• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determining CO2consumption from elemental change in soil profiles developed on carbonate and silicate rocks

    2015-10-29 05:20:15DaojingLiHongbingJi
    Acta Geochimica 2015年2期

    Daojing Li·Hongbing Ji

    Determining CO2consumption from elemental change in soil profiles developed on carbonate and silicate rocks

    Daojing Li·Hongbing Ji

    To further understand the roles of carbonate and silicate rocks in regulating the atmosphere/soil CO2level,the flux of CO2consumed by the chemical weathering of silicate and carbonate rocks was determined from the elemental change in soil profiles.Results showed that thechemicalweatheringofcarbonaterocksmainly occurred at the rock-regolith interface,and that the further weathering of the residua soil on the carbonate rocks was similar to that of the granite profile.Chemical weathering of the silicate rocks occurred through the whole profiles. Therefore,CO2consumed per volume by the silicate profiles[Msr(CO2)]and the residues on carbonate rocks[Mcr(CO2)]were calculated based on the elemental weathering gradients.CO2consumed by carbonate protolith[Mcp(CO2)]was calculated from the elemental change at the rock-regolith interface.The Msr(CO2)were about tens to thousands orders of magnitude greater than Mcr(CO2).Even so,this demonstrated that the residues on carbonate rocks could be a sink of CO2on long-term scales.The Mcp(CO2)was about four times larger than Msr(CO2),which demonstrated that carbonate rocks played a more important role in regulating the CO2level than the silicate rocks did during the pedogenic process of the profiles.

    Carbonate rocks·Silicate rocks·CO2consumption·Soil profiles

    1 Introduction

    Chemical weathering of silicate and carbonate rocks is an important source of control on the regulation of the level of atmosphericCO2,andtherebyexertscontrolonglobalclimate variations(Hartmann et al.2009;Moosdorf et al.2011;Moquet et al.2011).To improve our understanding of that control,many studies about carbonate and silicate weathering have been carried out(Nesbitt and Young 1982;Suchet and Probst1995;Macphersonetal.2008;Lietal.2010;Heckman andRasmussen2011;Moosdorfetal.2011;Zengetal.2012). Silicate weathering studies are conducted through relatively input—output calculations,from changes in solute compositions in pore water or ground water,or from the elemental differences between protolith and the weathered regolith(Kenoyer and Bowser 1992;White et al.1996;Murphy et al. 1998;White 2002;White etal.2005b).Chemical weathering of silicate minerals has been proposed to be a sink of atmosphericCO2onthegeologicaltimescale(RidgwellandZeebe 2005).Carbonatemineralsare morereactiveandsolublethan silicatemineralsandthusregulatethegeochemistryofsurface waters(Horton et al.1999;White et al.2005a).Therefore,most studies about carbonate weathering are confined in the study of HCO3-ions in the surface water in carbonate watershed(Macpherson et al.2008;Li et al.2010;Zeng et al. 2012).Few approaches have been taken on the soil profiles developed on carbonate rocks.Chemical weathering of carbonate minerals has been proposed to consume atmospheric CO2on a relatively short-term scale but not produce a net carbon sink on a long-term scale,because the CO2consumed bycarbonatemineralswouldgetbacktotheatmosphereduetothe formation of marine carbonate sediments(Berner et al. 1983;Berner 1991,1997;Goudie and Viles 2012).Our previous work demonstrated that the weathering of carbonate rocks includes the weathering of carbonate minerals and the insoluble residues(Ji etal.2004a,b).The weatheringprocess ofthe residue soils,whichis similartothe weatheringofnoncarbonate rocks,may produce a net carbon sink.This contradicted the previous belief that carbonate rocks did not produce a carbon sink on a long-term scale.This paper presents a systematic methodology for calculating CO2-consumption by the weathering of carbonate and silicate rocks basedonelementalchanges insoilprofiles,inorder tofurther understand the roles of carbonate and silicate rocks in regulating atmospheric CO2.

    D.Li(?)·H.Ji

    State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,

    Guiyang 550002,China

    e-mail:lidaojing45@163.com

    H.Ji

    College of Resource Environment and Tourism,Capital Normal University,Beijing 10048,China

    e-mail:jih_0000@126.com

    2 Materials and methods

    2.1Site description

    The study of soil profiles consisted of four profiles developed on carbonate rocks and two profiles developed on silicate rocks.The carbonate profiles are located in the Guizhou Province,including those at Puchang of Suiyang County(PC),Xinpu town in Zunyi(XP),Pingba County(PB)and Hezhang County(HZB).One silicate profile is at Hezhang County(HZX)and the other is at Gunbei village(GB)in Rongshui County,which is in the northern Guangxi Province bordering the Guizhou Province(Fig.1).The sampling sites are all in hilly areas.The climate of the study area was during the transition zone between the East Asian and the South Asian monsoons.As the elevation increased from the east to the west,the temperature and precipitation decreased.The six profiles were selected because they were distributed from the east to the west(Fig.1)and were developed on different kinds of rocks(Table 1),based on which the effects of climate and underlying materials on weathering has been discussed.Detailed geographical and climate information of each site is tabulated in Table 1.

    Fig.1 Location of study sites in Guizhou and Guangxi Province.Red pentagram indicates the locations where the soil profiles were sampled. Red dots indicate the main cities

    2.2Sampling and analyzing methods

    The soil profiles were obtained by digging from the bottom to the top and were classified by soil color,texture,major element content,and soil horizon characteristics(Table 1). The profiles can be divided into three horizons:the soil horizon(A-horizon,top for farming layer),the regolith horizon(B-horizon,weathered layer)and the weathering bedrock horizon(C horizon),which can be then subdivided into the flour layer(C1-horizon),the cracked rock layer(C2-horizon)and the parent rock layer(C3-horizon).The‘‘regolith''mentioned below refers to both the B and Ahorizons unless otherwise specified.Not all the profiles consist of all the horizons(Table 2).Parent rock samples that were too deep to dig were collected from cores nearby. The soils were collected using a hand hammer and a small shovel,and were sampled at different intervals,depending on profile depth and soil properties.When a distinct change appeared in the soil color or texture,they were not sampled at intervals,but the soil with the different characteristics were removed.A soil sample of 5 cm in vertical width was randomly collected from each horizon.A geological map of the Guizhou Province and Guangxi Province was used to identify the parent material in the field.Each parent rock sample was identified by its texture,structure,shape and color,from at least three rock fragments.

    Table 1 Geomorphological and climatic information of the soil profile

    Soil samples were dried in the oven at 45°C for 2 days,with parts of each being ground to pass a sieve(mesh 200)for further analysis.The bulk density of the regolith samples was determined with the cutting-ring method,referring to the GB/T 50123-1999.The bulk density of the rock was determined with the paraffin method(GB/T 50123-1999). The major oxides of the rock and regolith samples were analyzed by X-ray fluorescence spectrography(XRF)by using the Philips PW2404 X-ray fluorescence spectrometer and referring to the GB/T 14506.14-2010 and GB/T 14506.28-2010.The trace and rare earth element concentrations were measured using Inductively Coupled Plasma Mass Spectroscopy(HR-ICP-MS)(Element I,F(xiàn)innigan MAT Company).The mineral composition of the carbonate rocks was analyzed using X-ray diffraction(XRD).The mineral composition of the silicate rocks was calculated according to the CIPW norm mineral calculation method based on major oxides.

