• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mercury indicating inflow zones and ruptures along the Wenchuan Ms 8.0 earthquake fault

    2015-10-29 05:20:20YangDuoxingZhangLeiLiuYaoweiRenHongweiXieFurenChenGangcai
    Acta Geochimica 2015年2期

    Yang Duoxing·Zhang Lei·Liu Yaowei· Ren Hongwei·Xie Furen·Chen Gangcai

    Mercury indicating inflow zones and ruptures along the Wenchuan Ms 8.0 earthquake fault

    Yang Duoxing·Zhang Lei·Liu Yaowei· Ren Hongwei·Xie Furen·Chen Gangcai

    During the Wenchuan Fault Scientific Drilling Project,we determined the values of total mercury(HgT)and gaseous elemental mercury(GEM)from drilled cores and drilling mud,respectively.Geochemical analysis shows HgT values ranging from 0.24 to 6.45 ng/g for the Penguan complex and from 2.90 to 137.54 ng/g for T3 sediment.The average levels of HgT for the Penguan complex and T3 sediments are 1.81±0.26 ng/g and 23.96±4.80 ng/g,respectively.Major anomalous peaks of HgT appear at depth of 614,731,993 and 1,107 m,which correspond to the long-term high seismic activity during crustal deformation in response to tectonic stresses.Gaseous elemental mercury dissolved in drilling mud was also analyzed.We found fluid inflow zones with high GEM at depths of 590—750 m,suggesting that fluid-filled ruptures exist in the LMS fault zone.It indicates that mercury provides geochemical evidence for inflow zones and ruptures/fault zones in the Wenchuan Ms 8.0 earthquake fault.

    Mercury·Rupture·Inflow zone· Geochemistry·Wenchuan 8.0 earthquake

    1 Introduction

    A catastrophic Ms 8.0 earthquake occurred on May 12,2008 along the Longmen Shan(LMS)fault(Fig.1),leading to a 300 km-long fault with the average slope of 65°(Li et al.2013).Seismic tomography(Yao et al.2008)suggested the intrusion of deep flows from the lower crust upwards to the LMS fault.In November 2008,the Wenchuan Fault Scientific Drilling Project(WFSD)was established to investigate the mechanism of the great Wenchuan earthquake.WFSD-1 borehole started shortly(178 days)after the main earthquake down to 1,201 mdepth(WFSD-1,as shown in Fig.1),and provided geochemical data for analyzing anomalous activities of fluids in the Wenchuan Ms 8.0 earthquake fault.Tang et al.(2014)have monitored the concentrations gaseous components(e.g.H2,CH4,He,and Rn)extracted from the drill mud.Noble gas analysis including helium isotope studies from Wenchuan drill mud gas samples were performed by Tang et al.(2014).They found that major anomalies of all components appear near the Wenchuan Ms 8.0 fault,which provide geochemical evidence for the intrusion of deep fluids.

    Geochemical studies found that gaseous elemental mercury(GEM),released from deep tectonic faults(Gregory and Durrance 1985)and driven by gradients of both pressure and temperature,migrates along fractures upward to the surface(Holub and Brady 1981;Zhang and Sanderson 1996).Mercury abundance anomalies accumulated within deep active faults,hot springs(White et al.1970)and volcanic centers(Nriagu and Becker 2003),and showed obvious anomalies near the LMS earthquake fault scarps(Zhou et al.2010).Zhang et al.(2014)found the anomalies of mercury isotope in the WFSD-1 borehole.Li et al.(2012)suggested that high mercury content in Chinais mainly distributed in the active structure background. Geological mercury is often associated with the boundaries of tectonic plates.Significant deposits are located in regions where plate subduction has occurred in combination with a degree of volcanic activity or hot springs.

    Y.Duoxing(?)·Z.Lei·L.Yaowei·R.Hongwei·X.Furen Key Laboratory of Crustal Dynamics,Institute of Crustal

    Dynamics,CEA,Beijing,China

    e-mail:yangdx@mail.iggcas.ac.cn

    Z.Lei

    Institute of Geophysics,CEA,Beijing,China

    C.Gangcai(?)

    Chongqing Academy of Environmental Sciences,Chongqing,China

    e-mail:chengangcai@sina.com

    Fig.1 The geographic location of major faults and the WFSD-1 borehole.Pt3 represents the Penguan complex,while T3 represents Xujiahe formation(the tertiary sediment).Fn and Fa denote the Yinxiu-Beichuan fault zone.PSZ indicates the principle slip zone.The depth of WFSD-1 is 1,201.0 m(after Zhang et al.2014)

    Erzinger et al.2004 monitored the concentrations of H2,CH4,He,and Rn from drilling mud to provide geochemical evidence for the intrusion of deep fluids from the upper mantle.Drilling mud gas monitoring studies from drilling through the San Andreas Fault at seismogenic depth(Wiersberg and Erzinger 2008)provide information on the permeability structure and architecture of an active fault zone and the role of deep fluid flow from the mantle.

