• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A molecular dynamics study of uranyl-carbonate complexes adsorbed on basal surfaces of clay minerals

    2015-10-29 05:20:12LeiLiXiandongLiuXiancaiLu
    Acta Geochimica 2015年2期

    Lei Li·Xiandong Liu·Xiancai Lu

    A molecular dynamics study of uranyl-carbonate complexes adsorbed on basal surfaces of clay minerals

    Lei Li·Xiandong Liu·Xiancai Lu

    We use molecular dynamics simulation to study the mechanisms involved in the adsorption of aqueous uranyl species)to the basal surfaces of clay minerals,including kaolinite,pyrophyllite and montmorillonite.Uranyl ion can form various complexes with carbonates,namely,[UO2(H2O)5]2+,[UO2(H2O)3(CO3)],[UO2(H2O)2(CO3)2]2-,[UO2(CO3)3]4-.The simulations show that at aqueous clay interfaces,both uranyl species and surface type control the adsorption pattern.The noncarbonato and monocarbonato uranyl species can form outer-sphere complexes on siloxane surfaces through electrostatic interaction,but the dicarbonato and tricarbonato uranyl complexes rarely adsorb on the siloxane surfaces.Strong outer-sphere adsorptions of the uranylcarbonate complexes on gibbsite surfaces are observed,which are fixed by hydrogen bonds between the ligands(carbonate and/or H2O)and surface hydroxyls.The sorption behaviors derived in this study provide new insights into understanding the migration and enrichment of uranium and other radionuclides.

    Clay mineral·Uranyl·Carbonate· Microscopic structure

    1 Introduction

    The fate of chemical and radioactive wastes in the environment is related to the ability of subsurface minerals to immobilize these contaminants by processes like adsorption and precipitation.Clay minerals are considered as potential host rocks for radioactive waste repositories,protons,organic molecules(Greenwell et al.2006;Teppen et al.1998). Thanks to unique physicochemical properties of their relatively large surface areas and substrate surface reactivity(Kalinichev et al.2007;Teppen et al.1997;Tunega et al.2002;Wang et al.2006),clays are able to control the migration and adsorption behavior of radionuclides in soils and groundwater systems(Vasconcelos and Bunker 2007).

    Uranium is a major contaminant in soil and groundwater as a result of burning coal,uranium-ore mining and its subsequent utilization to manufacture reactor fuel and nuclear weapons(Riley and Zachara 1992).The transport of uraniumandotherradioactivesubstancestothebiosphereas dissolved constituents in the groundwater has drawn widespread concern,which is of critical importance in the environmental remediation of contaminated sites.It is wellknown that uranium has various oxidation states(i.e.,III—VI)and the transport behavior of uranium in groundwater strongly depends on its oxidation states.Trivalent and tetravalent uranium carbonato complexes are regarded as insoluble substances in groundwater(Ciavatta et al.1983;Grenthe and Lagerman 1991),and pentavalent uranium is unstable in an aqueous solution without a high carbonate content(Privalov et al.2003;Wander et al.2006).In contrast,hexavalenturanium,existingastheuranylionforms soluble carbonate species in groundwater.

    Carbonate ions are one of the most important natural complexing ligands due to their significant concentrationsin many natural waters and their strong actinide complexing ability.Some actinide nuclides have extremely longlived radiotoxicity and can form various types of complexes with carbonate ions,which exist plentifully in groundwater during their long-term transport in the geosphere.Therefore,carbonate complexes of actinides are most significant species to understand(Clark et al.1995).

    L.Li·X.Liu(?)·X.Lu

    State Key Laboratory for Mineral Deposits Research,School of Earth Sciences and Engineering,Nanjing University,

    Nanjing 210093,People's Republic of China

    e-mail:xiandongliu@nju.edu.cn

    L.Li

    e-mail:lilei_earth@126.com

    Uranyl adsorption onto a variety of substrates has been studied experimentally.These materials include clays(Ames et al.1983;Bachmaf and Merkel 2010;Catalano and Brown 2005;Duff and Amrhein 1996;Krepelova et al.2007,2008;Marques Fernandes et al.2012;Walter et al.2005),manganese oxides(Wang et al.2013),aluminium oxides(Catalano et al.2005),hematite(Bargar et al.1999,2000),ferrihydrite(Rossberg et al.2009),goethite(Sherman et al. 2008;Walter et al.2003),calcite(Elzinga et al.2004),granite(Baik et al.2003),silica/quartz(Drot et al.2007;Gabriel et al.2001;Lieser et al.1992;Sylwester et al.2000)and zeolites(Godelitsas et al.1996).But batch experiments only study the macroscopic aspects of the interaction of uranium with the mineral surface such as adsorbing capacity and give little direct information on the structure and local chemical environment of the adsorbed species.In the case of uranyl adsorption onto mineral surfaces,X-ray absorption spectroscopy(XAS),which includes X-ray absorption nearedge structure(XANES)and extended X-ray absorption fine structure(EXAFS)spectroscopy,has been used to identify the number of nearest-neighbor equatorial ligand atoms and their distance to the uranium atom in surface complexes(Denecke et al.2003;Hudson et al.1999;Krepelova et al. 2008).Outer-sphere surface complexes of various metals(including actinides)are studied experimentally with resonant anomalous X-ray reflectivity(RAXR)measurements(Fenter et al.2010;Park et al.2008;Schmidt et al.2012). However,with these experimental measurements,it is still difficult to determine how the adsorption occurs.

