• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An experimental determination of W,Nb,and Ta partition coefficients between P-rich peraluminous granitic melt and coexisting aqueous fluid

    2015-10-29 05:20:19YongTangHuiZhang
    Acta Geochimica 2015年2期

    Yong Tang·Hui Zhang

    An experimental determination of W,Nb,and Ta partition coefficients between P-rich peraluminous granitic melt and coexisting aqueous fluid

    Yong Tang·Hui Zhang

    The partition coefficients of W,Nb,and Ta between the P-rich peraluminous granitic melt and the coexisting aqueous fluid were determined at 800—850°C and 0.5—1.5 kbar.The experimental results showed that the partition coefficientswheredenote the concentrations of an element, i,in the aqueous fluid and the melt,respectively)were less than 0.1.All partition coefficients were affected by pressure,but there was no evidence for the complexation of P2O5with these elements in the granitic melt or aqueous fluid,except for with W in the fluid.The results showed that W,Nb,and Ta tended to partition into the granitic melt and,in the late period of crystallization of P-rich magma,they formed independent minerals.

    Partition coefficient·P-rich granitic melt· Fluid

    1 Introduction

    Some peraluminous granites,pegmatites,and rhyolites—particularly those with S-type affinity—are enriched in phosphorus.Whole-rock values of>1 wt%P2O5have been reported for certain granites(Raimbault et al.1995;Lentz 1997;London1998;RaimbaultandBurol1998;Zhang2001). Extremely high concentrations of phosphorus in evolved granitic melts lead to the crystallization of amblygonitemontebrasite LiAlPO4(F,OH),ithiophylite-triphylite Li(Mn,F(xiàn)e)PO4(London 1987),and/or ferromagnesian phosphate minerals including childernite-eosphorite series phases and sarcopside(Londonetal.1999).Althoughtheeffectofphosphoruson the viscosity of granitic melts and the solubility of water in granitic melts appears to be small,compared with F or B(Dingwell et al.1993;Holtz et al.1993;Toplis and Dingwell 1996),experimental studies have shown that phosphorus can lowerthesolidustemperaturesofgraniticmeltsandcanexpand the liquidus field of quartz,ultimately leading to the formation of peralkaline,silicate-poor residual melts(Wyllie and Tuttle 1964;London et al.1993).Rare-element ore deposits mineralizedwithW,Nb,andTaarecloselyassociatedwiththeP-rich peraluminous igneous rocks spatially and temporally(e.g.,Baxiannao tungsten deposit,Yichun 414 Nb—Ta deposit,Nanping No.3 pegmatite,and Beauvoir granite)(Huang et al. 2002;Li et al.2010;Raimbault et al.1995;Yang et al.1994),but the effect of phosphorus on the vapor/melt partitioning behavior of W,Nb and Ta is still not known in detail.The purpose of this study is to investigate the partitioning of these elements and phosphorus's role in the partitioning of these ore metals in magmatic-hydrothermal systems.

    2 Experimental methods

    2.1Starting materials

    An albite granite,termed YS-02-48 from the Yichun 414 pluton,was the starting material(Table 1).A small block of the albite granite was cleaned in distilled water,dried,then ground in an agate mortar until it was less than 200 mesh in grain size.To meet the analytical accuracyrequirements of trace elements in experimentally runproducts,glass and aqueous fluid by LA-ICPMS and solution ICP-MS,certain concentrations,e.g.,500 ppm W,200 ppm Nb and,200 ppm Ta,together with various concentrations of phosphorus,were doped in the initial material during the glasses preparation by using a silicon—molybdenum electric furnace.Phosphorus in the initial glass was added in the form of(NH4)H2PO4,and trace elements were added in the forms of corresponding oxides.

    Y.Tang·H.Zhang(?)

    Laboratory for High Temperature and High Pressure Study of the Earth's Interior,Institute of Geochemistry,Chinese Academy of Sciences,46 Guanshui Road,Guiyang 550002,Guizhou,

    People's Republic of China

    e-mail:zhanghui@vip.gyig.ac.cn

    Y.Tang

    e-mail:tangyong@vip.gyig.ac.cn

    Table 1 Compositions of the sample and starting glass versus Macusanite and Ongonite(wt%)

    Analytically pure powders of(NH4)H2PO4,trace element oxides and albite granite powder were mixed by grinding them in an agate mortar for at least 4 h.The mixtures were fused in a platinum crucible in a silicon—molybdenumelectricfurnace(JGMT-5/180type)at 1500°C;fusion time was limited to 1 h to minimize alkali loss,and the melts were quenched in water.In order to generate homogeneous glasses,this process of grinding,fusing,and rapid quenching,was repeated 3 to 4 times for each starting composition.Finally,the glasses were ground to<50 μm for use in experiments.The compositions of the glasses were analyzed by XRF and are shown in Table 1.

    2.2Experimental procedure

    All runs were conducted in cold-seal Rapid Quenching pressure Vessels(RQV,a kind of‘‘externally heated coldseal pressure vessel''),using water as the pressure medium for durations of 144 h.The run temperature and pressure were measured by a WRPK-103 type platinum—rhodium thermocouple and Bourdon-tube pressure gauge with errors of1°Cand0.05 kbar,respectively.Themaximum temperature gradient at 1 kbar was 5°C over the 5-cm long capsule,as determined by the calibration of the temperature profile of the tubular electric furnace.The oxygen fugacity(fO2)of the experimental charge was not directly controlled.The use of GH220 vessels(commensurate to Rene′-41,composed of a Ni-based alloy),coupled with the thermaldissociationofthewaterpressuremediumin the vessel,imposes a hydrogen fugacity(by the establishment of osmotic equilibrium between the charge and the pressure buffer within 24 h)equal to the nickel—nickel oxide(NNO)solid-state oxygen fugacity buffer on the experimental charge(Chou 1987;Simon et al.2005).

