• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of pH on properties of Mn-Zn ferrites synthesized from low-grade manganese ore

    2015-10-29 05:20:22XieChaoXuLongjunYeYongjunLiXiangyangWangShuyun
    Acta Geochimica 2015年2期

    Xie Chao·Xu Longjun·Ye Yongjun· Li Xiangyang·Wang Shuyun

    Influence of pH on properties of Mn-Zn ferrites synthesized from low-grade manganese ore

    Xie Chao·Xu Longjun·Ye Yongjun· Li Xiangyang·Wang Shuyun

    Mn—Zn ferrite powders were produced from low-grade manganese ore(LMO)via the chemical coprecipitation method combined with the ceramic method,after the LMO was leached in sulfuric acid and the obtained solution was purified.The effect of the pH on the magnetic properties of Mn—Zn ferrite was investigated by the varying pH of the co-precipitation system.The crystal structure and phases of the samples were characterized by X-ray diffraction and infrared spectrum,respectively.The magnetic measurements were carried out on a vibrating sample magnetometer.The optimal sample was obtained with a saturation magnetization of 55.02 emu/g,a coercivityof8.20 Gandaremanentmagnetizationof 1.71 emu/g when pH is 7.5.

    Low-grade manganese ore·Co-precipitation· Mn—Zn ferrite·Magnetic properties

    1 Introduction

    Mn—Zn ferrites are important electronic ceramic materials employed extensively in transformers,sensors,choke coils,magnetic recording heads,noise filters,information storage systems,medical diagnostic devices and biomedical devices,due to their high magnetic permeability,saturation magnetization,dielectric resistivity and relatively low eddy current losses(Hu et al.2011;Rath et al.1999;Kosak et al. 2004).The crystalline structure of Mn—Zn ferrite is similar to that of magnesia-alumina spinel(MgAl2O4).It is a soft magnetic material with a spinel structure and belongs to the cubic lattice(space group Oh7—Fd3m),in which O2-accumulates as an fcc structure and exists in a two-part symmetrical structure that is a tetrahedron and octahedron in A sites and B sites,respectively.Each lattice cell of Mn—Zn ferrites has 64 A sites and 32 B sites.In a normal spinel structure,divalent cations only occupy the A site and trivalent cations only occupy the B site,while Fe3+occupies both the A site and the B site in Mn1-xZnxFe2O4.This indicates that it is a mixed type spinel(Du Youwei 1996). Much attention has been paid to the preparation of spinel ferrites,as they are considered a crucial piece of technology.Presently,there are many means of preparing Mn—Zn ferrite,such as the ceramic method,the co-precipitation method,the sol—gel method,the hydrothermal method,the self-propagation high-temperature synthesis(SHS),etc. Among these processes,the co-precipitation method has been widely applied in the preparation of Mn—Zn ferrite particles of high purity and ultrafine size,as the particles benefit from its simple technology and its products with a performance of narrow diameter distribution,high chemical purity,and good disperse.

    Spent battery(Xiao et al.2009;Guoxi and Maixi 2005),sulfates of analytical grade(Xuan et al.2007),nitrate(Wang et al.2014;Limin et al.2006)and hydrochloride(Cao et al.2010)have currently been applied in the preparation of Mn—Zn ferrites.However,there has been no report on the synthesis of Mn—Zn ferrites from low-grade manganese ore(LMO).Due to the backward-developed ore-dressing technology in China and the low utilization ratio of LMO,the rich manganese ores are preferred inexploitation while a great number of low-grade ones end up abandoned.This has led to the waste of valuable manganese resources and a series of environmental problems. Hence,taking LMO as the raw materials of Mn—Zn ferrites will not only maximize the use of manganese resources,will greatly benefit the environment.

    X.Chao·Y.Yongjun·L.Xiangyang·W.Shuyun

    School of Environmental Protection and Safety Engineering,University of South China,Hengyang 421001,China

    e-mail:cx_cqu118@aliyun.com

    X.Chao·X.Longjun(?)

    State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing 400044,China

    e-mail:xulj@cqu.edu.cn

    In this paper,Mn—Zn ferrite powders have been produced from LMO via the chemical co-precipitation method combined with the ceramic method,after leaching LMO in sulfuric acid and purifying the obtained solution.The aim is to study the effect of pH in co-precipitation systems on the properties of Mn—Zn ferrite powder.

    2 Experiments

    2.1Preparation of Mn—Zn ferrite

    The manganese ore samples were collected from Xiushan,Chongqin.The average composition is described in Table 1.

