical bond order(AIREBO)potential with torsion and van der Waals terms included[13].The CHARMM36 forcefield is used for thelipidbilayer,andwaterissimulatedusingtheTIP3Pmodel[14]. The SHAKE algorithm is applied for bond stretching and angle bendingtermsbetweenoxygenandhydrogenatomstoavoidhighfrequency vibrations that require shorter time steps.Interaction between water,graphene and the lipid bilayer includes both van der Waals and electrostatic terms.The former term is described by the 12-6 Lennard-Jones potential 4ε[(σ/r)12-(σ/r)6]and the Lorentz-Berthelot mixing rule[14],which is truncated at an interatomic distance r=1·0 nm.Long-range Coulomb interactions are computed by using the particle-particle particle-mesh(PPPM)algorithm[15].The time step is set to 0.5 fs to assure total energy conservation in absence of thermostat coupling.The whole system is equilibrated at 300 K and 1 a.t.m.(1 a.t.m.=101325 Pa)(in the lateraldimensions)beforethemechanicalloadingsareapplied,using the Berendsen thermostat and barostat[16],respectively.

    We carry out MD simulations with both hydrostatic pressure and local indentation loads on the lipid-graphene hybrid. The hydrostatic pressure Pzis simulated by compressing two planar walls towards graphene coatings at both sides of the graphene-lipid-graphene hybrid at a rate of 0.03 nm/ps(Fig.1(c)). These planar walls interact with the graphene sheet through a harmonic,repulsive-only potential in the form of Urep=K(r-rc)2/2,where r is the position of wall and the interaction is turned off beyond a cut-off distance rc=0·1 nm.The spring constant K is set to 200 eV·nm-2.These settings allow us to probe mechanical responses of the hybrid under external pressure Pz,in terms of a compressive strainεz=-2Δh/h.Here h is equilibrium thickness of the lipid-graphene hybrid,which is defined by the vertical distance between two graphene sheets.Δh is the change.During theloadingprocesswefindthatthelateralrelaxationofsimulation boxisnotsignificantduetothehighin-planestiffnessofgraphene.

    To probe mechanical responses of the hybrid to local or concentrated loads,we carry out nanoindentation tests where an indenter is pressed towards one side of the lipid-graphene hybrid,while the other side is fixed(Fig.1(d)).The indentation force f is tracked as a function of indentation depth d.The indenter is a rigid spherical particle with a radius of R=1 nm,interacting with the graphene sheet through a force in the form of f(r)=-k(r-R)2. Here r is the distance measured from the atom to the center of indenter.The specified force constant k=104eV·nm-3is largeenough to exclude notable rate dependence that could arises in a soft contact.The loading rates are set tov=0·05 nm/ps for thenanoindentationtests.Simulationscarriedoutatlowerloading rates show softened responses,but the results are quanlitative the same.For example,tests for tIWL=0·68 nm and atv= 0·005 nm/ps predict failure force and depth of 67.546 nN and 1.355 nm,which are very close to 66.147 nN and 1.347 nm for v=0·05 nm/ps.

    When a hydrostatic pressure Pz=-σzzis applied on the graphene surface with area A,it can be related to the compressive strainεzby considering the hybrid as a composite continuum with Young's modulus Y and Poisson's ratioν(we assumeν=0·3 in this work)

    Following the boundary and loading conditions used in our MD simulations,i.e.,εx=εy=0,the compressive strain response can be expressed as

    For a model problem of indentation on a half-space,the indentation force f,depth d,and their relation can be described through the Sneddon formula[17]

    Here a is the radius of contact between the indenter and the membrane under indentation,which can be determined from the data of our MD simulations using Eq.(3a).ν=0·3 is the Poisson's ratio assumed for the substrate material.

