• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sm-Nd dating and rare earth element geochemistry of the hydrothermal calcites from Guling carbonate-hosted talc mineralization in the central Guangxi province,South China

    2015-10-29 05:20:13YiCaiQianZhangYongbingZhangDapengWangKaiwenLi
    Acta Geochimica 2015年2期

    Yi Cai·Qian Zhang·Yongbing Zhang· Dapeng Wang·Kaiwen Li

    Sm-Nd dating and rare earth element geochemistry of the hydrothermal calcites from Guling carbonate-hosted talc mineralization in the central Guangxi province,South China

    Yi Cai·Qian Zhang·Yongbing Zhang· Dapeng Wang·Kaiwen Li

    Manycarbonate-hostedtalcmineralization,which are widespread in South China,exclusively developed in Carboniferous dolomitic limestone with many siliceous bands and nodules,and cherts.One of those typical deposits is the Guling talc deposit in Mashan County,central Guangxi province,with a talc reserve of 1.51 million tons.Mineral associations in the deposit are sample,mainly including talc and calcite.In this paper,Sm—Nd isotopic system and rare earth elements and yttrium (REE+Y)for the hydrothermal calcite intergrown with talc are used to constrain the age and origin of the talc mineralization.The hydrothermal calcite samples from the deposit display Sm and Nd concentrations ranging from 0.18 to 0.85 and 0.85 to 4.56 ppm,respectively,and variable Sm/Nd ratios of 0.21—0.24.These calcites further yield an Sm—Nd isochron age of 232±19 Ma(2σ)(MSWD=0.47)with an concordant initial143Nd—144Nd ratios of 0.511967±0.000017,which should be interpreted as the mineralization age of the Guling talc deposit. In addition,the calcite samples are enriched in REE with thevariableΣREEcontentsrangingfrom4.82to 21.50 ppm and display relatively consistent chondritenormalized REE+Y patterns with the LREE enrichment(LREE/HREE=2.00—3.60)and the obvious negative Eu(δEu=0.52—0.68)and Ce(δCe=0.16—0.33)anomalies. The Y/Ho ratios of seven calcites varies from 43.30 to 59.34,with a mean value of 49.73.The available mineral associations and REE parameters(i.e.,REE patterns and Y/Ho ratios)of those calcites indicate that the ore-forming fluids of the talc mineralization be probably derived from the meteoric waters,in particular evolved ones in the Karst areas and the ore-forming materials(e.g.,Si and Mg)are likely to be originated from the ore-bearing dolostone in the Yanguan Formation(C1y)and underlying siliceous rocks in the Liujiang Formation(D3l).Furthermore,the talc mineralization could take place within a hydrothermal system with relative oxidizing environment and middle temperature,due to the obvious negative Eu and Ce anomalies in the calcites in the Guling deposit.

    Sm—Nd isotopic dating·Carbonate-hosted talc mineralization·Rare earth elements·Carboniferous

    1 Introduction

    Rare earth elements and yttrium(REE+Y)are easy to incorporate in calcite by substitution at Ca2+structural sites,but the REE diffusion in calcite minerals is very slow(e.g.Cherniak 1998),enabling that the Sm—Nd isotopic systematics could keep closely,even weathering and/or alteration.Furthermore,if there are relatively discrete Sm/ Nd ratios and homogeneous143Nd/144Nd ratios in hydrothermal fluids from which minerals are precipitated,the Sm—Nd isotope is a powerful geochronometer for hydrothermal events(e.g.Chesley et al.1991;Peng et al.2003;Barker et al.2009).Therefore,Sm—Nd isotope system of thehydrothermalcalciteshasbeenwidelyusedtodetermine the age of a variety of hydrothermal systems(e.g.Hu et al.1996;Peng et al.2003;Li et al.2007;Uysal et al.2007;Barker et al.2009;Su et al.2009).

    Y.Cai·Q.Zhang(?)·Y.Zhang·D.Wang

    State Key Laboratory of Ore Deposit Geochemistry,

    Institute of Geochemistry,Chinese Academy of Sciences,

    Guiyang 550002,People's Republic of China

    e-mail:zhangqiangeo@126.com

    Y.Cai·Y.Zhang

    University of Chinese Academy of Sciences,Beijing 100049,People's Republic of China

    K.Li

    Henan Institute of Geological Survey,Zhengzhou 450001,

    People's Republic of China

    Many Carbonate-hosted talc deposits and prospects are widespread in South China,exclusively occurred in Carboniferous strata of dolostone and dolomitic limestone,mainly including Longhui,Dongkou,Huatan and Youxian in Hunan province,Yangguan in Guangdong province,and Huangjiang,Shanglin,Mashan and Wuxuan in Guangxi province(Gao 1983;Li 1985;Chen and Che 1989). Because hydrothermal minerals suitable for conventional isotopic dating are absent from these deposits.So far,there are a few reliable geochronological and geochemical data reported by previous study to constrain the age and origin of the mineralization,which strongly impedes our understanding for ore genesis of these deposits and prospects.

    The Guling talc deposit located in the Mashan county,central Guangxi province is one of more economic importance with the talc reserve of 1.51 million tons,second only to the Zhenxu deposit(21.67 million tons). Therefore the deposit should be a typical representative of the carbonate-hosted talc mineralization in South China.In the current paper,Sm—Nd isotopic system is applied to date the timing of carbonate-hosted talc mineralization in the Guling talc deposit.Furthermore,the REE+Y data of the hydrothermal calcites are also used to constrain the origin of the ore-forming materials and physical and chemical environments of the deposit(Fig.1).

    2 Geology of the Guling deposit

    The Guling talc deposit is located in the northwest part of the Damingshan tungsten-copper polymetallic metallogenic belt(DMB),central Guangxi province,South China(Fig.2).Silurian unconformity between Cambrian to Ordovician and Devonian to Triassic structural layers are recognized in this area.The Cambrian to Ordovician stratigraphic unite below this unconformity are a set of weakly metamorphosed arkositic quartzose sandstone with minor intercalations of shale whereas the upper covering strata of the Silurian unconformity is composed predominately of Devonian sandstone,siliceous rock and black shale,Carboniferous to Middle-Late Triassic dolostone,dolomitic limestone and shale(Guangxi,BGMR 1985). Besides,Cretaceous and Quaternary strata are distributed around the anticlinorium and dominated by conglomerate,sandstone as well as tuff.The Guling deposit is hosted within Lower Carboniferous Yanguan Formation(C1y)that contains dark grey and black,thin-layered,fine grain dolomite with a lot of siliceous band and nodule,chert and manganese-bearing nodule(Fig.3).

    Fig.1 Distribution of the Carboniferous strata,magmatic rocks and predominate carbonate-hosted talc deposits and prospects in South China

    Fig.2 Geological map of the carbonate-hosted talc mineralization in the Guling deposit

    Fig.3 Stratigraphic column of the Liujiang Formation(D3l)and orebearing Yanguan Formation(C1y)in the Guling talc ore district

    There are no magmatism and metamorphism in the Guling ore mining area,although abundant magmatic rocks and low metamorphic clastic rocks are widespread in the DMB.Many petrology researches and zircon U—Pb datings show that the magmatism could further subdivide into Silurian and Late Cretaceous magmatic activities(Cai et al.,unpublished data).The former is mainly composed ofgranodiorite(443.1±1.6 Ma),dioriteporhpyrite(432.9±4.3 Ma),quartz porphyrite(424.9±2.2 Ma),muscovite granite(419.7±2.7 Ma)and biotite granite(405.2±1.4 Ma)while the latter consists predominately of biotite granite(93.1±1.0 Ma),quartz porphyrite(94.2±1.2 Ma),aplite(93.5±2.1 Ma)and minette(Cai et al.,unpublished data).However,it is likely that all those magmatism and metamorphism are genetically unrelated to the talc mineralization because there are no magmatism, metamorphism and polymetallic mineralization in the Guling talc ore district.