    After dealt in the grinder,the sample was put in a 250 ml three-necked flask.Then,sulfuric acid of 30%concentration was added with a liquid/solid ratio of three,heated at constant temperature with a water bath and stirred with a magnetic stirrer(180 r/min)at 85—90°C(Xie et al.2012). Themanganesesulfatesolutionwasobtainedaftertheslurry was filtrated with waste heat.Its pH was adjusted to 5.4 with a 10 mol/L sodium hydroxide solution at 50°C.Barium sulfidewasaddedtoremovePb2+andanyotherheavymetal ions,then appropriate amounts of sodium fluoride were added to remove Ca2+,Mg2+and other impurity ions(Peng etal.2008).Onehourlater,thesolutionwasfiltered.Inorder to prepare Mn0.27Zn0.23FeO2,the suitable amounts of analytically pure ferrous sulfate and zinc sulfate were added to the filtrate,in order to adjust the Fe and Zn concentrations. Then,the mixed metallic solution was added to the stirred autoclave to react with ammonium bicarbonate for 3 h and its pH was adjusted to 6.5—8.5 with aqua ammonia.The coprecipitated product was transferred to the flask and treated with natural aging for 12 h at room temperature.The precursorpowderwasobtainedaftertheprecipitatewasfiltered,washed and baked under 100°C for 24 h.

    During the preparation of the precursor with the coprecipitation method samples of different properties can be prepared by varying the pH of the solution.In this paper, five samples were prepared via adjusting the pH of the coprecipitated solution to 6.5,7.0,7.5,8.0 and 8.5,while other conditions were kept unchanged.The samples were marked as sample A,B,C,D and E accordingly,and their structure and magnetic properties were characterized respectively.

    2.2Characterizion of Mn—Zn ferrite

    The content of the element in the samples is measured by a X-ray energy dispersive spectrometer(EDS).The crystalline phase identification of the sample is examined by powder X-ray diffraction(XRD)(Bruker Advance D8)as well as infrared spectrum(IR).The saturation magnetization and coercivity of the samples are carried out on a vibrating sample magnetometer(VSM)(LDJ-9500).

    3 Results and discussions

    3.1Influence of pH on the content of element in sample

    The content of the element in the samples are measured by EDS.The results listed in Table 2 show that,when the pH is below 7.0,the zinc content increases with the pH;however when the pH is between 7.0 and 8.5,the zinc content decreases from 12.33 to 3.89%.Obviously,zinc content reaches a maximum value of 12.33%when the pH is 7.0,which almost is the same as the one in designed sample(Mn0.27Zn0.23FeO2).This indicates that a low pH value is needed for the precipitation of Zn2+in an NH4HCO3—NH3· H2OsystemandthatZn2+cancompletelyprecipitateatapH value of 7.0.When the pH increases(when higher than 7.0),the zinc reacts with the ammonia to form soluble Zn(NH3)2+,resulting in zinc loss in the sample.This agrees with the conclusion drawn by Junxi(2005)and Zhang et al.(2003).

    Table 2 Composition of zinc in samples(wt%)

    Table 1 Chemical composition of low-grade manganese ore(wt%)

    3.2 X-ray diffraction analysis of samples

    The XRD determination of the structures present in the samples A,B,C,D and E are carried out on a Bruker Advance D8 X-ray diffractometer with CuKα radiation(λ=0.154 nm)at 40 kV and 30 mA.The scan rate is 4°/min for values of 20°—70°.The XRD patterns for the asprepared samples are shown in Fig.1.It is thought that the mean crystallite size can be determined by the Scherrer formula,when it is less than 100 nm in theory of XRD.

    where d denotes mean crystallite diameter,λ X-ray wavelength,θ Bragg angle and β the half width of the relevant diffraction reflection.

    The grain size of the sample is estimated by the strongest peak 311 in the XRD pattern,and the lattice parameters are obtained by analyzing the XRD data of the sample with JADE 5 software.The results presented in Table 3 show that the lattice parameters a,b and c agree with the equation a=b=c,indicating that the prepared sample belongs to cubic lattice.In addition,grain size of the sample increases from 32.7 to 45.4 nm in an irregular manner.The mean crystallite size is 40 nm with the increase of pH,showing that the change of grain size is insignificant in a low pH range of 6.5—8.5.As shown in Fig.1,the position and relative intensity of the XRD peak agrees with Mn—Zn ferrite's standard pattern.No other impurity peak is detected,indicating that the prepared sample is spinel structure soft magnetic Mn—Zn ferrite.It is easy to conclude that single phase spinel structure soft magnetic Mn—Zn ferrite can be prepared by the chemical co-precipitation method,with a suitable pH range from 6.5 to 8.5,and,once leached in acid and purified,using LRO as raw material… And as presented in Fig.1,the product transforms completely and displays reproducibility well.

    Table 3 Crystal lattice parameter and grain size of different samples

    3.3FTIR spectrometric analysis of samples

    The FT-IR spectra of samples A,B,C,D and E are presented in Fig.2.As shown in Fig.2,a strong peak appears at 3,464.49 cm-1.This was caused by the stretching vibration of the hydroxyl ion,which resulted from a small amount of water,which had been absorbed from the air,in theproduction.Theabsorptionpeakappearingat 1,630 cm-1isattributedtothestretchingvibration between Zn and O.Also,the absorption peaks present around 1,415 and 1,064 cm-1result from the asymmetric and symmetric stretching vibrations of the carbonate ion,respectively.All IR patterns have an absorption peak of large strength and width at 550—570 cm-1,which is the intrinsic absorption peak of the spinel sublattice A site. However,the intrinsic absorption peak of the spinel sublattice B site appears around 410 cm-1(Hemeda et al. 2001).This indicates that all the prepared samples are spinel Mn—Zn ferrites,agreeing with the conclusion made in 3.2.

