• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boninitic geochemical characteristics of high-Mg mafic dykes from the Singhbhum Granitoid Complex,Eastern India

    2015-10-29 05:20:24AkhtarMirShabberAlviBalaram
    Acta Geochimica 2015年2期

    Akhtar R.Mir·Shabber H.Alvi·V.Balaram

    Boninitic geochemical characteristics of high-Mg mafic dykes from the Singhbhum Granitoid Complex,Eastern India

    Akhtar R.Mir·Shabber H.Alvi·V.Balaram

    The high-Mg mafic dykes from the Singhbhum Granitoid Complex in East India have geochemical characteristics[e.g.,enrichment of the large ion lithophile elements and light rare earth elements(LREEs)relative to high field strength elements(HFSEs):high-MgO(>8%),high-SiO2(≥52%),low-TiO2(≤0.5%),andhigh CaO/Al2O3(≥0.58)]similartothosefoundinboninitic/noritic rocks.Their high percentage of orthopyroxene as a mafic mineral and of plagioclase as a felsic mineral,and normative hypersthene content greater than diopside content are also indications of their boninitic/noritic affinity.On a triangular diagram of MgO-CaO-Al2O3and on binary diagrams of Ti/V vs Ti/Sc and TiO2vs Zr,these samples show geochemical similarities with Phanerozoic boninites and Paleoproterozoic high-Mg norites.On major and trace element variation diagrams,these dykes show a normal crystallization trend and their Nb/La(<0.5)and Nb/Ce(<0.21)values lower than average bulk crust(0.69 and 0.33,respectively)suggest no crustal contamination.Their low values of Rb/Sr(0.11—0.41)and Rb/Ba(0.10—0.27)also suggest little or no effect of post magmatic processes. TheirTiO2(0.27—0.50),Al2O3/TiO2(19.30—42.48),CaO/TiO2(12.96—32.52),andTi/V(12—18)valuesindicate derivation from a depleted mantle source under oxidizing conditions such as a mantle wedge.Ni vs Zr modeling shows that the studied high-Mg dykes were generated by 25—30%melting of a refractory mantle source.Enrichment of Rb,Th,U,Pb,Sr,and LREEs,and depletion of HFSEs—especially Nb,P,Ti,Zr—on primitive mantle—and chondrite-normalized spider diagrams,respectively,are clear signals that the slab-derived component played an important role in the formation of melts for these rocks in a supra-subduction zone setting.

    High-Mg dykes·Refractory source· Singhbhum craton

    1 Introduction

    Precambrian mafic dykes occur in a broad variety of geologic and tectonic settings(Hall and Hughes 1987;Le Cheminant and Heaman 1989;Subba Rao et al.2007,2008)and their detailed study on spatio-temporal distribution is imperative to several geological events including the identification of Large Igneous Provinces,continental reconstructions(Rogers and Santosh 2003;Bryan and Ernst 2008),and mantle evolution(Tarney 1992).Dykes with different orientations are conspicuous in all the Protocontinents of the Indian Shield,namely Aravalli-Bundelkhand Protocontinent,Dharwar Protocontinent,Bastar-Bhandara Protocontinent,and Singhbhum Protocontinent(Naqvi 2005;Srivastava et al.2008).Several Proterozoic dykes of mafic to acidic composition intruded the Singhbhum Granitoid Complex,are collectively named as‘‘Newer dolerite dykes''(NDD)in the geological literature(Dunn 1929,1940;Saha 1994;Mahadevan 2002)and are considered as the youngest stratigraphic unit in the SinghbhumCraton.The NDD swarm mostly comprises dolerite dykes. Norites,peridotites,and granophyres are rare members of this dyke swarm.High-Mg rocks including picrite and boninite have been reported from volcanic suites and volcano-sedimentary belts which occur along the periphery of the Singhbhum Granitoid Complex(SGC)(Alvi and Raza 1992;Sengupta et al.1997;Bose 2000;Sahu and Mukherjee 2001;Mandal et al.2006).However,there is no record of komatiite rock types from within the Singhbhum craton as are found in most Archean cratons(Bose 2009). High-Mg mafic magmatism episodes—associated with komatiite-series rocks,high-Mg norites,siliceous high-Mg basalts(SHMB),high-Mg andesites,picritic rocks,and boninite/boninitic rocks—constitute an important activity in the history of Earth as they represent large-scale mantle heterogeneity during the Paleoproterozoic Era(Srivastava 2008).Since the generation of boninites requires an exclusive arrangement of high temperatures at shallow depths in the depleted mantle wedge(Crawford 1989;Sobolev and Danyushevsky 1994;Taylor et al.1994),boninites are frequently considered important,explicit,paleogeodynamic markers of incipient subduction.In India,extensive work on boninitic/noritic rocks has been carried out in the Bastar craton(e.g.,Neogi et al.1996;Srivastava and Singh 2003;Srivastava 2006,2008;Subba Rao et al.2008). However,less attention has been paid to the existence of such dykes within the SGC.In the present paper,geochemical study of high-Mg dykes from SGC is carried out. Samples labeled as J1,J2 and J3 and C1,C2,and C3 were collected around Jashipur(Latitude 21°58′N:Longitude 86°4′E)andChaibasa(Latitude22°34′N:Longitude 85°49′E),respectively.This preliminary study paves a path for the advanced isotopic study on these rocks because emplacement of boninite or boninitic rocks in Precambrian terrains is considered important for understanding continental reconstruction and mantle compositional heterogeneities.This paper assesses petrogenetic processes responsible for the origin of these high-Mg mafic dykes emplaced in a subduction zone setting.

    A.R.Mir(?)

    Department of Earth Sciences,University of Kashmir,Srinagar 190006,India

    e-mail:mirakhtar.r@gmail.com

    S.H.Alvi

    Department of Geology,Aligarh Muslim University,Aligarh 202002,India

    V.Balaram

    National Geophysical Research Institute,Uppal Road,Hyderabad 500007,India

    2 Geologic setting

    A large portion of the Singhbhum craton is occupied by the 3.2—2.8 Ga old SGC(Moorbath et al.1986)(Fig.1).The SGC is surrounded by banded iron formation belts such as theGorumahisani-Badampharintheeast,theTomka-Daiteri in the south and southwest,and the Noamundi-Koira in the west.The Older Metamorphic Group forms the oldest(3.3 Ga)unitinthiscraton(Sharmaetal.1994)andoccursas enclaves ranging in size from a few square meters to several hundredsquarekilometers.Largebodiesofgneissictonalitic and granodioritic intrusives(older metamorphic tonalite gneiss)are emplaced in the older metamorphic group.The Jagannathpurvolcanicrocksuiteisexposedinthevicinityof Noamundi and Jagannathpur.The Ongarbira metavolcanic suite has a general ENE-WSW trend which is discordant to theregionalNNE-SSEstrikeoftheChaibasa metasedimentary rocks(Sarkar and Chakraborti 1982).Alvi and Raza(1991)and Raza et al.(1995)suggested that these volcanic rocks(Jagannathpur and Ongarbira volcanics)are typical arc-tholeiites.The Kolhan Group,occurs on the western margin of the SGC,stretches for 80—100 km,and has an average width of 10—12 km.It is comprised of sandstone,limestone and shale;it is overlying unconformably on a shallow platform shared by the Singhbhum Granite Basement on the northeast,the Dangoaposi(Jagannathpur)lavas on the southeast and south,and the Iron Group of the eastern arm of the Noamundi syncline on the west(Mukhopadhyay et al.2006).The Jagannathpur lavas in the south have faulted boundaries with the Kolhan rocks(Banerjee 1982).NDDs,the youngest magmatic activity,intrude SGC in four distinct orientations:N—S,NNE—SSW,NNW—SSE,andE—W,amongwhichtheNNE—SSWtrendis the most dominant(Mir et al.2011).Consistent age data on these dykes is not available.K—Ar radiometric ages of NDD rangefrom1,600to950 Ma(Saha 1994).Ontheotherhand,K—Ar ages given by Mallick and Sarkar(1994)range from 923 to 2,144 Ma.Further,these dykes have not been identified to cut across the Paleoproterozoic Jagannathpur,Dhanjori,andOngarbirametavolcanicsuites(AlviandRaza 1992).Hence,it appears that NDD are either equivalent or older to these Paleoproterozoic metavolcanic suites.