    About 200 mg of starting glass was loaded into gold capsules,which were 4-mm in outer diameter,3.8-mm in inner diameter and 50-mm in length.About 200 μl of deionized water was injected into the capsule slowly by using a micro-injector to keep the solid—liquid ratio of 1:1.The loaded capsule was immersed in ice water and welded shut by oxy-acetylene flame.The sealed capsule was placed in an oven at 110°C overnight.After checking for leakage and making sure of no change in mass(<0.5 mg),the capsule was placed inside the cold-seal rapid quenched vessel(RQV),which was inserted into a horizontal tubular electric furnace.The charge was pressurized with water to 0.5 kbar,and then heated to 850°C in 2—3 h.Then,the pressure was adjusted to the final run pressure of 1.0 kbar. After melting the charge at 850°C for 24 h,the run temperature was dropped at a rate of 1°C/min to 800°C,where the charge was kept for 144 h,in a state that was sufficient to make partitioning experiments in this workattain equilibrium.At the end of the experiment,the pressure vessel was withdrawn from the tubular heating electric furnace and tilted upwards(at 90°angle from the horizontal).The gold capsule slid into the quenching part of vessel and was then quenched isobarically from 800°C to ambient-temperature in less than 10 s.

    The capsule was removed from the vessel,cleaned with distilled water,examined microscopically and weighed,in order to determine whether the capsule had remained sealed during the run.Only those capsules that showed mechanical integrity and mass loss(<0.5 mg)were processed for analysis.After centrifugation for 30 min,the top end of the capsule was pierced with a stainless steel needle,and the solution was extracted using a syringe.Then the capsule was dried,opened by a razor blade,and boiled in hydrochloric acid for 30 min.After the acid treatment,the sample was rinsed several times with de-ionized water.All of the solutions obtained during these operations were added to the solution withdrawn from the capsule,and then diluted to 5 ml in preparation for analysis.The purpose of the acid treatment is to re-dissolve material precipitated from the fluid during quenching.In this process,the glass does not appear to be significantly affected(Keppler and Wyllie 1991).The quenched silicate melt formed clear,colorless and translucent glass.Sub-microscopic cavities,formed by vapor bubbles,were observed in the appearance of glass.The total volume of these bubbles is estimated at<0.1 vol%of the fluid.

    2.3Analysis of experimental products

    Chemical composition of the initial glasses was determined by XRF at the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences.The major-element composition of the run-product glasses was analyzed by the Shimadzu EMPA-1600 electron microprobe with wavelength dispersive spectrometry(WDS)at the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences.Natural Macusite glass was used as standards for the major element,except P,and synthesized P-bearing glass(P2O5wt%=2)was used as a standard for P.In order to reduce the loss of alkalies during analysis,the analytical conditions for Na,Al,K and Si were at 20-kV acceleration potential,2-nA beam current and a 20-μm defocused spot.For other major elements the conditions were at 20 kV acceleration potential,20-nA beam current and a 20-μm defocused spot(Morgan and London 1996,2005).The counting time for all elements was 30 s.

    The trace-element concentration in the glasses was measured by LA-ICP-MS(Agilent 7500 Series)at the State Key Laboratory of Continental Dynamics,Northwestern University,Xi'an.It was equipped with a Elan 600DRC quadrupole mass spectrometer and a 193-nm ArF excimer laser(Geolas200 M laser ablation system).Spots that were petrographically devoid of vapor bubbles were chosen for ablation,and the diameter of the laser ablation beam was set to 30 μm.Analysis methods and operating conditions were defined in detail previously(Gao et al.2002).A US National Institute of Standards and Technology(NIST)standard reference material,NBS-610,was used as the reference silicate glass,and the concentration of Si,determined by EMPA,was used as an internal standard for the quantification of the rare-element concentration in the glasses.

    The trace-element concentrations of the aqueous fluids were measured using the solution ICP-MS(Elan 600)at the Isotope Laboratory of Institute of Guangzhou Geochemistry,Chinese Academy of Sciences.Indium(10 bbp in standard solutions)was used as the internal standard for the quantification of REE concentration in the aqueous fluid. According to a number of determined results of standard samples,the relative error of LA-ICP-MS and solution ICP-MS were both less than 10%.

    2.4Sources of experimental error

    Much of the error of the partition coefficients comes from the analyses of both the glass and aqueous phases.This error is small if the partition coefficient is less than unity(?)Keppler and Wyllie(1991).With the ICP-MS and LAICPMS analyses,the analytical uncertainty is generally<10%.Direpresents the ratio of two analyses,so the uncertainty in Diis<14%.

    3 Experimental results and discussions

    3.1The major compositions

    It has been determined that the liquidus of the studied initial magmatic systems,which contains 5 wt%H2O,ranges from 810°C at 0.27 wt%P2O5to 740°C at 7.71 wt%P2O5,under a pressure of 1.0 kbar(Tang et al.2009). The 1:1 ratio of the solid—liquid in the experimental charges makes the experimental systems H2O-oversatured. Thus,it is reasonable to consider that there are only melt and fluid phases in the experimental phase equilibrium systems at 1.0 kbar and 800°C.

    Compared with the corresponding initial glasses(P0T,P2T,P5T and P8T)(Table 1),the main chemical compositions of the run-product glasses(Table 2)have lower content of SiO2,Al2O3,Na2O and K2O,and no variation of the Fe—Mg components.Microprobe analytical totals fortherun-productglassesareintherangeof 89.78—94.78 wt%,implying that about 5.22—10.22 wt%H2O was dissolved in the melts.The significant increase oftheASI(Al-saturationindex,ASI=Al2O3/(Na2-O+K2O+CaO)in mole)indicates that melt-fluid interactions result in more Na,K and Ca partitioning into the fluid phase than Al.

