• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-space dependent fractional boundary layer flow of Maxwell fluid over an unsteady stretching surface

    2015-11-10 11:23:48ShengtingChenLiancunZhengBingyuShenXuehuiChen

    Shengting Chen,Liancun Zheng,Bingyu Shen,Xuehui Chen

    School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China

    Time-space dependent fractional boundary layer flow of Maxwell fluid over an unsteady stretching surface

    Shengting Chen,Liancun Zheng?,Bingyu Shen,Xuehui Chen

    School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China

    A R T I C L EI N F O

    Article history:

    Accepted 14 September 2015

    Available online 28 November 2015

    Maxwell fluid

    Boundary layer

    Fractional derivatives

    Unsteady stretching surface

    Fractional boundary layer flow of Maxwell fluid on an unsteady stretching surface was investigated. Time-space dependent fractional derivatives are introduced into the constitutive equations of the fluid. We developed and solved the governing equations using explicit finite difference method and the L1-algorithm as well as shifted Grünwald-Letnikov formula.The effects of fractional parameters,relaxation parameter,Reynolds number,and unsteadiness parameter on the velocity behavior and characteristics of boundary layer thickness and skin friction were analyzed.Results obtained indicate that the behavior of boundary layer of viscoelastic fluid strongly depends on time-space fractional parameters.Increases of time fractional derivative parameter and relaxation parameter both cause a decrease of velocity while boundary layer thickness increase,but the space fractional derivative parameter and fractional Reynolds number have the opposite effects.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Much attention has been paid to the study of boundary layer flow induced by continuously stretching sheets submerged in a quiescent or moving fluid due to its important applications in industries(e.g.,copper wire's drawing,annealing,and thinning,aerodynamic extrusion of plastic sheets and fibers,paper production,crystal growing,and glass blowing).In magnetic field and thermal radiation field,the dissipative boundary layer flow on a nonlinearly stretching sheet was studied by Kumbhakar et al.[1]. With convective boundary condition,the three dimensional radiative flow of Maxwell fluid over an inclined stretching surface was investigated by Ashraf et al.[2].In a constantly applied magnetic field,the steady mixed convection stagnation point flow of an incompressible Oldroyd-B fluid over the stretching sheet was analyzed by Sajid et al.[3].Likewise,the problems of unsteady boundary layer were studied widely.Analyses of the unsteady magnetohydrodynamic(MHD)boundary layer flow and heat transfer of an incompressible rotating viscous fluid over a continuouslystretchingsheetwereperformedbyAbbasetal.[4].Anumerical analysis of the structure of an unsteady boundary layer flow and heat transfer of a dusty fluid over an exponentially stretching sheet subjected to suction was done by Pavithra et al.[5].The effects of a chemical reaction on an unsteady flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium were studied by Srinivas et al.[6].

    The viscoelastic materials have the properties of both viscosity andelasticity.ScottBlair[7]proposedafractionalviscoelasticfluid constitutive model using the relation

    whereνis a constant,τ(t)is the stress,σ(t)stands for the strain rate,andαis a constant ranging from 0 to 1.

    Traditional researches on viscoelastic fluid were carried on in the cases with the governing equations being linear.Caputo and Mainardi[8,9]have shown that results obtained in their analysis were in good agreement with experimental results when fractional derivative is used to describe the viscoelastic materials.El-Shahed et al.[10]obtained exact analytic solutions of a few cases in Navier-Stokes equations with time fractional derivative.By applying the He's homotopy perturbation method(HPM)and variational iteration method(VIM),Khan et al.[11]studied the Navier-Stokes equations with fractional orders.Since viscoelastic fluid shows properties of both elasticity and viscosity,many fractional models have been proposed to characterize the constitutive relationship between viscous stress and the strain rate for viscoelastic materials.MHD flow of an incompressible generalized Oldroyd-B fluid caused by an accelerating plate was studied by Zheng et al.[12],and they obtained the exact solutions for velocity and shear stress in terms of Fox H-function.A number of the recent works can be also found in Refs.[13-19].

    However,the authors of Refs.[13-19]have ignored the nonlinear term of convection and have dealt with special simple cases where the governing equations are linear.Solutions were obtainedwiththehelpofLaplacetransform,F(xiàn)ourierSinetransform and finite Hankel transform.To our knowledge,no report has been made for fractional viscoelastic fluid boundary layer flow with non-linear term of convection considered.

    In this paper,the governing equations of fractional viscoelastic fluid induced by an unsteady stretching surface are developed and solvedcoupledwiththeunsteadyboundaryusingtheexplicitfinite difference and L1-algorithm as well as shifted Grünwald-Letnikov formula(approximations for fractional derivatives).The effects of involved parameters on velocity field,boundary layer thickness,and skin friction are then analyzed and discussed.