    3 Results

    The vertical distributions of major oxides,trace elements,chemical index of alteration(CIA)(Nesbitt and Young 1982)and the loss on ignition(LOI)are listed in Table 2.The CIA is used to estimate the weathering intensity of the regolith. An obvious increase occurs at the interface between the C horizon and B horizon for each site(Table 2).The LOI is extremely high for parent carbonate rocks,reflecting a high carbonate content.High LOI in the regolith samples may reflect the influence of high water-bearing phases(mainly clay minerals)and organic matter(Ji et al.2004a).

    An Al2O3—CaO*+Na2O—K2O(A—CN—K)ternary diagram was drawn based on the major oxides content(where CaO*represents Ca in the silicate fraction)(Fig.2).In the A—CN—K ternary diagram,there are two weathering trends,one parallel to the A—CN side(weathering trend 1),and the other parallel to the A—K side(weathering trend 2)(Fig.2). Weathering trend 1 represents the process of leaching Caand Na and accumulating Al,weathering trend 2 represents the process of leaching K and accumulating Al.For the carbonate profiles(PC,HZB,XP,PB),most samples of the regolith can't be notably distinguished and almost flock together close to the area between where the illite lies and the A end.The PC,PB and HZB first experience weathering trend 1 and then trend 2.In weathering trend 1,the Ca and Na are almost completely leached from the C horizon to the B horizon.Weathering trend 2 is not very apparent,the samples of PC are close to the area where the illite lies,and those of PB and HZB tend to approach to the A end.The XP profile experiences the weathering trend 2 from the C3 horizon to the C2 horizon,and then experiences the weathering trend 1 to the joint A—K.The samples of XP lie in the area between where the illite lies and the A end.For the silicate profiles,the GB site first experiences the weathering trend 1 from the C3 horizon to the C2 horizon,and then experiences a clearly distinguishable weathering trend 2.The samples distribute uniformly close along the A—K side,and occupy the area where the illite and muscovite lies.The HZX profile only experiences weathering trend 1,and the samples distribute closely along the A—CN side,which demonstrate a wide range of weathering intensity,from unweathered to slightly weathered,to intensely weathered and finally,near the composition of pure aluminosilicate minerals.

    Table 2 The vertical distributions of major oxides, trace elements, chemical index of alteration (CIA) and loss on ignition (LOI)

    Table 2 continued

    Table 2 continued

    Fig.2 Ternary diagram of molecular proportions Al2O3—CaO*+ Na2O—K2O.Plotted are estimates of all samples of each site in this study,including unweathered bedrocks,weathered rocks,regolith and soil.Also plotted is the idealized mineral compositions.Dotted line represent the weathering trend(weatheing trend 1 and 2).Shown at the left side is the CIA scale.Kln kaolinite,Gbs gibbsite,Ill illite,Ms muscovite,Bt biotite,Kfs K-feldspar,Pl plagioclase,Sme smectite

    Table 3 Minerals of the protolith of each site

    The mineral composition is purer for carbonate rocks than for silicate rocks(Table 3).The difference is caused by different analyzing methods and the natural properties of the rock itself.The carbonate rocks are composed ofnearly pure calcite or dolomite.The mineral composition of silicate rocks is complex.For HZX(basalt),its main minerals include feldspar,pyroxene and iron oxides.The parent rock at the GB site(granite)is composed mainly by quartz,albite and orthoclase(Table 3).

    Fig.3 Elemental mobilities at each profiles.τjis the mass transfer coefficient from Eq.(1)

    4 Discussion

    4.1Weathering process of carbonate and silicate rocks

    As shown in the A—CN—K diagram(Fig.2),the weathering process of carbonate profiles(PC,HZB,XP,PB)can be dividedintotwostages.Theweatheringreactionmainlyhappens at the first stage in the C horizon(including C1,C2 and C3),with the almost completely leaching of Ca and Na and the accumulationofAl.Thesecondstageisthefurtherweathering of insoluble residua,which is similar to the weathering of the GB profile,with the leaching ofK and accumulation of Al.At the silicate profiles(HZX and GB),weathering happens more gradually throughout the whole profile,than at the carbonate profiles.The difference comes from the different protolith compositions.Themainmineralsincarbonaterocksarecalcite or dolomite(Table 3).The high solubility of calcite and dolomiteallowthemtobeeasilyleachedoutattheinitialstage,especially in a climate with high precipitation(Table 1).The mainmineralsinsilicaterocksinthisstudyarequartz,feldspar and pyroxene;their weathering resistances are stronger than calcite and dolomite's,so,weathering reactions take place more gradually along the whole profiles.

    4.2Elemental mobility

    The weathering intensity can be described by comparing the element concentrations of the regolith to those of the original protolith.This ratio is affected by the gainsand losses of other components and the compaction or dilation of the regolith.Solving such a problem requires comparing the ratio of the mobile component,j,to the ratio of an additional inert component,i.

    Fig.4 Relationships between Al2O3and TiO2,Al2O3and Fe2O3in soil profiles

    τjis the mass transfer coefficient(Brimhall and Dietrich,1987).The value of τj=0 denotes no mobility,τj=-1 indicates complete leaching out and τj>0 denotes external additions.Refractory elements such as Zr,Ti and Nb are commonly used as conservative components,Ci,in Eq.(1)(Brimhall et al.1991;Merritts et al.1991;White et al. 1998;Riebe et al.2001).In this study,we use Ti as the inert component.The original protolith component is that of the sample in the C horizon for each site.

    For carbonate rocks(PC,HZB,XP,PB),the main minerals are calcite and dolomite(Table 3);the weathering intensity of calcite is reflected in the mobility of Ca and the weathering intensity of dolomite is reflected in mobility of Ca and Mg.For silicate rocks,the minerals are more complex:the weathering intensity of plagioclase is reflected in the mobility of Na,Ca and Sr and the weathering intensity of K-feldspar is reflected in the mobility of K,Rb and Ba.Al,F(xiàn)e and Mg concentrations reflect the weathering of smectite and the formation of secondary kaolinite,gibbsite and Fe oxides(White et al. 2008).

    As shown in Fig.3,in the profiles developed on carbonate rocks(PC,HZB,XP,PB),the Mg,Ca,Na and Sr are totally lostintheBandAhorizons.TheSrcanreplaceCaand,when contained in calcite,the similar τjdepth distribution of Mg,Ca and Sr demonstrates carbonate and dolomite weathering. The Na mobility has a similar depth change as that ofMg,Ca and Sr because of its mobile character in carbonate weathering.The higher τjof Na that appears at the C2 horizon of the PC profile demonstrates the slower weathering rate of the albite composed in the bedrock(Table 3).The higher τjof Mg,Ca,Na and Sr in the C horizon of the XP and PB than that of the PC and HZB is caused by the slower dissolution rate of dolomite compared to the dissolution rate of calcite.