    NW-,NE-and NS-trending faults occur in the DMB. NW-trending fault system of Kunlunguan dominates over the whole Damingshan area.Besides,other important geological structure is a huge Damingshan anticlinorium with a variable northwest strike.The huge fault and anticline extend from northwest to southeast with the length of more than 100 km and essentially control magmatism,metamorphism,sedimentation and mineralization.The ore bodies of Guling deposit are developed at the core of a secondary syncline of the Damingshan anticlinorium(Fig.2).

    Table 1 Scale and reserves of talc ore bodies from the Guling deposit

    Field investigations indicated that morphology of all ore bodies are stratiform,lenticular and irregular.Six ore bodies extend more than several kilometers and individual ore body in length and width range from 200 to 300 and 50 to 100 m,respectively(Table 1).Three type talc ores has been recognized including the black,white and red ones(Fig.4).All of three type ores have many uniform features,e.g.,the mineral association of talc and calcite,the massive and partly taxitic,brecciated and banded ore structures and blastic textures.There are some researches indicated that the black talc ores with talc content of 70%—80%are enriched in organic materials up to 1.64%,originated from that of the Yanguan Formation(C1y)(e.g.,Tong 1994). The white and red talc ores with the minor organic materials have relatively higher talc contents of 85%and 95%,respectively.In general,most calcites are colorless,black and milk white and intergrown with talc.They are characteristic of euhedral megacryst surrounded by massive talc in the orebody(Fig.4),thus indicating the hydrothermal calcites were deposited before the massive talc.

    Fig.4 Photographs of ores from the Guling deposit in central Guangxi,South China. a White talc and colorless euhedral calcite;b Red talc;c Black calcite;d Black talc and milky calcite

    3 Analytical methods

    3.1Sm and Nd contents and isotopic ratio

    All calcite samples were collected from the Guling ore district.And pure calcite separates were hand-picked under a binocular microscope and crushed to 200 mesh using an agate mortar.Sm and Nd content and Nd isotopic ratio analysis for calcite separates were determined using an IsoProbe T thermal ionization mass spectrometer(ITTIMS)at Tianjin Institute of Geology and Mineral Resources,CAGS.Two separated sample aliquots for every calcite separates,each weighing 150 mg,were dissolved with a mixture of HF and HClO4in a ratio of 10:1 at 150°Cformorethan12 h,oneforspikingand determination of Sm and Nd concentrations and the other for the determination of present-day143Nd/144Nd ratios,respectively.Separation of Sm and Nd was conducted by a reverse-phase extraction technique with HDEHP coated on Teflon powder.Sm and Nd concentrations were determined by isotope dilution using149Sm—146Nd spike solution.Nd ratios were normalized to146Nd/144Nd ratio of 0.7219.The reproducibility of the isotopic ratios is better than 0.005%(2σ)and the precision for Sm and Nd concentrations is less than 0.5%of the quoted values(2σ).Concentrations for BCR-1 determined during this study were 6.57 ppm for Sm,28.75 ppm for Nd and 0.512644±5(2σ,n=6)for143Nd/144Nd,consistentwiththe6.58 ppmforSm,28.8 ppm for Nd reported by Bell et al.(1989).Blanks during this study are 0.03 ng for Sm and 0.05 ng for Nd. The Sm—Nd isochron ages were calculated with the ISOPLOT 4.0 computer program recommended by Ludwig(2003)with a decay constant(λ147Sm)of 6.54×10-12/ year.

    3.2Rare earth elements and yttrium(REE+Y)

    Thecontentsofrareearthelementsandyttrium(REE+Y)of the separated calcites were also carried out by an ELAN 6000 inductively coupled plasma quadrupole mass spectrometer(ICP—MS)at the Guangzhou Institute of Geochemistry,Chinese Academy of Sciences.Detailed analytical methods were adopted from Qi and Gregoire(2000).Precision and accuracy for the GSR-3 and JG-2,as determined by ICP—MS,are within 5%—10%.

    4 Results

    4.1Sm—Nd dating

    The Sm and Nd concentrations and Nd isotopic ratios are listed in Table 2.The Sm contents of calcite samples from the Guling deposit vary from 0.18 to 0.95 ppm;the Nd contents range from 0.85 to 4.56 ppm;and the Sm/Nd ratios are 0.21 to 0.24.These data points display a relatively good linear relationship on the147Sm/144Nd versus143Nd/144Nd diagram(Fig.5a)and yield a Sm—Nd isochron age of 232±19 Ma(2σ)(MSWD=0.47)with an initial143Nd—144Nd ratios of 0.511967±0.000017(εNd(t)= -7.3).Because there are,as revealed by Fig.5b,no liner relationships on the 1/Nd versus143Nd/144Nd diagram,which could preclude a possibility of mix line resulting from two different type fluids(e.g.,Peng et al.2003).

    4.2Rare earth elements and yttrium

    The rare earth elements and yttrium(REE+Y)compositions of the calcite from the Guling deposit are listed in Table 3 and shown in Fig.6,respectively.As shown in Tables 2 and 3,Sm and Nd contents measured by ICP are slightly lower than that of IT-TIMS determination,but the deviation is generally less than 10%.Therefore the REE+Y data of this contribution are credible for any discussion as fellows.The REE contents of calcites are normalized to chondrite values recommended by Sun and McDonough(1989).It shows that seven calcites are enriched in REE with the variable ΣREE contents ranging from 4.82 to 21.50 ppm(Table 3)and display relatively consistent chondrite-normalized REE patterns with the LREE enrichment(LREE/HREE=2.00—3.60)and the obvious negative Ce(δCe=0.16—0.33)and Eu(δEu=0.52—0.68)anomalies(Table 3;Fig.6).The Y/Ho ratios of seven calcites vary from 43.30 to 59.34,with a mean value of 49.73.

    5 Discussion

    5.1Timing of carbonate-hosted talc mineralization

    Precise isotopic dating is crucial to understand the genesis and tectonic setting of the carbonate-hosted talc mineralization in the Guling deposit.Many calcite Sm—Nd dating studies were succeeded to interpret the timing of hydrothermal fluid activities in the mineralization and basin evolution processes(e.g.Hu et al.1996;Peng et al.2003;Li et al.2007;Uysal et al.2007;Su et al.2009).There are some evidence shows that high Sm/Nd ratios and a large range of these ratios for calcite samples enable application of Sm—Nd geochronology to constrain the age of relatively young hydrothermal events(Peng et al.2003).

    In this study,a relatively reliable Sm—Nd isochron age of 232±19 Ma(2σ)from the Guling deposit was reported,although there are relatively narrow Sm/Nd ratios(0.21—0.24)in hydrothermal calcites.It is likely to ascribe to relatively uniform143Nd/144Nd ratios of ore-forming fluids(143Nd—144Nd ratios:0.511967±0.000017)from which hydrothermal calcite minerals were precipitated. Therefore,such Sm—Nd isochron age of 232±19 Ma should be interpreted as the timing of the Guling deposit,and thus probably representing the age of the carbonatehosted talc mineralization in South China.As a result,the Guling deposit should be formed in the Middle Triassic,coeval with the Indosinian Orogeny in South China.

