• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influences of Tibetan Plateau uplift on provenance evolution of the paleo-Pearl River

    2015-10-29 05:20:20YeYuChangminZhangShaohuaLiRuiZhuJiangyanLiuChenggangQinZhongtaoZhang
    Acta Geochimica 2015年2期

    Ye Yu·Changmin Zhang·Shaohua Li· Rui Zhu·Jiangyan Liu·Chenggang Qin· Zhongtao Zhang

    Influences of Tibetan Plateau uplift on provenance evolution of the paleo-Pearl River

    Ye Yu·Changmin Zhang·Shaohua Li· Rui Zhu·Jiangyan Liu·Chenggang Qin· Zhongtao Zhang

    A comparative analysis of the geochemical characteristics of sediments from the Oligocene Zhuhai Formation(32—23.8 Ma),the Miocene Zhujiang Formation(23.8—16.5 Ma),andtheHanjiangFormation (16.5—10.5 Ma)and a comprehensive analysis of the geochemical characteristics of rocks surrounding the paleo-Pearl River drainage contribute to understanding the influences of the Tibetan Plateau uplift on provenance evolution of the paleo-Pearl River.The results show that the geochemical characteristics of sediments from the Oligocene Zhuhai Formation are very different from the geochemical characteristics of sediments from the Miocene Zhujiang and Hanjiang Formations.The∑rare earth elements(REE)of mudstone is relatively high in the Zhuhai Formation,204.07—293.88 ppm(average 240.46 ppm),and low in the Zhujiang and Hanjiang Formations,181.32—236.73 ppm(average 203.83 ppm)and 166.84—236.65 ppm (average 199.04 ppm),respectively.The chemical index of alteration(CIA)for these samples has a similar trend to the∑REE:the CIA of the Zhuhai Formation is relatively high and the CIA of the Zhujiang and Hanjiang Formations is relatively low.The uplift of the Tibetan Plateau is crucial to the westward expansion of the paleo-Pearl River drainage.

    Tibetan Plateau uplift·Pearl River Mouth Basin·Paleo-Pearl River·Provenance evolution· Geochemical characteristics

    1 Introduction

    Recently,as a very complicated hotspot,the formation and uplift of the Tibetan Plateau have been of interest to many geologists all over the world(Song et al.2001;Kent-Corson et al.2009;Qu et al.2009;Zhang et al.2009;Liu et al.2010;Shen et al.2010;Miao et al.2011;Wang et al. 2012a,b).The formation of the Tibetan Plateau is the combined result of crustal incrassation and uplift,which are caused by the collision of the Indian and Eurasian blocks;ground denudation and equilibrium;and thermal processes(England and Houseman 1988;Ruddiman et al. 1989;Liu et al.2001).At present,there is consensus that the uplift of the Tibetan Plateau is multistage and heterogeneous,that the speed of uplift was initially slow and increased gradually,and that since the Pleistocene the plateau has been in a sudden to accelerated uplift period. Four intensive uplift periods—45—38,25—17,13—8,and 3 Ma to present—have been established by synthetic analysis of low-temperature thermo-chronology data,sedimentarydepositrecords,andstructuraldeformation records of different areas(Zhong and Ding 1996;Wang and Ding 1998;Pan 1999;Wang et al.2009,2011).The continental collision between India and Eurasia not only formed the Tibetan Plateau,but also drove the uplift of the surrounding area to varying degrees(Burbank 1992;Kazuo and Asaniko 1992;Wang et al.1999).The history and paceof tectonic subsidence was very similar in the Yinggehai Basin and interior basins of the western Yunnan Plateau(Wang et al.2000,2004).The uplift history of the western Yunnan Plateau was divided into four stages,including initial uplift(23—19 Ma),rapid uplift(16.2—11 Ma),sudden uplift(5.3—1.6 Ma),and accelerated uplift(1.6—0 Ma)(Wang et al.2000).

    Y.Yu(?)

    Hunan Provincial Key Laboratory of Shale Gas Resource

    Utilization,Hunan University of Science and Technology,

    Xiangtan 411201,China

    e-mail:yuye1983@163.com

    C.Zhang(?)·S.Li·R.Zhu·J.Liu

    MOE Key Laboratory of Exploration Technologies for Oil and Gas Resource,Yangtze University,Wuhan 430100,China

    e-mail:zcm@yangtzeu.edu.cn

    C.Qin·Z.Zhang

    Shenzhen Branch of China National Offshore Oil Corporation,Guangzhou 510240,China

    Sediment composition changed during the Late Oligocene(23.8 Ma)in the Baiyun Sag in the northern South China Sea,from sandy deposits into argillaceous sediments(Clift et al.2002;Li et al.2003,2007a,b,2011;Pang et al. 2005,2007;Shao et al.2008).At the same time,the continental-shelf slope break migrated from the southern Baiyun SagtothenorthernBaiyunSag,whereithasremained(Peng et al.2005;Shao et al.2007;Qin et al.2011;Liu et al.2011;Zhang et al.2011).These sedimentary geological phenomenacoincidedwithaseriesofgeologicaleventsincludingthe rapid uplift of the Tibetan Plateau 25—17 Ma and the initial uplift of the western Yunnan Plateau 23—19 Ma,both of which are on the western side of the Pearl River drainage.In order to understand whether these events are related,a comparative analysis was conducted of the geochemical characteristics of sediments from the Oligocene Zhuhai Formation(32—23.8 Ma),the Miocene Zhujiang Formation(23.8—16.5 Ma),andtheHanjiangFormation (16.5—10.5 Ma)and comprehensive analyses of the geochemical characteristics of rocks surrounding the paleo-Pearl River drainage were conducted to reveal the influences of the Tibetan Plateau uplift on provenance evolution of paleo-Pearl River.

    2 Geological setting

    The Pearl River Mouth Basin(PRMB)is one of the four majorCenozoicbasinsinthenorthernSouthChinaSea(Hao etal.1995,2000;ZhouandYao2009).ThePRMBislocated tothesouthmarginoftheSouthChinacontinentandbetween HainanIslandandTaiwanIsland,coveringabout 17.5×104km2(Wang et al.2012a,b;Fig.1).It can be divided into five large-scale,first-order,northeast-trending tectonic units(Chen and Pei 1993),namely,the northern fault terrace belt and northern depression belt(including the Zhu I and Zhu III depressions);the central uplift belt(includingthe Shenhu,Panyu low,and Dongsha uplifts);the southern depression belt(including the Baiyun Sag and the Chaoshan depression);and the southern uplift belt(Fig.1). Eight seismic sequences developed longitudinally in the PRMB:the Wenchang,Enping(39—32 Ma),Zhuhai(32—23.8 Ma),Zhujiang(23.8—16.5 Ma),Hanjiang(16.5—10.5 Ma),Yuehai,and Wanshan Formations and the Quaternary System(Chen et al.2003;Zhu et al.2008).The Wenchang and Enping Formations are mainly continental deposits in the vicinity of the sampling well;the Zhuhai,Zhujiang,and Hanjiang Formations are mainly large-scale neritic shelf deposits,shelf-margin,and slope deposits,respectively,while the Yuehai Formation and later deposits are mainly slope deepwater deposits(Wang et al.2012a,b).

    The Pearl River Basin contains the west,north,and east Rivers and various water systems of the Pearl River delta. Among these,the west River is the main river(Wang et al. 2006;Liu et al.2007).The Pearl River drainage is located on the south of the Nanling Range,north of the South China Sea and east of the Tibetan Plateau.In its central region,hills alternate with basins.Toward the mouth of the river,there is an alluvial plain which decreases in elevation from west to east(Fig.1).The Pearl River flows through Yunan,Guizhou,Guangxi,Guangdong,Hunan and Jiangxi provinces,covering about 45.4×104km2(Dai et al.2007).