    Molecular structures of the bio-nano interface between a cell membrane and graphene coating are illustrated in Fig.1(a),which are composed of a lipid bilayer,monolayer graphene sheets,and a thin layer of trapped water,i.e.,the IWL.In this work,the IWL thickness(tIWL)is defined as the span of region where the water density is no lower than that in the bulk.The presence of IWL within the gap between the lipid layer and graphene allows the cell to exchange masses and energy with the surroundings and thus is crucial for their survival[3].From the snapshots of water molecules within the interfacial gallery,we identify layered water structures adjacent to the graphene wall in our MD simulations. Further structural analysis at the molecular level shows that the number of hydrogen bonds per water molecule is smaller than the value in bulk water,but increases with tIWL(Fig.1(b)).This is actually a common feature of nanoconfined water,which was reported for water trapped between graphene or graphene oxide(GO)layers at a similar length scale of confinement[18].It should also be remarked that there are water molecules entering the lipid bilayer within a depth of~1 nm,which is similar as the situation where lipid bilayers are immersed into water at the physiological condition[19].The thickness of layered water region in our simulations is~1 nm,which is close to the IWL thickness reported for water trapped at the lipid-graphene interface in recent experimental measurements[2].This means that the presence of structured IWLs between hydrated lipid bilayers and the graphene sheet could lead to changes in the properties and stabilities of lipid bilayers and the cell,compared to their native structures immersed in the extracellular fluid.Accordingly,we construct a number of lipid-graphene hybrids with tIWLranging from 0 nm to 2 nm based on these observations,and use them as model systems for further mechanical characterization.

    Bio-nano devices are usually immersed in fluid to maintain the physiological condition of living systems.The integration of nanoelectronicswithcellcontainsfunctionalinterfacesbetweenthecell membrane and nanostructures such as the graphene coating.External mechanical perturbation could originate from hydrostatic pressure or localized impacts.To explore the stability of such a bio-nano interface under these loads,we first explore the relation between hydrostatic pressure Pzapplied onto the graphene sheet and the compressive strainεzzmeasured in the same direction.From a typical stress-strain curve shown in Fig.2(a),we find that the bio-nano hybrid is stiffened as the pressure increases due to a densified structures of IWLs as demonstrated in the water density plots for tIWL=1·4 nm(Fig.3(a)).We notice further that as the hybrid is compressed,mechanical load is transmitted through the IWLs,and the responses are relatively incompressible.The layered structures of IWLs become more and more prominent as the pressure increases due to the enhanced graphene-water interaction and presence of anisotropic pressure. This enhanced layered order further contributes to the nonlinearly elasticresponsesandprotectsthestructuralstabilityoflipidmembrane.Interestingly,this process of structural transition in IWLs is reversible under the pressure loading,which results in negligible hysteresis.

    We now summarize mechanical responses of the bio-nano interface as a function of the IWL thickness tIWL.It is clearly shown in Fig.4(a)that,as the IWL is present,the lipid-graphene hybrid is significantly stiffened compared to the bare one because of both the intercalation of water molecules in the lipid bilayers and the mechanical resistance of IWLs.However,this enhancement is weakened as t further increases,which could be explained by the fact that for few-layer water the stiffening effect increases with tIWL,while the structure of the IWLs becomes less ordered as its thickness increases and thus the hybrid is softened with tIWL>~0·6 nm.This can also be concluded from the extracted values of Young's modulus Y using Eq.(2).The results in Fig.4(a)show that Y isontheorderof1GPa,whichissignificantenoughtoprovidean effectivemechanicalprotectiontothecellmembrane.Thisvalueof Y converges to 2.39 GPa as tIWLincreases,which is close to the bulk modulus of water B=2·2 GPa[20].

    Local mechanical responses of the lipid-graphene hybrid are distinctly different from that under hydrostatic loading.Under nanoindentation,our MD simulations show that the structure of lipid-graphene hybrid is distorted locally at small indentation depth.The force-depth relation we obtain from the simulation results at small indentation depth(inset in Fig.2(b))is used to extract effective in-plane elastic modulus Y of the hybrid through Eq.(3)(Fig.4(a)).Comparativestudiesofthemechanicalresponses under nanoindentation show that with water intercalation,the hybrid is stiffened.Similarly,the stiffening effect decreases with the IWL thickness tIWL,which suggests that the deformation mechanismundersmallindentationloadsisthesameasthatunder hydrostatic pressure.

    At large indentation depth,however,we find that water molecules under the indenter are able to diffuse and flow during theloadingprocess(Fig.3(b)).Consequently,thestructuresofIWLs and lipid bilayer change significantly in contrast to that under eitherhydrostaticpressureorsmall-depthindentation.Themechanical response is softened with IWL,in contrast to the conclusion at small indentation depth(Fig.2(b)).This redistribution of water in the IWL also implicates mechanical energy dissipation during the loading processes.To quantify this effect,we perform additional MD simulations with cycling indentation loads applied.We characterize the force hysteresis from the f-d curve in one cycle of nanoindentation(Fig.2(b)).The results show that the amount of energy dissipation is almost independent on tIWLand is slightly reduced as tIWLincreases in the range we explored(Fig.4(b)).Thiscapability of energy dissipation could protect the bio-nano hybrid from dynamical loads such as vibration and impacts.