    3 Materials and methods

    For the present study,high-Mg dyke samples were collected from around Jashipur and Chaibasa.Unaltered samples were selected for whole rock geochemical analysis at the National Geophysical Research Institute(NGRI),Hyderabad.Major elements were analyzed by X-ray fluorescence(XRF)using fused pellets.All the available major element data were standardized against the international reference rock standard BHVO-1 and JB-2.Trace elements were determined by inductively coupled plasmamass spectrometry(ICP-MS)using the Perkin-Elmer,Sciex ELAN DRC-II system at NGRI,Hyderabad.Analytical solutions for determination of trace elements were prepared by the open acid digestion method(Balaram and Gnaneshwara Rao 2003).The precision of ICP-MS data is ±5%RSD for all the trace elements including REE.All the available data were standardized against the international reference rock standard JB-2.

    Fig.1 a Map showing major cratons and structural features of India.b Simplified geological map of Singhbhum Granitoid Complex(SGC)around Chaibasa and Jashipur(after Saha 1994).EGMB Eastern Ghats Mobile Belt,SSZ Singhbhum Shear Zone

    4 Petrography

    Studied high-Mg dykes,under microscope,are medium-to coarse-grained and exhibit subophitic to ophitic texture. Orthopyroxene(Opx),constitutes a major percentage in these rocks,occuring as feebly pleochroic crystals in thin section(Fig.2a).Clinopyroxene(Cpx)occurs as anhedral to equant crystals and shows carlsbad twinning in some samples(Fig.2b).Pigeonite is also seen in some samples. It constitutes a small percentage of mafic minerals in studied dykes.Plagioclase(Pl)constitutes an abundant felsic mineral in all these dykes.It occurs in laths and shows well-developed polysynthetic twinning,indicating little to no alteration(Fig.2c).The presence of Opx as the major mafic mineral and Pl as the main felsic phase may classify these rocks as norites or having boninitic/noritic affinity.

    5 Geochemistry

    5.1Major element characteristics

    The major element data(in wt%)of studied dykes along with the CIPW norms are given in Table 1.Their major element characters such as,high SiO2(≥52%),high MgO(>8%),lowTiO2(≤0.5%),highMg#(100 Mg/Mg+Fetotal>60)and high CaO/Al2O3(≥0.58)are similar to those found in boninitic/noritic rocks of the world(e.g.,Crawford 1989;Le Bas 2000;Smithies 2002;Srivastava 2006,2008).Their normative mineralogy(such as hypersthene content>diopside content)(Table 1)also supports their boninitic/noritic affinity(Hall and Hughes 1990a).To evaluate the crystallization behavior in studied samples,some major oxide and compatible element variation diagrams are plotted(Fig.3);taking MgO as the reference oxide because of its important behavior during fractional crystallization.MgO shows a decreasing trend against SiO2and Na2O+K2O;and an increasing trend against CaO/Al2O3,CaO,Cr,and Ni(Fig.3).These variations are consistent with fractional crystallization of a mafic magma(Robinson et al.1999;Ahijado et al.2001). A positive correlation of MgO with CaO and CaO/Al2O3indicates fractionation of Cpx+Pl,whereas the positive relation of Cr and Ni with MgO supports the fractionation of olivine and Cpx.This normal crystallization trend rules out the possibility of mobilization of major oxides,which could therefore be used for classification purposes.SiO2and alkalis play an important role in the classification of various rock types(Le Maitre et al.1989;Le Bas 2000).On the IUGS recommended classification scheme for the high-Mg rocks after Le Bas(2000),our samples show boninitic composition(Fig.4).Further,on the bases of interrelationships of MgO-CaO-Al2O3(Fig.5),most of the studied samplesshowclosegeochemicalsimilaritiestothe Phanerozoic boninites.

    5.2Trace element characteristics

    Fig.2 Microphotographs of high-Mg mafic dykes of Singhbhum Granitoid Complex,Eastern India:a Microphotograph showing orthopyroxene(Opx)and plagioclase(Pl)(crossed-polarized plane);b Microphotograph showing polysynthetic twining in plagioclase(Pl)(crossed-polarized plane)and c Microphotograph showing Carlsbad twining in clinopyroxene(crossed-polarized plane)

    Table 1 Major,trace(including rare earth elements)element data and CIPW normative mineralogy of high-Mg mafic dykes from Singhbhum Granitoid Complex,Eastern India

    Trace element data including rare earth elements(REEs)is given in Table 1.Large ion lithophile elements(LILEs)are generally considered as mobile during secondary processes like metamorphism,metasomatism and hydrothermal alteration(Pearce and Cann 1973;Condie and Sinha 1996). However,low values of Rb/Sr(0.11—0.41)and Rb/Ba(0.10—0.27)ratios in the studied dykes do not indicate any major effect of post-magmatic processes on the primary concentrations of LILEs(Lafleche et al.1992;Mir et al. 2011).To examine trace element behavior in studied samples,a few immobile elements(particularly Zr,Nb,Th, Yb,V,and Ce)are plotted against Mg number(Mg#)(Fig.6).On these variation diagrams,these rocks show a reasonable differentiation trend,suggesting that these rocks had experienced normal crystallization processes.Highfield strength elements(HFSEs)such as Ti,Zr,Hf,Nb,Ta,and Y tend to be strongly incompatible because of very small bulk solid/liquid distribution coefficients in most situations,and are considered immobile during low temperature alteration and least soluble in aqueous fluids. Therefore,they are used to constrain the source composition and enrichment or depletion history of the mantle source(Pearce and Cann 1973;Winchester and Floyd 1977;Farahat 2006).These elements are also used by various authors(e.g.,Poidevin 1994;Piercey et al.2001;Smithies 2002;Srivastava 2006)to differentiate high-Mg rocks like boninite,high-Mg norite,and SHMB.On Ti/V vs Ti/Sc(Fig.7a)and TiO2vs Zr(Fig.7b)binary plots,studied high-Mg samples plot as Paleoproterozoic high-Mg norites of the World.Primitive mantle—normalized incompatible multi-element and chondrite-normalized REE patterns for studied rocks are represented in(Fig.8).Multielement plots show enrichment of LILEs as compared to HFSEs(Fig.8a).Chondrite-normalized REE patterns(Fig.8b)show an inclined trend of light REEs(LREEs)and a flat sub-parallel pattern of heavy REEs(HREEs)in these dykes.Such inclined LREE patterns are also reported from the mantle-derived boninites(Cameron et al.1983;Hall and Hughes 1987;Poidevin 1994).These dykes aremoderately fractionated with their(La/Yb)Nratio varying from 2.93 to 4.67.Their(Gd/Yb)Nvalues ranging from 1.26 to 1.51 are greater than chondrite values(0.9),indicating a depleted mantle source.Observed negative anomalies for Sr and Eu in the studied samples(Fig.8b)may indicate little fractionation of Pl during evolution of the melt(Tarney and Jones 1994).Depletion of HFSEs(mainly Nb,P and Ti),and high Ba/Nb(>15)and low Ce/Pb ratios ranging from 1.85 to 6.26 of the investigated high-Mg dykes are features of subduction zone magmatism(Wilson 1989).Crustal contamination may also be the cause for the Nb anomaly and enriched LREE pattern. However,there are examples of mantle derived boninites and norites which possesses such geochemical features and are believed to be free from any crustal contamination(Cameron et al.1983;Hall and Hughes 1990b;Smithies 2002;Nielsen et al.2002;Srivastava 2006).