    Furthermore,the above conclusion should be also supported by simple mineral association of talc and calcite. The Guling deposit is a typical epigenetic hydrothermal metasomatic deposit hosted within the Lower Carboniferous strata based largely on the blastic texture,and massive and partly taxitic brecciated and banded structures,suggesting a post-Lower Carboniferous ore-forming age.The talc and calcite dominate over the whole ore body in the mine,indicating that the talc mineralization would be formed by this reaction:

    Table 2 Sm and Nd contents and Nd isotopic ratios in the calcites from the Guling deposit

    Fig.5 Sm-Nd isochron age(a)and143Nd/144Nd versus 1/Nd(b)for the calcites from the Guling talc deposit

    Table 3 Rare earth element and yttrium composition in the calcites from the Guling deposit

    This reaction precludes a possibility that sea water and submarine hydrothermal fluids are involved in the talc mineralization because the increasing CO2partial pressure due to the talc producing reaction and possibly a high NaCl component should favor the solubility of calcite as the following reaction:

    Fig.6 The chondrite-normalized REE+Y patterns of the calcites from the Guling deposit.All data were normalized by the chrondrite REE+Y values from Sun and McDonough(1989)

    (Skippen and Trommsdorff 1986;Bowers and Helgeson 1983).If this was a case,then calcite should not had been pervasive in the Guling deposit.As a result,the talc mineralization in the Guling should take place in a continental environment.Previous studies have revealed that the shift from marine sedimentation to continental deposition in South China took place in the Middle-Late Triassic in Guangxi province(Guangxi,BGMR 1985).Therefore the geological evolution concord with the conclusion deduced from the mineral association of the talc deposit,which support that the talc mineralization took place in the middle-late Triassic.

    5.2 The source of the ore-forming materials(water,Si and Mg)

    The REE+Ycharacteristicsofhydrothermalcalcite could provide many valuable information on the source,and physical and chemical environment of the hydrothermal fluids from which the calcite precipitated(e.g.Sverjensky 1984;Michard 1989;Bau and Mo¨ller 1992). Importantly,these applications of REE+Y data had been amplified especially when several landmark studies had been carried out at the end of the last century(e.g.,Bau and Mo¨ller 1992;Gammons et al.1996;Cherniak 1998).For example,the distribution patterns of REE+Y may potentially trace origin of hydrothermal fluids because they generally migrate as an element group due to similar behavior in hydrothermal fluids.Hence,those geological bodies,which possess genetically kinships each other,would share an analogous REE+Y pattern in the normalized diagram.Besides,Y and Ho are twin elements in geochemical behavior and behave coherently in most geological environments(Bau and Dulski 1995;Uysal et al.2007,2009).Therefore,Y/Ho ratio is also a more better tracer in geological process than the normalized pattern of REE+Y,because Y/Ho ratio could keep constant in the most geological process,except for in the fluorine-rich hydrothermal fluids due to Y showing stronger complexion than Ho in this fluids,thus leading to the increase of the ratio(Wood 1990a,b;Bau and Dulski 1995).Abundant researches revealed that the carbonatehosted talc mineralization was formed by hydrothermal alteration of carbonates,especially dolomite,by Si-bearing hydrothermal fluids,e.g.,Go¨pfersgru¨n in Germany(Hecht et al.1999),Lassing and Rebenwald in Austria(Boulvais et al.2006).This research also suggested that the Sibearing hydrothermal solutions are predominately derived from the basin brine(e.g.,Puebla de Lillo in Spain;Tornos and Spiro 2000),sea water(e.g.,Ruby area in the southwest Montana,USA;Brady et al.1998)and magmatic water(e.g.,Hwanggangri area in South Korea;Shin and Lee 2006),respectively.Importantly,the basin brine,sea water and magmatic fluids also provide the ore-forming fluids and materials(Si and Mg)for the carbonate-hosted talc mineralization whereas the ore-bearing carbonates also could afford abundant Mg.In the study,the Guling deposit is hosted with the dolostone and dolomitic limestone with many siliceous bands and nodules and cherts.Hence the ore-bearing strata could provide the talc mineralization with abundant Mg and Si.This is also supported by the REE+Y data.Seven calcite samples from the Guling deposit display relatively consistent chondrite-normalized REE+Y pattern with the LREE enrichment and the obvious negative Ce and Eu anomalies and positive Y anomaly(Fig.6),consistent with that of the Paleozoic carbonates in South China(Fig.7).In addition,the Y/Ho ratio of the seven calcites varies from 43.30 to 59.34,with a mean value of 49.73(Table 4),concordant with that(Table 4;Fig.8;Y/Ho ratio 35.06—74.86,mean 51.52)of the Paleozoic carbonates in South China.As a result,the ore-bearing strata provided the ore-forming materials(e.g.,Si and Mg)for the talc mineralization.Here we further discussed the origin of the ore-forming materials of the carbonate talc mineralization in the Zhenxu deposit.

    The basin brine are unlikely to provide ore-forming fluids(e.g.,water)and materials(e.g.,Si and Mg)for the talc mineralization.Because mica minerals are ubiquitous in the sandstone and shale of the sedimentary basin,the fluids that equilibrated with the sedimentary rocks would contain abundant K+and Al3+,and further lead to formation of chlorite by the below reactions:

    Fig.7 The REE+Y patterns of the key possible sources for the talc mineralization in the Guling deposit.The data sources are the same as the Table 4

    (Moine et al.1989).For example,the mineral association of talc and chlorite were observed in many carbonate-hosted talc deposits in the world,e.g.,Winterboro in the Alabama,USA(Blount and Vassiliou 1980),Trimouns in Pyrenees,F(xiàn)rench(e.g.,Moine et al.1989),Go¨pfersgru¨n in German(Hecht et al.1999)and Lassing and Rebenwald in Austria(Boulvais et al.2006).Hence,the ascended basin brine did not provide the talc mineralization with the ore-forming materials(e.g.,water,Si and Mg),although a wealth ofMVT type Pb—Zn deposits and prospects are observed in the Guizhong depressions in the Guangxi province(Lei et al.2002,2006)and Xiangzhong depressions in the Hunan province(Liu and Zheng 1999;Liu et al.1999).

    Table 4 The Y/Ho ratio composition of the main possible sources for Guling talc mineralization

    Fig.8 The Y/Ho ratio distribution of the key possible sources for the Guling deposit.Data sources are the same as Table 4

    The sea water and submarine hydrothermal fluids would not be the origin of ore-forming fluids.First,because a lot of calcites are observed in the Guling deposit,the oreforming system should contain relatively less content of Cl-,in contrast with the compositions of the sea water and submarine hydrothermal fluids with relatively high content of Cl-.Second,as suggested by Fig.7,the sea water and submarine hydrothermal fluids from today's ocean are depleted in REE+Y with a flat REE+Y pattern with a positive Y anomaly(Zhang and Nozaki 1996,1998;Alibo and Nozaki 1999;Hongo et al.2007).However,the former has a relatively negative Ce anomaly whereas the latter displays an extremely obvious Eu positive anomalies,different from that(Fig.7:the LREE enrichment and obvious negative Ce and Eu anomalies)of the calcites from the Guling deposit.Third,the sea water display relatively higher Y/Ho ratio(Table 4;Y/Ho ratio:43.22—110.19,mean value 62.51)than the ratio(Y/Ho ratio 43.30—39.34,mean value 49.73)of the calcites whereas the submarine hydrothermalfluidsshowtheY/Horatiovariation(Table 4;Y/Ho ratio 25.74—76.58,mean value 48.17),similar to that(Y/Ho ratio 43.30—39.34,mean value 49.73)of the calcites.It seems that the ore-forming fluids should be derived from the submarine thermal fluids coeval with the talc mineralization.However,sixteen Y/Ho ratios of submarine hydrothermal fluids are easily subdivided into two groups in the Fig.8,i.e.,25.74—34.83(n=8)and 45.16—76.58(n=11).It should be ascribed to the mixing of two fluids with the two different Y/Ho ratios,namely,the felsic rocks(ca.28;Bau and Dulski 1995)and sea water(mean 62.51;Table 4).Therefore,the ore-forming fluids were not derived from the sea water and submarine hydrothermal fluids.