    Fig.1 XRD of Zn—Mn ferrite powder with different pH

    3.4Magnetic properties of samples

    The magnetic properties of the samples are carried out on a VSM,and the results are presented in Fig.3.The magnetichysteresis curve of the samples show hysteresis,indicating that the samples exhibit good ferromagnetic behavior.This tallies well with the magnetic properties of Zn—Mn ferrite. The related parameters of magnetism by VSM listed in Table 4 show that the coercivity of Zn—Mn ferrite powder first decreases and then increases with the increase of pH,reaching its minimum at a pH of 7.5.As mentioned in Sect.3.1,when at the stage of coprecipitation,the content of zinc in the samples first increases and then decreases with the increase of pH.Therefore,this was considered the main cause of that phenomenon.In fact,the coercivity of the magnetic material mainly depends on the material component and defect(impurity and stress).With a low enough zinc content it is easy to produce other phases that result in the increases of internal stress,and it leads,accordingly,to the increases of coercivity.

    Fig.2 IR patterns of different samples

    Fig.3 VSM patterns of Mn—Zn ferrite powder synthesized under different pH

    Table 4 Magnetic parameter of Mn—Zn ferrite powder synthesized under different pH

    There are two sub lattices of the A site and the B site in spinelMn—Znferrite(Wangetal.2006),andits antiparallel coupling net magnetic moment(M)can be described by the following equation,

    MB is the magnetic moment of the B lattice and MA is the magnetic moment of the A lattice.Zn2+is a nonmagnetic ion,and merely occupies the A site.Therefore,when the content of zinc is excessive,Zn2+occupies most of the Asite.Accordingly,the number of magnetic ion Fe3+is sharply reduced in the A site,resulting in the decrease of MA and a corresponding increase of M.This leads to the increase of coercivity required,outside the magnetic intensity,to get the magnetic moment reach zero.

    Based on a higher saturation magnetization,it is good for soft magnetic material to have a coercivity as small as possible.Therefore,the optimum product is sample C,as the magnetic properties of prepared Mn—Zn ferrite are best when the pH of co-precipitation system is adjusted to 7.5.

    However,manypapershavereportedthat,whenusingthe co-precipitation method,Mn—Zn ferrite exhibits the best magnetic properties(Li et al.2009)and the zinc ion precipitationisthemostcompletewhenthesolutionisatapHof 7.0 andNH4HCO3—NH3·H2Oisused asthe precipitant.This does not agree with the conclusion drawn by this paper. However,it can be properly explained,as a different ratio of metal ions made different zinc content of Mn—Zn ferrite when the zinc ions completely precipitated.Hence,the pH required to achieve the best magnetic properties was different.Namely,in this paper,the zinc ion ratio was too high at the designed stoichiometry ratio of the initial raw metal and more experiments are essential for further research.

    4 Conclusions

    Mn—Zn soft magnetic ferrite nanoparticles with a mean crystallite size of 40 nm were prepared by means of the coprecipitation method and using LMO as the raw materials,after sulfuric acid leaching and purifying the obtained solution.This isnotonlyafeasiblemethod for reusing LMO and atechnicalproposalfor reducing theproductioncostofMn—Znferrite,butalsohasapositiveimpactontheenvironment. The effect of the co-precipitation solution pH on the properties of Mn—Zn ferrite has been studied.The brief conclusions are as follows.Spinel structure soft magnetic Mn—Zn ferrite can be prepared by the chemical co-precipitation method with a suitable pH range from 6.5 to 8.5 and a suitable stoichiometric addition of sulphate and,after acid leachingandimpurityremoving,usingLROasrawmaterial. The zinc content of Zn—Mn ferrite powder simultaneously increased with the increase of pH when the pH was less than 7.0,and decreased with any further increase in pH.It reaches its maximum value 12.33%at a pH of 7.0,which almost is the same as the one in designed sample(Mn0.27Zn0.23FeO2).Its coercivity decreased with the increaseofpHwhenitwasbelow7.5,butincreasedwhenthe pHwashigherthan7.5.Asaresult,theoptimalsamplecould be obtained with a coercivity of 8.20 G,a saturation magnetization of 55.02 emu/g and a residual magnetization of 1.71 emu/g when pH was 7.5.The ratio of zinc in the designed sample is a little high,and in the future,further study is needed to obtain the best ratio.