    In the present study,we provide mercury geochemical evidences for the tectonic activities and fluid paths within the LMS fault zone.New geochemical data were presented,including total mercury(HgT)and the rare earth element europium(Eu)from drilled cores of the WFSD-1 borehole at depths of 17—1,201 m.Gaseous elemental mercury from the drilling mud was also investigated.The abundance characteristics of HgT and Eu were observed,and the correlation between geochemical components and inflow zones/fault zones was analyzed.Geochemical results suggest that total mercury and GEM are useful for attesting the long-term high seismic activity of the fault and the inflow zones.

    2 Analytical methodology

    Li et al.(2012)provided the average content of mercury(0.18 μg/Kg)of natural gas fields in Sichuan basin,but they could not monitor mercury background for different rocks.Here,mercury contents of drilled rocks and drilling mud are monitored from the WFSD-1 borehole.

    At the depth above 590 m,quartz monzonite,hornblende syenite,syenite,quartz syenite,syenite porphyry and alkali-feldspar granite are the major components of the Pt3 complex(as depicted in Fig.1).At the depth below 590 m,fault mud,fault breccia,and cataclasite are the major components of coal-bearing T3 sediments(Li et al. 2013).A total of 76 samples of drilled cores were collectedat depths of between 17 and 1,201 m.The fresh drilled core samples were prepared and crushed into powder(e.g.100-micron mesh powder for analyses of mercury and trace elements)toenhanceoverallreactivityunderthe monitoring conditions.Total mercury(HgT)was measured with the DMA-80 Direct Mercury Analyzer.Europium was detected using the inductively coupled plasma mass spectrometry(ICP—MS)method(DZ/T0223-2001)with a highresolution ICP—MS(Element I)instrument.We determined GEM in 114 drilling mud samples at depths of between 177 and 1,201 m.Gaseous elemental mercury was also monitored from drilling mud with the Direct Mercury Analyzer DMA-80.Total mercury,gaseous elemental mercury,Eu,Total organic carbon(TOC)and Baric(Ba)components were detected in the Analysis and Detection Center of the Beijing Research Institute of Uranium Geology.

    3 Results

    3.1Mercury characteristics of drilled cores

    Figure 2a demonstrates that the concentrations of HgT range from 0.24 to 6.45 ng/g for the Pt3 complex(depth of 17—590 m)and from 2.90 to 137.54 ng/g for the T3 formation(depths of 590—1,201 m).The average levels of HgT are 1.81±0.26 ng/g and 23.96±4.80 ng/g for the Pt3 complex and the T3 formation,respectively.The statistical results are summarized in Table 1.Major anomalous peaks of HgT appear at~614,731,993,and 1,107 m,respectively,primarily corresponding to the ruptures/fault zones discovered in the WFSD-1 borehole(Li et al.2013),and indicating the long-term high seismic activities of the LMS fault.Downhole Logging data(2014)and fault density statistic data(Li et al.2014)provides some evidences for long-term fault slip at these depths.HgT concentration peaks indicate that the T3 formation experienced big ruptures or strong earthquakes,and deep fluids enriched with mercury invaded into this formation.

    Figure 2b shows concentrations of Eu varying from 0.535to 2.21 ppmfor thePt3complex(depthof 17—590 m)and from 0.474 to 2.61 ppm for the T3 formation(depth of 590—1,201 m).The average levels of Eu are 1.232±0.075 ppm and 1.094±0.058 ppm for the Pt3 complex and the T3 formation,respectively.The common upper crustal abundance of Eu is 0.88 ppm(Taylor and McClennan 1985).Eu values were normalized by C1 chondrite(Sun and McDonough 1989).All samples have pronounced negative Eu anomalies,ranging from 0.027 to 0.151,with an average level of 0.067±0.002. The Eu anomaly in sedimentary rocks is usually interpreted as inherited from igneous source rocks.The negative Eu anomalies suggest that the upward migration of materials from the low-velocity zone can generate an enriched reservoir in the lower crust(Sun and McDonough 1989). Here,the latter mechanism should be dominant,as evidenced by lower crustal flow under the LSM fault(Clark and Royden 2000)and the intrusion of deep fluids into the LMS fault(Yao et al.2008).

    As shown in Fig.3,it is difficult to find the peaks of Eu/chondrite ratio with peaks corresponded to HgT.It indicated a relative small change of Eu and large change of HgT.However,the amounts of Eu/chondrite ratio reside above the critical value of 1,suggesting the historic intrusion of deep-seated fluids within the LMS fault zone.

    Fig.2 The abundance-depth profiles of HgT and Eu from the drilled rocks

    Table 1 Statistical analysis of HgT and Eu from the drilled rocks

    Fig.3 Depth profiles of europium and total mercury(HgT),and the ratio of europium(Eu)to chondrite.The black dotted lines denote an Eu/chondrite ratios of 1(critical value)and 10.The dotted light-gray line represents the Yinxiu-Beichuan(YB)fault.The gray and lightgray columns represent the Penguan complex and T3 sediment,respectively

    Figure 4 shows the depth-profile of concentrations of HgT,TOC and Ba.It found that a weak correlation is observed between Ba and HgT(R=0.21)for Penguan complex and(R=0.18)for T3 sediment.No significant correlation between Ba and HgT composition for drill cores is found,which partially implies that barite is not the primary source of HgT and any drilling mud contamination should be irrelevant.