    The magmatic water that derived from the Indosinian magmatism are also ruled out.For example,many talc deposits with an origin of the typical magmatic hydrothermal fluids are developed at the contact with the igneous intrusion of the Muamsa granite,South Korea.These talc deposits display a typical altered zone of amphibolite,talc and chlorite and dolomitic marble from intrusions to orehosting marble and a mineral association of high temperature including tremolite,diopside and phlogopite(Shin and Lee 2002).However,no similar alteration zones and mineral associations are observed in Guling deposit. Besides,there are no Indosinian magmatism recognized in the DMB by abundant zircon U—Pb datings(Cai et al.,unpublished data).Therefore,the ore-forming fluids and materials were not sourced from the magmatic water.In addition,it is also supported by the REE+Y data.The Indosinian magmatic rocks in South China are enriched in LREE with an obvious Eu negative anomaly(Fig.7;Wang et al.2007c),considerably different from that(a negative cerium anomaly and a positive Y anomaly)of the calcites from the Guling deposit.These rocks have the Y/Ho ratio of 0.24.63—32.82 with an average of 28.09(Table 4;Fig.8;Wang et al.2007c),in contrast with that(Y/Ho ratio 43.30—39.34,mean value 49.73)of the calcites.Hence,it is obvious that the magmatic hydrothermal fluids are not theorigin of the ore-forming materials(water,Si and Mg)for the talc mineralization.

    However,the results of Sm—Nd dating in this study documentedthatthecarbonate-talcmineralization should take place in the Middle-Late Triassic.In those time,the South China had been a continental sedimentation(Guangxi,BGMR 1985).Hence the oreforming fluids are likely to be sourced from the meteoric water.If this is a case,then the REE+Y features(e.g.,REE+Y pattern and Y/Ho ratio)of the oreforming system will not be obviously altered by the meteoric water and essentially controlled by the orebearing carbonates.This is supported by the facts that the calcites share an analogous Chondrite-normalized REE+Y pattern with the Paleozoic carbonates thus the ore-bearing strata(Fig.7)and the Y/Ho ratio(Y/Ho ratio 43.30—59.34,mean 49.73)of the calcites also resemble that(Y/Ho ratio 35.06—74.86,mean 51.52)of the carbonates(Table 4;Fig.8).Besides,the meteoric wateraregenerallyabsentfromavarietyofion including Cl-,Al3+and K+,in contrast with that of the basin brine,sea water and submarine hydrothermal fluids.Namely,abundant calcites are observed in the Guling talc deposit and but no chlorite in the deposit. Hence the meteoric water should be the source of the ore-forming materials.

    It is worth to note that the underlying siliceous rocks probably provide(partly)Si for the carbonate talc mineralization.The carbonate-hosted talc deposits in South China generally occur in the core of syncline.For example,the Guling deposit is developed at the secondary syncline of the huge Damingshan anticline(Fig.2).The secondary syncline is formed by the Liujiang Formation(D3l)and Yanguan Formation(C1y).The former is the ore-bearing strata and comprised mainly of the dolostone and dolomitic limestone with many siliceous band and nodule while the latter consist predominately of siliceous rocks(Fig.3). Therefore,it is likely that the siliceous rocks of the Liujiang Formation(D3l)were involved in the talc mineralization and provided it with abundant Si.These siliceous rocks alsosharerelativelyanalogousChondrite-normalized REE+Y pattern with calcites apart from the absence from the strong Y positive anomaly(Fig.7).The Y anomaly is easily reflected by Y/Ho ratio and the Y/Ho ratio of the siliceous rocks in central and north Guangxi varies from 25.43 to 52.00 with an average of 35.82.It is revealed by Table 4 and Fig.8 that the Y/Ho ratio of the calcites ranges from 43.30 to 59.34 with a mean of 49.73,which is slightly lower than that(Y/Ho ratio 35.06—74.86,mean 51.52)of the Paleozoic carbonates in South China.It is likely that the REE+Y of the calcites could be a mixing of the orebearing dolostone of the Yanguan Formation(C1y)and siliceous rocks of the underlying Liujiang Formation(D3l). Hence,the siliceous rocks of the Liujiang Formation(D3l)probably provided Si for the talc mineralization.

    In summary,the meteoric water are advocate to be the source of the talc mineralization in the Guling deposit and the ore-forming materials(e.g.,Si and Mg)were probably provided by the ore-bearing strata of the Yanguan Formation(C1y)and underlying Liujiang Formation(D3l).

    5.2.1Physical and chemical conditions

    Europium is the most special REEs and the Eu3+/Eu2+redox potential in hydrothermal fluids are controlled predominately by the temperature,based on theoretical considerations and thermodynamic calculations(Sverjensky 1984 and Bau and Mo¨ller 1992).If the minerals absorbed in REE are deposited at temperatures exceeding 250°C then Eu2+dominates over Eu3+and tend to substitute preferentially for Ca2+,leading to a positive Eu anomaly. Elderfield and Sholkovitz(1987)documented that the Ce anomaly is a function of fO2and pH and the anomaly is more sensitive to pH than to fO2.Bau(1991)further believed that the generation of Ce anomalies in high temperature environments seem unlikely,because the Ce4+/ Ce3+redox equilibrium would shift towards higher fO2with increasing temperature.

    In this study,the hydrothermal calcites with the negative Eu and Ce anomalies in the Guling deposit indicates that the talc mineralization never reaches such high temperature of 250°C(Sverjensky 1984;Bau and Mo¨ller 1992).It should be also supported by field geological evidence because the Guling deposit consist of talc and calcite,a mineral association of middle temperature,without any high temperature minerals such as tremolite,diopside and phlogopite.In addition,the talc mineral should be deposited in a hydrothermal fluid with the temperature between 200 and 400°C,as revealed by phase diagram provided by Delgado(1996).Therefore,it is most likely that the talc mineralization in Guling deposit formed at a temperature of 200—250°C.

    Besides,the consistent negative Ce anomaly of the calcite minerals indicates that the talc mineralization should take place in the hydrothermal fluid system with an oxidized environment(Elderfield and Sholkoviz 1987;Bau 1991).

    6 Conclusion

    In this paper,the Sm—Nd isotopic dating and rare earth elements of the hydrothermal calcite inter-grown with talc were carried out in the Guling deposit.Same valuable conclusions should be reached as follow.

    (1) The calcite inter-grown with talc from Guling deposityieldaSm—Ndisochronageof 232±19 Ma,implying that the carbonate-hosted talc mineralization in central Guangxi province,south China took place at middle Triassic;

    (2) Available rare earth elements and yttrium data of the calcites indicate that the ore-forming fluids are probably sourced from meteoric water and the oreforming materials(i.e.,Si and Mg)came mainly from the ore-bearing dolostone and dolomitic limestone of the Yanguan Formation(C1y)and siliceous rocks of the Liujiang Formation(D3l);

    (3) Being obvious Eu and Ce negative anomalies of the calcites implies that the talc mineralization could take place in a hydrothermal system with the middle temperature and relatively oxidized environment.