    AcknowledgmentsThis study is financed by the Bureau of Land Resources and Housing Management of Chongqing(Scientific& Technologic Program in 2011),the Science and Technology Bureau of Hengyang(Scientific&Technologic Program in 2013)and the State Administration of Work Safety(Scientific&Technologic Program in 2013).The authors would like to thank Prof.LIU Chenglun for her technical assistance during the experiments.

    Cao X,Liu G,Wang Y et al(2010)Preparation of octahedral shaped Mn0.8Zn0.2Fe2O4ferrites via co-precipitation.J Alloy Compd 497(1-2):L9—L12

    Du Y(1996)Ferrite.Jiangsu Science and Technology Publishe,Nanjing(in Chinese)

    Guoxi Xi,Maixi Lu(2005)New development of synthesis of manganese—zinc ferrite materials.J Synth Cryst 34(1):166—167(in Chinese)

    Hemeda OM,Said MZ,Barakat MM(2001)Spectral and transport phenomena in Ni ferrite-substituted Gd2O3.J Magn Magn Mater 224(2):132—142

    Hu P,Pan D,Zhang S et al(2011)Mn—Zn soft magnetic ferrite nanoparticles synthesized from spent alkaline Zn—Mn batteries. J Alloy Compd 509(9):3991—3994

    Junxi Z(2005)The preparation of Mn—Zn ferrite precursor from waste cells by coprecipitation.J Shanghai Univ Electr Power 21(2):149—152(in Chinese)

    Kosak A,Makovec D,Znidarsic A et al(2004)Preparation of Mn-Zn ferritewithmicroemulsiontechnique.JEurCeramSoc 24(6):959—962

    Li X,Ren P,Zhang J et al(2009)Effect of synthesis condition of precursor on microstructure and properties of Mn—Zn Ferrite(Special Edition).J Synth Cryst 38:379—382(in Chinese)

    Limin D,Zhidong H,Yaoming Z et al(2006)Preparation and Sinterability of Mn—Zn ferrite powders by sol—gel method. J Rare Earths 24(1):54—56

    Peng C,Bai B,Chen Y(2008)Study on the preparation of Mn—Zn soft magnetic ferrite powders from waste Zn—Mn dry batteries. Waste Manag 28(2):326—332

    RathC,SahuKK,AnandSetal(1999)Preparationandcharacterization of nanosize Mn—Zn ferrite.J Magn Magn Mater 202(1):77—84

    Wang D,Yan X,Huang W et al(2006)Preparation of Mn—Zn ferrite powder by the method of coprecipitation and the research on its magnetic properties.J Build Mater 9(3):307—311(in Chinese)

    Wang W,Zang C,Jiao Q(2014)Synthesis,structure and electromagnetic properties of Mn—Zn ferrite by sol—gel combustion technique.J Magn Magn Mater 349:116—120

    Xiao L,Zhou T,Meng J(2009)Hydrothermal synthesis of Mn—Zn ferrites from spent alkaline Zn—Mn batteries.Particuology 7(6):491—495

    Xie C,Xu L,Peng T et al(2012)Leaching process and kinetics of manganese in low-grade manganese ore.Chin J Geochem 29(4):393—397

    XuanY,LiQ,YangG(2007)SynthesisandmagneticpropertiesofMn—Zn ferrite nanoparticles.J Magn Magn Mater 312(2):464—469

    Zhang B,Tang M,Yang S(2003)Thermodynamic analysis on removal of calcium and magnesium during preparation of Mn—Zn ferrite precursor by coprecipitation.Hydrometall China 22(4):200—203(in Chinese)