    Table 2 Average chemical compositions of the run-product glasses(melts),determined by EMPA(in wt%)

    Based on trace element concentrations and masses of the initial,run-product glasses and fluid phase,as well as taking into account 4 wt%solubility of peraluminous melt in aqueous fluid(Webster 1990)and different H2O solubility in different run-product glasses(5.22—10.22 wt%),the recovery of trace element can be estimated to be from 85.9 to 98.6%in all of the runs.The high recovery states that our experimental results in this paper are reliable.

    3.2Tungsten

    Experimental data for the partitioning of tungsten is shown in Fig.1 and Table 3.The partition coefficients of tungsten vary from 0.003 to 0.07.According to our experimental results,tungsten fractionates toward the melt.

    Phosphate,as a typical‘hard'base,was expected to form strong complexes with a‘hard'acid like W6+(Watson 1976;Ryerson and Hess 1980;Webster et al.1997). According to London et al.(1993),phosphorus partitions strongly in favor of a silicate melt phase,so the low partition coefficient of W between the P-rich melt and aqueous fluid wss expected.However,Keppler(1994)found that the phosphorus content of a coexisting aqueous fluid increases with the total phosphorus content in the melt and with pressure.This result may account for the fact that the vapor/melt partition coefficients of tungsten increase with increasing P2O5wt%in the melt and increasing pressure(Fig.1).

    Fig.1 Partition coefficients of tungsten between aqueous fluid and melt

    The distribution of tungsten between granite melt and the coexisting fluid has been studied extensively(Manning and Henderson 1984;Keppler and Wyllie 1991;Chen and Peng 1994;Zhao et al.1996;Bai and Koster van Groos 1999).Except for the results of Manning and Henderson(1984),previous studies showed that the capacity of tungsten to dissolve in an aqueous fluid decreases in the following sequence of anions present:Cl,pure H2-O>CO2>F>P.Our data for W contrast with the resultsof Manning and Henderson(1984),who found that W fractionatestowardthefluidinaP-bearingsystem(DW=2.0—2.7 at 800°C and 100 MPa).Though our experiments do not provide any information on the oxidation stateoftungstenintemeltandthefluid,weassume fO2tobe with in 2 log units of the NNO buffer(see experimental section).Under these fO2conditions,the oxidation state of tungsten is+6.Furthermore,Bai and Koster van Groos(1999)and Chen and Peng(1994)considered that the presence of a small amount of reduced tungsten does not significantly affect its distribution behavior.The differences of DWin our work and in the study of Manning and Henderson(1984)are unlikely to be the result of differences in fO2,but are more likely to be from differences in fluid composition.The addition of large amounts of Na3PO4made the bulk of their composition peralkaline,and increased the pH of the solution(Urabe 1985).Furthermore,the tungsten concentration(1 wt%W)used by Manning and Henderson(1984)was so high that W could have deviated from Henry's law distribution.In contrast,theconcentrations of W used in our experiments were more geologically relevant.

    Table 3 Partition coefficient of W between aqueous fluid and melt

    Table 4 Partition coefficients of Niobium between aqueous fluid and melt

    Fig.2 Partition coefficients of Niobium and Tantalum between aqueous fluid and melt

    Table 5 Partition coefficients of Tantalum between aqueous fluid and melt

    3.3Niobium and tantalum

    The data for DNband DTaare shown in Fig.2,Tables 4 and 5.The distribution behaviors of niobium and tantalum are very similar in our experiments.The partition coefficients of the two elements are very low(DNb=0.00005—0.01 and DTa=0.00003—0.002).A change in starting P2O5of the glasses contents between 1.91 and 4.83 wt%has no significant effect on DNband DTa.But as the pressure increases,both DNband DTaincrease.

    In previous studies,DNbvaried 1—3 orders of magnitude.Webster et al.(1989)found DNbto be affected by pressure,temperature and fluid composition for F-enriched topaz rhyolite melt.At pressure=4.0 kbar,Nb partitions into the melt,with the partitioning being apparently independent of temperature.As the pressure decreases,Nb partitions in favor of the fluid and DNbincrease with temperature.As the mole fraction of water in the fluid increases,Nb partitions increasingly in favor of the fluid.Our DNbis similar to the values found by London et al.(1988)and Zhao et al.(1996)(0—0.1 and 0.0019—0.081 respectively),although their DNbis higher than ours.Zhao et al.(1996)determined DTa=0.0023—0.089.The differences between the results we obtained and previous studies are likely mainly attributed to the difference in fluid composition and melt.

    4 Conclusions

    Relative to the coexisting aqueous fluid,W,Nb and Ta partition in favor of P-rich peraluminous granitic melt at 800—850°C and 50—150 MPa.The ranges of the fluid/melt partition coefficients of W,Nb and Ta are:0.003—0.07,0.00005—0.001,0.00003—0.0002,respectively.DW,DNb,and DTaare all affected by pressure,but there is no evidence of an effect of P2O5on these elements,except for W. The DWis less than 0.01;therefore it is difficult to derive a W-enriched fluid from a P-rich peraluminous melt system,especially when phosphorus is the only complexing agent.Our results also show that Nb and Ta tend to distribute in the melt when it is in the magmatic-hydrothermal stage.In the late period of crystallization of magma,Nb and Ta will form discrete independent minerals like tantalite and columbite.