    Fig.4 The abundance-depth profiles of HgT,TOC and Ba from the drilled rocks

    3.2Gaseous elemental mercury from drilling mud

    In order to present geochemical evidences for inflow zones along the LMS fault,GEM from the drilling mud was also detected for 114 drilling mud samples from 170 to 1,201 m-depth.Figure 5 illustrated the abundance of GEM in the drilling mud.At a depth of between 170 and 590 m,the concentrations vary from 0.01 to 1.50 ng/g,with a mean of 0.46±0.06 ng/g.From 590 to 750 m-depth,the concentrations range from 0.94 to 31.32 ng/g,with an average of 17.52±1.38 ng/g.At a depth of 750—1,201 m,the average level is 0.72±0.22 ng/g,with concentrations varying between 0.2 and 1.8 ng/g.The depth profile of GEM is characterized as a multiple peak distribution. Major anomalous peaks appear at 590—750 m-depth,corresponding to the principal slip zone(PSZ)and the Yingxiu-Beichuan fault gouge(Li et al.2014).This suggestion is also supported by research results,including heliumisotope from Wenchuan drill mud gas samples(Tang et al. 2014),which found that the mud gas such as methane and radon yielded low concentrations above the PSZ,whereas yielded high concentrations under the PSZ(Tang et al. 2014).Zhou et al.2010 observed mercury anomalies near the LMS earthquake fault scarps(Zhou et al.2010),which was associated with the variation in the regional stress field and aftershock activities(Ren et al.2012).Outside the depth of between 590 and 750 m,the distributions of GEM are similar,with some minor peaks observed.At a depth of between 590 and 750 m(-160 m side),it indicated that a dominant flow channel resides within the T3 formation(the sedimentary Xujiahe Formation),along which fluids enriched with GEM migrated upward and built up within the Yingxiu-Beichuan fault zone.Tang et al.(2014)have mentioned the measurements of other gaseous components extracted from the drill mud of the WFSD-1 borehole,e.g. radon,hydrogen and helium.Such data could provide valuable information on the fluid origin by carbon isotopes,noble gas isotopes and fluid migration by radon.

    Fig.5 Depth profile of gaseous elemental mercury from drilling mud.The olive line denotes the Yingxiu-Beichuan(YB)fault,while the box shaped with declined lines represents fractures or the inflow zones(predominant flow path).The red balls indicate gaseous elemental mercury

    Figure 6 shows that major anomalies of all components appear near the Wenchuan Ms 8.0 fault,which could shed new light on the contribution of deep(mantle-derived)fluids.Ren et al.(2012)also observed anomalous radon levelsassociatedwithseismicactivitiesalongthe Wenchuan fault.Some researches(Koval et al.2006)found a significant increase in mercury emissions from fault zones during catastrophic seismic events.We preliminarily suggest that GEM is the sensitive gas in the Yingxiu-Beichuan fault zone and can identify faults and inflow zones.Along with helium and radon,mercury of drilling mud can provide valuable information on the fluid origin and fluid migration.

    The depth interval of observed anomalous drilling mud mercury levels appear in well agreement with the depths from temperature anomalies(as shown in Fig.7),indicating the fault zone and inflow zones.

    4 Discussion

    It stated that the whole drilled core was used as sample material including the core rim,which was soaked with drilling mud,and that an artificial source of mercury(barium,TOC)could not be ruled out.We had not provided mercury content comparison between drilling mud samples in the drilling mud inlet and mud samples from the return line.If the comparison was made,and the data showed low contents of barium,mercury and TOC in the drilling mud inlet line and high contents of barium,mercury and TOC in the return line,the contamination problem should have been resolved.

    But the comparison found that a weak correlation is observed between Ba and HgT(R=0.21)from drill cores for Penguan complex and(R=0.18)for T3 sediment.No significant correlation between Ba and HgT composition for drill cores is found,which partially implies that barite is not the primary source of HgT and any drilling mud contamination should be irrelevant.

    The occurrence of the mercury isotopes in fault zones(Zhang et al.2014)provides important information on fluid flow and the permeability architecture of active faults,which enhanced concentrations of Hg in drilled core and drilling mud when intersecting the LMS fault at the seismogenic depth.The mud gas such as helium,hydrant and radon yielded low concentrations above the PSZ,whereas yielded high concentrations under the PSZ(Tang et al. 2014).The presence of radon is sometimes linked with mercury.Along with mercury,Helium isotope data could be helpful to shed new light on the contribution of deep fluids.The drilling mud gas data from Tang et al.(2014)have mentioned that fault gouge formed by the Wenchuan Ms 8.0 seismic slip was found in depths between 586 and 593 m depths in the borehole WSFD-1(Li et al.2014),but highest mercury concentration in the present study is observed in drilled core from 614 m depth.The Hg in drilling mud from the present study appears at somewhat shallower depth,in agreement with the depths from Tang et al.(2014).

    The relatively weak depth correlation between gaseous Hg from drilling mud and Hg from drilled core may be interpreted with fluid migration through a fracture zone that surrounds the fault core.Hg was added to the drilling mud by penetrating Hg-rich strata.From the point of the drilling engineering process,an explanation would be that the Hgloaded drilling mud returned back to the surface throughthe annulus between drill string and wall rock.At the surface,the gaseous components were detected.After one turnover of the drilling mud volume(mud tanks,pumpes,pipes),the drilling mud that still contained Hg was again pumped down the drill string,where it passed the freshly drilled core in the core liner.