    Table 1 continued

    Fig.3 MgO vs SiO2,Na2O+K2O CaO/Al2O3,CaO,Cr,and Ni variation diagrams for high-Mg mafic dykes from the Singhbhum Granitoid Complex,Eastern India

    Fig.4 SiO2vs Na2O+K2O diagram(after Le Bas 2000)for high-Mg mafic dykes from the Singhbhum Granitoid Complex,Eastern India

    Fig.5 CaO—MgO—Al2O3variations in the high-Mg mafic dykes from the Singhbhum Granitoid Complex,Eastern India.Fields of Archean komatiites and Phanerozoic boninites are taken from Hall and Hughes(1990a)

    Fig.6 Mg#vs Zr,Yb,Th,V,Nb and Ce variation diagrams for high-Mg mafic dykes from the Singhbhum Granitoid Complex,Eastern India

    Fig.7 a Ti/Sc vs Ti/V and b Zr vs TiO2 variation diagrams for high-Mg mafic dykes from the Singhbhum Granitoid Complex,Eastern India.Fields are from Smithies(2002),Poidevin(1994)and Piercey et al.(2001)

    6 Petrogenesis

    6.1Fractional crystallization and crustal contamination

    The studied dykes do not show any signatures of metamorphism or deformation.They have not been affected by post-magmatic alteration processes.Their petrography also supports insignificant low temperature alteration of primary mineralogy.Variation diagrams(Figs.3,6)suggestno significant crustal contamination.These trends are consistent with normal fractional crystallization.In addition,the effect of contamination of a pristine magma by the granitic country rock can be assessed by Nb/La and Nb/Ce ratios,which change due to either mixing of different magmas or to various degrees of partial melting of source or assimilation during emplacement(Mir et al.2010). However,these incompatible element ratios remain mostly unchanged during the process of fractional crystallization(Ahmad and Tarney 1991).The values of Nb/La(<0.5)and Nb/Ce(<0.21)of the high-Mg dykes are not only very low as compared to those of primitive mantle(PM 1.02 and 0.40,respectively,Taylor and McLennan 1985;1.04 and 0.40,respectively,Sun and Mc Donough 1989)but are also lower than average bulk crust(0.69 and 0.33,respectively)and average lower crust(0.83 and 0.39,respectively;Taylor and McLennan 1985).Such lower values preclude contamination by an average crustal component.Fractional crystallization associated with crustal contamination is a significant process during magmatic evolution and may modify both elemental and isotopic compositions(De Paolo 1981).However,high-Mg content(up to~17 wt%),high Mg#(up to 80),and roughly parallel multi-and rareearth element patterns do not support combined assimilation—fractional crystallization processes in these rocks. Thus,these trace element characteristics may be attributed to LILEs-LREEs—enriched source characteristics with depletion of HFSEs(Weaver and Tarney 1983;Ahmad and Tarney 1994).

    Fig.8 a Primitive mantle(PM)normalized incompatible multielement diagram and b chondrite-normalized REE diagram for high-Mg mafic dykes from the Singhbhum Granitoid Complex,Eastern India

    Fig.9 TiO2vs Al2O3/TiO2and CaO/TiO2diagram(after Sun and Nesbitt 1978)for high-Mg mafic dykes from the Singhbhum Granitoid Complex,Eastern India

    6.2Mantle source

    Sun and Nesbitt(1978)used Al2O3/TiO2and CaO/TiO2ratios verses TiO2(Fig.9)to establish mantle source characteristics or genesis of low-Ti and high-Ti basalts. The high-Ti basalts have Al2O3/TiO2and CaO/TiO2ratios less than chondritic values(20 and 17 respectively).On the other hand,the low-Ti basalts having boninitic affinity have ratios higher than chondritic values and may reach up to~60.In addition,these authors have suggested that basalts derived from mid-ocean ridge basalt(MORB)-type magma have high TiO2(>0.7%)content,whereas basalts from subduction zone settings may have low TiO2(<0.4%).In Fig.9,present samples plot in the norite/ boninite field,which means that they are low-Ti type rocks derived from a depleted source.Since the more oxidized species of V(such as V4+and V5+)behave as high field strength cations with high charges and low radius/charge ratios(≤0.17)similar to Ti,these elements are used to measure the oxygen fugacity(fO2)of the magma source(Shervais 1982;Toplis and Corgne 2002).According to Shervais(1982),melts produced by 20—30%partial melting under relatively reducing conditions like MORB would have Ti/V ratios of about 20—50 and similar melts produced under more oxidizing conditions such as a mantle wedge overlying the devolatizing slab should have Ti/V ratios of around 10—20.Therefore,the Ti/V ratio(12—18)in the studied dykes suggests their derivation under oxidizing conditions such as mantle wedge.The compatible verses incompatible trace element model(e.g.Ni vs Zr)given by Rajamani et al.(1985)is useful to assess melting or differentiation processes of the mantle.According to this model,a rock suite generated from different degrees of melting of the same source should have a similar trend to the melting curves given in Fig.10.Present samples follow IV-curve of this model,which concludes their generation is due to 25—30%melting of a refractory mantle source.

    Fig.10 Trace element modeling based on Ni and Zr(after Rajamani et al.1985)for high-Mg mafic dykes from the Singhbhum Granitoid Complex,Eastern India.I and II:calculated batch melting curves at 1,850°C,50 kb and 1,575°C,25 kb respectively,are marked with percentage of melting;III and IV:olivine fractionation trends at one atmosphere with ticks marking increments of 5%olivine fraction from previous tick.Values of mantle source(7.8 ppm Zr and 2,000 ppm Ni)were taken from Taylor and McLennan(1981)(source mode:55%ol,25%opx and 20%cpx;melting mode:20%ol,25%opx,55%cpx).Assumed Distribution coefficients(KD)were DZr=0 and DNi=1.95(Rajamani et al.1985)

    6.3Modification of mantle source(mantle wedge)by slab-derived components

    Geochemical and isotopic studies(e.g.,Hawkesworth et al. 1993;Pearce and Parkinson 1993;Arculus 1994)have shown that the depleted peridotites of the supra-subduction mantle wedge are refertilized by the influx of slab-derived components(an aqueous fluid and/or a hydrous silicate melt)enriched in incompatible trace elements such as Rb, Cs,Th,U,Pb,Sr,and LREEs.Slab dehydration occurs at shallower depths as compared to slab melting(Rollinson and Tarney 2005)and this dehydration promotes partial melting of the mantle wedge under high PH2Oconditions. As a result,produced melts have high concentrations of mobile elements(LILEs and LREEs)as compared to immobile elements(HFSEs)because these immobile elements are retained in stable phases such as sphene,rutile,and zircon(Wallin and Metcalf 1998;Dawoud et al.2006;Salavati et al.2013).Therefore,observed enrichment of Rb,Th,U,Pb,Sr,and LREEs and depletion of HFSEs(Fig.8)are clear indications that slab-derived components played an important role in the formation of melts for these rocks in a supra-subduction zone setting.The chemical characteristics of the studied dykes,such as enrichment of LILE and LREE and depletion of Nb and Ti,are also reported from quenched norite dykes from the Bighorn Mountains,Wyoming,USA(Hall and Hughes 1990a);micropyroxenite sills from the Bushveld layered complex(Hall and Hughes 1990b);high-Mg quartz tholeiitic dykes(norites)from the Vestfold Block,East Antarctica(Sheraton et al.1987);high-Mg dykes(norites)from the Vestfold Block,East Antarctica(Kuehner 1989);high-Mg dykes from the Southern Bastar craton(Srivastava and Singh 2003);and Boninitic and noritic rocks from the Northern Bastar craton(Subba Rao et al.2008).