    AcknowledgmentsThis research project is supported by the Chinese National Natural Science Foundation(Project No.40273030)and the Chinese Academy of Sciences through an innovation project(Project No.KZCX3-SW-124).

    Bai T,van Koster Groos AF(1999)The distribution of Na,K,Rb,Sr,Al,Ge,Cu,W,Mo,La,and Ce between granitic melts and coexisting aqueous fluids[J].Geochim et Cosmochim Acta 63:1117—1131

    Chen ZL,Peng SL(1994)The experimental results of W and Sn partitioning between fluid and melt and their significance for the origin of W and Sn ore deposits[J].Geol Rev 40(3):274—282(in Chinese with English abstract)

    Chou IM (1987)Oxygen buffer and hydrogen sensor technique at elevated pressures and temperatures.In:Barnes HL,Ulmer GC(eds)Hydrothermal experiments techniques[M].Wiley,New York

    Dingwell DB,Knoche R,Webb SL(1993)The effect of P2O5on the viscosity of haplogranitic liquid.Eur J Mineral 5:133—140

    Gao S,Liu XM,Yuan HL,Hattendorf B,Gunther D,Chen L,Hu SH(2002)Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry[J].ostand Newsl:J Geostand and Geoanal 26:181—196

    Holtz F,Dingwell DB,Behrens H(1993)Effects of F,B2O3and P2O5on the solubility of water in haplogranite melts compared to natural silicate melts[J].Contrib Mineral Petrol 113:492—501

    Huang XL,Wang RC,Chen XM,Hu H,Liu CS(2002)Vertical variations in the mineralogy of the Yichun Topaz-Lepidolite granite,Jiangxi Province,southern China[J].Can Mineral 40(4):1047—1068

    Keppler H(1994)Partitioning of phosphorus between melt and fluid inthesystemhaplogranite-H2O-P2O5[J].ChemGeol 117:345—353

    Keppler H,Wyllie PJ(1991)Partitioning of Cu,Sn,Mo,W,U,and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF[J].Contrib Mineral Petrol 109:139—150

    Lentz DR(1997)Phosphorus-enriched,S-type Middle River Rhyolite,Tetagouche Group,northeastern New Brunswick;petrogenetic implications[J].Can Mineral 35:673—690

    Li G,Hua R,Li X,Wei X,H xiaoe,Hu D,Zhang W,Wang X(2010)Discovery and geological significance of triplite in Baxiannao tungsten deposit,southern Jiangxi Province,China[J].Acta Mineral Sin 30(3):273—277

    London D(1987)Internal differentiation of rare-element pegmatites: effects of boron,phosphorus,and fluorine[J].Geochim Cosmochim Acta 51:403—420

    London D(1998)Phosphorus-rich peraluminous granites[J].Acta Univ Carol-Geol 42:64—68

    London D,Hervig RL,Morgan GB(1988)Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems:experimental results with Macusani glass at 200 MPa[J]. Contrib Mineral Petrol 99:360—373

    London D,Morgan VI GB,Richard LH(1989)Vapor-undersaturated experiments with Macusani glass+H2O at 200 Mpa,and the internal differentiation of granitic pegmatites[J].Contrib Miner Petrol 102:1—17

    London D,Morgan VIGB,Babb HA,Loomis JL(1993)Behavior and effects of phosphorus in the system Na2O—K2O—Al2O3—SiO2—P2O5—H2Oat200 MPa(H2O)[J].ContribMineralPetrol 113:450—465

    London D,Wolf MB,Morgan VIGB,Garrido MG(1999)Experimental Silicate-Phosphate equilibria in peraluminous granitic magmas,with a case study of the Alburquerque batholith at Tres Arroyos,Badajoz,Spain[J].J Petrol 40(1):215—240

    Manning D,Henderson P(1984)The behaviour of tungsten in graniticmelt-vapoursystems[J].ContribMineralPetrol 86:286—293

    Morgan VIGB,London D(1996)Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses[J].Am Mineral 81:1176—1185

    Morgan VIGB,London D(2005)Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses[J]. Am Mineral 90:1131—1138

    Raimbault L,Burol L(1998)The Richemont rhyolite dike,massif central,F(xiàn)rance:a subvocanic equivalent of rare-metal granite[J]. Can Mineral 36:265—282

    Raimbault L,Cuney M,Azencott C,Duthou JL,Joron JL(1995)Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir,F(xiàn)rench Massif Central[J].Econ Geol 90:548—576

    Ryerson FJ,Hess PC(1980)The role of P2O5in silicate melts[J]. Geochim Cosmochim Acta 44:611—624

    Simon AC,F(xiàn)rank MR,Pettke T,Candela PA,Piccoli PM,Heinrich CA(2005)Gold partitioning in melt-vapor-brine systems[J]. Geochim Cosmochim Acta 69:3321—3335

    Tang Y,Zhang H,Liu C-Q,Rao B(2009)Experimental study of effect of phosphorus on liquidus temperature of peraluminous magmatic system[J].Geochimica 38(1):37—42(in Chinese with English abstract)

    Toplis MJ,Dingwell DB(1996)The variable influence of P2O5on the viscosity of melts of differing alkali/aluminium ratio:implications for the structural role of phosphorus in silicate melts[J]. Geochim Cosmochim Acta 60:4107—4121

    Urabe T(1985)Aluminous granite as a source magma of hydrothermaloredeposits;anexperimentalstudy[J].EconGeol 80:148—157

    Watson EB(1976)Two-liquid partition coefficients:experimental data and geochemical implications[J].Contrib Mineral Petrol 56:119—134

    Webster JD(1990)Partitioning of F between H2O and CO2fluids and topaz rhyolite melt.Contrib Mineral Petrol 104:424—438