    Fig.6 Concentrations of gaseous components extracted from the drilling mud(Data from Tang et al.2014)

    Major anomalous peaks of HgT from the drilled cores appear at depth of 614,731,993 and 1,107 m.Downhole Logging data and fault density statistic data(Li et al. 2014)provides some evidences for long-term fault slip at these depths.HgT concentration peaks indicate that the T3 formation(as shown in Fig.1)experienced many big ruptures or strong earthquakes,and that deep fluids enriched with mercury invaded into the T3 formation during long-term seismic activities,and contributed to the major anomaly peaks.From this point,HgT highlighted the tracer of the tectonic activities within the LMS fault.

    5 Summary

    The concentrations of total mercury(HgT)were determined for 76 samples from WFSD-1 borehole drilled cores. The depth concentration profiles are characterized by multiple peaks.Major anomalous peaks of HgT appear at 614,731,993,and 1,107 m,which correspond to ruptures/fault zones during crustal deformation in response to tectonic stresses.Gaseous elemental mercury dissolved in drilling mud was also analyzed.Higher concentrations of GEM were detected while drilling in the T3 formation. Major anomalous peaks appear at 586—750 m.We found the fluid inflow zones with high GEM at depths of 586—750 m,suggesting that inflow zones or fluid-filled fractured rock matrices reside in the LMS fault zone.It may suggest that mercury provides geochemical evidences for inflow zones and ruptures/fault zones in the Wenchuan Ms 8.0 earthquake fault.The presence of radon issometimes linked with mercury.Along with mercury,radon and Helium isotope data could be helpful to shed new light on the contribution of deep fluids.

    Fig.7 Temperature downhole logging from 500 to 800 m-depth(Data from Li et al.2014)

    AcknowledgmentsThis work is sponsored by the Wenchuan Fault Scientific Drilling Project(WFSD).Many thanks are also given the anonymous reviewers from Chinese Journal of Geochemistry and Applied Geochemistry for constructive suggestions which much improved the scientific interpretation of this manuscript.

    Clark MK,Royden LH(2000)Topographic ooze:building the eastern margin of Tibet by lower crustal flow.Geology 28:703—706

    Erzinger J,Wiersberg T,Dahms E(2004)Real-time mud gas logging during drilling of the SAFOD pilot hole in Parkfield,CA. Geophys Res Lett 31:L15S18.doi:10.1029/2003GL019395

    Gregory RG,Durrance EM (1985)Helium,carbon dioxide and oxygen soil gases:small-scale variations over fractured ground. J Geochem Expl 24(1):29—49

    Holub RF,Brady BT(1981)The effect of stress on radon emanation from rock.J Geophys Res 86:1776—1784

    Koval PV,Udodov YN,Sankov VA et al(2006)Geochemical activity of faults in the Baikal Rift Zone(Mercury,Radon,and Thoron). Geochemistry 409(3):389—393

    Li J,Han Z,Yan Q et al(2012)Genesis of mercury in natural gas of Chinese gas fields.Nat Gas Geosci 23(3):413—419

    Li H,Wang H,Xu Z et al(2013)Characteristics of the fault-related rocks,fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1(WFSD-1). Tectonophysics 584:23—42

    Li H,Xu Z,Niu Y,Kong G et al(2014)Structural and physical property characterization in the Wenchuan Earthquake Fault Scientific Drilling Project—Hole 1(WFSD-1).Tetonophysics 619—620:86—100

    Nriagu J,Becker C(2003)Volcanic emissions of mercury to the atmosphere:global and regional inventories.Sci Total Environ 304:3—12

    Ren H,Liu Y,Yang D(2012)A preliminary study of post-seismic effects of radon following the Ms 8.0 Wenchuan earthquake. Radiat Meas 47(1):82—88

    Sun S,McDonough W(1989)Chemical and isotopic systematics of oceanic basalts:implication of mantle composition and process. Geol Soc Lond Spec Publ 42:313—345

    Tang L,Luo L,Lao C,Wang G,Wang J,Huang Y(2014)Real time fluid analysis during drilling of the Wenchuan Earthquake Fault Scientific Drilling Project and its responding features.Tectonophysics 619—620:70—78

    Taylor S,McClennan S(1985)The continental crust:its composition and evolution.Blackwell Scientific Publications,Oxford

    White D,Hinkle M,Barnes I(1970)Mercury contents of natural thermal and mineral fluids.Mercury in the environment.US Geol Surv Prof Pap 713:25—28

    Wiersberg T,Erzinger J(2008)Chemical and isotope compositions of drilling mud gas from the San Andreas Fault Observatory at Depth(SAFOD)boreholes:implications on gas migration and the permeability structure of the San Andreas Fault.Chem Geol 1—2:148—159

    Yao H,Beghein C,van der Hilst R(2008)Surface wave array tomography in SE Tibet from ambient seismic noise and twostation analysis—II.Crustal and upper-mantle structure.Geophys J Int 173:205—219

    Zhang X,Sanderson DJ(1996)Numerical modelling of the effect of fault slip on fluid flow around extensional faults.J Struct Geol 18:109—119