    Considered an unsteady boundary layer flow of the Maxwell fluid over an unsteady stretched sheet,which can be depicted by the time-space dependent fractional derivatives,the shear stress can be expressed in the following form

    By ignoring the pressure gradient,thegoverning equations take the following forms

    whereΓ(·)is the Gamma function,u andvstand for the horizontal velocity and vertical velocity respectively,ˉν=ˉμ/ρis the fractional kinematics viscosity of the fluid(in m1+β/s),ˉμis the fractional viscosity coefficient(in kg/m2-β/s),ρis the constant density of the fluid(in kg/m3),andλis the fractional relaxation time(in 1/sα).

    It is assumed that the fluids are static on the plate at first,suddenly the sheet achieves a horizontal velocity Uwalong the xaxis.The shear stress results in the movement of the fluids.The governing equations are given by Eqs.(3)and(4)and satisfy the boundary conditions

    where the unsteady stretching velocity Uwis horizontal and depend on time and space.It is assumed to be

    Applying the following non-dimensional quantities

    and ignoring the dimensionless mark‘*''for brevity,we can derive the dimensionless motion equations as

    whereS=b/a is the unsteadinessparameter,andis thegeneralfractional Reynoldsnumber.

    We first discretize space and time into grid points and time instants,letting xi=ihx(i=0,1,2,···),yj=jhy(j=0,1,2,···),and tn=kτ(k=0,1,2,···),where hx,hyandτare the spatial and temporal steps respectively.

    Adopting the L1-algorithm[21]into the unsteady term,we can obtain

    where the diffusion term is approximated using the shifted Grünwald-Letnikov formula[22]

    Here the coefficients are defined as

    Introducing the Euler backward difference scheme into the first-order time derivative,we have

    The explicit finite difference approximations for Eqs.(10)and(11)are

    Fig.1.Horizontal velocity profiles for different values of time fractional parameterα.

    Fig.2.Horizontal velocity profiles for different values of space fractional parameterβ.

    Fig.3.Horizontal velocity profiles for different values of relaxation parameterλ.

    Fig.4.Horizontal velocity profiles for different values of Reynolds number Reβ.

    The dimensionless fractional boundary layer equations(10)and(11),coupled with boundary condition(12),are solved by employing the finite difference method and L1-algorithm with shifted Grünwald-Letnikov approximations for time and space fractional derivatives.The boundary layer behavior as well as the effectsofinvolvedparametersonthevelocityfieldandskinfriction are analyzed.Moreover,we should notice that the flow of fluid over an unsteady stretching surface is different from the flow of classical boundary layer.In our case,the values of shear stress and skin friction are negative.

    The numerical solutions of fluid velocity u are depicted graphically as functions of boundary layer coordinate y in Figs.1-4 fordifferentfractionalparameters(α,β),relaxationparameter(λ),generalized fractional Reynolds number(Reβ),and unsteadiness parameter(S).Figure 1 depicts the horizontal velocity profiles for different values ofα.It can be seen from Fig.1 that the horizontal velocity decreases when time fractional parameterα increases,while its decrease causes the increase of the boundary layer thickness.Figure 2 displays an opposite behavior for the velocity field,the increase ofβyields an opposite behavior of horizontal velocity profiles and the boundary layer thickness.

    Figure 3 shows the effects of relaxation parameterλon horizontal velocity distribution.It can be shown from Fig.3 that the horizontal velocity decreases and boundary layer thickness increases with the increase of relaxation parameterλ,which can be used to describe the delaying characteristic of viscoelastic fluid. The time required for recovering to normal state increases with the increase ofλ,which causes the increase of boundary layer thickness.Figure 4 depicts the effects of the generalized fractional Reynolds number Reβon horizontal velocity profiles.Obtained results indicate that the horizontal velocity increases(on the contrary,boundary layer thickness decreases)with the increase of generalized fractional Reynolds number Reβ.

    Figures 5 and 6 show the influences of unsteadiness parameter(S)on velocity field and skin friction respectively.Velocity profiles at different S are plotted in Fig.5.It is observed that the horizontal velocity increases(on the contrary,the boundary layer thickness decreases)when unsteadiness parameter S increases. This is because the value of S increases with Uwwhen other parameters are all fixed,and it causes the decrease of boundary layer thickness.Figures 6 and 7 indicate that the increasing of unsteadiness parameter S results in the increase of both absolute values of shear stress and skin friction.The absolute value of skin friction monotonously decreases with the increasing of fractional Reynolds number Reβ.