    Webster JD,Holloway JR,Hervig R(1989)Partitioning of lithophile trace elements between H2O and H2O+CO2fluids and topaz rhyolite melt[J].Econ Geol 84(1):116—134

    Webster JD,Thomas R,Rhede D,F(xiàn)orster H-J,Seltmann R(1997)Melt inclusions in quartz from an evolved peraluminous pegmatite:geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids[J].Geochim Cosmochim Acta 61(13):2589—2604

    Wyllie PJ,Tuttle OF(1964)Experimental investigation of silicate systems containing two volatile components:part III.the effets of SO3,P2O5,HCl and Li2O in addition to H2O,on the melting temperatures of Albite and granite[J].Am J Sci 3:930—939

    Yang YQ,Wang WY,Ni YX,Chen CH,Zhu JH(1994)Phosphate minerals and Their Geochemical Evolution of granitic pegmatite in Nanping,F(xiàn)ujian Province[J].Geol Fujian 13(4):215—226(in Chinese with English abstract)

    Zhang H(2001)The geochemical behaviors and mechanisms of incompatible trace elements in the magmatic-hydrothermal transition system:a case study of Altay No.3 pegmatite,Xinjiang.Dissertation for the Doctoral Degree,Guiyang: Institute of Geochemistry,Chinese Academy of Sciences(in Chinese with English abstract)

    Zhao JS,Zhao B,Rao B(1996)A preliminary experimental study on mineralization of Nb,Ta and W[J].Gochimica 25(3):286—295(in Chinese with English abstract)