    Zhang L,Liu Y,Guo L,Yang D,F(xiàn)ang Z,Chen T,Ren H,Yu B(2014)Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1(WFSD-1).Tectonophysics 619—620:79—85

    Zhou X,Du J,Chen Z et al(2010)Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake,southwestern China.Geochem Trans.doi:10.1186/1467-4866-11-5

    23 September 2014/Revised:11 December 2014/Accepted:16 December 2014/Published online:11 March 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    国产爽快片一区二区三区| 精品99又大又爽又粗少妇毛片| 天美传媒精品一区二区| 国产精品欧美亚洲77777| 国产成人91sexporn| 国产国语露脸激情在线看| 日韩在线高清观看一区二区三区| 亚洲国产成人一精品久久久| www日本在线高清视频| 咕卡用的链子| 午夜久久久在线观看| 一区二区av电影网| 久久精品亚洲av国产电影网| 国产有黄有色有爽视频| 久久99一区二区三区| 91精品三级在线观看| 九草在线视频观看| 亚洲成人av在线免费| 天堂中文最新版在线下载| 美女大奶头黄色视频| 国产精品偷伦视频观看了| 寂寞人妻少妇视频99o| 久久久久久久久久人人人人人人| 国产熟女欧美一区二区| 国产精品av久久久久免费| 精品人妻在线不人妻| 少妇的逼水好多| 久久久久久人人人人人| 亚洲欧美色中文字幕在线| 精品人妻在线不人妻| 看免费成人av毛片| 一级毛片黄色毛片免费观看视频| 日韩av不卡免费在线播放| 超色免费av| 大话2 男鬼变身卡| 免费人妻精品一区二区三区视频| 一级毛片 在线播放| 搡老乐熟女国产| 亚洲成人手机| 99久国产av精品国产电影| 最近手机中文字幕大全| 亚洲天堂av无毛| 亚洲欧洲日产国产| 少妇猛男粗大的猛烈进出视频| 亚洲欧美日韩另类电影网站| 亚洲av在线观看美女高潮| 国产日韩欧美在线精品| 久久久欧美国产精品| 日韩一区二区三区影片| 亚洲一区中文字幕在线| 午夜精品国产一区二区电影| 亚洲精品一二三| 日本91视频免费播放| 免费看不卡的av| 亚洲av日韩在线播放| 亚洲美女黄色视频免费看| 久久久久精品人妻al黑| 精品国产露脸久久av麻豆| 交换朋友夫妻互换小说| 这个男人来自地球电影免费观看 | 婷婷色综合www| 一边摸一边做爽爽视频免费| 亚洲国产欧美日韩在线播放| 国产在线一区二区三区精| 少妇的逼水好多| 在线天堂最新版资源| 2022亚洲国产成人精品| 在线观看免费日韩欧美大片| 国产极品粉嫩免费观看在线| 伦理电影免费视频| 9191精品国产免费久久| 国产亚洲一区二区精品| 亚洲人成网站在线观看播放| 国产女主播在线喷水免费视频网站| 国产一区二区在线观看av| 亚洲色图综合在线观看| 最近手机中文字幕大全| 青春草国产在线视频| 天天躁夜夜躁狠狠躁躁| 精品亚洲成国产av| 欧美黄色片欧美黄色片| 国产成人精品久久久久久| 五月伊人婷婷丁香| 欧美精品国产亚洲| 日日爽夜夜爽网站| 中文字幕av电影在线播放| 欧美日韩av久久| 老女人水多毛片| 成人亚洲精品一区在线观看| 国产av码专区亚洲av| 大香蕉久久成人网| 国产成人免费观看mmmm| 91在线精品国自产拍蜜月| 热re99久久国产66热| 久久99热这里只频精品6学生| 色视频在线一区二区三区| 欧美人与性动交α欧美软件| 激情视频va一区二区三区| 成年av动漫网址| 女人高潮潮喷娇喘18禁视频| 一区二区日韩欧美中文字幕| 国产白丝娇喘喷水9色精品| 男的添女的下面高潮视频| 视频区图区小说| 免费av中文字幕在线| 亚洲国产欧美网| 欧美成人午夜精品| 十八禁高潮呻吟视频| 热99久久久久精品小说推荐| 久久久久久久久久人人人人人人| 只有这里有精品99| 午夜激情久久久久久久| 男男h啪啪无遮挡| 欧美成人午夜免费资源| 纵有疾风起免费观看全集完整版| 成人影院久久| 妹子高潮喷水视频| 久久久久久人妻| 日韩视频在线欧美| 国产伦理片在线播放av一区| 欧美日韩一区二区视频在线观看视频在线| av福利片在线| 两个人看的免费小视频| 制服丝袜香蕉在线| 中文字幕人妻熟女乱码| 性色av一级| 黑人巨大精品欧美一区二区蜜桃| 高清黄色对白视频在线免费看| 国产激情久久老熟女| 亚洲五月色婷婷综合| 国产精品二区激情视频| 久久久久久伊人网av| 亚洲欧美清纯卡通| 18禁国产床啪视频网站| 亚洲国产av影院在线观看| 亚洲婷婷狠狠爱综合网| 国产午夜精品一二区理论片| 久久精品亚洲av国产电影网| 夜夜骑夜夜射夜夜干| 国产淫语在线视频| 婷婷色麻豆天堂久久| 男女国产视频网站| 日韩中文字幕欧美一区二区 | 亚洲综合精品二区| 亚洲精品久久成人aⅴ小说| 这个男人来自地球电影免费观看 | 18禁动态无遮挡网站| 亚洲成色77777| 在线观看三级黄色| 欧美亚洲日本最大视频资源| av.