    AcknowledgmentsThis study was jointly funded by The 12th Five-Year Plan project of State Key Laboratory of Ore-deposit Geochemistry,Chinese Academy of Sciences(SKLODG-ZY125-04)and China Natural Science Foundation(41372105).We thank several anonymous reviewers for their thorough,critical and constructive reviews and comments.We are also grateful to Liu Hui for providing many favorable supports on isotopic analysis at Tianjin Institute of Geology and Mineral Resources,CAGS.

    Alibo DS,Nozaki Y(1999)Rare earth elements in seawater:particle association,shale-normalization,and Ce oxidation.Geochim Cosmochim Acta 63(3—4):363—372

    Barker SLL,Bennett VC,Cox SF et al(2009)Sm—Nd,Sr,C and O isotope systematicsin hydrothermal calcite—fluoriteveins: implications for fluid—rock reaction and geochronology.Chem Geol 268(1—2):58—66

    Bau M(1991)Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium.Chem Geol 93(3—4):219—230

    Bau M,Mo¨ller P(1992)Rare earth element fractionation in metamorphogenic hydrothermal calcite,magnesite and siderite. Miner Petrol 45(3—4):231—246

    Bau M,Dulski P(1995)Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids.Contrib Miner Petrol 119(2—3):213—223

    Bell K,Anglin CD,F(xiàn)ranklin JM(1989)Sm-Nd and Rb-Sr isotope systematics of scheelites:possible implications for the age andgenesisofvein-hostedgolddeposits.Geology17: 500—504

    Blount AM,Vassiliou AH(1980)The mineralogy and origin of the talc deposits near Winterboro,Alabama.Econ Geol 75:107—116

    Boulvais P,de Parseval P,D'Hulst A,Paris P(2006)Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees,with emphasis on the St.Barthelemy Massif. Miner Petrol 88:499—526

    Bowers TS,Helgeson HC(1983)Calculation of the thermodynamic and geochemical consequences of non-ideal mixing in the system H2O-CO2-Nacl on phase relations in geologic systems: equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures.Geochem Cosmochem Acta 47:1247—1275

    Brady JB,Cheney JT,Rhodes AL,Vasquez A,Green C,Duvall M,Kogut A,Kaufman L,Kobaric D(1998)Isotope geochemistry of Proterozoic talc occurrences in Archean marbles of the Ruby Mountains,southwest Montana,USA.Geol Mater Res 1:1—41

    Chen MS,Che QJ(1989)Classification of talc deposit in Hunan province and its indicators for prospecting.Hunan Geol 8(01):35—43(in Chinese with English abstract)

    Cherniak DJ(1998)REE diffusion in calcite.Earth Planet Sci Lett 160(3—4):273—287

    Chesley JT,Halliday AN,Scrivener RC(1991)Samarium-neodymiumdirectdatingoffluoritemineralization.Science 252(5008):949—951

    Delgado J(1996)EQMIN,a Microsoft Excel spreadsheet to perform thermodynamic calculations:a didactic approach.Comput Geosci 22:639—650

    Elderfield H,Sholkoviz ER(1987)Rare earth elements in the pore waters pf reducing nearshore sediments.Earth Planet Sci Lett 82:280—288

    Gammons CH,Wood SA,Williams-Jones AE(1996)The aqueous geochemistry of the rare earth elements and yttrium:VI. Stabilityofneodymiumchloridecomplexesfrom25to 300°C.Geochim Cosmochim Acta 60(23):4615—4630

    Gao JW (1983)Geological characteristics of carbonate-hosted talc mineralization in Hunan province.Non-Metallic Mines 8(01),23—25+22(in Chinese)

    Guangxi,BGMR(Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region)(1985)Regional geology of the Guangxi Zhuang Autonomous Region.Geological Publishing House,Beijing,pp 1—853(in Chinese with English abstract)

    Hecht L,F(xiàn)reiberger R,Gilg H,Albert GG,Kostitsyn YA(1999)Rare earth element and isotope(C,O,Sr)characteristics of hydrothermal carbonates:genetic implications for dolomite-hosted talc mineralization at Go¨pfersgru¨n(Fichtelgebirge,Germany).Chem Geol 155:115—130

    Hongo Y,Obata H,Gamo T et al(2007)Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin.Geochem J 41(1):1—15

    Hu X,Pei R,Su Z(1996)Sm-Nd dating for antimony mineralization in the Xikuangshan deposit,Hunan,China.Resour Geol 46(4):227—231

    Huang H,Du YS,Yang JH et al(2012)Geological features of siliceous sediments of the Shuicheng-Ziyun-Nandan rift basin in the Late Paleozoic and their tectonic implication.Acta Geol Sin 86(12):1994—2010(in Chinese with English abstract)

    Lei LQ,Song CA,Zhao DJ,Li JQ,Ma TL(2002)Charateristics of predomite bearing rocks series of MVT Pb-Zn-Ba deposits,Guigang-Pingnan,Guangxi.Miner Depos 21(S1):394—396(in Chinese)

    Lei LQ,Song CA,Zhao DJ(2006)Primary discussion on pay rock series and fluid mineralization of Zn-Pb zone,southwest margin of Dayaoshan Caledon salient,South China.J Guilin Univ Technol 26:153—161(in Chinese with English abstract)

    Li XY(1985)Pareo-karst metasomatic type talc deposit in South China.China Non-metallic Min Ind Her 1(04):13—16(in Chinese)

    Li WB,Huang ZL,Yin MD(2007)Dating of the giant Huize Zn-Pb ore field of Yunnan province,Southwest China:constraints from the Sm-Nd system in hydrothermal calcite.Resour Geol 57(1):90—97

    Liu WJ,Zheng RC(1999)Research of fluid inclusion gas composition in Huayuan lead-zinc deposits:organic-mineralization study of MVT Pb-Zn deposits.Acta Sedimentol Sin 17:111—117(in Chinese with English abstract)

    Liu WJ,Zheng RC,Li YL,Gao L(1999)Study of bitumen in Huayuan lead-zinc deposit:organic geochemistry of MVT Pb-Zndeposit.Acta Sedimentol Sin 17:19—23(in Chinese with English abstract)

    Ludwig KR(2003)User's manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel.US Geological Survey Open-File Report.pp 91—445

    Michard A(1989)Rare earth element systematics in hydrothermal fluids.Geochim Cosmochim Acta 53(3):745—750

    Moine B,F(xiàn)ortune JP,Moreau P,Viguier F(1989)Comparative mineralogy,geochemistry,and conditions of formation of two metasomatic talc and chlorite deposits;Trimouns(Pyrenees,F(xiàn)rance)and Rabenwald(Eastern Alps,Austria).Econ Geol 84:1398—1416

    Peng JT,Hu RZ,Burnard PG(2003)Samarium—neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit(Hunan,China):the potential of calcite as a geochronometer.Chem Geol 200(1—2):129—136

    Qi L,Gregoire DC(2000)Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry.Geostand Newslett J Geostand Geoanal 24(1):51—63

    Qiu Z,Wang QC,Yan DT(2013)Geochemistry of the middle to late Permian limestones from the marginal zone of an isolated platform(Laibin,SouthChina).SciChina(EarthSci)56(10):1450—1468

    Shin D,Lee I(2002)Carbonate-hosted talc deposits in the contact aureole of an igneous intrusion(Hwanggangri mineralized zone,South Korea):geochemistry,phase relationships,and stable isotope studies.Ore Geol Rev 22(1—2):17—39

    Shin D,Lee I(2006)Fluid inclusions and their stable isotope geochemistry of the carbonate-hosted talc deposits near the CretaceousMuamsaGranite,SouthKorea.GeochemJ40(1):69—85