    Fig.2.Mechanical responses of lipid-graphene hybrids with different IWL thicknesses,measured under(a)hydrostatic pressure and(b)cycling nanoindentation loads.The inset in panel(b)shows the elastic response of interface measured at small indentation depth,which is used to extract the Young's modulus using Eq.(3).

    Fig.3.Density distribution of the intercalated water layer(tIWL=1·4 nm)at the lipid-graphene interface under(a)hydrostatic pressure and(b)nanoindentation forces,measured by its ratio to the bulk valueρ/ρbulk.

    As the amplitude of indentation force further increases,the structure of bio-nano hybrids could be significantly disturbed and even fail.From our nanoindentation tests,we find that the amplitude of fracture indentation force and depth are almost invariant as the IWL thickness changes(Fig.5),which aligns with the fact that the fracture is nucleated inside the graphene sheet. These simulation results thus show that the graphene coating could protect the underneath lipid membrane very effectively because of its outstanding in-plane mechanical resistance.

    In summary,we analyzed molecular structures of the bio-nano interface between a lipid membrane and graphene coatings by performing atomistic simulations and explore their mechanical responses upon hydrostatic pressure and nanoindentation loads. We find that the graphene coatings with extremely high stiffnessand strength could effectively protect the structural and physiological stabilities of the bio-nano hybrid in response to both hydrostatic and concentrated loads.The presence of an intercalated waterlayerattheinterfaceisfoundtoplayanimportantroleinfurther mediating the mechanical resistance and energy dissipation. These findings could direct rational design of bionanotechnologyenabled biomedical devices,where stability and robustness of bionano interfaces under mechanical perturbation are essential for non-invasive applications.

    Fig.4.(a)The Young's moduli of lipid-graphene hybrids calculated under hydrostatic pressure and indentation forces.(b)Mechanical energy dissipation during the first loading-unloading cycle in the nanoindentation tests,plotted as a function of the IWL thickness,tIWL.

    Fig.5.The critical indentation(a)force and(b)depth measured for the lipid-graphene hybrids as a function of the thickness of IWL,tIWL.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11222217 and 11472150).The simulations were performed on the Explorer 100 cluster system of Tsinghua National Laboratory for Information Science and Technology.

    [1]A.E.Nel,L.Madler,D.Velegol,et al.,Understanding biophysicochemical interactions at the nano-bio interface,Nat.Mater.8(2009)543-557.

    [2]P.K.Ang,M.Jaiswal,C.H.Y.X.Lim,et al.,A bioelectronic platform using a graphene-lipid bilayer interface,ACS Nano 4(2010)7387-7394.

    [3]R.Kempaiah,A.Chung,V.Maheshwari,Graphene as cellular interface:Electromechanical coupling with cells,ACS Nano 5(2011)6025-6031.

    [4]N.Mohanty,M.Fahrenholtz,A.Nagaraja,et al.,Impermeable graphenic encasement of bacteria,Nano Lett.11(2011)1270-1275.

    [5]A.Fabbro,S.Bosi,L.Ballerini,et al.,Carbon nanotubes:Artificialnanomaterials to engineer single neurons and neuronal networks,ACS Chem.Neurosci.3(2012)611-618.

    [6]B.Tian,J.Liu,T.Dvir,etal.,Macroporousnanowirenanoelectronicscaffoldsfor synthetic tissues,Nat.Mater.11(2012)986-994.

    [7]A.D.Maynard,Couldwe3Dprintanartificialmind?Nat.Nanotechnol.9(2014)955-956.

    [8]X.Shi,A.von dem Bussche,R.H.Hurt,et al.,Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation,Nat.Nanotechnol.6(2011)714-719.

    [9]R.Frost,G.E.J?nsson,D.Chakarov,etal.,Grapheneoxideandlipidmembranes:Interactions and nanocomposite structures,Nano Lett.12(2012)3356-3362.

    [10]K.Tsuzuki,Y.Okamoto,S.Iwasa,et al.,Reduced graphene oxide as the support for lipid bilayer membrane,J.Phys.Conf.352(2012)012016.

    [11]Y.K.Lee,H.Lee,J.-M.Nam,Lipid-nanostructure hybrids and their applications in nanobiotechnology,NPG Asia Mater.5(2013)e48.

    [12]S.Plimpton,F(xiàn)ast parallel algorithms for short-range molecular dynamics,J.Comput.Phys.117(1995)1-19.