在线天堂| 国产视频首页在线观看| 国产日韩欧美亚洲二区| 最新的欧美精品一区二区| 久久久久久久精品精品| 波多野结衣av一区二区av| 久久99一区二区三区| 成人漫画全彩无遮挡| 午夜精品国产一区二区电影| 日韩av不卡免费在线播放| 黄片播放在线免费| 欧美成人午夜免费资源| 国产精品国产三级专区第一集| 久久精品久久精品一区二区三区| 久久狼人影院| 日本午夜av视频| 欧美日韩国产mv在线观看视频| 亚洲三级黄色毛片| av福利片在线| 97精品久久久久久久久久精品| 亚洲在久久综合| 99久久中文字幕三级久久日本| 丝袜脚勾引网站| 亚洲在久久综合| 99久久中文字幕三级久久日本| 97精品久久久久久久久久精品| 大香蕉久久网| 男女高潮啪啪啪动态图| 少妇人妻精品综合一区二区| 青春草视频在线免费观看| 亚洲经典国产精华液单| 五月伊人婷婷丁香| www.熟女人妻精品国产| 亚洲精品国产av成人精品| 欧美 日韩 精品 国产| 人妻一区二区av| 午夜日本视频在线| 国产精品免费大片| 亚洲四区av| 黑人巨大精品欧美一区二区蜜桃| 日韩,欧美,国产一区二区三区| 免费人妻精品一区二区三区视频| 激情五月婷婷亚洲| 日韩 亚洲 欧美在线| 成年女人在线观看亚洲视频| 一级片免费观看大全| 大片电影免费在线观看免费| 免费日韩欧美在线观看| a级片在线免费高清观看视频| 久久久久精品久久久久真实原创| 麻豆精品久久久久久蜜桃| 国产免费现黄频在线看| 激情五月婷婷亚洲| 国产日韩欧美在线精品| 日本wwww免费看| 国产 精品1| 欧美激情极品国产一区二区三区| 亚洲欧洲日产国产| 韩国精品一区二区三区| 这个男人来自地球电影免费观看 | 熟妇人妻不卡中文字幕| 两性夫妻黄色片| 一本久久精品| 在线精品无人区一区二区三| 色哟哟·www| 18禁动态无遮挡网站| 午夜福利网站1000一区二区三区| 国产1区2区3区精品| 日韩一区二区视频免费看| 五月伊人婷婷丁香| 欧美精品亚洲一区二区| 欧美激情极品国产一区二区三区| 亚洲国产精品一区三区| 男人添女人高潮全过程视频| 亚洲国产av影院在线观看| 侵犯人妻中文字幕一二三四区| 国产精品一区二区在线观看99| 国产视频首页在线观看| 男女无遮挡免费网站观看| 欧美bdsm另类| 免费看av在线观看网站| 精品人妻偷拍中文字幕| 婷婷色综合www| 久久精品国产亚洲av涩爱| 中文字幕色久视频| 自线自在国产av| 母亲3免费完整高清在线观看 | 精品少妇黑人巨大在线播放| 国产片内射在线| 在线观看人妻少妇| 免费在线观看黄色视频的| 五月天丁香电影| 赤兔流量卡办理| 精品久久久久久电影网| 国产日韩欧美视频二区| 满18在线观看网站| av国产久精品久网站免费入址| 久久久欧美国产精品| 最近最新中文字幕免费大全7| 久久精品久久久久久久性| 高清黄色对白视频在线免费看| 91精品国产国语对白视频| 久久这里有精品视频免费| 亚洲美女视频黄频| 999精品在线视频| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦视频在线资源免费观看| 一区福利在线观看| xxx大片免费视频| 女人被躁到高潮嗷嗷叫费观| 国产精品无大码| 国产熟女午夜一区二区三区| 最近的中文字幕免费完整| 夫妻性生交免费视频一级片| 国产一区二区 视频在线| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 国产精品一二三区在线看| 免费观看在线日韩| 久久午夜福利片| 青春草视频在线免费观看| 男人操女人黄网站| 热re99久久精品国产66热6| 久久人妻熟女aⅴ| 一区二区三区四区激情视频| 亚洲久久久国产精品| av网站在线播放免费| 免费黄网站久久成人精品| 亚洲一区二区三区欧美精品| 国产成人aa在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久精品国产综合久久久| 国产成人一区二区在线| 亚洲国产精品一区三区| 国产不卡av网站在线观看| 一本色道久久久久久精品综合| 欧美亚洲日本最大视频资源| 两性夫妻黄色片| 最近2019中文字幕mv第一页| 美女大奶头黄色视频| 夜夜骑夜夜射夜夜干| 伦理电影大哥的女人| av天堂久久9| 