    Skippen G,Trommsdorff V(1986)The influence of Nacl and KCl on phase relations in metamorphosed carbonate rocks.Am J Sci 286:81—104

    Su WC,Hu RZ,Xia B et al(2009)Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit,Guizhou,China.Chem Geol 258(3—4):269—274

    Sun SS,McDonough WF(1989)Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.Geol Soc Lond Spec Publ 42(1):313—345

    Sverjensky DA(1984)Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67(1):70—78

    Tong YH(1994)Geological characteristics of Shanglin talc deposit. China Non-metallic Min Ind Her 9(02):27—30

    Tornos F,Spiro BF(2000)The geology and isotope geochemistry of the talc deposits of Puebla de Lillo(Cantabrian Zone,Northern Spain).Econ Geol 95:1277—1296

    Uysal IT,Zhao JX,Golding SD et al(2007)Sm—Nd dating and rareearth element tracing of calcite:implications for fluid-flow eventsintheBowenBasin,Australia.ChemGeol 238(1—2):63—71

    Uysal IT,Gasparon M,Bolhar R et al(2009)Trace element composition of near-surface silica deposits—a powerful tool for detecting hydrothermal mineral and energy resources.Chem Geol 280(1—2):154—169

    Wang ZZ,Chen DZ,Wang JG(2007a)REE geochemistry and depositional setting of the Devonian Cherts in Nanning area,Guangxi.Chin J Geol 42(3):569—588(in Chinese with English abstract)

    Wang ZZ,Chen DZ,Wang JG(2007b)Element geochemistry and depositional setting of the Cherts in Devonian,Nanning area,Guangxi.Acta Sedimentol Sin 25(2):271—277(in Chinese with English abstract)

    Wang YJ,F(xiàn)an WM,Sun M et al(2007c)Geochronological,geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block:a case study in the Hunan Province.Lithos 96(3—4):475—502

    Wood SA (1990a)The aqueous geochemistry of the rare-earth elements and yttrium:1.Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters.Chem Geol 82:159—186

    Wood SA (1990b)The aqueous geochemistry of the rare-earth elements and yttrium:2.Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure.Chem Geol 88(1—2):99—125

    Zhang J,Nozaki Y (1996)Rare earth elements and yttrium in seawater:ICP-MS determinations in the East Caroline,Coral Sea,and South Fiji basins of the western South Pacific Ocean. Geochim Cosmochim Acta 60(23):4631—4644

    Zhang J,Nozaki Y(1998)Behavior of rare earth elements in seawater at the ocean margin:a study along the slopes of the Sagami and NankaitroughsnearJapan.GeochimCosmochimActa 62(8):1307—1317

    Zhou HY,Greig A,Tang J,You CF,Yuan DX,Tong XN,Huang J(2012)Rare earth element patterns in a Chinese stalagmite controlled by sources and scavenging from karst groundwater. Geochim Cosmochim Acta 83:1—18

    27 September 2014/Revised:9 December 2014/Accepted:11 December 2014/Published online:6 January 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2014