    At the profiles developed on the silicate rocks,the weathering process of basalt(HZX)isdifferentfrom that of granite(GB).AtHZX,theelementmobilitybarelychangesattheC2 horizon,with the largest variation happening at the C2-B(rock-regolith)interface.The Mg,Ca,Na and Sr are greatly depletedattheinterfaceandarethenalmostunchangedinthe BandAhorizon,reflectingtheweatheringofthefeldsparand pyroxene that mainly occurred at the C2-B interface.At the GB site,Ca and Na are almost completely lost,reflecting the intense weatheringofalbiteandanorthite.TheAl,F(xiàn)e and Mg mobility change synchronously,reflecting the weathering of muscovite and illite.The gradually decreasing τjof K and Ba reflects the weatheringofK-feldspar.The decreased mobility of K,Ba and Rb relative to Na and Ca reflect the slower weathering of K-feldspar relative to plagioclase(Nesbitt and Young,1984;White et al.2001).

    At both the carbonate and silicate profiles,the Al and Fe mobility change synchronously,reflecting their similar geochemistry behavior in the study profiles.Except for the GB profile,F(xiàn)e and Al accumulation is accompanied by the loss of mobile elements.The fact that Fe is not accumulated relative to protolith in the GB profile may result from the lack of clay in the environment,which is in favor of the formation of iron oxides in comparison to other profiles.The less clay in the GB is reflected in the lower LOI(Table 2). The extremely high amount of precipitation at the GB site(Table 1)may also contribute to the leaching of the Fe.

    4.3Determining the sink of CO2based on elemental weathering gradients in regolith

    In studies on CO2consumption by chemical weathering,one method is to use the solid-state elemental changes between protolith and regolith.However,the allochthonous components carried by wind or water present a limit for the application of the mass balance approach when calculating CO2consumption(Schellmann 1989;Maynard 1992).It's importanttodeterminewhethertheallochthonouscomponentshave affectedthecomponentintheprofile.TheelementsAl,Tiand Fe are the less mobile elements,and there is a positive correlation between Al2O3and TiO2,as well as Al2O3and Fe2O3(Fig.4),reflecting the characteristics of the in situ weathering(Young and Nesbitt,1998).The synchronous τjchanges of the element groups(Al—Fe,Al—Fe—Mg and Mg—Ca—Na——Sr)discussed in Sect.4.2 also demonstrate the insituweatheringofthestudyprofiles.Theinsituweathering of the carbonate profiles in the Guizhou province is also demonstratedindetailinother papers(Jietal.2004a,b;Feng etal.2009).So,mass changes can becalculateddirectlyfrom the differences between elemental compositions in the initial protolith and the weathered regolith.

    In the simplest scenario for steady-state weathering,a mobile element,which is not incorporated into secondary precipitates,linearly decreases with decreasing depth from an initial concentration C0at depth z1to a concentration Cwat a shallower depth z0(Fig.5)(White,2002).The elemental concentrations are commonly reported as mol kg-1. In order to make direct comparisons of element mobility due to weathering,element change Δm(mol m-3)is defined in terms of a unit volume(White,2002)such that

    Fig.5 Schematic showing the distributions of a mobile element in a weathering regolith.Cwdefines the weathered concentration at shallow depth z0,and C0is the initial protolith concentration at depth z1.The weathering gradients bsdescribe the slope of the linear gradients

    where ρwis the regolith bulk density(g cm-3),C0(mol kg-1)is the initial elemental concentration shown in Fig.5,which is assumed to be that of the protolith,and Cw(mol kg-1)is the elemental concentration at the weathered regolith.Under closed system conditions,the difference in concentrations,C0—Cw,reflects the total mass change occurring over the entire time of pedogenesis.The concentration Cwcan't be determined directly from themeasured elemental concentration C,because C is also affected by the gains and losses of the other components and the compaction or dilation of the regolith.The element Ti is chosen as the inert component again.The normalized weathering concentration Cw,is obtained from the measured concentration C by the relationship

    where I0(mol kg-1)is the concentration of the inert element in the protolith and Iwis the concentration in the weathered regolith(White,2002).The slope of the gradient in Fig.5 is defined as bs(m kg mol-1).Therefore,Cw-C0=Δz/bs.Substituting this relationship into Eq.(2)results in the expression

    As discussed in Sect.4.2,the Mg,Ca,Na,K is the main mobile element in most minerals of the carbonate and silicate rocks,and their concentration change will reflect the chemical weathering intensity,thus reflecting the drawdown of atmospheric CO2.In this study,we ignore the role of organic acid and sulfuric acid that may take part in the chemical weathering,and regard the CO2as the only acid source that participates in the weathering reaction.

    The weathering reaction that happened at the carbonate profiles at the initial stage weremainlythe leachingof calcite and dolomite demonstrated in the following equations:

    Thefurtherweatheringreactionsoftheresiduesoncarbonate rocks are mainly the reactions of non-carbonate minerals.

    The main chemical weathering reactions that happened at the silicate profiles based on their main minerals are mainly the weathering of albite,anorthite,orthoclase and pyroxene as follows

    (Sak et al.2004)

    From Eq.(5)to(10),it can be seen that no matter what chemical reaction happened,for carbonate minerals,two mole of base cation charge consume 1 mol of CO2.For non-carbonate minerals,one mole of base cation charge consumes 1 mol of CO2.The CO2captured per volume M(CO2)(mol cm-1)by carbonate and non-carbonate mineral weathering is defined as

    Fig.6 Normalized concentrations of Ca(Cw)plotted as a function of depth in regolith.The lines are the linear regression fits describing the weathering gradients bs

    There is a certain deviation in the calculation of M(CO2)based on the elemental change,because CO2isn't the only acid source that participates in the weathering reaction. Also,not all elements that reacted with CO2in the profiles are included.Nevertheless,the results can be used tocompare the different capabilities of capturing CO2between the carbonate and silicate profiles in the study area.

    Fig.7 Normalized concentrations of Na(Cw)plotted as a function of depth in regolith.The lines are the linear regression fits describing the weathering gradients bs

    Fig.8 Normalized concentrations of K(Cw)plotted as a function of depth in regolith.The lines are the linear regression fits describing the weathering gradients bs

    Fig.9 Normalized concentrations of Mg(Cw)plotted as a function of depth in regolith.The lines are the linear regression fits describing the weathering gradients bs

    4.3.1Calculation of CO2captured per volume of regolith Mregolith(CO2)