    Aforementioned petrographical and geochemical characteristics suggest that these samples have boninitic affinity.Nonetheless,sometimes it is believed that high-Mg rocks could be derived from komatiite through assimilation-fractional crystallization(AFC)processes(Arndt et al. 1987;Sun et al.1989).But absence of komattites in the Singhbhum craton does not favor the AFC model for presentrocks.HighLa/Nb(2.40—3.48) andZr/Nb(7.09—23.12)ratios,sub-parallel multi-and rare-earth element patterns and high Mg number(Mg#)(Table 1)reduces the likelihood of crustal contamination in these rocks.In addition,their high CaO/TiO2and LILE/HFSE ratios and low Ti/V,Ti/Sc,and sub-chondritic Nb/Ta ratio(<17.3)(Table 1)suggest their derivation from a depleted,refractory source which had experienced previous episodes of magma extraction.The withdrawal of basaltic magma in the Singhbhum craton during the Archean/early Proterozoic(Bose 2009)is a possible cause for the formation of a refractory mantle source in this craton,and subductioninduced metasomatism(Mir et al.2010)would have contributed to lowering the solidus temperature of this residual mantle to produce melts of noritic/boninitic composition for the high-Mg dykes.This cause for the formation of a refractory mantle source has previously been found in many Paleoproterozoic high-Mg rocks(e.g.,Srivastava 2008).

    7 Conclusions

    Petrographic and geochemical characteristics of high-Mg mafic dykes,emplaced in the SGC classify them as boninitic rocks.In addition to enrichment of LILEs and depletion of HFSEs,their TiO2,Al2O3/TiO2,CaO/TiO2,and Ti/V values suggest that the melt for these rocks was generated by 25—30%melting of a depleted,refractory source under oxidizing conditions like mantle wedge.Such a refractory mantle source formed by extraction of basaltic magma in the Singhbhum craton during Archean/early Proterozoic times and subduction-induced metasomatism of this refractory mantle had triggered partial melting and production of high-silica,high-Mg magma of noritic/ boninitic composition for present dykes.Further study of these high Mg-mafic dykes based on radiogenic isotope data is recommended in view of their genesis from a depleted source in supra-subduction zone settings.

    AcknowledgmentsAuthors are sincerely thankful to the Director,NGRI,for providing permission to analyze these samples.First author pays sincere thanks to Prof.Shakil Ahmad Romshoo,Head,Department of Earth Sciences,University of Kashmir,Srinagar for providing various facilities and genuine time to time guidance to complete this article.Constructive comments and valuable suggestions from anonymous reviewers are duly acknowledged.

    Ahijado A,Casillas R,Hernandez-Pacheco A (2001)The dyke swarms of the Amanay Massif Fuerteventura,Canary Islands(Spain).J Asian Earth Sci 19:333—345

    Ahmad T,Tarney J(1991)Geochemistry and petrogenesis of Garhwal volcanics:implications for evolution of the north Indian lithosphere.Precambrian Res 50:69—88

    Ahmad T,Tarney J(1994)Geochemistry and petrogenesis of late Archean Aravalli volcanics,basement enclaves and granitoids,Rajasthan.Precambrian Res 65:1—23

    Alvi SH,Raza M(1991)Nature and Magma type of Jagannathpur volcanics,Singhbhum,EasternIndia.JGeolSocIndia 38:524—531

    Alvi SH,Raza M (1992)Discovery of Proterozoic boninite from Jaganathpur volcanic suite,Singhbhum craton,Eastern India. Curr Sci 62(8):573—574

    Arculus RJ(1994)Aspects of magma genesis in arcs.Lithos 33:189—208

    Arndt NT,Bro¨gmann GE,Lenhert K,Chappel BW,Chauvel C(1987)Geochemistry,petrogenesis and tectonic environment of Circum-Sperior Belt basalts,Canada.In:Pharaoh TC,Beckinsdale RD,Rickard D (eds)Geochemistry and mineralisation of proterozoic volcanic suites.Blackwell,London

    Balaram V,Gnaneshwara Rao T(2003)Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS.Atomic Spectr 24:206—212

    Banerjee PK(1982)Stratigraphy,petrology and geochemistry of some Precambrian basic volcanic and associated rocks of Singhbhum district,Bihar and Mayurbhanj and Koenjhar districts,Orissa.Mem Geol Surv India 111:58

    Bose MK(2000)Mafic—ultramafic magmatism in the eastern Indian craton-a review.Mem Geol Surv India 55:227—258

    Bose MK(2009)Precambrian mafic magmatism in the Singhbhum Craton,Eastern India.J Geol Soc India 73:13—35

    Bryan SE,Ernst RE(2008)Revised definition of Large Igneous Provinces(LIPs).Earth Sci Rev 86:175—202

    Cameron WE,McCulloch MT,Walker DA(1983)Boninite petrogenesis:chemical and Nd-Sr isotopic constraints.Earth Planet Sci Lett 65:75—89

    Condie KC,Sinha AK(1996)Rare earth and other trace element mobility during mylonitization:a comparison of the Brevard and Hope Valley shear zones in the Appalachian Mountains,USA. J Metamorph Geol 14:213—226

    Crawford AJ(1989)Boninites and related rocks.Unwin Hyman,London,p 465

    Dawoud M,Eliwa HA,Traversa G,Attia MS,Itaya T(2006)Geochemistry,mineral chemistry and petrogenesis of a Neoproterozoic dyke swarm in the north Eastern Desert,Egypt.Geol Mag 143:115—135

    De Paolo DJ(1981)Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization.Earth Planet Sci Lett 53:189—202

    Dunn JA(1929)Geology of North Singhbhum including parts of Ranchi and Mayurbhanj districts.Mem Geol Surv India 54(2):1—166

    Dunn JA(1940)The stratigraphy of South Singhbhum.Mem Geol Surv India 63(3):303—369

    Farahat ES(2006)The Neoproterozoic Kolet Um Kharit bimodal metavolcanic rocks,south Eastern Desert,Egypt:a case of enrichment from plume interaction.Int J Earth Sci 95:275—287

    Hall RP,Hughes DJ(1987)Norite dykes of southern Greenland,early proterozoicboniniticmagmatism.ContribMinerPetrol97:169—182

    Hall RP,Hughes DJ(1990a)Norite magmatism.In:Hall RP,Hughes DJ(eds)Early Precambrian basic magmatism.Blackie,Glasgow,pp 83—110

    Hall RP,Hughes DJ(1990b)Precambrian mafic dykes of southern Greenland.In:Parker AJ,Rickwood DH,Tucker DH(eds)Mafic dykes and emplacement mechanisms.A.A.Balkema,Rotterdam,pp 481—495

    Hawkesworth CJ,Gallagher K,Hergt JM,McDermott F(1993)Mantle and slab contributions in arc magmas.Annu Rev Earth Planet Sci 21:175—204

    Kuehner SM(1989)Petrology and geochemistry of early proterozoic high-Mg dykes from the Vestfold Hills,Antarctica.In:Crawford AJ(ed)Boninites and related rocks.Unwin Hyman,London,pp 208—231

    Lafleche MR,Dupuy C,Bougault H (1992)Geochemistry and petrogenesis of Archean volcanic rocks of the southern Abitibi Belt,Quebec.Precambrian Res 57:207—241

    Le Bas MJ(2000)IUGS reclassification of the high-Mg and picritic volcanic rocks.J Petrol 41:1467—1470