    [13]B.Ni,K.-H.Lee,S.B.Sinnott,A reactive empirical bond order(REBO)potential for hydrocarbon-oxygen interactions,J.Phys.:Condens.Matter.16(2004)7261-7275.

    [14]B.R.Brooks,R.E.Bruccoleri,D.J.Olafson,et al.,CHARMM:A program for macromolecular energy,minimization,and dynamics calculations,J.Comput. Chem.4(1983)187-217.

    [15]R.W.Hockney,J.W.Eastwood,Computer Simulation using Particles,Taylor& Francis,1989.

    [16]H.J.C.Berendsen,J.P.M.Postma,W.F.vanGunsteren,etal.,Moleculardynamics with coupling to an external bath,J.Chem.Phys.81(1984)3684-3690.

    [17]I.N.Sneddon,The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,Int.J.Engr.Sci.3(1965)47-57.

    [18]N.Wei,X.Peng,Z.Xu,Breakdown of fast water transport in graphene oxides,Phys.Rev.E 89(2014)012113.

    [19]G.Franzese,M.Rubi,Aspects of Physical Biology:Biological Water,Protein Solutions,Transport and Replication,Springer,2008.

    [20]H.Wang,Q.Li,PredictionofelasticmodulusandPoisson'sratioforunsaturated concrete,Int.J.Solids Struct.44(2007)1370-1379.

    5 September 2015

    .

    E-mail address:xuzp@tsinghua.edu.cn(Z.Xu).

    http://dx.doi.org/10.1016/j.taml.2015.11.003

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Biomechanics and Interdiscipline