    The normalized weathering concentration,Cw,of Ca,Na,K,and Mg are plotted as functions of depth in Figs.6,7,8, and 9 respectively.The points plotted for PC,XP,PB and HZB are confined in the B and A horizons.The HZX and GB are confined in C2,B and A horizons.The linear regression equations and the correlation coefficient(R2)drawn from Figs.6,7,8,and 9 are tabulated in Table 4.At the PB site,the Ca increases slightly in the shallower soils(Fig.6),which results in negative gradients(Table 4). Such an increase may be attributed to the upward biologicpumping via plant roots and the subsequent recycling in the shallow soils(White et al.2009;White 2014).Because the Cwof Ca in the PB regolith is relatively small in comparison to those in the other sites(Fig.6),it is acceptable to not use the Ca concentration in the calculation of M(CO2). The Na didn't show any linear fit to the data at the PC site(Table 4).To clarify the reason for this,the surface soil was analyzed by XRD,and the semiquantitative calculation of the mineral composition shows that the surface soil of the PC was composed of albite(2.82%),hornblende(1.16%),quartz(88.35%),smectite(1.85%),illite(2.83%),kaolinite(1.87%)and iron oxides(1.12%).Albite and hornblende are primary minerals.Albite appeared in the bedrock of the PC(Table 4).Even so,the presence of it at the surface is likely from the allochthonous materials,as albite is easily weathered at deep depths.Hornblende is not present in the bedrock,demonstrating the deposition of the allochthonous materials.Except for albite and hornblende,the others are secondary minerals,which are usually found in the weathering residues of carbonate rocks(Ji et al.2004a,b).Primary minerals that are not present in the bedrock also appeared at the surface of the PB[albite(0.52%)and hornblende(1.30%)]and HZB sites[albite(1.31%)].This may explain the lower linear correlation coefficient for Na at the PC,PB and HZB sites. The Cwof Na in carbonate regolith is small(about 0—0.002 mol kg-1)(Fig.7),and it is about ten orders of magnitudes smaller than that of Ca,K and Mg.Therefore,the effect of the allochthonous materials is neglected and the Na concentrations of the PC,PB and HZB were not included in the calculation of M(CO2).The bsin Eq.(4)is the slope of the linear regression equations and the ρwis the average value of the bulk density of each horizon(Table 5).The Mregolith(CO2)was calculated according to Eq.(12).

    Table 4 The linear regression equations and the correlation coefficient (R2) drew from Figs. 6, 7, 8 and 9

    The results show that the Mregolith(CO2)of the silicate regolith Msr(CO2)is tens to thousands orders of magnitude greater than that of the carbonate regolith Mcr(CO2)(Table 5).This occurs because the elements are greatly leached in the C horizon of the carbonate profiles and the elements that remain in the carbonate regolith are significantly less than that in the silicate regolith.Though the amount of CO2consumed by the insoluble residuals on carbonate rocks is small,it can't be denied that the chemical weathering of them may produce a net sink of CO2in the long-term scale.

    For the carbonate profiles,the Mcr(CO2)is in the order of PC?XP>PB≈HZB.The average CIA value of the carbonate regolith is PC(86),XP(89),PB(94),HZB(93),demonstratingaweatheringintensityorderof PB≈HZB>XP>PC,which is in the reverse when compared with the order of Mcr(CO2).This is also related to the two-stage weathering process of the carbonate rocks;higher weathering intensity resulted in less elements left in the carbonate regolith,so the weathering of the regolith would consume less CO2.The PC profile belongs to the cambisols in soil classification and weaker development of the profile lead more elements in the regolith.Therefore,the Mcr(CO2)ofPCismuchlargerthantheotherthreecarbonate profiles.For the silicate profiles,the HZX(CIA=92)consumes more CO2than the GB(CIA=84),demonstrating that the profile with the higher weathering intensity consumes more CO2.This is consistent with the weathering process of silicate.

    Table 5 The elemental change(Δm)of Ca,Na,K and Mg and the CO2captured per volume of regolith Mregolith(CO2)

    Table 6 The elemental change(Δm)of Ca and Mg in carbonate rocks and the CO2captured per volume of carbonate protolith Mcp(CO2)

    Usually,warmer and wetter climates yield higher weathering intensity(White 2002;White and Blum 1995),thus possibly leading to a higher carbon sink.The studied profiles were distributed from the west to the east(Fig.1),with relatively warmer and wetter climates in the east.From Table 1,it can be seen that the mean annual temperature is GB>PB>PC>XP>HZB=HZXandthemeanannual precipitationisGB>PB>PC=XP>HZB=HZX,based on the Mregolith(CO2)of each site.Itseems that there is no correlation between the climate and the Mregolith(CO2). However,we cannot conclude that the climate doesn't show any impact on the carbon sink in the study area,because the climatic signals are obscured by the lithologic difference and the pedogenic time.

    4.3.2Calculation of CO2captured per volume of carbonate protolith Mcp(CO2)

    The elemental change between the protolith and the regolith in the silicate profiles is small and the weathering penetrates from the soil horizon to the protolith gradually,so the elemental change calculated based on weathering gradients can reflect the change of the whole silicate profile.However,as discussed in Sects.4.1 and 4.2,the weathering of the carbonate protolith happened mainly at the rock-regolith interface,with the almost complete loss of Ca and Mg by the reactions of Eq.(5)and Eq.(6).To determine the element change at the interface,the C0,Cw,and ρwin Eq.(4)are regarded as the elemental concentration of the protolith,and the elemental concentration of the bottom layer of the regolith and the bulk density of the protolith respectively.The CO2captured per volume of carbonate rock Mcp(CO2)is calculated according to Eq.(11).Based on this principle,the calculated Mcp(CO2)are about four times larger than Msr(CO2)(Table 6).The results demonstrate that during the entire time of soil development,the carbonate rocks play a more important role than the silicate rocks in regulating the level of CO2.

    5 Conclusions

    This work compared the weathering process of carbonate and silicate rocks and determined the CO2captured during this process.Due to the extremely high dissolution rates of calcite and dolomite,the weathering of the carbonate rocks mainly occurred at the rock-regolith interface,with leaching of most mobile element.The further weathering of the insoluble residues on the carbonate rocks is similar to that of granite profile(GB).The silicate weathering,especially the weathering of granite,proceeded more gradually than the carbonate weathering.Therefore,the mass changeoccurred at the regolith of the carbonate profiles and the silicate profiles are calculated based on the weathering gradients.The mass change that occurred at the rock-regolith interface of the carbonate profiles was calculated by the elemental differences between the protolith and the bottom regolith layer.The CO2consumed by silicate profiles are tens to thousands orders of magnitude greater than that by carbonate regolith.Even so,it demonstrates that the carbonate regolith can be a sink of CO2on the long-term scale.The CO2consumed by carbonate rocks are about four times larger than that by silicate profiles,implying that carbonate rocks play a more important role than silicate rocks in regulating the level of CO2during the pedogenic process of the profiles.

    AcknowledgmentsThis work was jointly supported by the National Natural Science Foundation of China(NSFC)grants(No.41073096 and 40473051),National Key Basic Research Program of China(2013CB956702)and the Hundred Talents Program of the Chinese Academy of Sciences.We thank Gong G.H.for the XRD analysis and Hu J.for assistance in the HR-ICP-MS determination.