    Fig.5.HorizontalvelocityprofilesfordifferentvaluesofunsteadinessparameterS.

    Fig.6.Shear stress for different values of unsteadiness parameter S.

    Fig.7.Skin friction profiles for different values of unsteadiness parameter S.

    Fig.8.Comparison of velocity profile for classical boundary layer equations(S= 1·2,Re=100).

    Lettingλ=0,α=1,andβ=1 in Eqs.(3)and(4),the current problem reduces to the classical unsteady boundary layer problem as following

    According to Ref.[23],we have

    The similarity transformation for a stretching flow is given by

    whereψis the stream function which automatically assures the mass conservation in Eq.(3).The momentum equation can be reduced to

    The boundary conditions(7)can be written as

    Figure 8 presents the comparison of numerical solution obtained in this paper and analytical result obtained in Ref.[24]. It shows that the obtained numerical result is in good agreement with the analytical result.The reliability and efficiency of the numerical solutions are verified with the comparison.

    This paper investigates boundary layer flow of fractional viscoelastic fluid over a stretching surface.The time-space dependentfractionalderivativesareintroducedfirstlyinboundary layer governing equations.Numerical solutions are obtained in explicit expressions with finite difference approximation.The effects of fractional parameters,relaxation parameter,Reynolds number,and unsteadiness parameter on velocity field and skin frictionareanalyzed.Validityoftheproposedmethodisconfirmed by the comparison of obtained numerical result and analytical result.Obtained results indicate that the boundary layer transport behavior of viscoelastic fluid strongly depends on time-space fractional parameters,which construct the basic time and space framework system for the boundary layers transport.

    Acknowledgment

    The work was supported by the National Natural Science Foundation of China(51476191 and 51406008).

    [1]B.Kumbhakar,P.Sriniivasa Rao,Dissipative boundary layer flow over a nonlinearly stretching sheet in the presence of magnetic field and thermal radiation,Proc.Natl.Acad.Sci.85(2015)117-125.

    [2]M.BilalAshraf,T.Hayat,S.A.Shehzad,etal.,Mixedconvectionradiativeflowof three dimensional Maxwell fluid over an inclined stretching sheet in presence of thermophoresis and convective condition,AIP Adv.5(2015)027134.

    [3]M.Sajid,B.Ahmed,Z.Abbas,Steadymixedconvectionstagnationpointflowof MHD Oldroyd-B fluid over a stretching sheet,J.Egyptian Math.Soc.23(2015)440-444.

    [4]Z.Abbas,T.Javed,M.Sajid,et al.,Unsteady MHD flow and heat transfer on a stretching sheet in a rotating fluid,J.Taiwan Inst.Chem.Eng.41(2010)644-650.

    [5]G.M.Pavithra,B.J.Gireesha,Unsteady flow and heat transfer of a fluid-particle suspension over an exponentially stretching sheet,Ain Shams Eng.J.5(2014)613-624.

    [6]S.Srinivas,P.B.A.Reddy,B.S.R.V.Prasad,Non-Darcian unsteady flow of a micropolar fluid over a porous stretching sheet with thermal radiation and chemical reaction,Heat Transfer-Asian Res.44(2015)172-187.

    [7]G.W.Scott Blair,The role of psychophysics in rheology,J.Colloid Sci.2(1947)21-32.

    [8]M.Caputo,F(xiàn).Mainardi,A new dissipation model based on memory mechanism,Pure Appl.Geophys.91(1971)134-147.

    [9]M.Caputo,Vibrations on an infinite viscoelastic layer with a dissipative memory,J.Acoust.Soc.Am.56(1974)897-904.

    [10]M.El-Shahed,A.Salem,On the generalized Navier-Stokes equations,Appl. Math.Comput.156(2004)287-293.

    [11]N.A.Khan,A.Ara,S.A.Ali,et al.,Analytical study of Navier-Stokes equation with fractional orders using He's homotopy perturbation and variational iteration methods,Int.J.Nonlinear Sci.Numer.10(2009)1127-1134.

    [12]L.C.Zheng,Y.Q.Liu,X.X.Zhang,Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative,Nonlinear Anal.Real World Appl. 13(2012)513-523.

    [13]M.Nazar,M.Zulqarnain,M.Saeed Akram,et al.,F(xiàn)low through an oscillating rectangular duct for generalized Maxwell fluid with fractional derivatives,Commun.Nonlinear Sci.Numer.Simul.17(2012)3219-3234.