    好男人在线观看高清免费视频 | 成人三级黄色视频| 日日夜夜操网爽| 在线播放国产精品三级| 琪琪午夜伦伦电影理论片6080| 亚洲成人精品中文字幕电影| 蜜桃久久精品国产亚洲av| 国产黄色小视频在线观看| 日韩欧美 国产精品| 欧美丝袜亚洲另类| 少妇猛男粗大的猛烈进出视频 | 亚洲精品乱码久久久v下载方式| 亚洲av美国av| 在线a可以看的网站| 亚洲人与动物交配视频| 成人漫画全彩无遮挡| 婷婷色综合大香蕉| 精品久久久噜噜| 最后的刺客免费高清国语| 亚洲七黄色美女视频| 色综合亚洲欧美另类图片| 深夜a级毛片| 亚洲一区二区三区色噜噜| 日韩在线高清观看一区二区三区| 成人一区二区视频在线观看| 午夜久久久久精精品| 中文字幕人妻熟人妻熟丝袜美| 久久久久精品国产欧美久久久| 亚洲精品久久国产高清桃花| 少妇被粗大猛烈的视频| 十八禁国产超污无遮挡网站| 丰满乱子伦码专区| 无遮挡黄片免费观看| 2021天堂中文幕一二区在线观| 久久精品夜夜夜夜夜久久蜜豆| 床上黄色一级片| 国产一区二区亚洲精品在线观看| 中国国产av一级| 国产亚洲精品久久久com| 免费看日本二区| 国产探花在线观看一区二区| 波野结衣二区三区在线| 久久久久久九九精品二区国产| 国产三级中文精品| 国产精品免费一区二区三区在线| 乱人视频在线观看| 国产精品一区二区三区四区久久| 久久精品久久久久久噜噜老黄 | 在线看三级毛片| 国产精品久久视频播放| 久久6这里有精品| 国产精华一区二区三区| 亚洲欧美中文字幕日韩二区| 非洲黑人性xxxx精品又粗又长| a级毛色黄片| 性欧美人与动物交配| 老司机午夜福利在线观看视频| 精品免费久久久久久久清纯| 男女做爰动态图高潮gif福利片| 中文字幕人妻熟人妻熟丝袜美| 性色avwww在线观看| 日韩av不卡免费在线播放| 99视频精品全部免费 在线| 欧美国产日韩亚洲一区| 欧美在线一区亚洲| 天天躁夜夜躁狠狠久久av| 可以在线观看的亚洲视频| 亚洲激情五月婷婷啪啪| 成年av动漫网址| 日本一二三区视频观看| 18禁裸乳无遮挡免费网站照片| 在线免费观看不下载黄p国产| 别揉我奶头 嗯啊视频| 99久久精品一区二区三区| av黄色大香蕉| 亚洲在线观看片| 国产aⅴ精品一区二区三区波| 欧美高清性xxxxhd video| 亚洲精品久久国产高清桃花| 成人无遮挡网站| 三级毛片av免费| 精品人妻一区二区三区麻豆 | 波多野结衣高清无吗| 日韩欧美三级三区| 99国产精品一区二区蜜桃av| 韩国av在线不卡| 丝袜喷水一区| h日本视频在线播放| 22中文网久久字幕| 男女下面进入的视频免费午夜| 免费高清视频大片| 最近中文字幕高清免费大全6| av卡一久久| 国产亚洲精品久久久com| 欧美色欧美亚洲另类二区| 国产又黄又爽又无遮挡在线| 白带黄色成豆腐渣| 精品午夜福利在线看| 老司机影院成人| 日韩一区二区视频免费看| 日日啪夜夜撸| 日日干狠狠操夜夜爽| 亚洲人成网站在线播| 国产高清不卡午夜福利| 亚洲av美国av| 欧美3d第一页| 高清午夜精品一区二区三区 | 好男人在线观看高清免费视频| 国产av麻豆久久久久久久| 婷婷精品国产亚洲av在线| 校园人妻丝袜中文字幕| 一本精品99久久精品77| 中文字幕av成人在线电影| 久久综合国产亚洲精品| 久久久久精品国产欧美久久久| 国产极品精品免费视频能看的| 麻豆国产97在线/欧美| 免费在线观看成人毛片| 免费看光身美女| 日韩制服骚丝袜av| 国产精品嫩草影院av在线观看| 日韩一区二区视频免费看| 2021天堂中文幕一二区在线观| 一区二区三区四区激情视频 | 欧美区成人在线视频| 国产精品一区二区三区四区久久| 一级av片app| 亚洲av五月六月丁香网| 精品久久久久久久久av| 老司机福利观看| 亚洲专区国产一区二区| 淫秽高清视频在线观看| 高清毛片免费看| 黄色配什么色好看| 亚洲自偷自拍三级| 桃色一区二区三区在线观看| 在线观看66精品国产| 国产一区亚洲一区在线观看| 麻豆av噜噜一区二区三区| 免费无遮挡裸体视频| av免费在线看不卡| 久久99热6这里只有精品| 看免费成人av毛片| 国产成人福利小说| 又爽又黄无遮挡网站| 亚洲av二区三区四区| 日韩欧美三级三区| aaaaa片日本免费| 大香蕉久久网| 久久精品国产自在天天线| 床上黄色一级片| 内射极品少妇av片p| 精品福利观看| 