    23 February 2014/Revised:13 March 2014/Accepted:18 March 2014/Published online:10 February 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    一区二区三区免费毛片| 丁香欧美五月| 99久久九九国产精品国产免费| 欧美大码av| 99久久成人亚洲精品观看| 最近最新中文字幕大全电影3| 国产成人av激情在线播放| 国产激情欧美一区二区| 中文在线观看免费www的网站| 免费观看精品视频网站| 尤物成人国产欧美一区二区三区| 色av中文字幕| 成年免费大片在线观看| 一进一出抽搐动态| 在线观看日韩欧美| 夜夜爽天天搞| 欧美zozozo另类| 两个人视频免费观看高清| 欧美成人一区二区免费高清观看| 超碰av人人做人人爽久久 | 久久久久久久久大av| 哪里可以看免费的av片| 男女做爰动态图高潮gif福利片| 18禁黄网站禁片免费观看直播| 日本五十路高清| 亚洲精品亚洲一区二区| 国产三级在线视频| 国产一区在线观看成人免费| 91久久精品电影网| 久久精品国产亚洲av涩爱 | 亚洲精华国产精华精| 久久午夜亚洲精品久久| 在线观看日韩欧美| 18禁黄网站禁片午夜丰满| 1024手机看黄色片| 久久午夜亚洲精品久久| 男人和女人高潮做爰伦理| 亚洲精品久久国产高清桃花| 最近最新中文字幕大全免费视频| 俄罗斯特黄特色一大片| 国产精品女同一区二区软件 | 又紧又爽又黄一区二区| 亚洲成人免费电影在线观看| 成人特级黄色片久久久久久久| 亚洲中文字幕一区二区三区有码在线看| 老汉色∧v一级毛片| 国产亚洲精品久久久久久毛片| 日韩精品中文字幕看吧| 亚洲欧美精品综合久久99| 丰满的人妻完整版| 日本 av在线| www日本黄色视频网| 黄色女人牲交| 最后的刺客免费高清国语| 在线观看美女被高潮喷水网站 | 色在线成人网| 一级a爱片免费观看的视频| 18禁黄网站禁片免费观看直播| 国产爱豆传媒在线观看| 亚洲国产精品999在线| 国产真人三级小视频在线观看| 亚洲乱码一区二区免费版| 欧美乱码精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 在线免费观看不下载黄p国产 | 一卡2卡三卡四卡精品乱码亚洲| 久9热在线精品视频| 亚洲欧美一区二区三区黑人| 日本精品一区二区三区蜜桃| 国产不卡一卡二| 亚洲专区中文字幕在线| 三级男女做爰猛烈吃奶摸视频| 午夜两性在线视频| 国产午夜福利久久久久久| 日韩欧美国产一区二区入口| 国产精品,欧美在线| 国产91精品成人一区二区三区| 最新中文字幕久久久久| 欧美一区二区精品小视频在线| 国产精品1区2区在线观看.| 看黄色毛片网站| 国产精品一区二区免费欧美| aaaaa片日本免费| 国产淫片久久久久久久久 | 精品一区二区三区视频在线观看免费| 在线国产一区二区在线| 国内精品久久久久精免费| 婷婷丁香在线五月| 免费在线观看成人毛片| 99riav亚洲国产免费| 听说在线观看完整版免费高清| 丰满人妻一区二区三区视频av | 日本精品一区二区三区蜜桃| 午夜a级毛片| 日韩欧美精品v在线| 国产乱人视频| 欧美日韩黄片免| 手机成人av网站| 欧美日本视频| 国产精品电影一区二区三区| 亚洲天堂国产精品一区在线| 女人被狂操c到高潮| 男人和女人高潮做爰伦理| 国产精品久久视频播放| 亚洲av电影在线进入| 高清日韩中文字幕在线| 精品人妻1区二区| 婷婷精品国产亚洲av在线| 久久久久久人人人人人| 欧美日韩黄片免| 变态另类成人亚洲欧美熟女| 国产黄片美女视频| 久久精品亚洲精品国产色婷小说| 全区人妻精品视频| 色噜噜av男人的天堂激情| 精品久久久久久久毛片微露脸| 在线观看美女被高潮喷水网站 | 在线视频色国产色| 婷婷精品国产亚洲av在线| 色在线成人网| av天堂在线播放| 一级a爱片免费观看的视频| 精品一区二区三区视频在线观看免费| 不卡一级毛片| 岛国在线观看网站| 麻豆成人av在线观看| 欧美日本亚洲视频在线播放| 久久久久久久午夜电影| 国产精品久久视频播放| 在线看三级毛片| 午夜视频国产福利| 日韩中文字幕欧美一区二区| 国产不卡一卡二| 观看美女的网站| 99精品久久久久人妻精品| 美女高潮的动态| xxx96com| 久久久久国产精品人妻aⅴ院| 亚洲中文字幕日韩| 好看av亚洲va欧美ⅴa在| 一本久久中文字幕| 黄片小视频在线播放| 最好的美女福利视频网| 国产精品久久久人人做人人爽| 久久久精品欧美日韩精品| 久久久久九九精品影院| 欧美大码av| 