    3 Sampling and methods

    3.1Sampling position

    The sampling well is located in the northern Baiyun Sag of the PRMB(Fig.1).Based on the core description,lithologic identification,and sedimentary facies analysis,we determined the following.The Enping Formation,which is 898.32 m thick,is mainly braided river deposits characterized by thick-bedded feldspathic lithic glutenite,having coarser grain size,poorer sorting and roundness,and a logging curve that shows a tooth box.The Zhuhai Formation has a sedimentary thickness of 687.68 m.The lower part of the Zhuhai Formation(mainly lithic quartz sandstone,with lower compositional and textural maturity)is primarily delta plain facies impressed by a mediumbedded distributary channel and flooding plain;the upper part of the Zhuhai Formation is mainly delta front facies including subaqueous distributary channel,distributary mouth bar,and subaqueous distributary interchannel;and a funnel-shaped logging curve.The sedimentary thickness of the Zhujiang Formation is 895.5 m;the lower part of the Zhujiang Formation(mainly quartz sandstone and lithic quartz sandstone,with higher compositional and textural maturity)includes subaqueous distributary channel and distributary mouth bar deposition,while the upper part consists of shelf mud deposition and shelf sand ridges marked by siltstone.The Hanjiang Formation has a sedimentary thickness of 1,153.51 m;the lower part of the Hanjiang Formation is an offshore shelf deposit while the upper part consists of delta front facies formed with the fall of sea level and including mouth and distal bars.The Hanjiang Formation contains mainly quartz sandstone with a finer grain size,higher compositional and textural maturity,and better sorting and roundness.Representativesamples were obtained from the drill core and cuttings in the sampling well.Twenty samples of mudstone,which are used to define provenance,were taken from the Zhuhai Formation(six samples),the Zhujiang Formation(seven samples),and the Hanjiang Formation(seven samples). Mudstone is more suitable for provenance analysis owing to its relative geochemical homogeneity(Cullers 1995). Twenty-nine samples of clastic rock,used to determine the extending range of the paleo-Pearl River drainage,were taken from the Enping Formation(five samples),the Zhuhai Formation(six samples),the Zhujiang Formation(ten samples),and the Hanjiang Formation(eight samples).

    Fig.1 Tectonic diagram of the Pearl River Mouth Basin and present Pearl River drainage(redrawn from Li et al.2013)

    3.2Analytical methods and testing results

    The major element oxides were analyzed using inductively coupled plasma atomic emission spectrometry(ICP-AES)at the State Key Laboratory of Marine Geology,Tongji University.The trace elements,including fifteen rare earth elements(REE),were determined using inductively coupled plasma mass spectrometry(ICP-MS)at the State Key Laboratory of Marine Geology,Tongji University.Sr and Nd isotopic compositions were measured with multicollector inductively coupled plasma mass spectrometry(MC-ICP-MS)at the State Key Laboratory of Isotope Geochemistry in Guangzhou Institute of Geochemistry,Chinese Academy of Sciences.The detailed geochemical method and analytical precision have been described in other papers(Li et al.2002;Vervoort et al.2004).The analytical results for major elements,trace elements,REE,and Sr and Nd isotopic compositions are listed in Tables 1,2,3,and 4.

    4 Results and discussion

    4.1Major elements

    Major element abundances for mudstones in the Pearl River Basin are listed in Table 1.It can be seen that the content of SiO2,Al2O3,and Fe2O3are relatively high. Compared with the post-Archean Australian shales(PAAS from Taylor and Mclennan 1985),the mudstones of the PRMB are richer in SiO2(67.40%on average),F(xiàn)e2O3(10.15%on average),CaO(3.59%on average),and Na2O(2.01%on average);while poorer in Al2O3(11.73%onaverage),K2O(2.58%on average),MgO(1.71%on average),and TiO2(0.62%on average).The SiO2content in the Zhuhai Formation is relatively high(average 71.41%)while that in the Zhujiang and Hanjiang Formations is relatively low(average 64.20%and 67.16%,respectively).CaO and Fe2O3are relatively low in the Zhuhai Formation(averaging 1.12%and 7.75%,respectively),and relatively high in the Zhujiang and Hanjiang Formations(CaO average 3.51%and 5.79%,respectively;Fe2O313.24%and 9.13%,respectively).SiO2exists principally in granite and acidic magmatic rock,Ca is generally related to carbonate rock,and Fe is hosted mainly in basic rock,suggesting that the provenance of the Zhuhai Formation is different from that of the Zhujiang and Hanjiang Formations.

    Table 1 Analytic results of major element oxides in mudstones (in wt%,except for Al2O3/TiO2 and CIA)

    Sediment is thought to be derived from mafic rocks if the Al2O3/TiO2value is less than 14,while it is more likely to be derived from the granodiorite and tonalite if the value of Al2O3/TiO2is in the range of 19—28(Girty et al.1996).The Al2O3/TiO2value of the mudstone in the Pearl River Basin is in the range of 16.68—27.98.The Al2O3/TiO2value of the Zhuhai Formation is relatively high(average value 20.82),while those of the Zhujiang and Hanjiang Formations are relatively low(average value 18.33 and 18.38,respectively). It can be inferred that the source rock of the Zhuhai Formation is predominantly derived from granodiorite and tonalite and the source rock of the Zhujiang and Hanjiang Formations may include mafic rocks.

    Chemical weathering in the source area can modify the chemical composition of rocks.For example,the labile cations(e.g.,Na+,Ca2+,K+)are commonly removed during chemical weathering processes and the loss of stable cations(Al3+,Ti4+)can be retarded from the residua(Fedo et al.1995).The degree of chemical alteration lies heavily on the intensity of the weathering process,and the original parent rock types can be determined through tracing back the weathering process(Condie et al.1992). Nesbitt and Young(1982)suggested a chemical index of alteration(CIA)to estimate the intensity of weathering:

    In the equation,the oxides are expressed as molar proportions and CaO*represents the Ca in silicate minerals only.The CIA of Zhuhai Formation is relatively high(64.68 on average),and the CIA of Zhujiang and Hanjiang Formations are relatively low(52.08 and 55.59 on average,respectively)(Table 1).This suggests that the intensity of chemical weathering is relatively strong in the Zhuhai Formation compared to the Zhujiang and Hanjiang Formations.A damp and warm paleoclimate is one of the reasons why the intensity of chemical weathering is relatively strong in the Zhuhai Formation in contrast to thecooler,dryer paleoclimate of the Zhujiang and Hanjiang Formations in which chemical weathering is relatively weak.

    Table 2 Analytic results of trace elements in the mudstones (in ppm)

    Samples from the Zhuhai Formation are located in the leading end of the weathering tendency(dotted line),suggesting an intense weathering history;and the samples from the Zhujiang and Hanjiang Formations fall in the middle-to-tail end of the weathering tendency,suggesting a moderate-weak weathering history(Fig.2).This result is consistent with the analytic results of CIA.In the opposite direction of weathering tendency,the extended solid line 1 trends toward the felsic rock area,indicating the samples from the Zhuhai Formation are derived from felsic source rocks;and the extended solid line 2 trends between mafic and felsic rocks,indicating the samples from the Zhujiang and Hanjiang Formations are derived from a more mafic source.