亚洲精品亚洲一区二区| 日韩精品青青久久久久久| 99国产极品粉嫩在线观看| 午夜a级毛片| 一级毛片久久久久久久久女| 久久九九热精品免费| 欧美国产日韩亚洲一区| h日本视频在线播放| 国产精品一区二区三区四区久久| 国产亚洲精品久久久com| 亚洲久久久久久中文字幕| 成人精品一区二区免费| 国产精品99久久久久久久久| 国产成人freesex在线 | 国产精品日韩av在线免费观看| 亚洲高清免费不卡视频| 51国产日韩欧美| 中国美白少妇内射xxxbb| 搡女人真爽免费视频火全软件 | 精品少妇黑人巨大在线播放 | 国产欧美日韩一区二区精品| 亚洲成a人片在线一区二区| 少妇熟女aⅴ在线视频| 久久中文看片网| 99热全是精品| 国产老妇女一区| 亚洲精品国产成人久久av| 免费看日本二区| 日本黄色视频三级网站网址| av在线播放精品| 精品99又大又爽又粗少妇毛片| 天堂av国产一区二区熟女人妻| 成人一区二区视频在线观看| 国产午夜精品论理片| 日本与韩国留学比较| 六月丁香七月| 国产精品99久久久久久久久| 精品久久国产蜜桃| 老师上课跳d突然被开到最大视频| 男人舔奶头视频| 欧美成人a在线观看| 一级毛片aaaaaa免费看小| 五月伊人婷婷丁香| 18禁在线播放成人免费| 亚洲高清免费不卡视频| 欧美色欧美亚洲另类二区| 国产综合懂色| 国产av在哪里看| 嫩草影院入口| 欧美绝顶高潮抽搐喷水| 久久精品综合一区二区三区| 老师上课跳d突然被开到最大视频| 人人妻,人人澡人人爽秒播| 午夜福利在线在线| 中文字幕av成人在线电影| 国产真实伦视频高清在线观看| 日日撸夜夜添| 亚洲婷婷狠狠爱综合网| 午夜福利成人在线免费观看| 免费av观看视频| 午夜福利高清视频| 女生性感内裤真人,穿戴方法视频| 成熟少妇高潮喷水视频| 日本黄大片高清| 久久久久久国产a免费观看| 成人av在线播放网站| 欧美成人免费av一区二区三区| 成人综合一区亚洲| 两个人的视频大全免费| 在线观看午夜福利视频| 亚洲性久久影院| 在线免费观看的www视频| 国产精品一二三区在线看| 亚洲国产高清在线一区二区三| 一级毛片久久久久久久久女| 午夜视频国产福利| 国产私拍福利视频在线观看| 少妇熟女欧美另类| 成人一区二区视频在线观看| 亚洲色图av天堂| 日产精品乱码卡一卡2卡三| 国产一区亚洲一区在线观看| 欧美极品一区二区三区四区| 97碰自拍视频| 别揉我奶头~嗯~啊~动态视频| 国内精品一区二区在线观看| 欧美性感艳星| 真人做人爱边吃奶动态| 亚洲熟妇中文字幕五十中出| 别揉我奶头 嗯啊视频| 亚洲真实伦在线观看| а√天堂www在线а√下载| 美女 人体艺术 gogo| 久久久久精品国产欧美久久久| 中文资源天堂在线| 亚洲色图av天堂| 高清日韩中文字幕在线| 亚洲欧美清纯卡通| 男女那种视频在线观看| 久久精品91蜜桃| 嫩草影院新地址| 成人欧美大片| 黑人高潮一二区| 狂野欧美白嫩少妇大欣赏| 在线播放无遮挡| 午夜福利高清视频| 亚洲av美国av| 日本一二三区视频观看| 亚洲国产精品国产精品| 亚洲av二区三区四区| 亚洲av美国av| 亚洲精品成人久久久久久| 国产私拍福利视频在线观看| 国产日本99.免费观看| 成熟少妇高潮喷水视频| 国产高清不卡午夜福利| 亚洲美女黄片视频| 亚洲五月天丁香| 联通29元200g的流量卡| 男人舔奶头视频| 综合色丁香网| 丝袜喷水一区| 波多野结衣高清无吗| 激情 狠狠 欧美| 久久久久久久久久久丰满| av在线蜜桃| 99久久无色码亚洲精品果冻| 久久久久久久亚洲中文字幕| 身体一侧抽搐| 97在线视频观看| 国产欧美日韩一区二区精品| 亚洲精华国产精华液的使用体验 | 少妇高潮的动态图| 天堂动漫精品| 亚洲av成人精品一区久久| 国内揄拍国产精品人妻在线| 成年女人毛片免费观看观看9| 又粗又爽又猛毛片免费看| 亚洲四区av| 一个人看的www免费观看视频| av在线天堂中文字幕| av专区在线播放| 免费电影在线观看免费观看| 在线播放国产精品三级| 欧美日韩精品成人综合77777| aaaaa片日本免费| 91久久精品电影网| 国产人妻一区二区三区在| 国产精品久久久久久久电影| 一级毛片我不卡| 白带黄色成豆腐渣| 亚洲国产精品成人综合色| 国产伦在线观看视频一区| 色哟哟·www| 黄色欧美视频在线观看| 国产成年人精品一区二区| 