    [14]M.Jamil,A.A.Zafar,A.Rauf,et al.,Some new exact analytical solutions for helical flows of second grade fluids,Commun.Nonlinear Sci.Numer.Simul. 17(2012)141-153.

    [15]L.C.Zheng,C.R.Li,X.X.Zhang,et al.,Exact solutions for the unsteady rotating flows of a generalized Maxwell fluid with oscillating pressure gradient between coaxial cylinders,Comput.Math.Appl.62(2011)1105-1115.

    [16]L.C.Zheng,Z.L.Guo,X.X.Zhang,3Dflow of ageneralizedOldroyd-Binducedby a constant pressure gradient between two side walls perpendicular to a plate,Nonlinear Anal.RWA 12(2011)3499-3508.

    [17]C.Fetecau,Corina Fetecau,M.Jamil,et al.,F(xiàn)low of fractional Maxwell fluid between coaxial cylinders,Arch.Appl.Mech.81(2011)1153-1163.

    [18]A.Chatterjee,Heat transfer enhancement in laminar impinging flows with a non-Newtonian inelastic fluid,J.Non-Newton.Fluid.211(2014)50-61.

    [19]Magdy A.Ezzat,Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer,Physica B 405(2010)4188-4194.

    [20]I.Podlubny,F(xiàn)ractionalDifferentialEquations,AcademicPress,NewYork,1999.

    [21]K.B.Oldham,J.Spanier,The Fractional Calculus,Academic Press,New York,1974.

    [22]F.Liu,P.Zhuang,V.Anh,et al.,Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation,Appl. Math.Comput.191(2007)12-20.

    [23]X.H.Su,L.C.Zheng,X.X.Zhang,DTM-BF method and dual solutions for unsteady MHD flow over permeable shrinking sheet with velocity slip,Appl. Math.Mech.(English Ed.)33(2012)1555-1568.

    [24]L.C.Zheng,C.X.Chen,X.X.Zhang,et al.,Analyzing the flow and heat transfer of a power law fluid over an unsteadily stretched surface using a modified homotopy perturbation method,Int.J.Nonlinear Sci.Numer.11(2010)843-849.

    25 August 2015

    .

    E-mail address:liancunzheng@ustb.edu.cn(L.Zheng).