    大陆偷拍与自拍| 亚洲五月色婷婷综合| 亚洲综合色惰| 亚洲精品aⅴ在线观看| 日韩电影二区| 少妇熟女欧美另类| 久久综合国产亚洲精品| 欧美日韩视频精品一区| 久久久久精品久久久久真实原创| 91精品三级在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品.久久久| 久热久热在线精品观看| 高清欧美精品videossex| 少妇人妻久久综合中文| 午夜福利网站1000一区二区三区| 亚洲欧美成人精品一区二区| 一边摸一边做爽爽视频免费| 亚洲色图综合在线观看| 18禁裸乳无遮挡动漫免费视频| 边亲边吃奶的免费视频| 国产在线视频一区二区| 极品少妇高潮喷水抽搐| 99热6这里只有精品| 啦啦啦中文免费视频观看日本| 亚洲欧美成人综合另类久久久| 日韩一本色道免费dvd| 99国产综合亚洲精品| 免费看不卡的av| 成年人免费黄色播放视频| 免费人成在线观看视频色| 麻豆精品久久久久久蜜桃| 日韩欧美精品免费久久| 亚洲欧美日韩卡通动漫| 一级毛片 在线播放| 日韩av不卡免费在线播放| 亚洲经典国产精华液单| 日韩成人伦理影院| 乱人伦中国视频| 丝袜在线中文字幕| 亚洲成人一二三区av| 亚洲国产精品成人久久小说| 王馨瑶露胸无遮挡在线观看| av又黄又爽大尺度在线免费看| 日韩伦理黄色片| 寂寞人妻少妇视频99o| 99re6热这里在线精品视频| 日韩视频在线欧美| 热re99久久精品国产66热6| 日韩欧美精品免费久久| 国产片内射在线| 国产精品秋霞免费鲁丝片| 日韩av在线免费看完整版不卡| 免费大片黄手机在线观看| 夜夜爽夜夜爽视频| 97在线人人人人妻| 久久99热6这里只有精品| 秋霞在线观看毛片| 婷婷色综合www| 久久97久久精品| 成人影院久久| www.色视频.com| av福利片在线| 国产女主播在线喷水免费视频网站| 欧美激情 高清一区二区三区| 日本91视频免费播放| 午夜精品国产一区二区电影| 在线 av 中文字幕| av国产久精品久网站免费入址| 青青草视频在线视频观看| 热re99久久国产66热| 国产视频首页在线观看| 国产综合精华液| 国产片内射在线| 国精品久久久久久国模美| 日本爱情动作片www.在线观看| 国产亚洲午夜精品一区二区久久| 成人手机av| 永久网站在线| 久久久久久久久久久免费av| 18+在线观看网站| 黑人巨大精品欧美一区二区蜜桃 | 中国美白少妇内射xxxbb| 欧美97在线视频| av线在线观看网站| 久久精品久久久久久久性| 丝袜脚勾引网站| 热re99久久国产66热| 成人18禁高潮啪啪吃奶动态图| 国产精品人妻久久久影院| 最新中文字幕久久久久| 这个男人来自地球电影免费观看 | 天堂8中文在线网| 少妇的逼好多水| 国产av码专区亚洲av| 天天影视国产精品| 少妇被粗大的猛进出69影院 | 成年人免费黄色播放视频| 狠狠精品人妻久久久久久综合| 精品卡一卡二卡四卡免费| 国产 一区精品| 欧美最新免费一区二区三区| 丁香六月天网| 亚洲精品一区蜜桃| 国产精品久久久久久久久免| 国产片特级美女逼逼视频| 婷婷色综合www| 咕卡用的链子| 咕卡用的链子| 日本av手机在线免费观看| 97在线视频观看| 成人国产av品久久久| 国产探花极品一区二区| 精品一品国产午夜福利视频| 男人添女人高潮全过程视频| 九九爱精品视频在线观看| 国产精品久久久久久久久免| 麻豆乱淫一区二区| 日本欧美国产在线视频| 精品卡一卡二卡四卡免费| av不卡在线播放| 最近中文字幕高清免费大全6| 免费不卡的大黄色大毛片视频在线观看| 又大又黄又爽视频免费| 亚洲精品,欧美精品| 国产黄色免费在线视频| 男的添女的下面高潮视频| 国产成人精品久久久久久| 九九在线视频观看精品| 久久鲁丝午夜福利片| 亚洲国产精品999| 蜜桃在线观看..| 精品人妻熟女毛片av久久网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 丰满迷人的少妇在线观看| 狂野欧美激情性xxxx在线观看| 亚洲av福利一区| www.熟女人妻精品国产 | 免费看av在线观看网站| 亚洲精品日本国产第一区| 五月玫瑰六月丁香| 国产精品人妻久久久影院| 男女下面插进去视频免费观看 | 两个人看的免费小视频| 夫妻午夜视频| 国产精品秋霞免费鲁丝片| 亚洲av.av天堂| 国产精品人妻久久久影院| av福利片在线| 精品国产露脸久久av麻豆| 免费高清在线观看日韩| 熟女电影av网| 亚洲成色77777| 午夜福利在线观看免费完整高清在| 最近最新中文字幕大全免费视频 | 最近的中文字幕免费完整| 国产精品嫩草影院av在线观看| 在线 av 中文字幕| 曰老女人黄片| 亚洲av免费高清在线观看| 嫩草影院入口| 日日摸夜夜添夜夜爱| 久久韩国三级中文字幕| 国精品久久久久久国模美| 韩国av在线不卡| 狠狠精品人妻久久久久久综合| 亚洲少妇的诱惑av| 久久精品国产a三级三级三级| 少妇精品久久久久久久| av在线app专区| 精品亚洲成国产av| 亚洲图色成人| 自线自在国产av| 老熟女久久久| h视频一区二区三区| 日韩制服丝袜自拍偷拍| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧美精品自产自拍| 免费观看在线日韩| 亚洲欧美一区二区三区黑人 | 观看美女的网站| 黄色毛片三级朝国网站| 久久午夜福利片| 97精品久久久久久久久久精品| 99热6这里只有精品| 狠狠精品人妻久久久久久综合| 国产xxxxx性猛交| 免费女性裸体啪啪无遮挡网站| av播播在线观看一区| 精品一区二区三区四区五区乱码 | av有码第一页| 中国美白少妇内射xxxbb| 免费大片黄手机在线观看| 美女脱内裤让男人舔精品视频| 熟女电影av网| 交换朋友夫妻互换小说| 丝袜人妻中文字幕| 蜜臀久久99精品久久宅男| 国产 一区精品| 草草在线视频免费看| 精品一区二区免费观看| 日本午夜av视频| 中国三级夫妇交换| 多毛熟女@视频| 国产综合精华液| 9191精品国产免费久久| 亚洲四区av| 免费黄色在线免费观看| 欧美亚洲日本最大视频资源| 九九爱精品视频在线观看| 一级爰片在线观看| 欧美变态另类bdsm刘玥| 午夜福利,免费看| 久久精品人人爽人人爽视色| 制服丝袜香蕉在线| 男女边摸边吃奶| 日本与韩国留学比较| 最黄视频免费看| 一本—道久久a久久精品蜜桃钙片| 午夜激情久久久久久久| av天堂久久9| 国产成人免费无遮挡视频| 一本久久精品| a级毛色黄片| 黑人巨大精品欧美一区二区蜜桃 | 午夜av观看不卡| 精品一区二区三区四区五区乱码 | 捣出白浆h1v1| 波野结衣二区三区在线| 午夜福利在线观看免费完整高清在| 亚洲精品自拍成人| 制服诱惑二区| 亚洲国产精品专区欧美| 多毛熟女@视频| av国产精品久久久久影院| av电影中文网址| 亚洲国产成人一精品久久久| 亚洲精品一区蜜桃| 秋霞伦理黄片| 国产一区二区三区综合在线观看 | 亚洲情色 制服丝袜| 99久久综合免费| 在现免费观看毛片| 九九爱精品视频在线观看| 久久这里有精品视频免费| 看免费成人av毛片| 一级毛片黄色毛片免费观看视频| 街头女战士在线观看网站| 少妇人妻久久综合中文| 欧美少妇被猛烈插入视频| 国产1区2区3区精品| 久久久久精品性色| 国产欧美日韩一区二区三区在线| av在线老鸭窝| 欧美人与善性xxx| 制服丝袜香蕉在线| 哪个播放器可以免费观看大片| 亚洲综合色网址| 天堂8中文在线网| a 毛片基地| 中文字幕亚洲精品专区| 免费人成在线观看视频色| 欧美激情 高清一区二区三区| 99视频精品全部免费 在线| 一级,二级,三级黄色视频| 国产成人免费观看mmmm| 亚洲情色 制服丝袜| 一区二区三区乱码不卡18| 欧美成人午夜精品| 日日啪夜夜爽| 欧美激情 高清一区二区三区| 成人毛片a级毛片在线播放| 亚洲熟女精品中文字幕| 又粗又硬又长又爽又黄的视频| 久久久久久久精品精品| 亚洲欧美中文字幕日韩二区| 女的被弄到高潮叫床怎么办| 蜜桃在线观看..| 午夜福利在线观看免费完整高清在| 亚洲熟女精品中文字幕| 久久久国产一区二区| 2021少妇久久久久久久久久久| 国产亚洲一区二区精品| 最近2019中文字幕mv第一页| 三级国产精品片| tube8黄色片| 国产精品一区二区在线观看99| 最黄视频免费看| 色吧在线观看| 亚洲欧美日韩卡通动漫| 国产精品99久久99久久久不卡 | 亚洲精品视频女| 精品国产一区二区久久| 欧美少妇被猛烈插入视频| 国产片特级美女逼逼视频| 亚洲精品国产av蜜桃| 国产精品国产av在线观看| 国产高清不卡午夜福利| 只有这里有精品99| 成人国语在线视频| 久久精品国产综合久久久 | 中文欧美无线码| 久久人人爽人人爽人人片va| 精品卡一卡二卡四卡免费| 日韩视频在线欧美| 这个男人来自地球电影免费观看 | av在线app专区| 伦理电影大哥的女人| 99热网站在线观看| 99久久综合免费| 成年av动漫网址| 久久鲁丝午夜福利片| 女人精品久久久久毛片| 午夜福利影视在线免费观看| 亚洲伊人色综图| 亚洲成色77777| 成人国语在线视频| 成年人午夜在线观看视频| 成年女人在线观看亚洲视频| 满18在线观看网站| 欧美国产精品一级二级三级| 99热这里只有是精品在线观看| 免费看不卡的av| 免费高清在线观看视频在线观看| 夫妻午夜视频| 九色亚洲精品在线播放| 午夜视频国产福利| 国产成人精品无人区| 国产男人的电影天堂91| av女优亚洲男人天堂| 成年女人在线观看亚洲视频| 精品人妻偷拍中文字幕| 国产亚洲欧美精品永久| 欧美日韩av久久| 久久婷婷青草| 国产精品成人在线| 日本爱情动作片www.