    4.2Trace elements

    The trace element abundances of mudstones in the Pearl River Basin appear in Table 2.There is an abundance of Ba(379.39 ppm on average),Sr(181.39 ppm on average),Cr(130.95 ppm on average),Rb(129.95 ppm on average),and Zr(106.39 ppm on average).Compared with the abundance of trace elements in the upper continental crust,the studied mudstones are rich in Rb,Cr,and Mo(average 22.68 ppm);while poor in Ba,Sr,and Zr.Compared with the abundance of trace elements in the lower continental crust,the studied mudstones are rich in Ba,Rb,Zr,Mo,and Cu(average 46.55 ppm);andpoorinSr,Cr,andCo(average16.92 ppm). The trace element abundance of mudstones in the Zhuhai,Zhujiang,and Hanjiang Formations have their own characteristics:the average values of Rb,Ba,Cs,Th,and U in the Zhuhai Formation(Rb,167.22 ppm;Ba,413.7 ppm;Cs,14.09 ppm;Th,21.74 ppm;U,3.92 ppm)arenotablyhigher than in the Zhujiang(Rb,119.96 ppm;Ba,343 ppm;Cs,7.64 ppm;Th,15.19 ppm;U,2.62 ppm)and Hanjiang(Rb,107.99 ppm; Ba,386.37 ppm;Cs,6.98 ppm;Th,13.73 ppm;U,2.44 ppm)Formations;the average values of Sr and Mo in the Zhuhai Formation(Sr,128.49 ppm;Mo,10.1 ppm)are lower than in the Zhujiang(Sr,193.65 ppm;Mo,30.6 ppm)and Hanjiang (Sr,214.49 ppm;Mo,25.53 ppm)Formations.

    Generally,the more intensive the chemical weathering,the higher the ratio of Rb/Sr.There is an opposite trend in the ratio of Sr/Cu.Therefore,the ratios of Rb/Sr and Sr/Cu can be used to indicate the intensity of chemical weathering(Jin et al.2011;Xu et al.2012).From Table 2,it can be seen that the ratio of Rb/Sr in the Zhuhai Formation is relatively high(average 1.39),and those in the Zhujiang and Hanjiang Formations are relatively low,(average 0.64 and 0.53,respectively).The trend in Sr/Cu ratios mirrorsthat of the Rb/Sr ratios,with a lower Sr/Cu ratio(3.26 on average)in the Zhuhai Formation,an intermediate Sr/Cu ratio(5.2 on average)in the Zhujiang Formation,and a higher Sr/Cu ratio(6.31 on average)in the Hanjiang Formation.It can be inferred that the intensity of weathering gradually weakened from the Zhuhai Formation to the Hanjiang Formation and that the climate changed at the same time,concurrent with the uplift of the Tibetan Plateau,which led to a decrease in precipitation and cooling of the climate(Chen et al.1999).

    Table 3 Analytic results of rare earth elements in mudstones (in ppm)

    Fig.2 Ternary plot of molecular proportions Al2O3—(Na2-O+CaO*)—K2O for the mudstones(redrawn from Fedo et al.1995)

    REE and other high field strength elements may be almost completely preserved in the sediment due to their transitory residence in water,so the sources of felsic and mafic material can be distinguished by the ratios of compatible to incompatible elements.According to the characteristics of the elements mentioned above,Allegre(1978)proposed a source rock discrimination diagram of La/Yb-∑REE.According to Fig.3a,the parent rocks of the study area are mainly a mixture of granite,paleo-sedimentary calcareous mudstone,and alkali basalt,but the parent rocks of the Zhuhai Formation are predominantly granite and those of the Zhujiang and Hanjiang Formations are mainly paleo-sedimentary calcareous mudstone and alkali basalt. Based on the enrichment of La and Th in felsic rocks and the enrichment of Co,Sc,and Cr in basic rocks,Gu et al.(2002)proposed a source rock discrimination diagram of Co/Th—La/Sc.According to Fig.3b,the samples of the study area principally plot nearest to felsic volcanic rock. In fact,the rocks in the provenance area are complex,and the source rock is mainly felsic(Gu et al.2002).

    Fig.3 Source rock discrimination diagrams for the mudstones on a∑REE versus La/Yb(redrawn from Allegre 1978),and b La/Sc versus Co/ Th(redrawn from Gu et al.2002)

    4.3Rare earth elements

    According to Table 3,there is a big fluctuation in the concentration of∑REE of mudstones in the Pearl River Basin,ranging from 166.83 to 293.88 ppm(average 213.12 ppm). The∑ REE of the Zhuhai Formation(240.46 ppm on average)is the highest.The light REE to heavy REE ratio(LREE/HREE)ranges from 2.82 to 3.98(3.84 on average). The(La/Yb)Nis used to identify the differentiation between LREE and HREE.Based on the(La/Yb)N,there is a highdegree of differentiation in the Zhuhai Formation,with an averageof8.27;andthereisalowdegreeofdifferentiationin Zhujiang and Hanjiang Formations,with averages of 5.11 and 6.34 respectively.The(La/Sm)Nis used to identify the differentiation in LREE,while the(Gd/Yb)Nis used to identify the differentiation in HREE.The differentiation in HREEissimilartothatbetweenLREEandHREE:thereisa high degree of differentiation in the Zhuhai Formation,with an average of 1.71;and there is a low degree of differentiation in the Zhujiang and Hanjiang Formations,with averages of 1.03 and 1.29,respectively.In contrast,δEu in the Zhuhai Formation is significantly lower than that in the Zhujiang and Hanjiang Formations,with an average of 0.55 in the Zhuhai Formation,an average of 0.76 in the Zhujiang Formation,andanaverageof0.7intheHanjiangFormation.

    After the REE is normalized based on the chondrite concentration(Sun and McDonough 1989),the REE distribution patterns are similar to that of the upper continental crust,with LREE enrichment,flat HREE,and significant negative Eu-anomalies(Fig.4).It can be inferred that the source rocks of the Pearl River Basin may be derived from the upper continental crust.In addition,the∑ REE of mudstone in the Zhuhai Formation is high relative to that in the Zhujiang and Hanjiang Formations,which may be related to the different source rocks of the Zhuhai Formation compared to the Zhujiang and Hanjiang Formations.

    Fig.4 Chondrite-normalized REE plot for the mudstones(chondrite normalizing factors from Sun and McDonough 1989)

    Table 4 The Sr and Nd isotopic data of the clastic rocks

    4.4Sr and Nd isotopic compositions

    The Sr and Nd isotopic compositions of samples from the Pearl River Basin are presented in Table 4.Ratios of143Nd/144Nd vary from 0.51197 to 0.51209(0.51203 on average)and87Sr/86Sr vary from 0.72254 to 0.74591(0.73001 on average).The εNd(0)values are all negative(-11.8552 on average).The Sr and Nd isotopic compositions vary greatly between the Oligocene and Miocene strata.The143Nd/144Nd are high in the Oligocene Enpingand Zhuhai Formations,while low in the Miocene Zhujiang and Hanjiang Formations.For example,the143Nd/144Nd in the Oligocene Enping and Zhuhai Formations average 0.51208 and 0.51207,respectively;the corresponding values in the Miocene Zhujiang and Hanjiang Formations both average 0.51200.The87Sr/86Sr and εNd(0)have a similar trend to143Nd/144Nd in that both of them are higher in the Oligocene Enping and Zhuhai Formations and lower in the Miocene Zhujiang and Hanjiang Formations.This shows that there is a remarkable migration of the provenance of the paleo-Pearl River in the late stage of Oligocene Zhuhai Formation(the early stage of the Miocene Zhujiang Formation),resulting in a change in the composition of the source rock.