    9 September 2014/Revised:2 December 2014/Accepted:5 December 2014/Published online:6 February 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    在线观看免费高清a一片| 国产福利在线免费观看视频| 亚洲精品乱久久久久久| 一级毛片我不卡| 亚洲国产成人一精品久久久| 国产在线免费精品| 一区在线观看完整版| 在线观看国产h片| 国产老妇伦熟女老妇高清| 狠狠精品人妻久久久久久综合| 蜜桃在线观看..| av网站免费在线观看视频| 爱豆传媒免费全集在线观看| 好男人视频免费观看在线| 三上悠亚av全集在线观看| 久久av网站| 国产黄色免费在线视频| 18禁裸乳无遮挡动漫免费视频| 99国产精品99久久久久| 人人妻,人人澡人人爽秒播 | 久久影院123| 777久久人妻少妇嫩草av网站| 亚洲欧美色中文字幕在线| 最近中文字幕2019免费版| 国产成人av教育| 91老司机精品| 欧美日韩黄片免| kizo精华| 国产精品偷伦视频观看了| svipshipincom国产片| 中文乱码字字幕精品一区二区三区| 久久久国产欧美日韩av| 性色av乱码一区二区三区2| 人人妻人人澡人人看| 看免费av毛片| 在线亚洲精品国产二区图片欧美| 国产一区二区激情短视频 | 色视频在线一区二区三区| 久久人人爽人人片av| 午夜福利一区二区在线看| 男的添女的下面高潮视频| 成人三级做爰电影| 国产精品99久久99久久久不卡| 天天影视国产精品| 久久免费观看电影| 久久综合国产亚洲精品| 久久久久久久大尺度免费视频| 18禁国产床啪视频网站| 欧美成狂野欧美在线观看| 久久热在线av| 亚洲国产成人一精品久久久| 99国产综合亚洲精品| 色婷婷av一区二区三区视频| 五月天丁香电影| 巨乳人妻的诱惑在线观看| 国产伦人伦偷精品视频| www.精华液| 亚洲欧美精品综合一区二区三区| a级片在线免费高清观看视频| 麻豆av在线久日| 男女国产视频网站| 欧美日韩黄片免| 精品人妻熟女毛片av久久网站| 波多野结衣一区麻豆| xxxhd国产人妻xxx| 亚洲av成人不卡在线观看播放网 | 女警被强在线播放| 日韩免费高清中文字幕av| 极品少妇高潮喷水抽搐| 亚洲一码二码三码区别大吗| 亚洲精品国产色婷婷电影| 97精品久久久久久久久久精品| 午夜福利一区二区在线看| 免费看十八禁软件| 校园人妻丝袜中文字幕| 亚洲av在线观看美女高潮| 午夜福利在线免费观看网站| 精品一区二区三区四区五区乱码 | 亚洲精品美女久久av网站| 一边摸一边做爽爽视频免费| 久久久久精品人妻al黑| 99热网站在线观看| 老司机在亚洲福利影院| 深夜精品福利| 国产精品秋霞免费鲁丝片| 亚洲av片天天在线观看| 久久狼人影院| 久久精品亚洲av国产电影网| 在线观看免费高清a一片| 乱人伦中国视频| 十八禁网站网址无遮挡| 免费不卡黄色视频| 日本欧美国产在线视频| 午夜福利一区二区在线看| 一区二区三区精品91| 久久人人爽av亚洲精品天堂| 欧美+亚洲+日韩+国产| 夫妻性生交免费视频一级片| 2018国产大陆天天弄谢| 久久精品久久久久久久性| 91精品三级在线观看| 欧美人与性动交α欧美精品济南到| 国精品久久久久久国模美| 日韩制服丝袜自拍偷拍| 欧美在线一区亚洲| 久久ye,这里只有精品| 国产亚洲一区二区精品| 老司机影院毛片| 成人国产av品久久久| 欧美另类一区| 国产高清视频在线播放一区 | 99精品久久久久人妻精品| 日日爽夜夜爽网站| 在线观看一区二区三区激情| 十八禁人妻一区二区| 久久久久久久久免费视频了| 在线观看人妻少妇| 又大又爽又粗| 亚洲国产欧美网| av在线老鸭窝| 久久99精品国语久久久| 一级毛片女人18水好多 | 午夜激情久久久久久久| 999精品在线视频| 大香蕉久久网| 免费久久久久久久精品成人欧美视频| 飞空精品影院首页| 久久人妻熟女aⅴ| 久久久精品94久久精品| 三上悠亚av全集在线观看| 叶爱在线成人免费视频播放| av网站在线播放免费| 亚洲欧美日韩另类电影网站| 国产成人精品在线电影| 欧美国产精品一级二级三级| 999精品在线视频| 午夜福利在线免费观看网站| 精品久久蜜臀av无| 狂野欧美激情性bbbbbb| 女性生殖器流出的白浆| 国产男女内射视频| 欧美亚洲日本最大视频资源| 黄频高清免费视频| 校园人妻丝袜中文字幕| tube8黄色片| 国产精品久久久久久人妻精品电影 | 久久精品国产亚洲av高清一级| www.精华液| 欧美日韩黄片免| 黑丝袜美女国产一区| 欧美日韩亚洲国产一区二区在线观看 | 美女中出高潮动态图| 日韩av不卡免费在线播放| 亚洲精品久久午夜乱码| 精品亚洲乱码少妇综合久久| 久久久亚洲精品成人影院| 午夜免费鲁丝| 97在线人人人人妻| 91国产中文字幕| 久久国产亚洲av麻豆专区| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 日日摸夜夜添夜夜爱| 在线观看人妻少妇| 超色免费av| 久久国产亚洲av麻豆专区| 亚洲第一av免费看| 一区在线观看完整版| 午夜福利影视在线免费观看| 午夜免费观看性视频| 国产精品成人在线| 大片免费播放器 马上看| 久久精品熟女亚洲av麻豆精品| 欧美亚洲 丝袜 人妻 在线| 日日爽夜夜爽网站| 精品视频人人做人人爽| 欧美人与性动交α欧美精品济南到| 最近手机中文字幕大全| 黄片小视频在线播放| 视频区图区小说| 日本欧美国产在线视频| 高清视频免费观看一区二区| 中文精品一卡2卡3卡4更新| 国产精品国产三级国产专区5o| videosex国产| 国产精品一区二区在线不卡| 免费黄频网站在线观看国产| 99精品久久久久人妻精品| 欧美 亚洲 国产 日韩一| 免费在线观看完整版高清| 人人妻人人澡人人看| 欧美日韩av久久| 国产欧美日韩精品亚洲av| 首页视频小说图片口味搜索 | 亚洲国产av新网站| 国产精品一二三区在线看| 午夜福利在线免费观看网站| 