    Berner RA(1991)A model for atmospheric CO2over Phanerozoic time.Ar J Sci 291:339—376

    Berner RA(1997)Weathering,plants and long-term carbon cycle. Geochim Cosmochim Acta 56:3225—3231

    Berner RA,Lasaga AC,Garrels RM(1983)The carbonate—silicate geochemical cycle and its effect on atmospheric CO2.Am J Sci 283:641—683

    Brimhall GH,Dietrich WE(1987)Constitutive mass balance relations between chemical-composition,volume,density,porosity,and strain in metasomatic hydrochemical systems-results on weathering and pedogenesis.Geochim Cosmochim Acta 51:567—587

    Brimhall GH,Lewis CJ,F(xiàn)ord C,Bratt J,Taylor G,Warin O(1991)Quantitaive gechemical approach to pedogenesis-importance of parent material reduction,volumetric expansion,and elian influx in lateritization.Geoderma 51:51—91

    Fedo CM,Nesbitt HW,Young GM(1995)Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance.Geology 23:921—924

    Feng JL,Cui ZJ,Zhu LP(2009)Origin of terra rossa over dolomite on the Yunnan-Guizhou Plateau,China.Geochem J 43:151—166

    Garrels RM,Mackenzie FT(1971)Evolution of sedimentary rocks. Norton and Co.Inc.,New York,p 397

    GB/T 14506.14-2010.Silicate rock chemical analytical procedure part 14:determination of ferrous oxide(in Chinese)

    GB/T 14506.28-2010 Silicate rock chemical analytical procedure part 28:determination of 16 primary and secondary components(in Chinese)

    GB/T 50123-1999.Standard for soil test methods part 5:determination of soil density(in Chinese)

    Goudie AS,Viles HA(2012)Weathering and the global carbon cycle: Geomorphological perspectives.Earth Sci Rev 113:59—71

    Hartmann J,Jansen N,Du¨rr HH,Kempe S,Ko¨hler P(2009)Global CO2-consumption by chemical weathering:What is the contribution of highly active weathering regions?Global Planet Change 69:185—194

    Heckman K,Rasmussen C(2011)Lithologic controls on regolith weathering and mass flux in forested ecosystems of the southwestern USA.Geoderma 164:99—111

    Horton TW,Chamberlain CP,F(xiàn)antle M,Blum JD(1999)Chemical weathering and lithological controls of water chemistry in a high-elevation river systems:Clark's Fork of the Yellowstone River,Wyoming and Montana.Water Resour Res 35:1643—1655

    Huh YS(2003)Chemical weathering and climate—a global experiment:a review.Geosci J 7:277—288

    Ji HB,Wang SJ,Ouyang ZY,Zhang S,Sun CX,Liu XM,Zhou DQ(2004a)Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau I.The formation of the Pingba profile.Chem Geol 203:1—27

    Ji HB,Wang SJ,Ouyang ZY,Zhang S,Sun CX,Liu XM,Zhou DQ(2004b)Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau II.The mobility of rare earthelementsduringweathering.ChemicalGeology. 203:29—50

    Kenoyer GJ,Bowser CJ(1992)Groundwater chemical evolution in a sandy silicate aquifer in northern Wisconsin,2.Reaction modeling.Water Resour Res 28:591—600

    Li SL,Liu CQ,Li J,Lang YC,Ding H,Li LB(2010)Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China:isotopic and chemical constraints.Chem Geol 277:301—309

    Macpherson GL,Roberts JA,Blair JM,Townsend MA,F(xiàn)owle DA,Beisner KR(2008)Increasing shallow groundwater CO2and limestone weathering,Konza Prairie,USA.Geochim Cosmochim Acta 72:5581—5599

    Maynard JB(1992)Chemistry of modern soils as a guide to interpreting Precambrian paleosoils.J Geol 100:279—289

    McLennan SM (1993)Weathering and global denudation.J Geol 101:295—303

    Merritts DJ,Chadwick OA,Hendricks DM (1991)Rates and processes of soil evolution on uplifted marine terraces,northern California.Geoderma 51:241—275

    Moosdorf N,Hartmann J,Lauerwald R,Hagedorn B,Kempe S(2011)Atmospheric CO2consumption by chemical weathering in North America.Geochim Cosmochim Acta 75:7829—7854

    Moquet J-S,Crave A,Viers J,Seyler P,Armijos E,Bourrel L,Chavarri E,Lagane C,Laraque A,Casimiro WSL,Pombosa R,Noriega L,Vera A,Guyot J-L(2011)Chemical weathering and atmospheric/soil CO2uptake in the Andean and Foreland Amazon basins.Chem Geol 287:1—26

    Murphy SF,Brantley SL,Blum AE,White AF,Dong HL(1998)Chemical weathering in a tropical watershed,Luquillo mountains,Puerto Rico:II.Rate and mechanism of biotite weathering. Geochim Cosmochim Acta 62:227—243

    Nesbitt HW,Young GM(1982)Early proterozoic climates and plate motions inferred from major element chemistry of lutites.Nature 299:715—717

    Nesbitt HW,Young GM(1984)Prediction of some weathering trends of plutonic and volcanic-rocks based on thermodynamic and kineticconsiderations.GeochimCosmochimActa 48:1523—1534

    Ridgwell A,Zeebe RE(2005)The role of the global carbonate cycle in the regulation and evolution of the Earth system.Earth Planet Sci Lett 234:299—315

    Riebe CS,Kirchner JW,Granger DE,F(xiàn)inkel RC(2001)Strong tectonic and weak climatic control of long-term chemical weathering rates.Geology 29:511—514

    Sak PB,F(xiàn)isher DM,Gardner TW,Murphy K,Brantley SL(2004)Rates of weathering rind formation on Costa Rican basalt. Geochim Cosmochim Acta 68:1453—1472

    Schellmann W(1989)Allochthonous surface alteration of Nilaterites.Chem Geol 74:351—364

    Suchet PA,Probst J-L(1995)A global model for present-day atmospheric/soil CO2consumption by chemical erosion of continental rocks(GEM-CO2).Tellus B 47:273—280

    White AF(2002)Determining mineral weathering rates based on solid and solute weathering gradients and velocities:application to biotite weathering in saprolites.Chem Geol 190:69—89

    White AF(2014)Chemical weathering of pleistocene glacial outwash sediments:a comparison of contemporary and Long-term rates for soils and groundwaters.Aquat Geochem 20:141—165

    White AF,Blum AE(1995)Effects of climate on chemical weathering in watersheds.Geochim Cosmochim Acta 59(9):1729—1747

    White AF,Blum AE,Schulz MS,Bullen TD,Harden JW,Peterson ML(1996)Chemical weathering rates of a soil chronosequence on granitic alluvium:1.Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates.Geochim Cosmochim Acta 60:2533—2550

    White AF,Blum AE,Schulz MS,Vivit DV,Stonestrom DA,Larsen M,Murphy SF,Eberl D(1998)Chemical weathering in a tropical watershed,Luquillo mountains,Puerto Rico:I.Longterm versus short-term weathering fluxes.Geochim Cosmochim Acta 62:209—226

    White AF,Bullen TD,Schulz MS,Blum AE,Huntington TG,Peters NE(2001)Differential rates of feldspar weathering in granitic regoliths.Geochim Cosmochim Acta 65:847—869

    White AF,Schulz MS,Lowenstern JB,Vivit DV,Bullen TD(2005a)The ubiquitous nature of accessory calcite in granitoid rocks: implications for weathering,solute evolution,and petrogenesis. Geochim Cosmochim Acta 69:1455—1471

    White AF,Schulz MS,Vivit DV,Blum AE,Stonestrom DA,Harden JW(2005b)Chemical weathering rates of a soil chronosequence on granitic alluvium:III.Hydrochemical evolution and contemporary solute fluxes and rates.Geochim Cosmochim Acta 69:1975—1996