    Fig.5 Comparison of εNd(0)(a)and87Sr/86Sr(b)between the sediments in the Pearl River Basin and any possible sources surrounding the Pearl River drainage

    The εNd(0)and87Sr/86Sr values from the Pearl River Basin samples have been compared with the εNd(0)and87Sr/86Srvaluesfromthesurroundingareaofthepaleo-Pearl River drainage(Deniel et al.1987;Chen et al.2006;Darbyshire and Sewell 1997;Ge 2003;Shao et al.2008;Yang et al.2007;Zhu et al.2003;Zhang and Wang 2003).The sediments of the Oligocene Enping and Zhuhai Formations have the same εNd(0)value as the granite in the coast of South China including Hong Kong,Hainan Island,and the basement of the PRMB(Fig.5).The sediments of the Miocene Zhujiang and Hanjiang Formations have εNd(0)values in the same range as the granite in the western Yunnan Plateau and are close to the granite of Tibetan Plateau(Fig.5a). The87Sr/86Sr values of the Oligocene Enping and Zhuhai Formations are different from the87Sr/86Sr values of the Miocene Zhujiang and Hanjiang Formations;the Miocene samples have values closer to those of the Tibetan Plateau granitesandtheEmeishanbasalt(Fig.5b).Itcanbeinferred that the headwaters of the paleo-Pearl River migrated in the late Oligocene(23.8 Ma),possibly extending to the western YunnanPlateau,oreventheeasternTibetanPlateau.Inother words,the headwaters of the paleo-Pearl River moved to the present location around 23.8 Ma.The rapid uplift of the Tibetan Plateau between 25—17 Ma leads to the new paleogeographical framework in the southwest of China which is characterized by a higher elevation in the west and lower elevation in the east.The paleogeographical framework which is mentioned above benefits the northwestward migration of the headwaters of the paleo-Pearl River in the late Oligocene(23.8 Ma).Then,it suggests that the uplift of Tibetan Plateau is crucial to theprovenance migration of the paleo-Pearl River.

    5 Conclusions

    (1) The source rocks of the Zhuhai Formation are simple and mainly felsic granite,while those of the Zhujiang and Hanjiang Formations are complex and mainly alkali basalt.

    (2) The warmer,wetter paleoclimate is one of the reasons why the intensity of chemical weathering in the Zhuhai Formation is relatively strong in contrast to the Zhujiang and Hanjiang Formations where a cooler,dryer paleoclimate led to a lower intensity of chemical weathering.

    (3) The source rocks of the paleo-Pearl River are mainly derived from southern China near the South China Sea in the stage of the Oligocene Enping and Zhuhai Formations.Concurrently with the uplift of theTibetan Plateau and the western Yunnan Plateau,the paleo-Pearl River drainage expanded to western China.The principal source of the paleo-Pearl River in the Miocene Zhujiang and Hanjiang Formations may be derived from the eastern Tibetan Plateau.

    (4) There is a good corresponding relationship between the demarcation which is between Oligocene and Miocene(23.8 Ma)and the rapid uplift of the Tibetan Plateau.The provenance evolution of the paleo-Pearl River is predominantly controlled by the uplift of the Tibetan Plateau.

    AcknowledgmentsThis work was supported by the National Major Scientific and Technological Special Project during the Twelfth Fiveyear Plan Period(Grant No.2011ZX05023-002).The authors appreciate the help of Professor Shao Lei and State Key Laboratory of Marine Geology(Tongji University)with the geochemical analysis,and Du Jiayuan,Liu Daoli with project support.

    Allegre CT(1978)Quantitative models of trace planet.Earth Plant Sci Lett 38:1—25

    Burbank DW(1992)Causes of recent Himalaya uplift deduced from deposit patterns in the Ganges basin.Nature 357:680—682

    Chen S,Pei C(1993)Geology and geochemistry of source rocks of the eastern Pearl River Mouth Basin,South China Sea. J Southeast Asian Earth Sci 81:393—406

    Chen L,Liu J,Zhou X,Wang P(1999)Impact of uplift of Qinghai-Xizang Plateau and change of land-ocean distribution on climate over Asia.Quat Sci 4:314—329(in Chinese with English abstract)

    Chen C,Shi H,Xu S,Chen X(2003)The conditions of hydrocarbon accumulation of the tertiary petroleum system in the Pearl River Mouth Basin.Science Press,Beijing,pp 1—27(in Chinese)

    Chen F,Li Q,Wang X,Li X(2006)Zircon age and Sr—Nd—Hf isotopic composition of migmatite in the eastern Tengchong block,western Yunnan.Acta Petrol Sin 22:439—448(in Chinese with English abstract)

    Clift P,Lee JI,Clark M(2002)Erosinal response of South China to arc rifting and monsoonal strengthening a record from the South China Sea.Mar Geol 184:207—226

    Condie KC,Noll JPD,Conway CM(1992)Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup,central Arizona. Sediment Geol 77:51—76

    Cullers Rl(1995)The controls on the major and trace elements evolution of shales,siltstones and sandstones of Ordorvician to tertiary age in the Wet Mountains region,Colorado,USA.Chem Geol 123:107—131

    Dai S,Yang S,Cai A(2007)Variation of sediment discharge of the Pear l River Basin from 1955 to 2005.Acta Geogr Sin 62:545—554(in Chinese with English abstract)

    Darbyshire DPF,Sewell RJ(1997)Nd and Sr isotope geochemistry of plutonic rocks from Hong Kong implications for granite petrogenesis regional structure and crustal evolution.Chem Geol 143:81—93

    Deniel C,Vidal P,F(xiàn)emandez A,Le Fort P,Pencat J-J(1987)Isotopic study of the Manaslu granite inferences on the age and source of Himalayan leucogranites.Contrib Miner Petrol 96:78—92

    England PC,Houseman GA(1988)The mechanics of the Tibet Plateau.Philos Trans R Soc Lond 73:523—532

    Fedo CM,Nesbitt HW,Young GM(1995)Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosoles,with implications for paleoweathing conditions and provenance. Geology 23:921—924

    Ge X(2003)Mesozoic magmatism in Hainan Island(SE China)and its tectonic significance:geochronology,geochemistry and Sr-Nd isotope evidences.Doctor's Degree Dissertation,Institute of Geochemistry,Chinese Academy of Science,Guangzhou,p 29(in Chinese with English abstract)

    Girty GH,Ridge DL,Knaack C(1996)Provenance and depositional setting of paleozoic chert and argillite,Sierra Nevada,California.J Sediment Res 66:107—118

    Gu XX,Liu JM,Zheng MH,Tang JX,Qi L(2002)Provenance and tectonic setting of the Proterozoic turbidites in Hunan,South China:geochemical evidence.J Sediment Res 72:393—407

    Hao F,Sun Y,Li S,Zhang Q(1995)Overpressure retardation of organic-matter maturation and petroleum generation—a case study from the Yinggehai and Qiongdongnan Basins,South China Sea.AAPG Bull 79:551—562

    Hao F,Li S,Gong Z,Yang J(2000)Thermal regime,inter-reservoir compositional heterogeneities,and reservoir-filling history of the Dongfang gas field,Yinggehai Basin,South China Sea:evidence for episodic fluid injections in overpressured basins.AAPG Bull 84:607—626

    Jin J,Li Z,Chen X,Ling Z,Cao X,Wang S(2011)Paleoclimatic significance of geochemical elements from Takermohur desert,Xinjiang since Late Holocene.Acta Sedimentol Sin 29:336—343(in Chinese with English abstract)

    Kazuo A,Asaniko T(1992)Two phase uplift of higher Himalayas since 17 Ma.Geology 20:391—394

    Kent-Corson ML,Ritts BD,Zhuang GS,Bovet PM,Graham SA,ChamberlainCP(2009)Stableisotopicconstraintsonthetectonic,topographic,and climatic evolution of the northern margin of the Tibetan Plateau.Earth Planet Sci Lett 282:158—166

    Li X,Liu Y,Tu X,Hu G,Zeng W(2002)Precise determination of chemical compositions in silicate rocks using ICP-AES and ICPMS:a comparative study of sample digestion techniques of alkali fusion and acid dissolution.Geochimica 31:289—294