    http://dx.doi.org/10.1016/j.taml.2015.11.005

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    精品国产乱码久久久久久男人| 69精品国产乱码久久久| 在线av久久热| 免费在线观看日本一区| 久久久精品区二区三区| 日韩欧美三级三区| 大型av网站在线播放| 人人妻人人澡人人看| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕在线视频| 国产主播在线观看一区二区| 成人免费观看视频高清| 久久久精品国产亚洲av高清涩受| 亚洲在线自拍视频| 老司机靠b影院| 亚洲av美国av| 午夜福利在线观看吧| 老司机福利观看| 一级毛片高清免费大全| 欧美亚洲日本最大视频资源| 亚洲精品美女久久av网站| 黄色视频,在线免费观看| 麻豆国产av国片精品| 成人18禁高潮啪啪吃奶动态图| 亚洲va日本ⅴa欧美va伊人久久| 亚洲 国产 在线| 午夜福利,免费看| 亚洲五月天丁香| 狂野欧美激情性xxxx| 9191精品国产免费久久| 十八禁高潮呻吟视频| 精品人妻熟女毛片av久久网站| 国产精品久久久久久人妻精品电影| 久久久国产成人精品二区 | 日本一区二区免费在线视频| 亚洲av成人不卡在线观看播放网| av线在线观看网站| 亚洲 国产 在线| 国产一区在线观看成人免费| 国产av一区二区精品久久| 老司机影院毛片| 超色免费av| 亚洲一区二区三区欧美精品| 久久久久国内视频| 欧美精品一区二区免费开放| 亚洲色图 男人天堂 中文字幕| 国产av又大| 女人被狂操c到高潮| 99热网站在线观看| 嫁个100分男人电影在线观看| 男女下面插进去视频免费观看| 满18在线观看网站| 亚洲av第一区精品v没综合| av网站免费在线观看视频| 一边摸一边抽搐一进一小说 | 欧美中文综合在线视频| 成人18禁在线播放| 久久久久久久久免费视频了| 一级毛片精品| 日韩免费高清中文字幕av| 下体分泌物呈黄色| 在线观看www视频免费| 自线自在国产av| 精品一区二区三卡| 美女高潮喷水抽搐中文字幕| 90打野战视频偷拍视频| 欧美日韩乱码在线| 亚洲人成电影观看| 亚洲成a人片在线一区二区| 成人18禁在线播放| 一区二区三区国产精品乱码| 亚洲国产精品合色在线| 建设人人有责人人尽责人人享有的| 大码成人一级视频| а√天堂www在线а√下载 | 亚洲一区高清亚洲精品| 两人在一起打扑克的视频| 欧美中文综合在线视频| 精品久久久久久久久久免费视频 | 美女 人体艺术 gogo| 欧美日韩亚洲国产一区二区在线观看 | 老熟女久久久| 亚洲成人国产一区在线观看| 在线免费观看的www视频| 天天添夜夜摸| 亚洲一区二区三区欧美精品| 超色免费av| 精品久久久久久电影网| 欧美成人免费av一区二区三区 | 国产精品综合久久久久久久免费 | 亚洲免费av在线视频| 亚洲欧洲精品一区二区精品久久久| 看片在线看免费视频| 757午夜福利合集在线观看| 久久香蕉精品热| av天堂在线播放| 精品国产一区二区三区四区第35| 捣出白浆h1v1| 精品国产美女av久久久久小说| 人妻 亚洲 视频| 欧美日韩亚洲综合一区二区三区_| 久久这里只有精品19| 丝袜美足系列| 新久久久久国产一级毛片| 国产伦人伦偷精品视频| av免费在线观看网站| 国产xxxxx性猛交| 亚洲一码二码三码区别大吗| 黄色丝袜av网址大全| 欧美不卡视频在线免费观看 | 国产有黄有色有爽视频| √禁漫天堂资源中文www| 在线十欧美十亚洲十日本专区| 欧美av亚洲av综合av国产av| 麻豆av在线久日| 正在播放国产对白刺激| 热re99久久精品国产66热6| 国产欧美亚洲国产| 精品一区二区三区四区五区乱码| 激情在线观看视频在线高清 | 91精品国产国语对白视频| 超碰97精品在线观看| 十八禁网站免费在线| 国产精品美女特级片免费视频播放器 | 亚洲男人天堂网一区| 亚洲五月婷婷丁香| 50天的宝宝边吃奶边哭怎么回事| 999久久久国产精品视频| 午夜福利免费观看在线| 熟女少妇亚洲综合色aaa.