    White AF,Schulz MS,Vivit DV,Blum AE,Stonestrom DA,Anderson SP(2008)Chemical weathering of a marine terrace chronosequence,Santa Cruz,California I:interpreting rates and controls based on soil concentration-depth profiles.Geochim Cosmochim Acta 72:36—68

    White AF,Schulz MS,Stonestrom DA,Vivit DV,F(xiàn)itzpatrick J,Bullen TD,Maher K,Blum AE(2009)Chemical weathering of a marine terrace chronosequence,Santa Cruz,California.Part II: solute profiles,gradients and the comparisons of contemporary and long-term weathering rates.Geochim Cosmochim Acta 73:2769—2803

    Young GM,Nesbitt HW(1998)Processes controlling the distribution of Ti and Al in weathering profiles,siliciclastic sediments and sedimentary rocks.J Sediment Res 68:448—455

    Zeng C,Gremaud V,Zeng HT,Liu ZH,Goldscheider N(2012)Temperature-driven meltwater production and hydrochemical variations at a glaciated alpine karst aquifer:implication for the atmospheric CO2sink under global warming.Environ Earth Sci 65:2285—2297

    10 September 2014/Revised:4 November 2014/Accepted:11 November 2014/Published online:7 February 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    日本wwww免费看| 精品熟女少妇av免费看| 国产成人午夜福利电影在线观看| 久久午夜福利片| 国产成人精品婷婷| 99久久精品热视频| 国产精品福利在线免费观看| 黄色日韩在线| 亚洲精品国产成人久久av| 神马国产精品三级电影在线观看| 精品国产露脸久久av麻豆 | 秋霞伦理黄片| 午夜激情欧美在线| 亚洲av电影在线观看一区二区三区 | 大香蕉97超碰在线| 天美传媒精品一区二区| 九色成人免费人妻av| 久久精品夜夜夜夜夜久久蜜豆| 夫妻性生交免费视频一级片| 久久亚洲国产成人精品v| av在线老鸭窝| 亚洲一区高清亚洲精品| 六月丁香七月| 舔av片在线| 一级毛片 在线播放| 国产精品国产三级专区第一集| 亚洲色图av天堂| 18+在线观看网站| 又黄又爽又刺激的免费视频.| 色视频www国产| 大香蕉97超碰在线| 亚洲婷婷狠狠爱综合网| 超碰av人人做人人爽久久| 亚洲精品色激情综合| 在线观看一区二区三区| 国产极品天堂在线| .国产精品久久| 国产午夜精品论理片| 精品国内亚洲2022精品成人| 别揉我奶头 嗯啊视频| 亚洲一区高清亚洲精品| 成年人午夜在线观看视频 | 熟女人妻精品中文字幕| 18禁在线播放成人免费| 亚洲综合色惰| 中文欧美无线码| 日韩av不卡免费在线播放| 欧美日韩综合久久久久久| 国产伦在线观看视频一区| av专区在线播放| 国产在线男女| 亚洲在线观看片| 亚洲人成网站高清观看| 亚洲在线观看片| 成人欧美大片| 18+在线观看网站| 一个人看视频在线观看www免费| 日韩,欧美,国产一区二区三区| 亚洲在久久综合| av福利片在线观看| 日韩国内少妇激情av| 老司机影院毛片| 九九爱精品视频在线观看| 精品久久久久久久久久久久久| 特大巨黑吊av在线直播| 久久久久网色| 国产精品久久视频播放| 男插女下体视频免费在线播放| 欧美日韩在线观看h| 精品久久久久久久人妻蜜臀av| 六月丁香七月| 最近最新中文字幕免费大全7| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品电影| 亚洲精品自拍成人| 久久久久久久久久久免费av| av在线老鸭窝| 欧美日本视频| 国内精品一区二区在线观看| 一个人看的www免费观看视频| 伦精品一区二区三区| 不卡视频在线观看欧美| 神马国产精品三级电影在线观看| 欧美日韩精品成人综合77777| 久久这里只有精品中国| 亚洲av国产av综合av卡| 精品国产露脸久久av麻豆 | 成年版毛片免费区| 国产成人午夜福利电影在线观看| 久久久a久久爽久久v久久| 天堂俺去俺来也www色官网 | 国产91av在线免费观看| 又爽又黄a免费视频| 国产视频内射| 亚洲综合精品二区| 在线 av 中文字幕| 成人午夜高清在线视频| 床上黄色一级片| 亚洲怡红院男人天堂| 亚洲成人精品中文字幕电影| 欧美区成人在线视频| 国产伦一二天堂av在线观看| 啦啦啦韩国在线观看视频| 国产乱人偷精品视频| 干丝袜人妻中文字幕| 久99久视频精品免费| 亚洲欧美清纯卡通| 亚洲婷婷狠狠爱综合网| 少妇裸体淫交视频免费看高清| 久久久久久久午夜电影| 亚洲av福利一区| 99久久中文字幕三级久久日本| 欧美bdsm另类| 亚洲精品日韩av片在线观看| 亚洲真实伦在线观看| 久久热精品热| 三级国产精品欧美在线观看| av天堂中文字幕网| 国产精品.