    LiXH,Wei GJ,ShaoL(2003)Geochemical andNdisotopicvariations in sediments of the South China Sea:a response to Cenozoic tectonism in SE Asia.Earth Planet Sci Lett 211:207—220

    Li Q,Zheng F,Liu C(2007a)Stratigraphic events across the Oligocene/Miocene boundary.Mar Geol Quat Geol 27:57—64(in Chinese with English abstract)

    Li Q,Zhao Q,Zhong G,Jian Z,Tian J(2007b)Deepwater ventilation and stratification in the Neogene South China Sea.J China Univ Geosci 18:95—108(English edition)

    Li Y,Zheng R,Gao B,Hu X,Dai Z(2011)Characteristics of the detrital response to Oligocene/Miocene geological events in Baiyun Sag,Pearl River Mouth Basin.Geoscience 25:476—481(in Chinese with English abstract)

    Li Y,Zheng R,Yang B,Zhu G,Gao B,Hu X(2013)Deep-water Depositional Features of Miocene Zhujiang Formation in Baiyun Sag,Pearl River Mouth Basin.Acta Geol Sin 87:197—210(English Edition)

    Liu S,Chi X,Li C,Yang R(2001)The summarizing for the forming and uplifted mechanism of Qinghai-Tibet Plateau.World Geol 20:105—112(in Chinese with English abstract)

    Liu Z,Christophe C,Wei H,Zhong C,Alain T,Chen J(2007)Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea.Chin Sci Bull 52:1101—1111

    Liu D,F(xiàn)ang X,Song C,Dai S,Zhang T,Zhang W,Miao Y,Liu Y,Wang J(2010)Stratigraphic and paleomagnetic evidence of mid-Pleistocene rapid deformation and uplift of the NE Tibetan Plateau.Tectonophysics 486:108—119

    Liu B,Pang X,Yan C,Liu J,Lian S,He M,Shen J(2011)Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil—gas exploration.ActaPetSin32:234—242(inChinesewithEnglishabstract)

    Miao Y,Meng Q,F(xiàn)ang X,Yan X,Wu F,Song C(2011)Origin and development of Artemisia(Asteraceae)in Asia and its implications for the uplift history of the Tibetan Plateau:a review.Quat Int 236:3—12

    Nesbitt HWM,Young GM (1982)Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715—717

    Pan Y(1999)Formation and uplifting of the Qinghai-Tibet Plateau. Earth Sci Front 6:153—163(in Chinese with English abstract)

    Pang X,Chen C,Shi H,Yu S,Shao L,He M,Shen J(2005)Response between relative sea-level change and the Pearl River deep-water fan system in the South China Sea.Earth Sci Front 12:167—177(in Chinese with English abstract)

    Pang X,Chen C,Shao L,Wang C,Zhu M(2007)Baiyun movement,a great tectonic event on the Oligocene—Miocene boundary in the northern South China Sea and its implications.Geol Rev 53:145—150(in Chinese with English abstract)

    Peng D,Pang X,Chen C,Yu S,Ye B,Gan J,Wu C,Huang X(2005)From shallow-water shelf to deep-water slope—the study on deep-water fan systems in South China Sea.Acta Sedimentol Sin 23:1—11(in Chinese with English abstract)

    Qin C,Shi H,Zhang Z,Gao P,Xu H,Qu L,Liu D(2011)Sedimentary characteristics and hydrocarbon exploration potential along the SQ21.0 sequence shelf-break zone on Panyu low-uplift and the north slope of Baiyun Sag,Pearl River Mouth Basin.China Offshore Oil Gas 23:14—18(in Chinese with English abstract)

    Qu X,Hou Z,Khin Z,Mo X,Xu W,Xin H(2009)A large-scale copper ore-forming event accompanying rapid uplift of the southern Tibetan Plateau:evidence from zircon SHRIMP U-Pb dating and LA ICP-MS analysis.Ore Geol Rev 36:52—64

    Ruddiman WF,Prell WL,Raymo ME(1989)Late Cenozoic uplift in south Asia and the American west:rationale for general circulation modeling experiments.J Geophys Res 94:379—391

    Rudnick RL,Gao S(2003)Composition of the continental crust.In: Holland HD,Turekian KK(eds)Treatise on geochemistry. Elsevier Pergamon,Oxford,pp 1—64

    Shao L,Pang X,Chen C,Shi H,Li Q,Qiao P(2007)Terminal Oligocene sedimentary environments and abrupt provenance change event in the northern South China Sea.Geol China 34:1022—1031(in Chinese with English abstract)

    Shao L,Pang X,Qiao P,Chen C,Li Q,Miao W(2008)Sedimentary filling of the Pearl River Mouth Basin and its response to the evolution of the Pearl River.Acta Sedimentol Sin 26:179—185(in Chinese with English abstract)

    Shen J,Wang SM,Wang Y,Qiang XK,Xiao HF,Xiao XY(2010)Uplift events of the Qinghai-Tibetan Plateau and environmental evolution of the southwest monsoon since 2.7 Ma,recorded in a long lake sediment core from Heqing,China.Quat Int 218:67—73

    Song C,F(xiàn)ang X,Li J,Gao J,Zhao Z,F(xiàn)an M(2001)Tectonic uplift and sedimentary evolution of the Jiuxi Basin in the northern margin of the Tibetan Plateau since 13 Ma BP.Sci China(Ser D)44(Supp.):192—202

    Sun SS,McDonough WF(1989)Chemical and isotopic systematics of oceanic basalts;implications for mantle composition and processes.In:Saunders AD,Norry MJ(eds)Magmatism in the ocean basins,vol 42.Geological Society of London Special Publication,London,pp 313—345

    Taylor SR,Mclennan SM (1985)The continental crust,its composition and evolution.Blackwell,Oxford,pp 1—32

    Vervoort JD,Patchett PJ,Soderlund U,Baker M (2004)Isotopic compositionofYbandthedeterminationofLuconcentrationsand Lu/Hf ratios by isotopic dilution using MC-ICP-MS.Geochem Geophys Geosyst(G3)5:Q11002.doi:10.1029/2004GC000721

    Wang C,Ding X(1998)The new researching progress of Tibet Plateau uplift.Adv Earth Sci 13:526—532(in Chinese with English abstract)

    Wang G,Wang C,Zeng Y(1999)Sedimentary evidence of the westernYunnan Plateau uplift since Miocene.Bull Miner Petrol Geochem 18:167—170(in Chinese with English abstract)

    Wang G,Wang C,Zeng Y,Zhao X(2000)The uplift of the western Yunnan Plateau and the sedimentary response of the Yinggehai Basin.Acta Sediment Sin 18:234—240(in Chinese with English abstract)

    Wang G,Chu F,Wang C(2004)Paleoelevation reconstruction of Red River drainage areas in western Yunnan Plateau since Miocene. J Chengdu Univ Technol 31:119—124(in Chinese with English abstract)

    Wang Z,Chen X,Zhang L,Li Y(2006)Spatio-temporal change characteristics of precipitation in the Pearl River Basin in recent 40 years.J China Hydrol 26:71—75(in Chinese with English abstract)

    Wang C,Dai J,Liu Z,Zhu L,Li Y,Jia G(2009)The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques:a review.Earth Sci Front 16:1—30(in Chinese with English abstract)

    Wang G,Cao K,Zhang K,Wang A,Liu C,Meng Y,Xu Y(2011)Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic.Sci China 54:29—44

    Wang Y,Zheng J,Zhang W,Li S,Liu X,Yang X,Liu Y(2012a)Cenozoic uplift of the Tibetan Plateau:evidence from the tectonic-sedimentary evolution of the western Qaidam Basin. Geosci Front 3:175—187