高清毛片免费看| av国产免费在线观看| 精品无人区乱码1区二区| 两个人的视频大全免费| 在线免费十八禁| 中文亚洲av片在线观看爽| 两个人视频免费观看高清| 色5月婷婷丁香| 九九热线精品视视频播放| 成人一区二区视频在线观看| 麻豆国产97在线/欧美| 成人美女网站在线观看视频| 十八禁网站免费在线| 观看免费一级毛片| 免费不卡的大黄色大毛片视频在线观看 | 国产精品不卡视频一区二区| 听说在线观看完整版免费高清| 欧美潮喷喷水| 色综合站精品国产| 精品久久久久久久人妻蜜臀av| 久久精品影院6| 国产成人a区在线观看| 国产成人91sexporn| 午夜精品国产一区二区电影 | 亚洲av成人av| 国产精品电影一区二区三区| 男女边吃奶边做爰视频| 国产伦精品一区二区三区四那| 亚洲熟妇中文字幕五十中出| 国产精品电影一区二区三区| 久久久久久久午夜电影| 在线国产一区二区在线| 欧美性猛交╳xxx乱大交人| 欧美高清成人免费视频www| 欧美一区二区国产精品久久精品| 在线国产一区二区在线| 欧美一区二区亚洲| 一个人看视频在线观看www免费| 久久综合国产亚洲精品| 伊人久久精品亚洲午夜| 99国产精品一区二区蜜桃av| 黄色日韩在线| 天天躁日日操中文字幕| 少妇高潮的动态图| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 毛片一级片免费看久久久久| 欧美日韩综合久久久久久| 18禁在线无遮挡免费观看视频 | 免费观看的影片在线观看| 久久精品综合一区二区三区| 日韩在线高清观看一区二区三区| 免费看美女性在线毛片视频| 国产精品乱码一区二三区的特点| 欧美在线一区亚洲| 亚洲成人av在线免费| 欧美xxxx黑人xx丫x性爽| av天堂中文字幕网| 国产精华一区二区三区| 12—13女人毛片做爰片一| 在线免费十八禁| 亚洲中文字幕日韩| 午夜福利视频1000在线观看| 国产女主播在线喷水免费视频网站 | 日本熟妇午夜| 色播亚洲综合网| 伦理电影大哥的女人| 成人午夜高清在线视频| 国产免费男女视频| 九九热线精品视视频播放| 日韩欧美在线乱码| 91久久精品国产一区二区三区| 国产激情偷乱视频一区二区| 国产精品精品国产色婷婷| 91狼人影院| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放 | 色哟哟·www| 看片在线看免费视频| a级毛片a级免费在线| 国产亚洲精品av在线| 我要搜黄色片| 免费无遮挡裸体视频| 亚洲婷婷狠狠爱综合网| 精品一区二区三区视频在线观看免费| 日本一二三区视频观看| 插逼视频在线观看| 国产亚洲av嫩草精品影院| 人妻夜夜爽99麻豆av| 久99久视频精品免费| 国产高潮美女av| 欧美色视频一区免费| 身体一侧抽搐| 男人的好看免费观看在线视频| 欧美区成人在线视频| 久久九九热精品免费| 国产女主播在线喷水免费视频网站 | 亚洲国产日韩欧美精品在线观看| 日本爱情动作片www.在线观看 | 麻豆成人午夜福利视频| 亚洲精品在线观看二区| 精品日产1卡2卡| 99久久精品热视频| 黄色欧美视频在线观看| 中文字幕熟女人妻在线| 又黄又爽又免费观看的视频| 高清毛片免费观看视频网站| 成人毛片a级毛片在线播放| 国产美女午夜福利| 2021天堂中文幕一二区在线观| 91精品国产九色| 亚洲欧美成人综合另类久久久 | 成年av动漫网址| 久久久久久伊人网av| 久久久精品大字幕| 中文字幕熟女人妻在线| 黄色一级大片看看| 美女cb高潮喷水在线观看| 成人av一区二区三区在线看| 国产精品一二三区在线看| 欧美日韩精品成人综合77777| 久久精品国产亚洲av天美| 国产精品国产三级国产av玫瑰| 青春草视频在线免费观看| 亚洲精品粉嫩美女一区| 欧美+日韩+精品| 91久久精品国产一区二区三区| 成人美女网站在线观看视频| 哪里可以看免费的av片| 中国美白少妇内射xxxbb| 国产一区二区亚洲精品在线观看| 啦啦啦观看免费观看视频高清| 长腿黑丝高跟| 国产伦一二天堂av在线观看| 色播亚洲综合网| 国产精品久久久久久久电影| 三级毛片av免费| 久久人人精品亚洲av| 成年av动漫网址| 国产精品国产三级国产av玫瑰| 亚洲丝袜综合中文字幕| 综合色丁香网| 人人妻人人澡人人爽人人夜夜 | 成人亚洲欧美一区二区av| 一本一本综合久久| av中文乱码字幕在线| 