久久久| 九草在线视频观看| 亚洲性久久影院| 日韩欧美一区视频在线观看 | 国产色爽女视频免费观看| 成人二区视频| 久久久久久久大尺度免费视频| 亚洲精品一区蜜桃| 久久久久久久大尺度免费视频| 欧美3d第一页| 国产乱来视频区| 熟女人妻精品中文字幕| 久久国内精品自在自线图片| 亚洲国产最新在线播放| 欧美成人a在线观看| 国产综合精华液| 久久久国产一区二区| 亚洲精品成人久久久久久| www.av在线官网国产| 能在线免费观看的黄片| 校园人妻丝袜中文字幕| 亚洲精品色激情综合| 亚洲熟女精品中文字幕| 人体艺术视频欧美日本| 天堂av国产一区二区熟女人妻| 亚洲一区高清亚洲精品| 成年人午夜在线观看视频 | 精品人妻一区二区三区麻豆| 成年av动漫网址| 国产精品熟女久久久久浪| 午夜亚洲福利在线播放| 久久精品夜夜夜夜夜久久蜜豆| 人妻夜夜爽99麻豆av| 免费大片黄手机在线观看| 精品国内亚洲2022精品成人| 精品99又大又爽又粗少妇毛片| 国产黄色视频一区二区在线观看| 天天躁日日操中文字幕| 日本猛色少妇xxxxx猛交久久| 男女下面进入的视频免费午夜| 在线a可以看的网站| 亚洲性久久影院| 国产探花在线观看一区二区| 天堂网av新在线| 精品亚洲乱码少妇综合久久| 免费观看精品视频网站| 亚洲精品久久午夜乱码| 夫妻性生交免费视频一级片| 国产人妻一区二区三区在| 日本与韩国留学比较| 秋霞在线观看毛片| a级毛色黄片| 欧美一级a爱片免费观看看| 免费av观看视频| 日本黄大片高清| 1000部很黄的大片| 美女主播在线视频| 热99在线观看视频| xxx大片免费视频| 国产亚洲最大av| 丝袜美腿在线中文| 七月丁香在线播放| 久久久久久久亚洲中文字幕| 搡女人真爽免费视频火全软件| 99热6这里只有精品| 能在线免费看毛片的网站| 日韩大片免费观看网站| 亚洲激情五月婷婷啪啪| 日日摸夜夜添夜夜添av毛片| 啦啦啦韩国在线观看视频| 久久精品国产鲁丝片午夜精品| 久久精品夜色国产| 综合色av麻豆| 草草在线视频免费看| 两个人的视频大全免费| 少妇熟女aⅴ在线视频| 成人综合一区亚洲| av在线播放精品| 欧美bdsm另类| 高清午夜精品一区二区三区| 日韩电影二区| 国产又色又爽无遮挡免| 晚上一个人看的免费电影| 精品人妻熟女av久视频| 老司机影院成人| 免费黄网站久久成人精品| videos熟女内射| 免费人成在线观看视频色| 午夜免费男女啪啪视频观看| 亚洲成人av在线免费| 日韩av在线免费看完整版不卡| 亚洲成人中文字幕在线播放| freevideosex欧美| 三级经典国产精品| 国产黄频视频在线观看| 亚洲18禁久久av| 国产成人aa在线观看| 国产成人午夜福利电影在线观看| av播播在线观看一区| 69人妻影院| 日韩视频在线欧美| 亚洲精品久久久久久婷婷小说| www.av在线官网国产| 国产毛片a区久久久久| 少妇高潮的动态图| 久久精品国产自在天天线| 日韩亚洲欧美综合| 欧美高清成人免费视频www| 久久久午夜欧美精品| 国产精品精品国产色婷婷| 成年免费大片在线观看| 国产精品.久久久| 美女国产视频在线观看| 中文乱码字字幕精品一区二区三区 | 国产高清三级在线| 在线天堂最新版资源| 在线观看美女被高潮喷水网站| 一级av片app| 国产又色又爽无遮挡免| 久久精品久久久久久噜噜老黄| 亚洲精品久久午夜乱码| 精品人妻熟女av久视频| 国产老妇伦熟女老妇高清| 99热这里只有是精品在线观看| 人妻系列 视频| av卡一久久| 女人十人毛片免费观看3o分钟| 成人特级av手机在线观看| 麻豆久久精品国产亚洲av| 伊人久久精品亚洲午夜| av专区在线播放| kizo精华| 亚洲欧美日韩东京热| .国产精品久久| 人体艺术视频欧美日本| 午夜福利在线观看免费完整高清在| 国产精品一区二区性色av| 亚洲真实伦在线观看| 看非洲黑人一级黄片| 精品一区在线观看国产| 国产精品一区二区三区四区久久| 色吧在线观看| 久久国产乱子免费精品| 国产精品久久久久久久电影| 中文字幕久久专区| 欧美日韩亚洲高清精品| 欧美3d第一页| 三级毛片av免费| 午夜福利视频1000在线观看| 欧美激情在线99| 国产视频首页在线观看| 欧美xxxx黑人xx丫x性爽| 欧美成人午夜免费资源| 伦精品一区二区三区| 久久99蜜桃精品久久| av在线天堂中文字幕| 免费观看的影片在线观看| 黄色欧美视频在线观看| av在线观看视频网站免费| 少妇的逼好多水| 高清欧美精品videossex| 亚洲精华国产精华液的使用体验| 国产黄频视频在线观看| 成人特级av手机在线观看| 日韩亚洲欧美综合| videos熟女内射| 女人久久www免费人成看片| 亚洲欧美成人精品一区二区| 麻豆久久精品国产亚洲av| 国产精品国产三级国产av玫瑰| 日本免费a在线| 久久国内精品自在自线图片| 日韩 亚洲 欧美在线| 亚洲国产成人一精品久久久| 大片免费播放器 马上看| 91精品伊人久久大香线蕉| av卡一久久| 欧美日韩国产mv在线观看视频 | 欧美日本视频| 成人毛片a级毛片在线播放| 黑人高潮一二区| 国产亚洲精品久久久com| 真实男女啪啪啪动态图| 成人亚洲欧美一区二区av| 国产黄a三级三级三级人| 人妻少妇偷人精品九色| 国产欧美日韩精品一区二区| 中文天堂在线官网| 亚洲国产欧美在线一区| 欧美成人一区二区免费高清观看| 成人二区视频| 国产精品99久久久久久久久| 欧美日韩精品成人综合77777| 国产亚洲91精品色在线| 色吧在线观看| 精品人妻视频免费看| 日韩精品有码人妻一区| 日本色播在线视频| 国产成年人精品一区二区| 亚洲精品久久午夜乱码| 少妇熟女欧美另类| 亚洲欧美中文字幕日韩二区| 中文乱码字字幕精品一区二区三区 | 观看美女的网站| 少妇裸体淫交视频免费看高清| 午夜福利视频精品| 久久久久久久国产电影| 搞女人的毛片| 国产永久视频网站| 爱豆传媒免费全集在线观看| 亚洲国产精品成人综合色| 国产老妇伦熟女老妇高清| 在线观看人妻少妇| 22中文网久久字幕| 两个人视频免费观看高清| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 亚洲最大成人手机在线| 天天一区二区日本电影三级| 久久精品综合一区二区三区| 久久久欧美国产精品| 国产精品av视频在线免费观看| 51国产日韩欧美| 黄色日韩在线| 美女xxoo啪啪120秒动态图| 国产色爽女视频免费观看| 街头女战士在线观看网站| 婷婷色综合www| 人人妻人人看人人澡| 亚洲美女视频黄频| 99久久人妻综合| 只有这里有精品99| 美女cb高潮喷水在线观看| 高清视频免费观看一区二区 | 乱系列少妇在线播放| 高清视频免费观看一区二区 | 观看免费一级毛片| 美女大奶头视频| 在线 av 中文字幕| 国产精品一区二区三区四区免费观看| 亚洲内射少妇av| 亚洲美女搞黄在线观看| 免费高清在线观看视频在线观看| 日本欧美国产在线视频| 男的添女的下面高潮视频| 丝袜美腿在线中文| 中文资源天堂在线| 一边亲一边摸免费视频| 亚洲精品一区蜜桃| 街头女战士在线观看网站| 国产69精品久久久久777片| 熟女电影av网| 国语对白做爰xxxⅹ性视频网站| .