    Wang Y,Wang Y,Xu Q,Li D,Zhuo H,Zhou W(2012b)The earlymiddle Miocene submarine fan system in the Pearl River Mouth Basin,South China Sea.Pet Sci 9:1—9

    Xu Z,Cheng R,Shen Y,Wang L,Zhang L(2012)Sedimentary records of the climatic transition from warm and humid to dry and hot during Late Triassic Early Jurassic in southwestern Fujian.J China Univ Min Technol 41:783—792(in Chinese with English abstract)

    Yang S,Jiang S,Ling H,Xia X,Sun M,Wang D(2007)Sr—Nd isotopic compositions of the Changjiang sediments:implications for tracing sediment sources.Sci China(Ser D)50:1556—1565

    Zhang Z,Wang F(2003)Sr,Nd and Pb isotopic characteristics of Emeishan Basalt province and discussion on their source region. Earth Sci 28:432—439(in Chinese with English abstract)

    Zhang Y,Dong S,Yang N(2009)Active faulting pattern,present-day tectonic stress field and block kinematics in the east Tibetan Plateau.Acta Geol Sin 83:694—712(English edition)

    Zhang Z,Qin C,Gao P,Qu L,Liu D,Xu H,Xu L,Zhou F(2011)Geological characteristics and exploration potentials of the shelf break zone on the north slope of the Baiyun Depression,Pearl River Mouth Basin.Nat Gas Ind 31:39—44(in Chinese with English abstract)

    Zhong D,Ding L(1996)Rising process of the Qinghai-Xizang(Tibet)Plateau and its mechanism.Sci China(Ser D).26:35—45(in Chinese with English abstract)

    Zhou D,Yao B(2009)Tectonics and sedimentary basins of the South China Sea:challenges and progresses.J Earth Sci 20:1—12

    Zhu D,Pan G,Mo X,Duan L,Liao Z,Wang L(2003)Sr—Nd—Pb isotopic variations of the Cenozoic volcanic rocks from the Qingha-i Xizang Plateau and its adjacent areas.Sediment Geol Tethyan Geol 23:1—11(in Chinese with English abstract)

    Zhu W,Zhang G,Gao L(2008)Geological characteristics and exploration objectives of hydrocarbons in the northern continental margin basin of South China Sea.Acta Pet Sin 19:1—9(in Chinese with English abstract)