精品久久久久久久久久免费视频| 18+在线观看网站| 99视频精品全部免费 在线| 国产一区二区在线观看日韩 | 欧美又色又爽又黄视频| 午夜福利在线观看免费完整高清在 | 国产老妇女一区| 亚洲国产精品久久男人天堂| 麻豆成人午夜福利视频| 天天添夜夜摸| 欧美一区二区国产精品久久精品| 日本与韩国留学比较| 亚洲无线观看免费| 日韩欧美在线二视频| 法律面前人人平等表现在哪些方面| 精品99又大又爽又粗少妇毛片 | 日韩免费av在线播放| 亚洲 欧美 日韩 在线 免费| 男女午夜视频在线观看| 亚洲国产精品999在线| 中文字幕人妻丝袜一区二区| 欧美成人a在线观看| 男人和女人高潮做爰伦理| 国产中年淑女户外野战色| 一卡2卡三卡四卡精品乱码亚洲| 日日摸夜夜添夜夜添小说| 丁香六月欧美| 欧美乱色亚洲激情| 国产探花极品一区二区| 欧美成人免费av一区二区三区| 亚洲欧美激情综合另类| 无人区码免费观看不卡| 日韩有码中文字幕| 午夜免费激情av| 久久精品91无色码中文字幕| 国产高清有码在线观看视频| 中文字幕熟女人妻在线| 久久久久久大精品| АⅤ资源中文在线天堂| 五月玫瑰六月丁香| 丰满人妻一区二区三区视频av | 精品国产美女av久久久久小说| 精华霜和精华液先用哪个| 精品人妻1区二区| 日韩人妻高清精品专区| 亚洲精品在线美女| 日本成人三级电影网站| 欧美日韩综合久久久久久 | 久久香蕉精品热| 伊人久久精品亚洲午夜| 天堂av国产一区二区熟女人妻| 日日摸夜夜添夜夜添小说| 亚洲人成网站高清观看| 欧美日韩国产亚洲二区| aaaaa片日本免费| 日本 欧美在线| 国产三级黄色录像| 久久久久久久久久黄片| 在线观看一区二区三区| 国产欧美日韩精品亚洲av| 黄色视频,在线免费观看| 在线观看日韩欧美| 国内精品久久久久精免费| 欧美极品一区二区三区四区| 免费看日本二区| 亚洲一区高清亚洲精品| 国产69精品久久久久777片| 国产精品永久免费网站| 中文资源天堂在线| 欧美日韩黄片免| 国产三级中文精品| 欧美av亚洲av综合av国产av| 99精品欧美一区二区三区四区| 99在线人妻在线中文字幕| 19禁男女啪啪无遮挡网站| 免费搜索国产男女视频| 国产成人aa在线观看| 精品久久久久久成人av| 99热这里只有是精品50| 精品久久久久久久久久久久久| 亚洲午夜理论影院| 最好的美女福利视频网| 90打野战视频偷拍视频| 俺也久久电影网| 两人在一起打扑克的视频| 久久久久免费精品人妻一区二区| 亚洲 欧美 日韩 在线 免费| www.色视频.com| 日本免费a在线| 成年女人毛片免费观看观看9| 最新美女视频免费是黄的| 九色国产91popny在线| 黄色丝袜av网址大全| 免费人成在线观看视频色| 99视频精品全部免费 在线| 国产精品久久久人人做人人爽| 国产黄a三级三级三级人| 乱人视频在线观看| 久久九九热精品免费| 校园春色视频在线观看| 人妻久久中文字幕网| 天堂影院成人在线观看| 在线十欧美十亚洲十日本专区| 亚洲成人精品中文字幕电影| 亚洲av免费在线观看| 99在线视频只有这里精品首页| 看黄色毛片网站| 1000部很黄的大片| 亚洲内射少妇av| 国产精品嫩草影院av在线观看 | 亚洲国产精品久久男人天堂| 日韩欧美国产在线观看| 国产亚洲精品av在线| 变态另类成人亚洲欧美熟女| 免费看a级黄色片| 日本 av在线| 国产一区二区激情短视频| 男人和女人高潮做爰伦理| 国产成人av激情在线播放| 91久久精品电影网| 国产国拍精品亚洲av在线观看 | 国产69精品久久久久777片| 免费观看精品视频网站| 午夜免费男女啪啪视频观看 | 99久久久亚洲精品蜜臀av| 精品电影一区二区在线| 91久久精品电影网| 一a级毛片在线观看| 国产一区二区三区在线臀色熟女| 欧美黑人巨大hd| 国内精品久久久久久久电影| 久久人妻av系列| 在线播放无遮挡| 又粗又爽又猛毛片免费看| 精品久久久久久久毛片微露脸| 女警被强在线播放| 99久久成人亚洲精品观看| 中文资源天堂在线| 日韩欧美国产一区二区入口| АⅤ资源中文在线天堂| 毛片女人毛片| 精品久久久久久久久久久久久| 12—13女人毛片做爰片一| 国产蜜桃级精品一区二区三区| 国产精品精品国产色婷婷| 日韩欧美精品免费久久 | 男女床上黄色一级片免费看| 成人特级av手机在线观看| 久久6这里有精品| 桃红色精品国产亚洲av| 亚洲人成电影免费在线| 女人被狂操c到高潮| 黑人欧美特级aaaaaa片| 亚洲无线观看免费| 精品国产超薄肉色丝袜足j| 亚洲国产精品sss在线观看| 亚洲av美国av| 亚洲av第一区精品v没综合| 一本一本综合久久| 