    Le Cheminant AN,Heaman LM(1989)Mackenzie igneous events,Canada:middle proterozoic hotspot magmatism associated with ocean opening.Earth Planet Sci Lett 96:38—48

    Le Maitre RW,Bateman P,Dudek A,Keller J,Lameyre J,Le Bas MJ,Sabine PA,Schmid R,Sorensen H,Streckeisen A,Woolley AR,Zanettin B(1989)A classification of igneous rocks and glossary of terms:recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks.Blackwell Scientific,Oxford

    Mahadevan TM (2002)Geology of Bihar and Jharkhand.In:Text book series.Geological Society of India,Bangalore

    Mallick AK,Sarkar A(1994)Geochronology and geochemistry of mafic dikes from Precambrians of Keonjhar,Orissa.Indian Miner 48:3—24

    Mandal N,Mitra AK,Misra S,Chakraborty C(2006)Is the outcrop topology of dolerite dykes of Precambrian Singhbhum craton fractal.J Earth Sci Syst 115:643—660

    Mir AR,Alvi SH,Balaram V(2010)Geochemistry of mafic dikes in the Singhbhum Orissa craton:implications for subductionrelated metasomatism of the mantle beneath the eastern Indian craton.Int Geol Rev 52(1):79—94

    Mir AR,Alvi SH,Balaram V(2011)Geochemistry of the mafic dykes in parts of the Singhbhum Granitoid complex:petrogenesis and tectonic setting.Arabian J Geosci 4:933—943

    Moorbath S,Taylor RN,Jones NW (1986)Dating the oldest terrestrial rocks—facts and fiction.Chem Geol 57:63—86

    Mukhopadhyay J,Ghosh G,Nandi AK,Chaudhuri AK (2006)Depositional setting of the Kolhan Group:its implications for the development of a Meso to Neoproterozoic deep-water basin on the South Indian craton.S Afr J Geol 109:183—192

    Naqvi SM(2005)Geology and evolution of the Indian plate.Capital Publishing Company,New Delhi

    Neogi S,Miura H,Hariya Y(1996)Geochemistry of the Dongargarh volcanic rocks,Central India:implications for the Precambrian mantle.Precambrian Res 76:77—91

    Nielsen SG,Joel AB,Krogstad EJ(2002)Petrogenesis of an early Archaean(3.4 Ga)norite dyke,Isua,West Greenland:evidence forearlyArchaeancrustalrecycling.PrecambrianRes 118:133—148

    Pearce JA,Cann JR(1973)Tectonic setting of basic volcanic rocks determined using trace element analysis.Earth Planet Sci Lett 19:290—300

    Pearce JA,Parkinson IJ(1993)Trace element models for mantle melting:application to volcanic arc petrogenesis.In:Prichard HM,Alabaster T,Harris NBW,Neary CR(eds)Magmatic processes and plate tectonics.Spec Publ Geol Soc Lond. 76:373—403

    Piercey SJ,Murphy DC,Mortensen JK,Paradis S(2001)Boninite magmatism in a continental margin setting,Yukon-Tanana terrane,southeastern Yukon,Canada.Geology 29:731—734

    Poidevin JL(1994)Boninite-like rocks from the Paleoproterozoic greenstone belt of Bogoin,Central African Republic:geochemistry and petrogenesis.Precambrian Res 68:97—113

    Rajamani V,Shivkumar K,Hanson GN,Shirey SB(1985)Geochemistry and petrogenesis of amphibolites,Kolar schist belt,South India:evidence for komatiitic magma derived by low percentage of melting of the mantle.J Petrol 26:92—123

    Raza M,Alvi SH,Abu-hamatteh ZSH(1995)Geochemistry and tectonic significance of Ongarbira volcanics,Singhbhum craton,Eastern India.J Geol Soc India 45:643—652

    Robinson PT,Zhou M,Hu X,Reynold P,Bai W,Yang J(1999)Geochemicalconstrainsonthe originoftheHegenshan ophiolite,Inner Mongolia,China.J Asian Earth Sci 17:423—442

    Rogers JJW,Santosh M (2003)Supercontinents in earth history. Gondwana Res 6:357—368

    Rollinson HR,Tarney J(2005)Adakites—the key to understanding LILE depletion in granulites.Lithos 79:61—81

    Saha AK(1994)Crustal evolution of Singhbhum-North Orissa,Eastern India.Mem Geol Surv India 27:341

    Sahu NK,Mukherjee MM(2001)Spinifex textured komatiite from Badampahar-Gorumahisani Schist belt,Mayurbhanj Dist.,Orissa.J Geol Soc India 57:29—534

    Salavati M,Kananian A,Noghreyan M(2013)Geochemical characteristicsofmaficandultramaficplutonicrocksinsouthernCaspian Sea Ophiolite(Eastern Guilan).Arabian J Geosci 6:4851—4858

    Sarkar AN,Chakraborti DK(1982)One orogenic belt or two?A structural reinterpretation supported by Landsat data products of the Precambrian metamorphics of Singhbhum,eastern India. Photogrammatria 37:185—201

    Sengupta S,Acharyya SK,Deshmeth JB(1997)Geochemistry of Archaean volcanic rocks from Iron Ore Supergroup,Singhbhum easternIndia.ProcIndianAcadSci(EarthPlanetSci)106:327—342

    Sharma M,Basu AR,Ray SL(1994)Sm-Nd isotopic and geochemical study of the Archaean Tonalite-Amphibolite association from the eastern Indian craton.Cont Mineral Petrol 117:45—55

    Sheraton JW,Thompson JW,Collerson KD (1987)Mafic dyke swarms of Antarctica.In:Halls HC,F(xiàn)ahrig WF(eds)Mafic dyke swarms.Spec Pap Geol Assoc Can.34:419—432

    Shervais JW (1982)Ti-V plots and the petrogenesis of modern and ophiolitic lavas.Earth Planet Sci Lett 59:101—118

    Smithies RH(2002)Archaean boninite-like rocks in an intracratonic setting.Earth Planet Sci Lett 197:19—34

    Sobolev AV,Danyushevsky LV(1994)Petrology and geochemistry of boninites from the north termination of the Tonga trench: constraints on the generation conditions of primary high-Ca boninite magmas.J Petrol 35:1183—1211

    Srivastava RK(2006)Geochemistry and petrogenesis of Neoarchaean high-Mg low-Ti mafic igneous rocks in an intracratonic setting,CentralIndiacraton:evidenceforboninitemagmatism. Geochem J 40:15—31

    Srivastava RK(2008)Global intracratonic boninite-norite magmatism during the Neoarchean—Paleoproterozoic:evidence from the Central Indian Bastar craton.Int Geol Rev 50:61—74

    Srivastava RK,Singh RK(2003)Geochemistry of high-Mg mafic dykes from the Bastar craton:evidence of late Archaean boninite-likerocksinanintracratonicsetting.CurrSci 85:808—812

    Srivastava RK,Sivaji Ch,Chalapathi Rao NV(2008)Indian Dykes: Geochemistry Geophysics and Geochronology.Narosa Publishing House Pvt.Ltd.,New Delhi

    Subba Rao DV,Khan MWY,Sridhar DN,Naga Raju K(2007)A New find of within basin younger dolerite dykes with continental flood basalt affinity from the meso-neoproterozoic Chattisgarh Basin,Bastar craton,Central India.J Geol Soc India 69:80—84 Subba Rao DV,Balaram V,Naga Raju K,Sridhar DN(2008)Paleoproterozoic boninite-like rocks in an intercratonic setting from Northern Bastar craton,Central India.J Geol Soc India 72:373—380

    Sun SS,Mc Donough WF(1989)Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.In:Saunders AD,Norry MJ(eds)Magmatism in the ocean basins.Spec Publ Geol Soc Lond.42:313—345