如何舔出高潮| 亚洲av免费在线观看| 少妇的逼水好多| 国产黄色小视频在线观看| 不卡视频在线观看欧美| 欧美成人一区二区免费高清观看| 国产免费一级a男人的天堂| 欧美色欧美亚洲另类二区| 午夜a级毛片| 亚洲在线观看片| 嫩草影院精品99| 婷婷亚洲欧美| 老司机影院成人| 国产男靠女视频免费网站| 女的被弄到高潮叫床怎么办| 国产精品人妻久久久影院| 亚洲精华国产精华液的使用体验 | 深夜a级毛片| 在线免费十八禁| 欧美日韩在线观看h| 亚洲第一电影网av| 女生性感内裤真人,穿戴方法视频| 欧美人与善性xxx| 嫩草影院入口| 在线观看av片永久免费下载| 人妻久久中文字幕网| 91麻豆精品激情在线观看国产| 国产激情偷乱视频一区二区| 69av精品久久久久久| 国产午夜福利久久久久久| 亚洲成人久久爱视频| 亚洲欧美日韩无卡精品| 久久久a久久爽久久v久久| 亚洲最大成人av| 免费av观看视频| 日日摸夜夜添夜夜爱| av.在线天堂| 国产美女午夜福利| av国产免费在线观看| 又黄又爽又刺激的免费视频.| or卡值多少钱| 亚洲经典国产精华液单| 熟女人妻精品中文字幕| www日本黄色视频网| av在线老鸭窝| 免费大片18禁| 久久精品91蜜桃| 国产视频内射| 免费av毛片视频| 久久久久久久久中文| 欧美zozozo另类| 我的老师免费观看完整版| 欧美中文日本在线观看视频| 黑人高潮一二区| 国产成人一区二区在线| 午夜福利视频1000在线观看| 亚洲自拍偷在线| 免费看日本二区| 日本精品一区二区三区蜜桃| av在线亚洲专区| 国产成人a∨麻豆精品| 一区二区三区高清视频在线| 人妻久久中文字幕网| 天堂√8在线中文| 少妇熟女aⅴ在线视频| 精品欧美国产一区二区三| 色在线成人网| 精品一区二区三区av网在线观看| 天美传媒精品一区二区| 三级国产精品欧美在线观看| 精品午夜福利视频在线观看一区| 天堂√8在线中文| 久久久久国产精品人妻aⅴ院| 欧美成人一区二区免费高清观看| 日韩人妻高清精品专区| 国产单亲对白刺激| 国产私拍福利视频在线观看| 看黄色毛片网站| av卡一久久| 精品人妻偷拍中文字幕| 日本在线视频免费播放| 嫩草影院精品99| 熟女电影av网| 又爽又黄无遮挡网站| 久久国产乱子免费精品| 精品一区二区三区av网在线观看| 亚洲av第一区精品v没综合| 亚洲精品一卡2卡三卡4卡5卡| 精品人妻熟女av久视频| 黄片wwwwww| 淫妇啪啪啪对白视频| 免费观看人在逋| 国内精品美女久久久久久| 成年免费大片在线观看| 在线免费观看的www视频| 欧美人与善性xxx| 久久久色成人| 久久精品久久久久久噜噜老黄 | 精品久久久久久成人av| 亚洲av成人av| 免费无遮挡裸体视频| 精品人妻熟女av久视频| 少妇被粗大猛烈的视频| 中文字幕精品亚洲无线码一区| 久久久久久伊人网av| 国产精品亚洲美女久久久| 久久久色成人| 日本 av在线| 精品久久久久久久人妻蜜臀av| 亚洲婷婷狠狠爱综合网| 最好的美女福利视频网| 国产高清三级在线| 一区二区三区四区激情视频 | 亚洲精品粉嫩美女一区| 黄色日韩在线| aaaaa片日本免费| 99热只有精品国产| 久久亚洲国产成人精品v| 亚洲四区av| 男女下面进入的视频免费午夜| 少妇的逼水好多| 六月丁香七月| 国产精品一区二区性色av| 午夜福利成人在线免费观看| 亚洲无线在线观看| 久久久久国产精品人妻aⅴ院| 狂野欧美白嫩少妇大欣赏| 高清日韩中文字幕在线| 91在线观看av| 给我免费播放毛片高清在线观看| 少妇被粗大猛烈的视频| 人人妻人人看人人澡| 免费观看的影片在线观看| 91av网一区二区| 欧美潮喷喷水| 亚洲精品久久国产高清桃花| 国产 一区精品| 国产探花在线观看一区二区| 日本a在线网址| 亚洲激情五月婷婷啪啪| 中文在线观看免费www的网站| 最近中文字幕高清免费大全6| 男女啪啪激烈高潮av片| 国产色爽女视频免费观看| av视频在线观看入口| 成人av一区二区三区在线看| 久久精品国产鲁丝片午夜精品| a级毛片a级免费在线| 日本成人三级电影网站| 少妇熟女欧美另类| 亚州av有码| 国产精品国产高清国产av| 午夜激情欧美在线| 国产精品,欧美在线| 国产精品乱码一区二三区的特点| 51国产日韩欧美| 深夜精品福利| 国产精品99久久久久久久久| 午夜老司机福利剧场| 美女大奶头视频|