蜜桃亚洲精品一区二区三区| 久久久精品大字幕| www日本在线高清视频| 国产爱豆传媒在线观看| 男女做爰动态图高潮gif福利片| 国产亚洲欧美在线一区二区| 老鸭窝网址在线观看| 国内精品久久久久久久电影| 国产又黄又爽又无遮挡在线| 久久精品亚洲精品国产色婷小说| 999久久久精品免费观看国产| 18禁黄网站禁片免费观看直播| 国产黄a三级三级三级人| 精品久久久久久久末码| 桃色一区二区三区在线观看| 欧美一级a爱片免费观看看| 国产精品国产高清国产av| 久久久久久九九精品二区国产| 男女做爰动态图高潮gif福利片| 久久久精品欧美日韩精品| 非洲黑人性xxxx精品又粗又长| 中文在线观看免费www的网站| 少妇高潮的动态图| 男女午夜视频在线观看| а√天堂www在线а√下载| 欧美极品一区二区三区四区| 天天一区二区日本电影三级| 日本 av在线| 毛片女人毛片| 成人精品一区二区免费| 亚洲成人精品中文字幕电影| 欧美zozozo另类| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品欧美国产一区二区三| 免费一级毛片在线播放高清视频| 午夜免费成人在线视频| 亚洲欧美日韩卡通动漫| 亚洲不卡免费看| 99视频精品全部免费 在线| 深夜精品福利| 亚洲成av人片免费观看| 亚洲一区二区三区不卡视频| 日韩成人在线观看一区二区三区| 偷拍熟女少妇极品色| 成熟少妇高潮喷水视频| 国产乱人伦免费视频| 国产不卡一卡二| 99riav亚洲国产免费| 亚洲欧美日韩高清在线视频| 日韩精品青青久久久久久| 亚洲av免费在线观看| 国产淫片久久久久久久久 | 国产日本99.免费观看| 黄色日韩在线| 国产精品免费一区二区三区在线| 嫁个100分男人电影在线观看| 高潮久久久久久久久久久不卡| 久久精品人妻少妇| 国产精品日韩av在线免费观看| 在线看三级毛片| 老熟妇乱子伦视频在线观看| 国产一区二区亚洲精品在线观看| 欧美3d第一页| 动漫黄色视频在线观看| 久久久久久大精品| 精品日产1卡2卡| 欧美日韩综合久久久久久 | 欧美成人性av电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区国产一区二区| 亚洲av美国av| bbb黄色大片| 少妇熟女aⅴ在线视频| 少妇人妻一区二区三区视频| 性色avwww在线观看| 天堂网av新在线| 日本与韩国留学比较| 成人午夜高清在线视频| 中文字幕人妻熟人妻熟丝袜美 | 欧美色视频一区免费| 99国产精品一区二区三区| 亚洲av成人av| 法律面前人人平等表现在哪些方面| 亚洲一区二区三区色噜噜| 免费看美女性在线毛片视频| 久久伊人香网站| 国产精品久久久久久久电影 | 校园春色视频在线观看| 99久久九九国产精品国产免费| 亚洲内射少妇av| av黄色大香蕉| 亚洲精品日韩av片在线观看 | 人妻丰满熟妇av一区二区三区| 亚洲av成人不卡在线观看播放网| 日本a在线网址| 一本精品99久久精品77| av中文乱码字幕在线| a在线观看视频网站| 国产av麻豆久久久久久久| 色综合亚洲欧美另类图片| 一进一出抽搐动态| 小说图片视频综合网站| 有码 亚洲区| 日韩亚洲欧美综合| 国产激情欧美一区二区| 久久欧美精品欧美久久欧美| 亚洲av熟女| 成人亚洲精品av一区二区| 在线观看66精品国产| 91麻豆精品激情在线观看国产| 别揉我奶头~嗯~啊~动态视频| 麻豆一二三区av精品| eeuss影院久久| 亚洲最大成人手机在线| 中文字幕高清在线视频| 男人舔女人下体高潮全视频| 日本一二三区视频观看| 亚洲午夜理论影院| 日韩欧美一区二区三区在线观看| 亚洲人成电影免费在线| 色老头精品视频在线观看| 亚洲av免费在线观看| 99久久精品国产亚洲精品| 国产精品98久久久久久宅男小说| 19禁男女啪啪无遮挡网站| 99久久综合精品五月天人人| 国产午夜福利久久久久久| 俄罗斯特黄特色一大片| 国内久久婷婷六月综合欲色啪| 12—13女人毛片做爰片一| or卡值多少钱| 成熟少妇高潮喷水视频| 久久久久久九九精品二区国产| 亚洲av熟女| 脱女人内裤的视频| 亚洲成人中文字幕在线播放| 亚洲自拍偷在线| 久久九九热精品免费| 日本熟妇午夜| 露出奶头的视频| 真实男女啪啪啪动态图| 国产一区二区在线观看日韩 | 久久久久国内视频| 亚洲av中文字字幕乱码综合| 男人舔女人下体高潮全视频| 真人一进一出gif抽搐免费| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产亚洲av香蕉五月| 1024手机看黄色片| 欧美绝顶高潮抽搐喷水| 