    Sun SS,Nesbitt RW (1978)Geochemical regularities and genetic significance of ophiolitic basalts.Geology 28:689—693

    Sun SS,Nesbitt RW,McCulloch MT(1989)Geochemistry and petrogenesis of Archaean and early proterozoic siliceous highmagnesian basalts.In:Crawford AJ(ed)Boninites and related rocks.Unwin Hyman,London

    Tarney J(1992)Geochemistry and significance of mafic dyke swarms in the proterozoic.In:Condie KC(ed)Proterozoic crustal evolution.Elsevier,Amsterdam

    Tarney J,Jones CE(1994)Trace element geochemistry of orogenic igneous rocks and crustal growth models.J Geol Soc Lond 151:855—868

    Taylor SR,McLennan SM(1981)The composition and evolution of the continental crust:rare earth element evidence from sedimentary rocks.Phil Trans Royal Soc Lond 300:381—399

    Taylor SR,McLennan SM(1985)The continental crust:its composition and evolution.Blackwell,Oxford

    Taylor RN,Nesbit R,Vidal P,Harmon RS,Auvray B,Croudace IW(1994)Mineralogy,chemistry,and genesis of the boninite series volcanics,Chichijima,Bonin Islands,Japan.J Petrol 35:577—617

    Toplis MJ,Corgne A(2002)An experimental study of element partitioning between magnetite,clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium.Cont Mineral Petrol 144:22—37

    Wallin ET,Metcalf V (1998)Supra-subduction zone ophiolites formed in an extensional forearc:trinity Terrae,Kalmath Mountains,California.J Geol 106:591—608

    Weaver BL,Tarney J(1983)Chemistry of the sub continental mantle inferences from Archean and Proterozoic dykes and continental flood basalts.In:Hawkesworth CJ,Norry MJ(eds)Continental Basalt and mental xenoliths.Shiva,Nantwich,pp 209—229

    Wilson M(1989)Igneous petrogenesis.Unwin Hyman Ltd.,London

    Winchester JA,F(xiàn)loyd PA (1977)Geochemical discrimination of different magma series and their differentiation products using immobile elements.Chem Geol 20:325—343