| 欧美不卡视频在线免费观看 | 国产av又大| 欧美成人免费av一区二区三区 | 自线自在国产av| 999精品在线视频| 国产片内射在线| 91老司机精品| 黄色怎么调成土黄色| 午夜久久久在线观看| 一级片免费观看大全| 丝袜美腿诱惑在线| 99国产精品一区二区蜜桃av | 欧美日韩国产mv在线观看视频| 精品福利观看| 日韩免费av在线播放| 精品国产美女av久久久久小说| 亚洲av日韩在线播放| 一进一出抽搐动态| 午夜久久久在线观看| av电影中文网址| 一区二区三区激情视频| 欧美黑人精品巨大| 黑丝袜美女国产一区| 久久性视频一级片| 午夜久久久在线观看| 脱女人内裤的视频| 国产视频一区二区在线看| 国产成人系列免费观看| 黄频高清免费视频| 亚洲成国产人片在线观看| 丁香六月欧美| 黄色成人免费大全| 国内久久婷婷六月综合欲色啪| 老司机福利观看| 精品高清国产在线一区| 欧美人与性动交α欧美软件| 999精品在线视频| 国产精品二区激情视频| 中文欧美无线码| 操美女的视频在线观看| 怎么达到女性高潮| 天堂俺去俺来也www色官网| 宅男免费午夜| 电影成人av| 久久草成人影院| 怎么达到女性高潮| 中文字幕精品免费在线观看视频| 女同久久另类99精品国产91| 老熟妇仑乱视频hdxx| av在线播放免费不卡| 午夜免费观看网址| 大陆偷拍与自拍| 一级作爱视频免费观看| 我的亚洲天堂| 王馨瑶露胸无遮挡在线观看| 王馨瑶露胸无遮挡在线观看| 色老头精品视频在线观看| 999精品在线视频| 91精品三级在线观看| 两性夫妻黄色片| 免费av中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 91成人精品电影| 欧美日韩亚洲综合一区二区三区_| 老司机午夜十八禁免费视频| 777米奇影视久久| 91精品国产国语对白视频| 亚洲国产精品合色在线| 精品国产亚洲在线| 久久亚洲精品不卡| 亚洲人成77777在线视频| 香蕉国产在线看| 高清在线国产一区| 欧美国产精品va在线观看不卡| 大型黄色视频在线免费观看| 男女午夜视频在线观看| 天堂√8在线中文| 亚洲人成电影观看| 精品午夜福利视频在线观看一区| 看免费av毛片| 一二三四在线观看免费中文在| 国产一区有黄有色的免费视频| 久久国产精品大桥未久av| 视频在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产在视频线精品| 婷婷成人精品国产| 免费看a级黄色片| 国产主播在线观看一区二区| 99在线人妻在线中文字幕 | 成熟少妇高潮喷水视频| 亚洲午夜理论影院| 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久成人aⅴ小说| www.999成人在线观看| a级毛片在线看网站| 91麻豆av在线| 香蕉久久夜色| 999久久久国产精品视频| 十八禁网站免费在线| 高清黄色对白视频在线免费看| 久99久视频精品免费| 美女扒开内裤让男人捅视频| 免费一级毛片在线播放高清视频 | 黄色视频,在线免费观看| 一边摸一边抽搐一进一小说 | 热re99久久精品国产66热6| 无遮挡黄片免费观看| 亚洲成av片中文字幕在线观看| 日韩人妻精品一区2区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清videossex| 一本综合久久免费| 少妇粗大呻吟视频| 国产又色又爽无遮挡免费看| 精品人妻熟女毛片av久久网站| 午夜亚洲福利在线播放| 久久人妻熟女aⅴ| 国产精品久久久久久人妻精品电影| 国产精品美女特级片免费视频播放器 | 欧美老熟妇乱子伦牲交| 国产精品自产拍在线观看55亚洲 | 欧美日韩瑟瑟在线播放| 好男人电影高清在线观看| 久久久精品免费免费高清| 夜夜爽天天搞| 极品人妻少妇av视频| 精品一区二区三区av网在线观看| 一本综合久久免费| 成人av一区二区三区在线看| 国产蜜桃级精品一区二区三区 | 99国产精品99久久久久| 咕卡用的链子| 日本黄色视频三级网站网址 | aaaaa片日本免费| av一本久久久久| 真人做人爱边吃奶动态| 激情在线观看视频在线高清 | 1024视频免费在线观看| 国产精品永久免费网站| 在线观看66精品国产| 亚洲第一av免费看| 一个人免费在线观看的高清视频| 高清毛片免费观看视频网站 | 国产黄色免费在线视频| 欧美一级毛片孕妇| 国产精品99久久99久久久不卡| 久久精品国产清高在天天线| 欧美日韩视频精品一区| 99精品在免费线老司机午夜| 纯流量卡能插随身wifi吗| 成人免费观看视频高清| 69精品国产乱码久久久| 国产在线精品亚洲第一网站| 777久久人妻少妇嫩草av网站| 免费黄频网站在线观看国产| 欧美日韩亚洲综合一区二区三区_| 欧美成狂野欧美在线观看| 久久久久久久久免费视频了| 欧美日韩亚洲高清精品| 免费在线观看完整版高清| 午夜精品在线福利| 久久人人爽av亚洲精品天堂| 欧美成人午夜精品| 久久天堂一区二区三区四区| 免费看十八禁软件| 久久久久久久久免费视频了| 在线观看www视频免费| 女人久久www免费人成看片| av片东京热男人的天堂| 高潮久久久久久久久久久不卡| 丰满饥渴人妻一区二区三| 精品国产美女av久久久久小说| 俄罗斯特黄特色一大片| 中文字幕色久视频| 成人精品一区二区免费| www.