一级爰片在线观看| 亚洲av.av天堂| 国产成人欧美| 免费观看a级毛片全部| 国产精品99久久99久久久不卡 | 国产精品人妻久久久影院| 韩国高清视频一区二区三区| 亚洲精品视频女| 国产片特级美女逼逼视频| 亚洲人成77777在线视频| 观看美女的网站| 午夜免费男女啪啪视频观看| 欧美中文综合在线视频| 在线观看免费视频网站a站| 免费不卡的大黄色大毛片视频在线观看| 欧美成人精品欧美一级黄| 免费高清在线观看视频在线观看| 国产日韩欧美视频二区| 免费高清在线观看视频在线观看| 人妻系列 视频| 国产精品 国内视频| 99久国产av精品国产电影| 大陆偷拍与自拍| 国产成人a∨麻豆精品| 久久久久精品人妻al黑| 久久青草综合色| kizo精华| 精品第一国产精品| 亚洲精品一二三| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| av又黄又爽大尺度在线免费看| 久久精品国产亚洲av天美| 青草久久国产| 国产成人欧美| 少妇被粗大猛烈的视频| 国产精品蜜桃在线观看| 26uuu在线亚洲综合色| 蜜桃国产av成人99| 日本av免费视频播放| 国产乱来视频区| 精品福利永久在线观看| 国产黄色视频一区二区在线观看| 亚洲精品自拍成人| 国产老妇伦熟女老妇高清| 国产熟女欧美一区二区| 美国免费a级毛片| av有码第一页| 久久 成人 亚洲| 精品少妇黑人巨大在线播放| 亚洲 欧美一区二区三区| 久久av网站| 中文字幕色久视频| 美女视频免费永久观看网站| 国产一区二区激情短视频 | 欧美国产精品一级二级三级| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 日本av手机在线免费观看| 韩国精品一区二区三区| 91午夜精品亚洲一区二区三区| 国产精品久久久久久av不卡| 日韩在线高清观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 狂野欧美激情性bbbbbb| 日韩,欧美,国产一区二区三区| 精品午夜福利在线看| 欧美日韩亚洲高清精品| 交换朋友夫妻互换小说| 久久国产亚洲av麻豆专区| av视频免费观看在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久精品夜色国产| av有码第一页| 久久午夜综合久久蜜桃| av在线app专区| 中文欧美无线码| 免费日韩欧美在线观看| 成人免费观看视频高清| 日韩av免费高清视频| 老熟女久久久| 久久免费观看电影| 日韩免费高清中文字幕av| 国产男女内射视频| 久久久精品区二区三区| 黄频高清免费视频| 亚洲综合精品二区| 99re6热这里在线精品视频| 欧美国产精品一级二级三级| 欧美av亚洲av综合av国产av | 看非洲黑人一级黄片| 妹子高潮喷水视频| 国产黄色免费在线视频| 日本欧美国产在线视频| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产一区二区精华液| 亚洲国产欧美日韩在线播放| freevideosex欧美| 中文乱码字字幕精品一区二区三区| 香蕉丝袜av| 丰满少妇做爰视频| 国产一区二区三区综合在线观看| 国产高清国产精品国产三级| 精品一区二区三卡| 亚洲伊人久久精品综合| 九色亚洲精品在线播放| 久久鲁丝午夜福利片| 免费久久久久久久精品成人欧美视频| 久久久久久久国产电影| 日韩av不卡免费在线播放| 亚洲综合精品二区| 亚洲精品美女久久av网站| 男女高潮啪啪啪动态图| 久久久久久久亚洲中文字幕| 欧美bdsm另类| 国产亚洲一区二区精品| 亚洲av欧美aⅴ国产| av国产久精品久网站免费入址| 99国产精品免费福利视频| 亚洲欧洲日产国产| av在线老鸭窝| 日本色播在线视频| 侵犯人妻中文字幕一二三四区| 你懂的网址亚洲精品在线观看| 久久 成人 亚洲| 免费在线观看完整版高清| 国产成人精品婷婷| 欧美成人午夜免费资源| 午夜av观看不卡| 日韩 亚洲 欧美在线| 中文字幕另类日韩欧美亚洲嫩草| 国产免费视频播放在线视频| 免费大片黄手机在线观看| 亚洲婷婷狠狠爱综合网| 满18在线观看网站| 国产精品国产三级国产专区5o| 成人手机av| 国产精品久久久久久久久免| 久久久精品国产亚洲av高清涩受| 国产又爽黄色视频| 丝袜喷水一区| 97在线视频观看| 欧美老熟妇乱子伦牲交| 久久青草综合色| 免费高清在线观看日韩| 久久久久精品性色| 最新的欧美精品一区二区| 久热久热在线精品观看| 99久久中文字幕三级久久日本| 欧美97在线视频| 国产精品 欧美亚洲| 欧美+日韩+精品| 精品少妇内射三级| 午夜福利网站1000一区二区三区| 激情视频va一区二区三区| 99热国产这里只有精品6| 国产亚洲最大av| 