    10 January 2014/Revised:14 March 2014/Accepted:18 March 2014/Published online:7 February 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    听说在线观看完整版免费高清| 怎么达到女性高潮| 91九色精品人成在线观看| 我的老师免费观看完整版| 97碰自拍视频| 国产爱豆传媒在线观看| 波多野结衣巨乳人妻| 日本三级黄在线观看| 中出人妻视频一区二区| 成年人黄色毛片网站| 一进一出抽搐动态| 亚洲五月婷婷丁香| 毛片女人毛片| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩一区二区精品| 高清毛片免费观看视频网站| 俺也久久电影网| 亚洲欧美日韩高清专用| 在线观看日韩欧美| 狂野欧美白嫩少妇大欣赏| 非洲黑人性xxxx精品又粗又长| 色视频www国产| 成熟少妇高潮喷水视频| 亚洲国产精品久久男人天堂| av黄色大香蕉| xxx96com| 国产午夜精品论理片| 白带黄色成豆腐渣| 午夜福利在线观看免费完整高清在 | 无限看片的www在线观看| 波多野结衣高清无吗| 久久精品影院6| 欧美xxxx黑人xx丫x性爽| 精品午夜福利视频在线观看一区| 韩国av一区二区三区四区| 麻豆久久精品国产亚洲av| 在线观看一区二区三区| 69av精品久久久久久| 狂野欧美白嫩少妇大欣赏| 淫妇啪啪啪对白视频| 网址你懂的国产日韩在线| 亚洲真实伦在线观看| 变态另类丝袜制服| 亚洲成av人片免费观看| 久久久久久久亚洲中文字幕 | 国产伦在线观看视频一区| 欧美高清成人免费视频www| 真人做人爱边吃奶动态| 亚洲国产日韩欧美精品在线观看 | 色噜噜av男人的天堂激情| 国产精品综合久久久久久久免费| 香蕉久久夜色| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av五月六月丁香网| 亚洲第一电影网av| 久9热在线精品视频| 午夜福利视频1000在线观看| a在线观看视频网站| 免费看十八禁软件| 一边摸一边抽搐一进一小说| 男人和女人高潮做爰伦理| 国产成人av教育| 日本撒尿小便嘘嘘汇集6| 欧美色欧美亚洲另类二区| 色av中文字幕| 最近最新中文字幕大全电影3| 中文字幕高清在线视频| 国产高潮美女av| 一二三四社区在线视频社区8| a在线观看视频网站| 高清在线国产一区| 亚洲 欧美 日韩 在线 免费| 国产精品久久久人人做人人爽| 亚洲av第一区精品v没综合| av片东京热男人的天堂| 亚洲最大成人中文| 国产91精品成人一区二区三区| 欧美黑人巨大hd| 一卡2卡三卡四卡精品乱码亚洲| 欧美精品啪啪一区二区三区| 少妇人妻一区二区三区视频| 我要搜黄色片| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 黄片小视频在线播放| 美女cb高潮喷水在线观看| 最新美女视频免费是黄的| 99视频精品全部免费 在线| 国产欧美日韩一区二区三| 久久精品91无色码中文字幕| 午夜精品一区二区三区免费看| 久久香蕉精品热| 九九久久精品国产亚洲av麻豆| 啪啪无遮挡十八禁网站| 日本一本二区三区精品| 色哟哟哟哟哟哟| 波多野结衣高清作品| tocl精华| 亚洲成av人片在线播放无| 亚洲乱码一区二区免费版| 香蕉丝袜av| 性欧美人与动物交配| 无限看片的www在线观看| 美女免费视频网站| 欧美日韩乱码在线| 国内久久婷婷六月综合欲色啪| 少妇熟女aⅴ在线视频| 国产一区在线观看成人免费| 禁无遮挡网站| 免费一级毛片在线播放高清视频| 人人妻人人澡欧美一区二区| 亚洲黑人精品在线| 免费观看精品视频网站| 2021天堂中文幕一二区在线观| 香蕉丝袜av| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 婷婷六月久久综合丁香| 最近最新免费中文字幕在线| 久久久国产成人免费| 国产一区二区在线观看日韩 | 搡老岳熟女国产| 91麻豆精品激情在线观看国产| 国产精品精品国产色婷婷| 中亚洲国语对白在线视频| 男人和女人高潮做爰伦理| 首页视频小说图片口味搜索| 观看免费一级毛片| 手机成人av网站| 精品一区二区三区视频在线观看免费| 精华霜和精华液先用哪个| 国产伦人伦偷精品视频| 久久久久性生活片| 日本一本二区三区精品| 国产熟女xx| 精品国产超薄肉色丝袜足j| 国内精品美女久久久久久| 97人妻精品一区二区三区麻豆| 极品教师在线免费播放| 免费观看人在逋| 国产97色在线日韩免费| 国产综合懂色| 一本综合久久免费| 国产黄片美女视频| 我的老师免费观看完整版| 色噜噜av男人的天堂激情| 一区二区三区免费毛片| 真人做人爱边吃奶动态| 国产免费av片在线观看野外av| 亚洲国产色片| 久久精品亚洲精品国产色婷小说| 美女黄网站色视频| 久久久久性生活片| 全区人妻精品视频| 免费看美女性在线毛片视频| 黑人欧美特级aaaaaa片| 亚洲成人精品中文字幕电影| 青草久久国产| 国产成+人综合+亚洲专区| 国产一区二区在线观看日韩 | 9191精品国产免费久久| 久久中文看片网| 国产精品美女特级片免费视频播放器| 免费无遮挡裸体视频| 中文字幕人妻丝袜一区二区| 又爽又黄无遮挡网站| 老司机在亚洲福利影院| 久久精品影院6| 三级毛片av免费| 欧美日韩国产亚洲二区| 美女免费视频网站| 两个人视频免费观看高清| 很黄的视频免费| 国产激情偷乱视频一区二区| 亚洲 欧美 日韩 在线 免费| 深爱激情五月婷婷| 国产亚洲欧美98| 激情在线观看视频在线高清| 午夜a级毛片| 最近最新中文字幕大全免费视频| 日本 av在线| 国产91精品成人一区二区三区| 黄片大片在线免费观看| 一夜夜www| 男人和女人高潮做爰伦理| 国产精品嫩草影院av在线观看 | 禁无遮挡网站| 久久午夜亚洲精品久久| 亚洲国产精品久久男人天堂| 久久精品国产亚洲av涩爱 | 久久精品国产99精品国产亚洲性色| 亚洲在线观看片| 国产熟女xx| 久久久久亚洲av毛片大全| 一二三四社区在线视频社区8| 午夜亚洲福利在线播放| 给我免费播放毛片高清在线观看| 精品人妻一区二区三区麻豆 | 日韩 欧美 亚洲 中文字幕| 亚洲av熟女| 国产又黄又爽又无遮挡在线| 小说图片视频综合网站| 午夜亚洲福利在线播放| 国产精品 欧美亚洲| 午夜福利高清视频| 女生性感内裤真人,穿戴方法视频| 国产美女午夜福利| 一级毛片高清免费大全| 美女黄网站色视频| 国产中年淑女户外野战色| 两性午夜刺激爽爽歪歪视频在线观看| 日韩 欧美 亚洲 中文字幕| 一级作爱视频免费观看| 婷婷精品国产亚洲av| 日韩欧美三级三区| 夜夜夜夜夜久久久久| 岛国在线观看网站| 亚洲精品粉嫩美女一区| 亚洲人成伊人成综合网2020| 老汉色∧v一级毛片| 麻豆国产97在线/欧美| 色综合欧美亚洲国产小说| 欧美+日韩+精品| 精品国产三级普通话版| 十八禁人妻一区二区| 一进一出抽搐动态| 国产av在哪里看| 亚洲av成人不卡在线观看播放网| 亚洲精品一区av在线观看| 亚洲av美国av| 男女视频在线观看网站免费| 久久草成人影院| 可以在线观看毛片的网站| 国产精品98久久久久久宅男小说| 久久人人精品亚洲av| 国产成人福利小说| 真人一进一出gif抽搐免费| 欧美中文综合在线视频| 成人永久免费在线观看视频| 人人妻人人澡欧美一区二区| 国产欧美日韩精品亚洲av| 99久久无色码亚洲精品果冻| 成人亚洲精品av一区二区| 无限看片的www在线观看| 12—13女人毛片做爰片一| 国产欧美日韩一区二区三| 岛国在线免费视频观看| 99久久精品国产亚洲精品| 色综合婷婷激情| 亚洲激情在线av| e午夜精品久久久久久久| 国产视频一区二区在线看| 观看美女的网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 天堂av国产一区二区熟女人妻| 一级a爱片免费观看的视频| 欧美成狂野欧美在线观看| 九色国产91popny在线| 欧美中文日本在线观看视频| 一区二区三区免费毛片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美日本视频| 国产欧美日韩精品亚洲av| 亚洲av不卡在线观看| 日本成人三级电影网站| 国产真人三级小视频在线观看| 日本五十路高清| 少妇人妻精品综合一区二区 | 国产探花在线观看一区二区| 毛片女人毛片| 尤物成人国产欧美一区二区三区| 男女午夜视频在线观看| 欧美成人一区二区免费高清观看| 校园春色视频在线观看| 国产综合懂色| 成人av一区二区三区在线看| 在线观看午夜福利视频| 99热这里只有精品一区| 亚洲人成网站高清观看| 一边摸一边抽搐一进一小说| 人人妻,人人澡人人爽秒播| 夜夜看夜夜爽夜夜摸| 色在线成人网| 欧美bdsm另类| 国产蜜桃级精品一区二区三区| 国产精品一区二区三区四区久久| 午夜福利在线观看免费完整高清在 | 久9热在线精品视频| 精品日产1卡2卡| 99久久成人亚洲精品观看| 亚洲一区二区三区不卡视频| 欧美日本视频| 欧美最黄视频在线播放免费| 丁香六月欧美| 亚洲国产高清在线一区二区三| 变态另类成人亚洲欧美熟女| 夜夜看夜夜爽夜夜摸| 一区二区三区激情视频| 日本黄色视频三级网站网址| 午夜精品一区二区三区免费看| 免费av不卡在线播放| 