    1 July 2014/Revised:1 August 2014/Accepted:13 August 2014/Published online:22 January 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    免费无遮挡裸体视频| 亚洲人成网站在线播放欧美日韩| 麻豆精品久久久久久蜜桃| 欧美日韩精品成人综合77777| 伦精品一区二区三区| 欧美成人免费av一区二区三区| 国产一区二区三区在线臀色熟女| 亚洲 国产 在线| 日本在线视频免费播放| 我要看日韩黄色一级片| 日日摸夜夜添夜夜添av毛片 | 美女 人体艺术 gogo| 久久久久久久久久黄片| 国产熟女欧美一区二区| 中文字幕精品亚洲无线码一区| 国产成人福利小说| 欧美日韩综合久久久久久 | 成人鲁丝片一二三区免费| 免费观看人在逋| 国产精品无大码| 欧美高清成人免费视频www| 日韩欧美精品免费久久| a级毛片a级免费在线| 国产高清激情床上av| 国产女主播在线喷水免费视频网站 | 精品99又大又爽又粗少妇毛片 | 啦啦啦韩国在线观看视频| 精品午夜福利视频在线观看一区| 别揉我奶头~嗯~啊~动态视频| 天堂√8在线中文| 亚洲国产精品sss在线观看| 亚洲中文字幕日韩| 亚洲最大成人中文| 中文字幕久久专区| 日韩欧美国产在线观看| 夜夜夜夜夜久久久久| 性色avwww在线观看| 一夜夜www| 国产一区二区三区在线臀色熟女| 91麻豆精品激情在线观看国产| 日韩精品有码人妻一区| 中文字幕av成人在线电影| 特级一级黄色大片| av在线老鸭窝| 色视频www国产| 亚洲四区av| 亚洲av第一区精品v没综合| 黄色女人牲交| 人妻夜夜爽99麻豆av| 久久香蕉精品热| 精品久久国产蜜桃| 午夜免费成人在线视频| 又紧又爽又黄一区二区| 色尼玛亚洲综合影院| 男人的好看免费观看在线视频| 免费看美女性在线毛片视频| 久久亚洲精品不卡| 一个人看视频在线观看www免费| 极品教师在线视频| 免费观看的影片在线观看| 国产精品久久久久久精品电影| 亚洲成人免费电影在线观看| a级一级毛片免费在线观看| 欧美另类亚洲清纯唯美| 男插女下体视频免费在线播放| 日韩av在线大香蕉| 国产精品日韩av在线免费观看| av.在线天堂| 亚洲成av人片在线播放无| 女人被狂操c到高潮| 久久久国产成人免费| 国产精品久久久久久av不卡| 观看美女的网站| 国产精品三级大全| 最新中文字幕久久久久| 午夜福利高清视频| 日韩中文字幕欧美一区二区| 国产成人一区二区在线| 最近最新中文字幕大全电影3| 高清在线国产一区| 亚洲不卡免费看| 老司机福利观看| xxxwww97欧美| 热99re8久久精品国产| 欧美黑人欧美精品刺激| 波多野结衣巨乳人妻| 国产伦精品一区二区三区视频9| 久久精品久久久久久噜噜老黄 | 精品99又大又爽又粗少妇毛片 | 国产精品久久久久久久电影| 国产老妇女一区| h日本视频在线播放| 国产精品国产高清国产av| 亚洲精华国产精华液的使用体验 | 黄色女人牲交| 久久久久久久久大av| 国产精品一及| 欧美精品国产亚洲| 久久精品影院6| 波多野结衣高清作品| 婷婷六月久久综合丁香| www.色视频.com| 久久久久久久久大av| 九色成人免费人妻av| 中文字幕熟女人妻在线| 国产一区二区三区在线臀色熟女| 国产精品日韩av在线免费观看| 亚洲av日韩精品久久久久久密| 国产男人的电影天堂91| 国产精品免费一区二区三区在线| 91麻豆精品激情在线观看国产| 亚洲av免费在线观看| 国产精品人妻久久久影院| 亚洲熟妇熟女久久| 淫秽高清视频在线观看| 久久久久久大精品| 91久久精品国产一区二区三区| 亚洲av成人av| 国产精品日韩av在线免费观看| 亚洲精品粉嫩美女一区| 亚洲性夜色夜夜综合| 最近中文字幕高清免费大全6 | 男女视频在线观看网站免费| 国产精品自产拍在线观看55亚洲| 天堂√8在线中文| 波多野结衣高清作品| 男女做爰动态图高潮gif福利片| 99国产极品粉嫩在线观看| 免费在线观看影片大全网站| 国产午夜福利久久久久久| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品久久久久久毛片| 欧美区成人在线视频| 亚洲av二区三区四区| 悠悠久久av| 老女人水多毛片| 亚洲不卡免费看| 午夜久久久久精精品| 直男gayav资源| 日韩欧美国产在线观看| 国内久久婷婷六月综合欲色啪| 亚洲不卡免费看| 国产综合懂色| av专区在线播放| 久久久精品大字幕| 国产aⅴ精品一区二区三区波| 国产在线精品亚洲第一网站| 亚洲av中文字字幕乱码综合| 91狼人影院| 国产白丝娇喘喷水9色精品| 久久精品国产亚洲av涩爱 | 国产一区二区在线观看日韩| 欧美日本亚洲视频在线播放| 国产精品福利在线免费观看| 亚洲 国产 在线| av在线蜜桃| 九九在线视频观看精品| 国产精品国产高清国产av| 日韩在线高清观看一区二区三区 | 真实男女啪啪啪动态图| 成熟少妇高潮喷水视频| 国产视频内射| 国产成人av教育| 男人的好看免费观看在线视频| 日本 欧美在线| 性色avwww在线观看| 精品久久久久久久末码| 亚洲欧美日韩高清专用| 无人区码免费观看不卡| 乱系列少妇在线播放| 简卡轻食公司| 成人av在线播放网站| 非洲黑人性xxxx精品又粗又长| 热99re8久久精品国产| 无人区码免费观看不卡| 国产中年淑女户外野战色| 在线免费十八禁| 桃红色精品国产亚洲av| 国产成人影院久久av| 春色校园在线视频观看| 在线看三级毛片| 国产中年淑女户外野战色| 免费观看的影片在线观看| 久久久久国内视频| 亚洲av熟女| 国产亚洲av嫩草精品影院| 国产精品嫩草影院av在线观看 | 亚洲最大成人av| 久久人人爽人人爽人人片va| 88av欧美| 欧美精品国产亚洲| 国产高清视频在线观看网站| 88av欧美| 欧美精品国产亚洲| 久久亚洲精品不卡| 精品国产三级普通话版| 久久精品久久久久久噜噜老黄 | 国产精品野战在线观看| 老师上课跳d突然被开到最大视频| av黄色大香蕉| 成人一区二区视频在线观看| 欧美最黄视频在线播放免费| 国产精品一区二区免费欧美| 久久国产精品人妻蜜桃| 黄色欧美视频在线观看| 中国美白少妇内射xxxbb| 三级男女做爰猛烈吃奶摸视频| 国产一区二区三区视频了| 网址你懂的国产日韩在线| 婷婷精品国产亚洲av| 成人特级黄色片久久久久久久| 1000部很黄的大片| 国产精品久久久久久亚洲av鲁大| 亚洲真实伦在线观看| 日本 av在线| 日日撸夜夜添| 俄罗斯特黄特色一大片| 岛国在线免费视频观看| 最后的刺客免费高清国语| 成人性生交大片免费视频hd| 啦啦啦啦在线视频资源| 亚洲久久久久久中文字幕| 亚洲天堂国产精品一区在线| 亚洲中文日韩欧美视频| 国产精品乱码一区二三区的特点| 精品不卡国产一区二区三区| 亚洲av中文av极速乱 | 亚洲国产精品成人综合色| 国产成人影院久久av| 日本欧美国产在线视频| 成人二区视频| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久末码| 欧美黑人巨大hd| 国产精品嫩草影院av在线观看 | 亚洲最大成人手机在线| 无人区码免费观看不卡| xxxwww97欧美| 免费看日本二区| av在线老鸭窝| 日韩在线高清观看一区二区三区 | 国产在线男女| 亚洲最大成人中文| 人妻夜夜爽99麻豆av| 欧美日本亚洲视频在线播放| 国产蜜桃级精品一区二区三区| 麻豆国产97在线/欧美| 国产伦人伦偷精品视频| 亚洲五月天丁香| 国产中年淑女户外野战色| 欧美成人免费av一区二区三区| 亚洲不卡免费看| av在线老鸭窝| 不卡视频在线观看欧美| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久亚洲av鲁大| 一进一出好大好爽视频| 久久久久久国产a免费观看| 亚洲黑人精品在线| 亚洲欧美激情综合另类| 黄色欧美视频在线观看| 少妇熟女aⅴ在线视频| 国产女主播在线喷水免费视频网站 | av天堂中文字幕网| 波野结衣二区三区在线| 亚洲av中文av极速乱 | 国产中年淑女户外野战色| 日韩欧美在线二视频| 成人综合一区亚洲| 久久久久国产精品人妻aⅴ院| 成人特级黄色片久久久久久久| 精品人妻视频免费看| 久久精品影院6| 欧美成人a在线观看| 非洲黑人性xxxx精品又粗又长| 国产精品永久免费网站| 色综合婷婷激情| 亚洲电影在线观看av| av在线老鸭窝| 国产亚洲精品av在线| 1000部很黄的大片| 国产av在哪里看| 久久久久久久久久黄片| 久9热在线精品视频| 免费观看精品视频网站| 精品不卡国产一区二区三区| 亚洲成人久久性| 草草在线视频免费看| 在线观看美女被高潮喷水网站| 午夜福利在线观看吧| 亚洲av不卡在线观看| 免费一级毛片在线播放高清视频| 国产乱人伦免费视频| 一进一出抽搐gif免费好疼| 九九久久精品国产亚洲av麻豆| 欧美激情在线99| 女人被狂操c到高潮| 99精品在免费线老司机午夜| 国产精品久久久久久久电影| 九九久久精品国产亚洲av麻豆| 亚洲七黄色美女视频| 美女高潮的动态| 联通29元200g的流量卡| 在线天堂最新版资源| 一a级毛片在线观看| 久久久精品欧美日韩精品| 