国产精品久久| videossex国产| 人妻一区二区av| 免费大片18禁| 成人一区二区视频在线观看| 我的女老师完整版在线观看| 干丝袜人妻中文字幕| 国产真实伦视频高清在线观看| 国产亚洲av嫩草精品影院| 国产在线男女| 亚洲自偷自拍三级| 如何舔出高潮| 国产精品福利在线免费观看| 日韩亚洲欧美综合| 久久久久久九九精品二区国产| 91精品伊人久久大香线蕉| 中国美白少妇内射xxxbb| 日日撸夜夜添| 狠狠精品人妻久久久久久综合| 免费av不卡在线播放| 国产av国产精品国产| 国产伦精品一区二区三区四那| 丰满乱子伦码专区| 在线播放无遮挡| 亚洲av福利一区| 日韩一区二区三区影片| 全区人妻精品视频| 在现免费观看毛片| 亚洲性久久影院| 亚洲国产欧美在线一区| 成人亚洲精品av一区二区| 边亲边吃奶的免费视频| 亚洲欧美清纯卡通| 精品不卡国产一区二区三区| 成人欧美大片| 高清av免费在线| 国产在线一区二区三区精| 国产黄频视频在线观看| 秋霞在线观看毛片| 91午夜精品亚洲一区二区三区| 美女cb高潮喷水在线观看| 一个人看视频在线观看www免费| 久久99蜜桃精品久久| 国产精品精品国产色婷婷| 午夜视频国产福利| 亚洲18禁久久av| 大片免费播放器 马上看| 国产在线一区二区三区精| 国产乱人视频| 啦啦啦啦在线视频资源| 色网站视频免费| 国产亚洲午夜精品一区二区久久 | 欧美成人午夜免费资源| 国产午夜精品久久久久久一区二区三区| 成人av在线播放网站| 国产精品久久久久久久电影| 日日摸夜夜添夜夜爱| 九草在线视频观看| 免费观看性生交大片5| 午夜免费男女啪啪视频观看| 麻豆国产97在线/欧美| 免费黄频网站在线观看国产| 777米奇影视久久| 老师上课跳d突然被开到最大视频| 精品人妻视频免费看| 欧美xxxx性猛交bbbb| 永久免费av网站大全| 麻豆乱淫一区二区| 国产女主播在线喷水免费视频网站 | 中文字幕人妻熟人妻熟丝袜美| 美女大奶头视频| 最近的中文字幕免费完整| 国产黄片美女视频| 久久6这里有精品| 18+在线观看网站| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| 国产一区二区亚洲精品在线观看| 免费少妇av软件| 日韩av在线免费看完整版不卡| 婷婷色av中文字幕| 国产真实伦视频高清在线观看| 非洲黑人性xxxx精品又粗又长| 全区人妻精品视频| 日本av手机在线免费观看| av福利片在线观看| 天天躁日日操中文字幕| 国产精品99久久久久久久久| 男女边吃奶边做爰视频| 一级爰片在线观看| 噜噜噜噜噜久久久久久91| 天堂网av新在线| 最新中文字幕久久久久| 色视频www国产| 汤姆久久久久久久影院中文字幕 | 国产午夜福利久久久久久| 最近中文字幕高清免费大全6| 日韩在线高清观看一区二区三区| 国产成人精品婷婷| 18+在线观看网站| 一边亲一边摸免费视频| 精品一区二区三卡| 日韩av免费高清视频| 欧美成人午夜免费资源| 国产黄a三级三级三级人| 免费观看精品视频网站| 日韩三级伦理在线观看| 极品少妇高潮喷水抽搐| 亚洲伊人久久精品综合| 中文字幕免费在线视频6| 五月玫瑰六月丁香| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 丝袜喷水一区| 免费不卡的大黄色大毛片视频在线观看 | 免费无遮挡裸体视频| av在线播放精品| 熟妇人妻久久中文字幕3abv| 亚洲欧美清纯卡通| 欧美日韩一区二区视频在线观看视频在线 | 麻豆成人av视频| 久久久精品欧美日韩精品| 亚洲色图av天堂| 18禁在线无遮挡免费观看视频| www.av在线官网国产| 日韩av在线大香蕉| av天堂中文字幕网| 欧美激情在线99| 老司机影院毛片| 六月丁香七月| av天堂中文字幕网| 欧美成人一区二区免费高清观看| 女人久久www免费人成看片| 在线 av 中文字幕| 成人毛片60女人毛片免费| 精品一区二区三区视频在线| 永久网站在线| 亚洲欧美清纯卡通| 精品不卡国产一区二区三区| 麻豆成人午夜福利视频| 天堂中文最新版在线下载 | 91av网一区二区| 免费在线观看成人毛片| 天天躁夜夜躁狠狠久久av| 亚洲精品日本国产第一区| 在线天堂最新版资源| 好男人视频免费观看在线| 国产精品.久久久| 99久国产av精品国产电影| 插逼视频在线观看| 一区二区三区乱码不卡18| h日本视频在线播放| 在线观看免费高清a一片| 国产黄片美女视频| 亚洲高清免费不卡视频| 一个人看的www免费观看视频| 国产片特级美女逼逼视频| 永久免费av网站大全| 国产老妇伦熟女老妇高清| 三级国产精品欧美在线观看| 国产片特级美女逼逼视频| 成人毛片60女人毛片免费| 久99久视频精品免费| 91久久精品电影网| 国产片特级美女逼逼视频| 我的老师免费观看完整版| 成人av在线播放网站| 亚洲欧美一区二区三区黑人 | 久久鲁丝午夜福利片| 青春草亚洲视频在线观看| 亚洲精品国产av蜜桃| 国产成人精品婷婷| 免费人成在线观看视频色| 亚洲自偷自拍三级| 啦啦啦韩国在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲一区高清亚洲精品| 亚洲在久久综合| 性插视频无遮挡在线免费观看| 国产成人精品福利久久| 亚洲国产精品成人综合色| 成人亚洲精品一区在线观看 | 国产综合精华液| 国产av码专区亚洲av| 日韩亚洲欧美综合| 亚洲精品日韩在线中文字幕| 91精品国产九色| 日本与韩国留学比较| 91精品国产九色| 有码 亚洲区| 色5月婷婷丁香| 丝袜美腿在线中文| 最近中文字幕2019免费版| 国产精品嫩草影院av在线观看| av网站免费在线观看视频 | 国产v大片淫在线免费观看| 久久久久精品久久久久真实原创| 别揉我奶头 嗯啊视频| 亚洲av电影在线观看一区二区三区 | 亚洲一区高清亚洲精品| av国产免费在线观看| 国产久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 日本熟妇午夜| 简卡轻食公司| 美女国产视频在线观看| 日本与韩国留学比较| 亚洲av成人精品一区久久| 久久6这里有精品| 亚洲精品亚洲一区二区| 在线观看人妻少妇| 久久精品久久精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲最大成人手机在线| 看非洲黑人一级黄片| 午夜免费男女啪啪视频观看| 春色校园在线视频观看| 精品久久久久久久久亚洲| 少妇的逼水好多| 18禁裸乳无遮挡免费网站照片| 91av网一区二区| 亚洲av中文字字幕乱码综合| videossex国产| 久久国产乱子免费精品| 精品99又大又爽又粗少妇毛片| 亚州av有码| 内射极品少妇av片p| 亚洲精品影视一区二区三区av| 亚洲欧美精品自产自拍| 久久人人爽人人片av| 国产真实伦视频高清在线观看| 欧美97在线视频| 免费大片18禁| 亚洲av二区三区四区| 久久午夜福利片| 永久免费av网站大全| 成年免费大片在线观看| 久久99热这里只有精品18| 搞女人的毛片| 一本久久精品| 精品人妻偷拍中文字幕| 欧美 日韩 精品 国产| 噜噜噜噜噜久久久久久91| 成人亚洲精品一区在线观看 |