国产高清视频在线播放一区| 9191精品国产免费久久| 蜜桃亚洲精品一区二区三区| 亚洲国产中文字幕在线视频| 少妇熟女aⅴ在线视频| 久久久久久国产a免费观看| 日本一二三区视频观看| 午夜精品在线福利| 天堂影院成人在线观看| 亚洲国产高清在线一区二区三| 久久精品国产亚洲av香蕉五月| 成人无遮挡网站| 日韩欧美在线乱码| av黄色大香蕉| 国产精品影院久久| 亚洲精品影视一区二区三区av| 亚洲人成网站高清观看| 亚洲av成人不卡在线观看播放网| 久久性视频一级片| 欧美乱色亚洲激情| 国产国拍精品亚洲av在线观看 | 99riav亚洲国产免费| 在线播放无遮挡| 男女下面进入的视频免费午夜| 欧美乱妇无乱码| 午夜激情欧美在线| 国产伦精品一区二区三区四那| 国产成人影院久久av| 丰满的人妻完整版| 超碰av人人做人人爽久久 | 狂野欧美白嫩少妇大欣赏| 久久草成人影院| 亚洲午夜理论影院| 在线观看66精品国产| 欧美日本亚洲视频在线播放| 久久精品影院6| 久久久久九九精品影院| 男女那种视频在线观看| 九九在线视频观看精品| 99精品欧美一区二区三区四区| 色精品久久人妻99蜜桃| 亚洲男人的天堂狠狠| 男女那种视频在线观看| 亚洲国产精品久久男人天堂| 一本精品99久久精品77| 婷婷亚洲欧美| 99久久久亚洲精品蜜臀av| 久久精品影院6| 国产成人av教育| 日日摸夜夜添夜夜添小说| 成人av一区二区三区在线看| 哪里可以看免费的av片| 午夜精品在线福利| 欧美高清成人免费视频www| 亚洲专区中文字幕在线| 少妇的逼好多水| 狂野欧美白嫩少妇大欣赏| 亚洲午夜理论影院| 日韩欧美精品v在线| 18禁美女被吸乳视频| 国产麻豆成人av免费视频| 亚洲精品乱码久久久v下载方式 | 在线观看av片永久免费下载| 中国美女看黄片| 韩国av一区二区三区四区| 亚洲无线在线观看| 最近最新中文字幕大全电影3| 国产伦精品一区二区三区视频9 | 亚洲国产精品久久男人天堂| 久久久成人免费电影| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看| 国产欧美日韩一区二区精品| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲av香蕉五月| 国产亚洲欧美98| 久久久久亚洲av毛片大全| 在线观看一区二区三区| 精品99又大又爽又粗少妇毛片 | 国内少妇人妻偷人精品xxx网站| 高清毛片免费观看视频网站| aaaaa片日本免费| 欧美不卡视频在线免费观看| 天天添夜夜摸| 欧美日本视频| 国产精品日韩av在线免费观看| 一级毛片女人18水好多| 国产久久久一区二区三区| 手机成人av网站| 亚洲人成网站在线播| 久久亚洲真实| www.www免费av| 黄片大片在线免费观看| 成人性生交大片免费视频hd| 国产成人欧美在线观看| 中文字幕精品亚洲无线码一区| 国产97色在线日韩免费| 亚洲人成网站在线播| 看免费av毛片| 少妇的逼水好多| 亚洲欧美日韩东京热| 欧美一区二区国产精品久久精品| 国产aⅴ精品一区二区三区波| 18禁国产床啪视频网站| 欧洲精品卡2卡3卡4卡5卡区| 国产免费av片在线观看野外av| 少妇的丰满在线观看| 婷婷精品国产亚洲av在线| 午夜免费激情av| 欧美乱色亚洲激情| 99国产精品一区二区蜜桃av| 国产精品亚洲美女久久久| 18禁美女被吸乳视频| 午夜免费男女啪啪视频观看 | 天天添夜夜摸| 成人欧美大片| a级毛片a级免费在线| 精品久久久久久久久久免费视频| 亚洲国产欧洲综合997久久,| 一本精品99久久精品77| 国产av不卡久久| 成人18禁在线播放| 色吧在线观看| 国产av一区在线观看免费| 热99在线观看视频| 亚洲av不卡在线观看| 欧美bdsm另类| 亚洲第一欧美日韩一区二区三区| 国产不卡一卡二| 夜夜夜夜夜久久久久| 午夜福利18| 少妇人妻精品综合一区二区 | 欧美日韩综合久久久久久 | 波野结衣二区三区在线 | 成熟少妇高潮喷水视频| 3wmmmm亚洲av在线观看| 欧美中文日本在线观看视频| 亚洲国产精品999在线| 亚洲一区高清亚洲精品| 好男人电影高清在线观看| 99riav亚洲国产免费| 三级国产精品欧美在线观看| www.www免费av| 我的老师免费观看完整版| 午夜福利在线观看吧| 亚洲国产高清在线一区二区三| 久久草成人影院| 亚洲人与动物交配视频| 啦啦啦观看免费观看视频高清| 丰满人妻熟妇乱又伦精品不卡| 亚洲午夜理论影院| 国产一区二区三区视频了| 丁香欧美五月| 国产91精品成人一区二区三区| 日韩亚洲欧美综合| 神马国产精品三级电影在线观看| 51国产日韩欧美| 99国产极品粉嫩在线观看| 中文字幕精品亚洲无线码一区| 亚洲成人精品中文字幕电影| 亚洲一区高清亚洲精品| 久久精品国产亚洲av香蕉五月| 欧美中文综合在线视频| 美女高潮喷水抽搐中文字幕| 天堂网av新在线| 欧美性猛交黑人性爽| 一区二区三区国产精品乱码| 午夜亚洲福利在线播放| 国产精品亚洲美女久久久| 啪啪无遮挡十八禁网站| h日本视频在线播放| 毛片女人毛片| 免费av不卡在线播放| 国产精华一区二区三区| 老熟妇乱子伦视频在线观看| 嫩草影院入口| 亚洲一区二区三区色噜噜| 久久性视频一级片| 97碰自拍视频| 夜夜夜夜夜久久久久| 一区福利在线观看| 法律面前人人平等表现在哪些方面| 丰满人妻一区二区三区视频av | 女警被强在线播放| 成人国产一区最新在线观看| 国产v大片淫在线免费观看| 欧美日本亚洲视频在线播放| svipshipincom国产片| 国产高清激情床上av| 亚洲欧美日韩高清在线视频| 国产成人福利小说| 成人永久免费在线观看视频| 制服丝袜大香蕉在线| 免费av不卡在线播放| 麻豆国产av国片精品| 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| 人人妻,人人澡人人爽秒播| 精品99又大又爽又粗少妇毛片 | 国产精品98久久久久久宅男小说| 日韩高清综合在线| 成年女人看的毛片在线观看| 嫩草影院精品99| 高潮久久久久久久久久久不卡| 国产精品久久电影中文字幕| 免费观看精品视频网站| 中出人妻视频一区二区| 国产亚洲精品av在线| 一a级毛片在线观看| 在线免费观看不下载黄p国产 | 99国产精品一区二区蜜桃av| 19禁男女啪啪无遮挡网站| 国产成人aa在线观看| 国产亚洲精品久久久久久毛片| 一区二区三区免费毛片| 日日摸夜夜添夜夜添小说| 欧美午夜高清在线| www.熟女人妻精品国产| 亚洲国产精品sss在线观看| 两人在一起打扑克的视频| 身体一侧抽搐| 最近最新免费中文字幕在线| 国产精品98久久久久久宅男小说| 亚洲av一区综合| 精品一区二区三区av网在线观看| 午夜免费观看网址| 久久精品国产99精品国产亚洲性色| 亚洲精品一区av在线观看| 国产淫片久久久久久久久 | 国产久久久一区二区三区| 日本五十路高清| 亚洲欧美激情综合另类| 男人舔奶头视频| 欧美国产日韩亚洲一区| 岛国视频午夜一区免费看| 特级一级黄色大片| 真人一进一出gif抽搐免费| 精品人妻偷拍中文字幕| 亚洲男人的天堂狠狠| 亚洲av美国av| 国产精品亚洲美女久久久| 99国产精品一区二区蜜桃av| 精品电影一区二区在线| 亚洲国产中文字幕在线视频| 五月玫瑰六月丁香| 成人高潮视频无遮挡免费网站| 欧美成人a在线观看| 成年女人看的毛片在线观看| 一级黄片播放器| 99国产极品粉嫩在线观看| 欧美极品一区二区三区四区| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| 久久午夜亚洲精品久久| 少妇丰满av| 亚洲av成人精品一区久久| 亚洲七黄色美女视频| 波野结衣二区三区在线 | 天堂影院成人在线观看| 亚洲av成人av| 18+在线观看网站| 狠狠狠狠99中文字幕| 欧美不卡视频在线免费观看| av视频在线观看入口| 老司机深夜福利视频在线观看| 99久久综合精品五月天人人| 嫩草影视91久久| 欧美日韩福利视频一区二区| 我的老师免费观看完整版| 免费搜索国产男女视频| 一个人看的www免费观看视频| 99riav亚洲国产免费| 夜夜看夜夜爽夜夜摸| 国产精品 国内视频| 国产亚洲精品综合一区在线观看| 国产一区二区在线观看日韩 | 国产美女午夜福利| 97人妻精品一区二区三区麻豆| 欧美成人免费av一区二区三区| 精品乱码久久久久久99久播| 国产av一区在线观看免费| 久久香蕉国产精品| 午夜日韩欧美国产| 性色av乱码一区二区三区2| 国产精品乱码一区二三区的特点| 桃红色精品国产亚洲av| 动漫黄色视频在线观看| 国产日本99.免费观看| 2021天堂中文幕一二区在线观| 熟女少妇亚洲综合色aaa.| 国产精品,欧美在线| 99久久99久久久精品蜜桃| 午夜亚洲福利在线播放| 在线天堂最新版资源| 欧美成狂野欧美在线观看| 亚洲真实伦在线观看| 成人鲁丝片一二三区免费| 高清日韩中文字幕在线| 怎么达到女性高潮| 观看美女的网站| 一个人看的www免费观看视频| av女优亚洲男人天堂| 日本五十路高清| 黄色丝袜av网址大全| 久久这里只有精品中国| 亚洲精品乱码久久久v下载方式 | 最新在线观看一区二区三区| 国产午夜精品久久久久久一区二区三区 | 精品久久久久久久久久久久久| 国产一区二区在线观看日韩 | 怎么达到女性高潮| 丰满的人妻完整版| 精品国内亚洲2022精品成人| 长腿黑丝高跟|