欧美大码av| 黑人巨大精品欧美一区二区蜜桃| 欧美精品人与动牲交sv欧美| 美国免费a级毛片| 午夜免费男女啪啪视频观看| 中文字幕色久视频| 纯流量卡能插随身wifi吗| 在线看a的网站| 看免费av毛片| 国产精品国产av在线观看| 日韩伦理黄色片| 丝袜脚勾引网站| 久久鲁丝午夜福利片| 国产一区亚洲一区在线观看| 亚洲图色成人| 日本色播在线视频| 97精品久久久久久久久久精品| 看十八女毛片水多多多| 国产成人av激情在线播放| 无遮挡黄片免费观看| 一区二区三区精品91| 最近手机中文字幕大全| 看十八女毛片水多多多| 中国国产av一级| 97在线人人人人妻| 亚洲人成电影免费在线| 韩国高清视频一区二区三区| 免费高清在线观看视频在线观看| 啦啦啦视频在线资源免费观看| 日韩 欧美 亚洲 中文字幕| 99香蕉大伊视频| 欧美日韩av久久| 视频区欧美日本亚洲| √禁漫天堂资源中文www| 久久久久久久国产电影| 欧美日韩成人在线一区二区| 夜夜骑夜夜射夜夜干| www.999成人在线观看| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美视频二区| 久久人妻熟女aⅴ| 国产99久久九九免费精品| 久久久国产欧美日韩av| 国产成人一区二区三区免费视频网站 | 精品视频人人做人人爽| 日本vs欧美在线观看视频| 丰满饥渴人妻一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 真人做人爱边吃奶动态| 亚洲,欧美,日韩| 大码成人一级视频| 亚洲伊人色综图| 亚洲人成电影观看| 国产老妇伦熟女老妇高清| 女性生殖器流出的白浆| 免费在线观看日本一区| 宅男免费午夜| 国产男女内射视频| 国产日韩欧美在线精品| 国产97色在线日韩免费| 99久久人妻综合| 超色免费av| 中文乱码字字幕精品一区二区三区| 国产精品.久久久| 国产片内射在线| 波多野结衣av一区二区av| 亚洲天堂av无毛| 777久久人妻少妇嫩草av网站| 欧美日韩综合久久久久久| 午夜免费鲁丝| 亚洲av美国av| 久久午夜综合久久蜜桃| 午夜福利乱码中文字幕| 可以免费在线观看a视频的电影网站| 国产一级毛片在线| 成人手机av| 久久久久网色| 亚洲七黄色美女视频| 亚洲色图综合在线观看| 精品少妇黑人巨大在线播放| av天堂久久9| 欧美97在线视频| 午夜老司机福利片| 少妇粗大呻吟视频| 青草久久国产| 久久久精品区二区三区| 亚洲精品自拍成人| 亚洲精品一卡2卡三卡4卡5卡 | 日韩大码丰满熟妇| a 毛片基地| 色网站视频免费| 亚洲精品av麻豆狂野| a级片在线免费高清观看视频| 色综合欧美亚洲国产小说| 人人妻,人人澡人人爽秒播 | 欧美亚洲日本最大视频资源| 中文欧美无线码| 亚洲一区中文字幕在线| 久久人妻熟女aⅴ| 大片免费播放器 马上看| 精品少妇黑人巨大在线播放| 欧美日韩视频高清一区二区三区二| 久久久精品免费免费高清| 中文字幕色久视频| 国产一区有黄有色的免费视频| 一区二区av电影网| 三上悠亚av全集在线观看| 国产黄频视频在线观看| 亚洲欧美中文字幕日韩二区| 天天操日日干夜夜撸| 天天躁日日躁夜夜躁夜夜| 美女高潮到喷水免费观看| 久久久久久久久免费视频了| 高清视频免费观看一区二区| 青青草视频在线视频观看| 久久狼人影院| 国产激情久久老熟女| 91成人精品电影| 一区二区av电影网| 亚洲图色成人| 国产成人91sexporn| 成年av动漫网址| 一区在线观看完整版| 黄网站色视频无遮挡免费观看| 亚洲国产欧美一区二区综合| 亚洲欧美中文字幕日韩二区| 伊人亚洲综合成人网| 不卡av一区二区三区| 久久中文字幕一级| 中文字幕精品免费在线观看视频| 免费观看av网站的网址| 无限看片的www在线观看| 色94色欧美一区二区| 免费在线观看日本一区| www.av在线官网国产| 我的亚洲天堂| 国产欧美日韩精品亚洲av| 国产精品一区二区免费欧美 | 国产成人影院久久av| 亚洲欧美中文字幕日韩二区| 美女大奶头黄色视频| 国产精品熟女久久久久浪| 你懂的网址亚洲精品在线观看| 9191精品国产免费久久| 99精国产麻豆久久婷婷| 一本久久精品| 国产高清不卡午夜福利| 一本综合久久免费| 中文字幕另类日韩欧美亚洲嫩草| 99国产精品一区二区三区| 你懂的网址亚洲精品在线观看| 9191精品国产免费久久| 丝袜美腿诱惑在线| 热99国产精品久久久久久7| 香蕉丝袜av| 丰满少妇做爰视频| 免费女性裸体啪啪无遮挡网站| av电影中文网址| 美女脱内裤让男人舔精品视频| 午夜福利视频精品| 老司机影院毛片| 亚洲av片天天在线观看| 精品国产乱码久久久久久男人| 欧美乱码精品一区二区三区| 肉色欧美久久久久久久蜜桃| 中文乱码字字幕精品一区二区三区| 国产成人精品久久久久久| 欧美 亚洲 国产 日韩一| 成年美女黄网站色视频大全免费| 热99国产精品久久久久久7| 精品免费久久久久久久清纯 | 亚洲精品久久久久久婷婷小说| 亚洲欧美日韩另类电影网站| 大香蕉久久成人网| 亚洲av综合色区一区| 免费人妻精品一区二区三区视频| 久久精品久久久久久久性| 国产色视频综合| 欧美日韩黄片免| 成人黄色视频免费在线看| 亚洲精品中文字幕在线视频| 女警被强在线播放| 国产日韩欧美亚洲二区| 91麻豆av在线| 欧美黑人精品巨大| 国产高清videossex| 热99久久久久精品小说推荐| 91老司机精品| 国产精品.