自偷自拍.com| 黄色视频不卡| 青草久久国产| 夫妻午夜视频| 亚洲欧美日韩另类电影网站| 日韩欧美一区视频在线观看| 天天操日日干夜夜撸| 成人18禁在线播放| 亚洲欧美精品综合一区二区三区| 国产精品免费一区二区三区在线 | 在线av久久热| 欧美不卡视频在线免费观看 | 精品高清国产在线一区| 自线自在国产av| 亚洲性夜色夜夜综合| 少妇的丰满在线观看| 午夜福利影视在线免费观看| 一a级毛片在线观看| 老鸭窝网址在线观看| 亚洲精品国产一区二区精华液| 国产精品1区2区在线观看. | 欧美色视频一区免费| 中文字幕av电影在线播放| 丁香欧美五月| 1024视频免费在线观看| 亚洲精品av麻豆狂野| 亚洲精品在线观看二区| 天天操日日干夜夜撸| xxx96com| 欧美激情 高清一区二区三区| 国产成人啪精品午夜网站| 亚洲欧美色中文字幕在线| 热99re8久久精品国产| 久久婷婷成人综合色麻豆| a在线观看视频网站| 侵犯人妻中文字幕一二三四区| 国产成人精品久久二区二区91| 国产亚洲精品一区二区www | 国产精品免费视频内射| 最近最新中文字幕大全免费视频| 好看av亚洲va欧美ⅴa在| 午夜福利免费观看在线| 人人妻人人添人人爽欧美一区卜| 国产主播在线观看一区二区| 777米奇影视久久| 午夜福利视频在线观看免费| 久久久久视频综合| 国产精品久久久av美女十八| 久久精品国产99精品国产亚洲性色 | 欧美日韩一级在线毛片| 欧美日韩亚洲高清精品| 久久香蕉激情| 久久久久久人人人人人| 国产精品美女特级片免费视频播放器 | 欧美中文综合在线视频| 午夜福利乱码中文字幕| 熟女少妇亚洲综合色aaa.| 国产又爽黄色视频| 欧洲精品卡2卡3卡4卡5卡区| 黄色女人牲交| 国产精品 欧美亚洲| 午夜福利欧美成人| 精品欧美一区二区三区在线| 午夜福利欧美成人| 在线播放国产精品三级| 欧美午夜高清在线| 欧美久久黑人一区二区| 中文字幕人妻丝袜一区二区| 免费一级毛片在线播放高清视频 | 国产不卡一卡二| 99久久综合精品五月天人人| 精品一区二区三卡| 男女高潮啪啪啪动态图| 久久中文看片网| 国产人伦9x9x在线观看| 宅男免费午夜| 我的亚洲天堂| 女人久久www免费人成看片| 中文字幕av电影在线播放| 久久久水蜜桃国产精品网| 脱女人内裤的视频| 视频区欧美日本亚洲| 在线国产一区二区在线| 老司机影院毛片| 亚洲av片天天在线观看| 亚洲av电影在线进入| 在线国产一区二区在线| 国产有黄有色有爽视频| 老司机亚洲免费影院| 亚洲av日韩在线播放| 看黄色毛片网站| 国产真人三级小视频在线观看| 超色免费av| 亚洲成人手机| 免费看a级黄色片| 电影成人av| 丝袜美足系列| 精品视频人人做人人爽| 国产国语露脸激情在线看| 国产乱人伦免费视频| 啦啦啦 在线观看视频| 免费久久久久久久精品成人欧美视频| 老熟妇仑乱视频hdxx| 久久天躁狠狠躁夜夜2o2o| 男男h啪啪无遮挡| 久久天堂一区二区三区四区| 色婷婷av一区二区三区视频| 一二三四在线观看免费中文在| 国产成人精品在线电影| 久久午夜综合久久蜜桃| 亚洲美女黄片视频| 久久午夜亚洲精品久久| 成年人午夜在线观看视频| 免费高清在线观看日韩| 精品久久久久久久久久免费视频 | 丝袜在线中文字幕| 亚洲久久久国产精品| 欧美日本中文国产一区发布| 欧美丝袜亚洲另类 | 制服诱惑二区| 久久性视频一级片| 国产日韩一区二区三区精品不卡| 丁香欧美五月| 国产精品成人在线| 色婷婷久久久亚洲欧美| 丝瓜视频免费看黄片| 久久精品国产亚洲av高清一级| xxx96com| 日韩中文字幕欧美一区二区| 成年人免费黄色播放视频| 亚洲熟女精品中文字幕| 久久青草综合色| 国产精品久久久久久精品古装| 人人妻人人爽人人添夜夜欢视频| 狠狠狠狠99中文字幕| 国产精华一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 一边摸一边做爽爽视频免费| 久久久久久久国产电影| 在线免费观看的www视频| 男人操女人黄网站| 黑人欧美特级aaaaaa片| 美女视频免费永久观看网站| 亚洲精品中文字幕一二三四区| 国产成人啪精品午夜网站| 老熟妇仑乱视频hdxx| 老鸭窝网址在线观看| 国产精品电影一区二区三区 | 色精品久久人妻99蜜桃| 中文亚洲av片在线观看爽 | 午夜影院日韩av| 久久这里只有精品19| 欧美av亚洲av综合av国产av| 国产精品 欧美亚洲| 