国内精品宾馆在线| 如何舔出高潮| 亚洲性久久影院| 亚洲精品一区av在线观看| 国产亚洲91精品色在线| 中亚洲国语对白在线视频| 婷婷丁香在线五月| 国产在线男女| 国产熟女欧美一区二区| 我的女老师完整版在线观看| 在线观看午夜福利视频| 黄色丝袜av网址大全| 日韩国内少妇激情av| 精品久久久久久,| 日本a在线网址| 麻豆av噜噜一区二区三区| 亚洲成av人片在线播放无| 午夜福利在线在线| 久久精品影院6| 春色校园在线视频观看| 91麻豆av在线| 国产精品不卡视频一区二区| 国产精品一区二区性色av| 琪琪午夜伦伦电影理论片6080| 精品一区二区三区视频在线| 老师上课跳d突然被开到最大视频| 99久久九九国产精品国产免费| 精品久久久久久久久亚洲 | 亚洲天堂国产精品一区在线| 伦理电影大哥的女人| 村上凉子中文字幕在线| 亚洲最大成人av| 99热6这里只有精品| 赤兔流量卡办理| 日韩精品青青久久久久久| 91久久精品国产一区二区三区| av天堂在线播放| 国产亚洲91精品色在线| 国产亚洲av嫩草精品影院| 亚洲精品国产成人久久av| 男人的好看免费观看在线视频| 国产久久久一区二区三区| 在线国产一区二区在线| 午夜福利在线在线| 深爱激情五月婷婷| 久久精品国产99精品国产亚洲性色| 国产免费男女视频| 国产午夜精品久久久久久一区二区三区 | 少妇猛男粗大的猛烈进出视频 | 亚洲成人久久爱视频| 国产精品一区二区免费欧美| 国产爱豆传媒在线观看| 亚洲18禁久久av| 嫁个100分男人电影在线观看| 国产探花在线观看一区二区| 久久久久久九九精品二区国产| 国产精品人妻久久久影院| 国产成人aa在线观看| 天堂网av新在线| 国内精品一区二区在线观看| 亚洲国产日韩欧美精品在线观看| 精品久久久久久久末码| 国内精品一区二区在线观看| 亚洲av免费高清在线观看| 久久精品影院6| 欧美一区二区亚洲| 国产69精品久久久久777片| 尾随美女入室| 日韩中字成人| 欧美成人一区二区免费高清观看| 成熟少妇高潮喷水视频| 亚洲色图av天堂| 日韩精品有码人妻一区| 搡老妇女老女人老熟妇| 亚洲人成网站在线播| 黄色日韩在线| 久久精品国产清高在天天线| 午夜老司机福利剧场| 黄色欧美视频在线观看| 久久久久久九九精品二区国产| 舔av片在线| 中出人妻视频一区二区| 变态另类成人亚洲欧美熟女| 国产精品免费一区二区三区在线| 真人一进一出gif抽搐免费| 午夜视频国产福利| 男女做爰动态图高潮gif福利片| 日日干狠狠操夜夜爽| 日韩欧美国产在线观看| 成年女人看的毛片在线观看| 国国产精品蜜臀av免费| 欧美色欧美亚洲另类二区| 人妻制服诱惑在线中文字幕| 国产伦精品一区二区三区视频9| 99国产精品一区二区蜜桃av| 乱码一卡2卡4卡精品| 熟女电影av网| 日本精品一区二区三区蜜桃| 午夜精品久久久久久毛片777| 国产在线男女| 亚洲精品在线观看二区| 日本a在线网址| av黄色大香蕉| 一进一出抽搐gif免费好疼| 俄罗斯特黄特色一大片| 亚洲不卡免费看| 国产午夜福利久久久久久| 久久久精品欧美日韩精品| 啦啦啦啦在线视频资源| 18+在线观看网站| 欧美日韩精品成人综合77777| 国产高清有码在线观看视频| 欧美高清性xxxxhd video| 999久久久精品免费观看国产| 欧美一区二区亚洲| 一级av片app| 伊人久久精品亚洲午夜| 男女做爰动态图高潮gif福利片| 性色avwww在线观看| 成人精品一区二区免费| 97人妻精品一区二区三区麻豆| 男女视频在线观看网站免费| 又黄又爽又刺激的免费视频.| 国产精品综合久久久久久久免费| 综合色av麻豆| 蜜桃亚洲精品一区二区三区| 国产精品一区二区三区四区免费观看 | 久久久国产成人精品二区| 国内精品一区二区在线观看| 久久久久久久久久黄片| 久久99热6这里只有精品| 国产白丝娇喘喷水9色精品| 久久精品影院6| 日本黄色片子视频| 亚洲色图av天堂| 国产av不卡久久| 欧美成人免费av一区二区三区| 欧美三级亚洲精品| 亚洲精品国产成人久久av| 亚洲av不卡在线观看| 国产一区二区三区视频了| 国内毛片毛片毛片毛片毛片| 成人亚洲精品av一区二区| 欧美最新免费一区二区三区| 国产真实乱freesex| 国产真实伦视频高清在线观看 | 日韩强制内射视频| 国产麻豆成人av免费视频| 午夜福利高清视频| 欧美3d第一页| 国产真实伦视频高清在线观看 | 免费av毛片视频| 99热这里只有是精品在线观看| 99国产极品粉嫩在线观看| 久久精品国产亚洲网站| 欧美又色又爽又黄视频| 91麻豆av在线| 婷婷六月久久综合丁香| 日韩欧美国产在线观看| 亚洲精品粉嫩美女一区| 免费av观看视频| 国产精品女同一区二区软件 | 最近在线观看免费完整版| 在线a可以看的网站| 99久久精品国产国产毛片| 国产精品一区二区性色av| 精品一区二区三区视频在线| 日本与韩国留学比较| 女的被弄到高潮叫床怎么办 | 小蜜桃在线观看免费完整版高清| 深爱激情五月婷婷| 国产探花极品一区二区| 中亚洲国语对白在线视频| 久久精品91蜜桃| 国产精品一区www在线观看 | 真实男女啪啪啪动态图| 九九热线精品视视频播放| 不卡视频在线观看欧美| 亚洲va在线va天堂va国产| 91久久精品电影网| 干丝袜人妻中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 久久人妻av系列| 国国产精品蜜臀av免费| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线观看吧| 亚洲成人久久性| 免费在线观看成人毛片| 色噜噜av男人的天堂激情| 老女人水多毛片| a级毛片a级免费在线| 亚洲va日本ⅴa欧美va伊人久久| 国产成人影院久久av| 中文字幕av成人在线电影| 久久精品国产99精品国产亚洲性色| 搡女人真爽免费视频火全软件 | 亚洲性久久影院| 色精品久久人妻99蜜桃| 国内少妇人妻偷人精品xxx网站| 干丝袜人妻中文字幕| 香蕉av资源在线| av专区在线播放| 免费观看人在逋| 欧美日韩综合久久久久久 | 国产亚洲精品久久久久久毛片| 别揉我奶头~嗯~啊~动态视频| 最好的美女福利视频网| 直男gayav资源| 国国产精品蜜臀av免费| 免费无遮挡裸体视频| 成年人黄色毛片网站| 免费看a级黄色片| 日本三级黄在线观看| 久久精品影院6| 亚洲欧美日韩东京热| 美女cb高潮喷水在线观看| 亚洲av中文av极速乱 | 国产亚洲91精品色在线| 国产精品亚洲美女久久久| 最近最新免费中文字幕在线| 国产精品综合久久久久久久免费| 亚洲一区高清亚洲精品| 国产精品一及| 中国美白少妇内射xxxbb| 日本 欧美在线| 91久久精品电影网| 99热这里只有精品一区| 少妇的逼好多水| 国产探花极品一区二区| 九九热线精品视视频播放| 又爽又黄a免费视频| 小说图片视频综合网站| 亚洲美女黄片视频| 亚洲欧美日韩卡通动漫| 老师上课跳d突然被开到最大视频| 日韩精品青青久久久久久| 午夜爱爱视频在线播放| 亚洲 国产 在线| 最新在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 欧美日韩亚洲国产一区二区在线观看| 91麻豆精品激情在线观看国产| 午夜久久久久精精品| 免费高清视频大片| 99久久精品一区二区三区| av在线天堂中文字幕| 欧美激情久久久久久爽电影| 天天躁日日操中文字幕| 熟女电影av网| 久久久久九九精品影院| 亚洲中文字幕一区二区三区有码在线看| 久久国内精品自在自线图片| 亚洲成人免费电影在线观看| 狠狠狠狠99中文字幕| 成人国产综合亚洲| www.www免费av| 成人毛片a级毛片在线播放| 国产成人aa在线观看| 波多野结衣高清无吗| 日韩高清综合在线| 成年版毛片免费区| 亚洲精华国产精华精| 欧美区成人在线视频| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在 | 最近视频中文字幕2019在线8| 日韩欧美国产在线观看| 国产精品免费一区二区三区在线| 亚洲在线观看片| 欧美性猛交╳xxx乱大交人| 欧美日韩国产亚洲二区| 在线观看美女被高潮喷水网站| 欧美精品啪啪一区二区三区| 欧美zozozo另类| 欧美精品啪啪一区二区三区| 亚洲狠狠婷婷综合久久图片| 啦啦啦观看免费观看视频高清| 欧美一区二区国产精品久久精品| 成人欧美大片| 中文字幕熟女人妻在线| 内射极品少妇av片p| 亚洲黑人精品在线| 亚洲精品一卡2卡三卡4卡5卡| 久久久久国内视频| 婷婷精品国产亚洲av| a在线观看视频网站| 日韩精品青青久久久久久| 免费在线观看成人毛片| 色在线成人网| 女的被弄到高潮叫床怎么办 | 性欧美人与动物交配| 久久这里只有精品中国| 精品国内亚洲2022精品成人| 欧美日韩乱码在线| 国产免费男女视频| 国产精品自产拍在线观看55亚洲| 久久久久免费精品人妻一区二区| 天堂动漫精品| 色综合婷婷激情| 淫秽高清视频在线观看| 欧美日韩国产亚洲二区| 亚洲aⅴ乱码一区二区在线播放| 麻豆成人av在线观看| 欧美成人一区二区免费高清观看| 99久久九九国产精品国产免费| 偷拍熟女少妇极品色| 国产精品亚洲美女久久久| 偷拍熟女少妇极品色| 日本成人三级电影网站|