97超视频在线观看视频| 国内精品久久久久久久电影| 黄色成人免费大全| 国产亚洲欧美在线一区二区| 亚洲avbb在线观看| 国产午夜福利久久久久久| 欧美一区二区亚洲| 亚洲av成人精品一区久久| www日本黄色视频网| 国产真实乱freesex| 亚洲av二区三区四区| 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播| 全区人妻精品视频| 叶爱在线成人免费视频播放| 日本在线视频免费播放| 久久精品人妻少妇| 免费人成视频x8x8入口观看| 国产在视频线在精品| 波多野结衣高清无吗| 一区二区三区免费毛片| 18+在线观看网站| 他把我摸到了高潮在线观看| 最新在线观看一区二区三区| 在线a可以看的网站| 久久久久久久午夜电影| 日韩欧美在线二视频| 嫩草影视91久久| 欧美日韩一级在线毛片| 身体一侧抽搐| 午夜福利在线观看吧| 国产亚洲精品一区二区www| 亚洲精品色激情综合| 婷婷丁香在线五月| 中文字幕av成人在线电影| 亚洲国产精品成人综合色| 久久精品国产亚洲av涩爱 | 亚洲午夜理论影院| 亚洲精品色激情综合| 最新在线观看一区二区三区| 久久香蕉精品热| 在线观看午夜福利视频| 免费看光身美女| 琪琪午夜伦伦电影理论片6080| 九色国产91popny在线| 一a级毛片在线观看| 很黄的视频免费| av在线蜜桃| 国产精品久久视频播放| 特级一级黄色大片| 丰满乱子伦码专区| 啦啦啦观看免费观看视频高清| 精品国产三级普通话版| 亚洲一区高清亚洲精品| 神马国产精品三级电影在线观看| 老司机午夜十八禁免费视频| 久久久久久九九精品二区国产| 青草久久国产| 小说图片视频综合网站| 免费搜索国产男女视频| 国产探花极品一区二区| 国产一区二区三区在线臀色熟女| 精品久久久久久久久久免费视频| 久久久成人免费电影| 成熟少妇高潮喷水视频| 国产一区二区在线观看日韩 | 搡老熟女国产l中国老女人| 俄罗斯特黄特色一大片| 18+在线观看网站| 国产精品爽爽va在线观看网站| 亚洲成av人片在线播放无| 偷拍熟女少妇极品色| 少妇熟女aⅴ在线视频| 亚洲aⅴ乱码一区二区在线播放| 老熟妇乱子伦视频在线观看| 免费搜索国产男女视频| 日韩精品中文字幕看吧| 日日干狠狠操夜夜爽| 成人高潮视频无遮挡免费网站| 狠狠狠狠99中文字幕| 99国产精品一区二区三区| 观看美女的网站| 国产精品乱码一区二三区的特点| а√天堂www在线а√下载| 成人高潮视频无遮挡免费网站| 69人妻影院| 99久久九九国产精品国产免费| 亚洲国产精品成人综合色| 老熟妇乱子伦视频在线观看| 男女视频在线观看网站免费| 日韩精品中文字幕看吧| 最近最新中文字幕大全免费视频| 香蕉久久夜色| 国内毛片毛片毛片毛片毛片| 欧美乱码精品一区二区三区| 51午夜福利影视在线观看| 国内精品一区二区在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产毛片a区久久久久| 女人十人毛片免费观看3o分钟| 国产伦一二天堂av在线观看| 亚洲熟妇熟女久久| 久久久精品大字幕| 免费高清视频大片| 日日摸夜夜添夜夜添小说| 亚洲18禁久久av| 国产色爽女视频免费观看| 黄片小视频在线播放| 国产精品一区二区免费欧美| 亚洲av成人av| 免费在线观看日本一区| 88av欧美| 亚洲人成网站高清观看| 99热只有精品国产| 亚洲不卡免费看| 精华霜和精华液先用哪个| x7x7x7水蜜桃| 我的老师免费观看完整版| 国模一区二区三区四区视频| 亚洲最大成人中文| 久久6这里有精品| 欧美不卡视频在线免费观看| 精品免费久久久久久久清纯| 亚洲va日本ⅴa欧美va伊人久久| 在线观看美女被高潮喷水网站 | 18禁黄网站禁片午夜丰满| 国产av在哪里看| 欧美中文日本在线观看视频| 国产不卡一卡二| 国产综合懂色| 亚洲,欧美精品.| 久久久精品大字幕| 长腿黑丝高跟| 成人欧美大片| 舔av片在线| 又黄又粗又硬又大视频| 欧美日韩乱码在线| 亚洲va日本ⅴa欧美va伊人久久| 一夜夜www| 伊人久久精品亚洲午夜| 精品久久久久久久末码| 午夜两性在线视频| 日韩有码中文字幕| 在线视频色国产色| 国产成人啪精品午夜网站| 他把我摸到了高潮在线观看| 国产 一区 欧美 日韩| 久久久久久久久大av| 久久人妻av系列| 他把我摸到了高潮在线观看| 亚洲不卡免费看| 老汉色av国产亚洲站长工具| 中文字幕高清在线视频| 欧美一区二区亚洲| 欧美精品啪啪一区二区三区| 老鸭窝网址在线观看| 精品不卡国产一区二区三区| 性色avwww在线观看| 亚洲中文字幕一区二区三区有码在线看|