久久久| 亚洲成人手机| 欧美日韩亚洲综合一区二区三区_| 国产在视频线精品| 欧美在线一区亚洲| 亚洲欧美激情在线| 后天国语完整版免费观看| 蜜桃国产av成人99| 久久精品久久久久久噜噜老黄| 亚洲 国产 在线| 久久久精品国产亚洲av高清涩受| av天堂在线播放| 18禁裸乳无遮挡动漫免费视频| 国产在线观看jvid| 丰满人妻熟妇乱又伦精品不卡| kizo精华| 国精品久久久久久国模美| 日韩熟女老妇一区二区性免费视频| 色播在线永久视频| 欧美激情高清一区二区三区| 欧美日韩av久久| 婷婷色麻豆天堂久久| 亚洲熟女毛片儿| 亚洲色图 男人天堂 中文字幕| 一级黄片播放器| 国产精品偷伦视频观看了| 999精品在线视频| 久久精品久久久久久噜噜老黄| 黑人巨大精品欧美一区二区蜜桃| 成年女人毛片免费观看观看9 | 久久久久久亚洲精品国产蜜桃av| 国产日韩欧美在线精品| 欧美少妇被猛烈插入视频| a级片在线免费高清观看视频| 色视频在线一区二区三区| 欧美老熟妇乱子伦牲交| 一级毛片女人18水好多 | 亚洲一区中文字幕在线| 国产成人影院久久av| 老汉色∧v一级毛片| 一区在线观看完整版| 亚洲 国产 在线| 亚洲免费av在线视频| 国产在线观看jvid| 国产成人欧美在线观看 | 久久久久久久久免费视频了| 女性生殖器流出的白浆| 超碰成人久久| 日韩av不卡免费在线播放| 国产亚洲一区二区精品| 人人妻人人澡人人看| 日本91视频免费播放| 91麻豆av在线| 亚洲成人国产一区在线观看 | 欧美xxⅹ黑人| 99热全是精品| 欧美日韩一级在线毛片| tube8黄色片| 夫妻午夜视频| 亚洲久久久国产精品| 中文字幕高清在线视频| 黄频高清免费视频| 国产黄色视频一区二区在线观看| 欧美精品一区二区免费开放| 黑人巨大精品欧美一区二区蜜桃| 777米奇影视久久| 久久久精品免费免费高清| 久久人人爽av亚洲精品天堂| 午夜福利在线免费观看网站| 中文乱码字字幕精品一区二区三区| 久久精品成人免费网站| 国产欧美日韩一区二区三区在线| 一本—道久久a久久精品蜜桃钙片| h视频一区二区三区| 精品第一国产精品| 久久精品人人爽人人爽视色| 欧美人与善性xxx| 亚洲欧美日韩高清在线视频 | 国产伦理片在线播放av一区| 丝袜美足系列| 欧美精品人与动牲交sv欧美| 丝袜在线中文字幕| 亚洲成国产人片在线观看| 少妇被粗大的猛进出69影院| 日日摸夜夜添夜夜爱| 肉色欧美久久久久久久蜜桃| 久久人人爽人人片av| 欧美日韩福利视频一区二区| 一个人免费看片子| 久久午夜综合久久蜜桃| 人人妻人人澡人人爽人人夜夜| 老司机影院成人| 国产黄频视频在线观看| 精品亚洲乱码少妇综合久久| 黑人猛操日本美女一级片| 亚洲精品美女久久av网站| 日韩免费高清中文字幕av| 久久天躁狠狠躁夜夜2o2o | 精品久久蜜臀av无| 欧美激情 高清一区二区三区| 日日夜夜操网爽| 久久人妻福利社区极品人妻图片 | 18禁黄网站禁片午夜丰满| 精品亚洲成国产av| 搡老乐熟女国产| 大香蕉久久网| 亚洲午夜精品一区,二区,三区| 欧美成狂野欧美在线观看| 亚洲少妇的诱惑av| 国产高清videossex| 亚洲中文av在线| 在线 av 中文字幕| 日本av免费视频播放| 精品亚洲成a人片在线观看| 多毛熟女@视频| 岛国毛片在线播放| 一边摸一边抽搐一进一出视频| 久久精品亚洲av国产电影网| 丁香六月天网| 中文字幕最新亚洲高清| 国产免费现黄频在线看| 九色亚洲精品在线播放| 亚洲人成电影免费在线| 国产淫语在线视频| 一级毛片女人18水好多 | 性色av一级| 操美女的视频在线观看| 91麻豆精品激情在线观看国产 | 国产在线一区二区三区精| 国产亚洲午夜精品一区二区久久| 国产一区二区三区综合在线观看| av不卡在线播放| 中文欧美无线码| 午夜福利视频在线观看免费| 黑人欧美特级aaaaaa片| 免费女性裸体啪啪无遮挡网站| 日韩中文字幕欧美一区二区 | 久久久欧美国产精品| 在线观看免费高清a一片| 欧美精品人与动牲交sv欧美| 亚洲精品国产av蜜桃| 国产男女内射视频| 成人免费观看视频高清| 久热爱精品视频在线9| 午夜老司机福利片| 国产精品国产av在线观看| 大片免费播放器 马上看| 一级,二级,三级黄色视频| 好男人电影高清在线观看| 亚洲欧洲日产国产| 国产免费现黄频在线看| 一级黄色大片毛片| 99热网站在线观看| 亚洲国产精品999| 咕卡用的链子| 久久性视频一级片| 国产在线观看jvid| 久久99热这里只频精品6学生| 免费女性裸体啪啪无遮挡网站| 亚洲精品在线美女| 亚洲国产欧美在线一区| 精品少妇黑人巨大在线播放| 中文乱码字字幕精品一区二区三区| 69精品国产乱码久久久| 精品一品国产午夜福利视频| 美女福利国产在线| 久久精品成人免费网站| 国产亚洲精品第一综合不卡| 精品一区二区三区av网在线观看 | 男女无遮挡免费网站观看| 久久99热这里只频精品6学生| 男女免费视频国产| 久久久久久久国产电影| 精品一区在线观看国产| 丝袜美腿诱惑在线| 国产精品久久久久久精品古装| 成年女人毛片免费观看观看9 | 国产精品一区二区在线不卡| 精品国产乱码久久久久久男人| 免费看av在线观看网站| 成人三级做爰电影| 看十八女毛片水多多多| 一边摸一边做爽爽视频免费| 一本色道久久久久久精品综合| www.999成人在线观看| 亚洲精品日本国产第一区| 国产极品粉嫩免费观看在线| 久久久精品免费免费高清| 久久精品国产综合久久久| 中文欧美无线码| 精品一区二区三卡| 精品少妇内射三级| 99国产精品一区二区蜜桃av | av网站在线播放免费| 女人久久www免费人成看片| 亚洲精品成人av观看孕妇| 一本—道久久a久久精品蜜桃钙片| 一二三四社区在线视频社区8| 9热在线视频观看99| 精品久久久久久电影网| 高清视频免费观看一区二区| 亚洲一区中文字幕在线| 亚洲国产av新网站| 欧美黑人欧美精品刺激| 9热在线视频观看99| 色婷婷av一区二区三区视频| 精品少妇黑人巨大在线播放| 午夜激情av网站| 女人精品久久久久毛片| 捣出白浆h1v1| 久久久久国产精品人妻一区二区| 首页视频小说图片口味搜索 | 欧美精品啪啪一区二区三区 | 国产精品三级大全| 精品国产一区二区三区久久久樱花| 久久久久久免费高清国产稀缺| 熟女少妇亚洲综合色aaa.| 国产男女超爽视频在线观看| 亚洲精品中文字幕在线视频| 多毛熟女@视频| 久久人妻福利社区极品人妻图片 | 777米奇影视久久| 色94色欧美一区二区| 久久久久久免费高清国产稀缺| 日本猛色少妇xxxxx猛交久久| 最近中文字幕2019免费版| 免费在线观看影片大全网站 | 国产一区有黄有色的免费视频| 久久国产亚洲av麻豆专区| 国产黄频视频在线观看|