国产又色又爽无遮挡免费看| 欧美黄色淫秽网站| 久久久久久久国产电影| 最近最新免费中文字幕在线| 成人精品一区二区免费| 国产欧美日韩一区二区三| 视频区图区小说| 国产精品一区二区精品视频观看| 日韩熟女老妇一区二区性免费视频| 在线播放国产精品三级| 国产亚洲精品第一综合不卡| 视频在线观看一区二区三区| 99久久99久久久精品蜜桃| 美女午夜性视频免费| 亚洲色图 男人天堂 中文字幕| 老司机深夜福利视频在线观看| 18禁国产床啪视频网站| 国产成人一区二区三区免费视频网站| 免费在线观看视频国产中文字幕亚洲| 黄色视频,在线免费观看| 看免费av毛片| 日韩精品免费视频一区二区三区| 91国产中文字幕| 一本综合久久免费| 精品乱码久久久久久99久播| 很黄的视频免费| 色老头精品视频在线观看| 国产欧美亚洲国产| www.精华液| 好男人电影高清在线观看| 嫁个100分男人电影在线观看| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久av网站| 久久久久久亚洲精品国产蜜桃av| 欧美+亚洲+日韩+国产| 欧美日韩视频精品一区| 亚洲中文字幕日韩| 久久亚洲真实| 又黄又爽又免费观看的视频| 叶爱在线成人免费视频播放| 国产成人av激情在线播放| 深夜精品福利| 丰满迷人的少妇在线观看| 欧美老熟妇乱子伦牲交| 最新美女视频免费是黄的| 精品乱码久久久久久99久播| 久久国产精品人妻蜜桃| 亚洲,欧美精品.| 欧美大码av| 亚洲av美国av| 精品国产乱子伦一区二区三区| 捣出白浆h1v1| 丁香六月欧美| 一个人免费在线观看的高清视频| 中文字幕高清在线视频| 色94色欧美一区二区| 窝窝影院91人妻| 成人免费观看视频高清| 亚洲av片天天在线观看| 国内毛片毛片毛片毛片毛片| 久热爱精品视频在线9| 国产成人av教育| 久久精品aⅴ一区二区三区四区| 91老司机精品| 一夜夜www| 亚洲精品国产区一区二| 91麻豆av在线| 国产欧美亚洲国产| 手机成人av网站| av福利片在线| 午夜福利乱码中文字幕| 欧美最黄视频在线播放免费 | 亚洲熟妇中文字幕五十中出 | 我的亚洲天堂| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 人妻 亚洲 视频| 日韩欧美在线二视频 | 亚洲人成电影免费在线| 黄色 视频免费看| 亚洲五月婷婷丁香| 在线观看免费视频日本深夜| 交换朋友夫妻互换小说| av不卡在线播放| 久久人妻福利社区极品人妻图片| 日日爽夜夜爽网站| 天堂√8在线中文| 亚洲情色 制服丝袜| 久久狼人影院| 精品无人区乱码1区二区| 国产99白浆流出| 久久亚洲真实| 欧美 亚洲 国产 日韩一| 90打野战视频偷拍视频| 免费一级毛片在线播放高清视频 | 欧美一级毛片孕妇| 天天影视国产精品| 国内久久婷婷六月综合欲色啪| 午夜免费观看网址| 久久人人爽av亚洲精品天堂| 欧美激情 高清一区二区三区| 精品国产乱子伦一区二区三区| 捣出白浆h1v1| 少妇猛男粗大的猛烈进出视频| 91成年电影在线观看| 亚洲专区字幕在线| 高清黄色对白视频在线免费看| 麻豆成人av在线观看| 日韩人妻精品一区2区三区| 日本黄色视频三级网站网址 | 国产99白浆流出| 日韩有码中文字幕| 国产在线一区二区三区精| av片东京热男人的天堂| 精品视频人人做人人爽| 亚洲精品国产色婷婷电影| 91精品三级在线观看| 在线国产一区二区在线| videosex国产| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久精品吃奶| 久久久久国产精品人妻aⅴ院 | 欧美亚洲日本最大视频资源| 免费在线观看亚洲国产| 亚洲午夜精品一区,二区,三区| 亚洲七黄色美女视频| 在线观看免费视频日本深夜| 女人被狂操c到高潮| 亚洲精品美女久久av网站| 国产精品1区2区在线观看. | 伦理电影免费视频| 悠悠久久av| 久久这里只有精品19| 自线自在国产av| 香蕉国产在线看| 建设人人有责人人尽责人人享有的| av超薄肉色丝袜交足视频| 欧美精品亚洲一区二区| 久久国产乱子伦精品免费另类| 日本vs欧美在线观看视频| 757午夜福利合集在线观看| 狠狠婷婷综合久久久久久88av| 久久久久精品国产欧美久久久| 欧美午夜高清在线| 成熟少妇高潮喷水视频| 久久国产精品男人的天堂亚洲| 这个男人来自地球电影免费观看| 欧美激情久久久久久爽电影 | 大陆偷拍与自拍| 国产在线精品亚洲第一网站| 久久香蕉国产精品| 91精品国产国语对白视频| 少妇裸体淫交视频免费看高清 | 看黄色毛片网站| 一a级毛片在线观看|