免费看不卡的av| 我的亚洲天堂| 叶爱在线成人免费视频播放| 亚洲欧美精品综合一区二区三区 | 一区二区三区乱码不卡18| 精品国产露脸久久av麻豆| av女优亚洲男人天堂| 免费人妻精品一区二区三区视频| 日韩制服丝袜自拍偷拍| 中国三级夫妇交换| 两个人免费观看高清视频| 午夜免费鲁丝| 久久国产精品大桥未久av| 热99国产精品久久久久久7| 电影成人av| 国产一级毛片在线| 亚洲综合色惰| 亚洲人成网站在线观看播放| 国产1区2区3区精品| 日本-黄色视频高清免费观看| 少妇人妻精品综合一区二区| 免费在线观看黄色视频的| 男女午夜视频在线观看| 91久久精品国产一区二区三区| 亚洲在久久综合| 天天躁日日躁夜夜躁夜夜| 男女下面插进去视频免费观看| 久久人人爽人人片av| 69精品国产乱码久久久| 一级爰片在线观看| 久久综合国产亚洲精品| videosex国产| 欧美日韩精品网址| 久久精品国产自在天天线| videos熟女内射| 国产男女内射视频| 日韩,欧美,国产一区二区三区| 亚洲精品国产av成人精品| 日韩一本色道免费dvd| 晚上一个人看的免费电影| 日本vs欧美在线观看视频| 亚洲精品久久成人aⅴ小说| 校园人妻丝袜中文字幕| 精品国产露脸久久av麻豆| 97精品久久久久久久久久精品| 少妇被粗大猛烈的视频| 午夜影院在线不卡| 黄片播放在线免费| 精品国产乱码久久久久久男人| 水蜜桃什么品种好| 久久久久精品久久久久真实原创| 日韩电影二区| 最近中文字幕高清免费大全6| 99精国产麻豆久久婷婷| 亚洲欧美精品综合一区二区三区 | 在线免费观看不下载黄p国产| a级毛片在线看网站| 一级黄片播放器| 中文字幕亚洲精品专区| 日韩人妻精品一区2区三区| 国产精品熟女久久久久浪| 在线天堂最新版资源| 99九九在线精品视频| 免费高清在线观看日韩| 午夜老司机福利剧场| 人体艺术视频欧美日本| 色播在线永久视频| 久久国产精品大桥未久av| 99九九在线精品视频| 国产av码专区亚洲av| 亚洲欧美清纯卡通| 制服丝袜香蕉在线| 国产老妇伦熟女老妇高清| 天天操日日干夜夜撸| 亚洲欧美一区二区三区国产| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产专区5o| 久久99蜜桃精品久久| 国产精品一二三区在线看| 国产精品一国产av| 婷婷成人精品国产| 国产欧美日韩综合在线一区二区| 国产深夜福利视频在线观看| 日本vs欧美在线观看视频| 日韩欧美一区视频在线观看| 啦啦啦视频在线资源免费观看| 人成视频在线观看免费观看| 男人舔女人的私密视频| 激情五月婷婷亚洲| 国产av精品麻豆| 韩国高清视频一区二区三区| 少妇的丰满在线观看| 在线精品无人区一区二区三| 五月天丁香电影| 日韩中字成人| 久久久精品免费免费高清| 99久久综合免费| 最新的欧美精品一区二区| 男女午夜视频在线观看| 人人澡人人妻人| 大话2 男鬼变身卡| 亚洲精品国产av蜜桃| 国产男女内射视频| 国产精品一区二区在线观看99| 少妇熟女欧美另类| 久久久久久伊人网av| 人人妻人人爽人人添夜夜欢视频| 在现免费观看毛片| 最新中文字幕久久久久| 久久毛片免费看一区二区三区| 久久精品国产综合久久久| 国产黄频视频在线观看| 久久国产精品男人的天堂亚洲| 国精品久久久久久国模美| 一级片免费观看大全| 国产乱人偷精品视频| 久久综合国产亚洲精品| 亚洲一码二码三码区别大吗| 九九爱精品视频在线观看| 中文字幕最新亚洲高清| 狠狠婷婷综合久久久久久88av| 亚洲五月色婷婷综合| 中国三级夫妇交换| 在线天堂中文资源库| 国产黄色视频一区二区在线观看| 亚洲综合色惰| 91精品三级在线观看| av不卡在线播放| 一区在线观看完整版| 一区二区日韩欧美中文字幕| 欧美日韩国产mv在线观看视频| 街头女战士在线观看网站| 午夜影院在线不卡| 卡戴珊不雅视频在线播放| 男女啪啪激烈高潮av片| 在线观看人妻少妇| 亚洲色图综合在线观看| 母亲3免费完整高清在线观看 | 国产白丝娇喘喷水9色精品| a 毛片基地| av片东京热男人的天堂| 国产毛片在线视频| 热99国产精品久久久久久7| 又大又黄又爽视频免费| 18禁国产床啪视频网站| 老司机亚洲免费影院| 亚洲av成人精品一二三区| 亚洲视频免费观看视频| 日韩免费高清中文字幕av| 欧美日韩精品成人综合77777| 久久精品熟女亚洲av麻豆精品| videossex国产| 成人黄色视频免费在线看| 80岁老熟妇乱子伦牲交| 高清欧美精品videossex| 最新中文字幕久久久久| 亚洲,欧美精品.| a级毛片黄视频| av片东京热男人的天堂| 看免费成人av毛片| 韩国av在线不卡| 啦啦啦在线观看免费高清www| 夫妻性生交免费视频一级片| 老汉色∧v一级毛片| 欧美少妇被猛烈插入视频|