在线观看| 国产乱来视频区| kizo精华| 又大又黄又爽视频免费| 一二三四中文在线观看免费高清| 国产69精品久久久久777片| 蜜桃在线观看..| 亚洲精品,欧美精品| 丰满迷人的少妇在线观看| 最近2019中文字幕mv第一页| 精品视频人人做人人爽| 这个男人来自地球电影免费观看 | 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 国产成人免费观看mmmm| 日本av手机在线免费观看| 丰满少妇做爰视频| 一个人免费看片子| 亚洲精华国产精华液的使用体验| av播播在线观看一区| 久久综合国产亚洲精品| 韩国av在线不卡| 91精品三级在线观看| 成人国产麻豆网| 高清欧美精品videossex| 欧美97在线视频| 超色免费av| xxxhd国产人妻xxx| 狠狠精品人妻久久久久久综合| 国产一区二区三区综合在线观看 | 久久人人爽人人片av| 久久精品熟女亚洲av麻豆精品| 国产永久视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 色婷婷久久久亚洲欧美| 久久亚洲国产成人精品v| 国产精品偷伦视频观看了| 久久热在线av| 国产欧美日韩一区二区三区在线| 90打野战视频偷拍视频| 国产男女内射视频| 一级黄片播放器| 岛国毛片在线播放| 极品人妻少妇av视频| 99久久精品国产国产毛片| 成年动漫av网址| 丝袜人妻中文字幕| 久久99热这里只频精品6学生| 老熟女久久久| 午夜福利网站1000一区二区三区| 成人漫画全彩无遮挡| 亚洲精品一区蜜桃| 男女边摸边吃奶| av在线播放精品| 国产日韩欧美亚洲二区| 日韩人妻精品一区2区三区| 国产视频首页在线观看| 亚洲精品中文字幕在线视频| 亚洲人成77777在线视频| 爱豆传媒免费全集在线观看| 人妻系列 视频| 国产一区二区激情短视频 | 少妇人妻精品综合一区二区| 午夜福利,免费看| 欧美日韩精品成人综合77777| 美女福利国产在线| 一个人免费看片子| 18在线观看网站| 91精品伊人久久大香线蕉| 成年女人在线观看亚洲视频| 成人漫画全彩无遮挡| 曰老女人黄片| 80岁老熟妇乱子伦牲交| 日本av免费视频播放| 国产精品久久久久成人av| 精品少妇黑人巨大在线播放| 成人国产av品久久久| 亚洲精品久久午夜乱码| 极品少妇高潮喷水抽搐| 亚洲av欧美aⅴ国产| 国产综合精华液| 乱人伦中国视频| 久久99一区二区三区| 国产亚洲最大av| 午夜精品国产一区二区电影| 波野结衣二区三区在线| 观看美女的网站| 久久精品aⅴ一区二区三区四区 | 亚洲精华国产精华液的使用体验| 国产精品国产三级专区第一集| 黄色毛片三级朝国网站| 在线观看免费视频网站a站| 日本wwww免费看| 999精品在线视频| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩卡通动漫| 亚洲av在线观看美女高潮| 日本黄大片高清| 搡老乐熟女国产| 三上悠亚av全集在线观看| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久| 久久精品夜色国产| 日本黄色日本黄色录像| 色婷婷av一区二区三区视频| 久久久久网色| 午夜免费男女啪啪视频观看| 欧美日韩精品成人综合77777| 性色avwww在线观看| 免费人成在线观看视频色| 中文欧美无线码| 大片免费播放器 马上看| 国产成人精品一,二区| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 午夜影院在线不卡| 只有这里有精品99| 9191精品国产免费久久| 精品人妻在线不人妻| 美女主播在线视频| 最近手机中文字幕大全| 18+在线观看网站| 亚洲欧洲国产日韩| 热99国产精品久久久久久7| kizo精华| 国产成人免费观看mmmm| 亚洲五月色婷婷综合| 五月开心婷婷网| 久久久国产一区二区| 欧美3d第一页| 精品国产露脸久久av麻豆| 多毛熟女@视频| 成年av动漫网址| 精品福利永久在线观看| 校园人妻丝袜中文字幕| 亚洲精品美女久久av网站| 1024视频免费在线观看| 大片免费播放器 马上看| 成人综合一区亚洲| 亚洲美女视频黄频| 亚洲精品成人av观看孕妇| 99视频精品全部免费 在线| 观看美女的网站| 在线观看人妻少妇| 91aial.com中文字幕在线观看| 日韩免费高清中文字幕av| 欧美+日韩+精品| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 亚洲激情五月婷婷啪啪| 性色avwww在线观看| 国产一区二区激情短视频 | 80岁老熟妇乱子伦牲交| 精品一区二区免费观看| 欧美成人午夜精品| 免费观看av网站的网址| 国精品久久久久久国模美| 午夜免费观看性视频| 精品久久蜜臀av无| 国产精品久久久久久久久免| 永久网站在线| xxxhd国产人妻xxx| 少妇被粗大的猛进出69影院 | 男女边吃奶边做爰视频| 高清毛片免费看| 亚洲精品久久久久久婷婷小说| 最近手机中文字幕大全| 亚洲在久久综合| 亚洲精品乱久久久久久| 亚洲精品中文字幕在线视频| 日韩av不卡免费在线播放| 国产亚洲精品久久久com| 日本黄色日本黄色录像| 国产综合精华液| 久久av网站| 久久久国产一区二区| 伊人久久国产一区二区| 免费观看a级毛片全部| 最近的中文字幕免费完整| 2022亚洲国产成人精品| 少妇熟女欧美另类| 久久免费观看电影| 欧美人与性动交α欧美软件 | 黑人高潮一二区| 黑人巨大精品欧美一区二区蜜桃 | a级毛色黄片| 欧美日韩成人在线一区二区| 国产成人aa在线观看| 大话2 男鬼变身卡| 国产1区2区3区精品| 亚洲国产精品999| 中文精品一卡2卡3卡4更新| 男人舔女人的私密视频| 久久99蜜桃精品久久| 丝袜脚勾引网站| 男女啪啪激烈高潮av片| 国产1区2区3区精品| 亚洲性久久影院| 夫妻午夜视频| 又黄又爽又刺激的免费视频.| 亚洲欧美成人综合另类久久久| 丝瓜视频免费看黄片| 91国产中文字幕| 在线观看www视频免费| 日本与韩国留学比较| 欧美成人午夜精品| 满18在线观看网站| 欧美日韩国产mv在线观看视频| 久久久久精品人妻al黑| 国产激情久久老熟女| 精品亚洲成国产av| 日韩伦理黄色片| 久久精品久久久久久久性| 久久免费观看电影| 亚洲欧美一区二区三区国产| 中文欧美无线码| 晚上一个人看的免费电影| 亚洲美女黄色视频免费看| 少妇熟女欧美另类| 久久久亚洲精品成人影院| www日本在线高清视频| 免费观看在线日韩| 一本大道久久a久久精品| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 成人亚洲精品一区在线观看| 久久97久久精品| 欧美激情国产日韩精品一区| 91久久精品国产一区二区三区| 久久婷婷青草| 午夜激情久久久久久久| tube8黄色片| 一本色道久久久久久精品综合| videos熟女内射| 日日撸夜夜添| 国产亚洲av片在线观看秒播厂| 日韩不卡一区二区三区视频在线| 建设人人有责人人尽责人人享有的| av播播在线观看一区| 飞空精品影院首页| 日日撸夜夜添| 国产精品麻豆人妻色哟哟久久| 少妇的丰满在线观看| 97在线人人人人妻| 七月丁香在线播放| 老熟女久久久| 亚洲成国产人片在线观看| 亚洲国产看品久久| 狂野欧美激情性xxxx在线观看| 国产不卡av网站在线观看| 伦理电影免费视频| 国产不卡av网站在线观看| 久久ye,这里只有精品| 少妇的逼水好多| av一本久久久久| 考比视频在线观看| 一级毛片电影观看| 免费看不卡的av| 狂野欧美激情性xxxx在线观看| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 少妇被粗大的猛进出69影院 | 97在线视频观看| 久久久欧美国产精品| 男女高潮啪啪啪动态图| 蜜桃在线观看..| 两个人看的免费小视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久鲁丝午夜福利片| 久久精品久久精品一区二区三区| 精品少妇黑人巨大在线播放| 久久精品久久精品一区二区三区| 国产一区二区三区综合在线观看 | 久久精品aⅴ一区二区三区四区 | 你懂的网址亚洲精品在线观看| 日韩免费高清中文字幕av| 肉色欧美久久久久久久蜜桃| 国内精品宾馆在线| 纵有疾风起免费观看全集完整版|