    Molecular simulation techniques can serve as a useful complement to sorption experiments and spectroscopic methods.The sorption behavior of specific species on different minerals can be studied directly through simulations of realisticmodelsofmolecularcomplexesandmineralsurfaces(Boek 2014;Boily and Rosso 2011;Doudou et al.2012;Glezakou and deJong 2011;Kremleva et al.2008,2012;Lectez et al.2012;Liu et al.2013b;Steele et al.2002). Greathouse andco-workersused moleculardynamics simulation to study the structure and dynamics of the uranyl ion and its aquo,hydroxyl,and carbonate complexes in bulk water and nearthe hydratedquartz(010)surface(Greathouse et al.2002).They found that the uranyl coordination shell exhibits pentagonal bipyramidal symmetry,with carbonate and hydroxide ions readily replacing water molecules in the first shell.They considered adsorption simulations as two kinds:outer-sphere surface complexes formed at the singly protonated surface and inner-sphere surface complexes formedatthepartiallydeprotonatedsurface.Inthepresenceof carbonate ions,an inner-sphere surface complex with monodentate surface coordination formed when only one carbonate ion was coordinated toThe dicarbonato complex never formed an inner-shere surface complex but remained anchored to the surface via hydrogen bonding between the coordinated water molecule and the surface. Greathouse and Cygan studied the adsorption of aqueous uranylspeciesontoanexternalmontmorillonitesurfaceinthe presenceofsodiumcounterionsandcarbonatoligandsin2005(Greathouse and Cygan 2005).As concentration of uranylcarbonate complexes was increased,uranyl adsorption tendencywasfoundtodecrease.YangandZaouiinvestigatedthe adsorption of uranyl species[UO2(H2O)5]2+onto kaolinite(001)surfaces,especially onto Al(O)kaolinite surface(Yang and Zaoui 2013).By using molecular dynamics simulations,they studied outer-sphere complexes adsorption and innerspherebidentate complexesadsorptionatdeprotonatedshortbridgesites(O—Al—O)andlong-bridgesites(AlO—AlO).With density functional theory calculations Martorell et al.found the same possible uranyl adsorbing sites(Martorell et al. 2010).Kerisit and Liu performed molecular dynamics(MD)simulations to investigate uranyl adsorption onto two neutral aluminosilicatesurfaces,namely,theorthoclase(001)surface and the octahedral aluminum sheet of the kaolinite(001)surface in the presence of carbonates.They found that uranyl carbonate surface complexes were unfavored on the octahedral aluminum sheet of the kaolinite surface(Kerisit and Liu 2014).Their conclusions werederivedunder its initial setting thaturanylcarbonatecomplexesadsorbedonthesurfacewith direct bonds between uranium and surface atoms.

    In the above studies,some kinds of uranyl carbonate complexes,for instance,tricarbonato complex(Kubicki et al.2009),and direct contact between carbonates and surfaces have not been considered.Hence,in this study,we use molecular simulations to study the sorption of uranylcarbonate complexes on basal surfaces of three clay minerals,namely,kaolinite,pyrophyllite,and montmorillonite. These minerals are highly sorptive due to their small particle sizes,large surface areas,and chemically active surface sites(Vasconcelos and Bunker 2007).Pyrophyllite and montmorillonite are model 2:1 clay minerals.Their two basal surfaces are both siloxane surfaces,which are common and representative surfaces in clay minerals. Additionally,the effects of electrostatic forces between surface and complexes can be studied by comparison between neutral pyrophyllite layer and charged montmorillonite layer.Kaolinite is a 1:1 layer clay composed of a repeating layer of a gibbsite surface and a siloxane surface. Due to its different surfaces,we can find the difference between them on complexes adsorption,which is of great importance.The doubly coordinated OHs on the gibbsitesurface of kaolinite have mineral chemical reactivity and the properties of gibbsite surfaces are pH-independent(Liu et al.2013a;Schoonheydt and Johnston 2006;Sposito 1984).In our previous study,we found these OHs have an extremely high pKa(about 22.0),which indicates that these OHs do not deprotonate in common pH(Liu et al.2013a). Therefore,we do not consider the deprotonation of gibbsite surface of kaolinite in this work.

    In this study,we employ molecular dynamics simulation to simulate the process that uranyl-carbonate complexes adsorb on the clay surfaces.By analyzing the atomic density profiles and micro-structures of these complexes,we reveal the structures of adsorbed uranyl-carbonate complexes at the mineral/aqueous solution interfaces.Besides,we find that uranyl-carbonate complexes adsorb on the gibbsite and siloxane surfaces as outer-sphere adsorption due to electrostatic interaction and hydrogen bonds,respectively.These microscopic results provide a fundamental basis for investigating migration and fixation of actinides in the environment in future work.

    2 Methodology

    2.1Models

    Box parameters of all simulations in different systems are listed in Table 1.

    Pyrophyllite is a neutral 2:1-type phyllosilicate with the chemicalcompositionAl4Si8O20(OH)4.Pyrophylliteis stacked by‘‘T-O-T''layers consisting of an Al-O octahedral sheet(O)sandwiched between two Si—O tetrahedral sheets(T).The basic structural elements of pyrophyllite and other 2:1 clay minerals like montmorillonite are similar.We follow the montmorillonite-like conventional orientation and opted for an orthogonally constrained unit cell just like earlier workers(Churakov 2006;Kremleva et al.2012).The simulation cells contain 32 unit cells(4×4×2 units in a,b,and c dimensions)with a total of 1280 atoms in the solid. Figure 1a shows the simulation model of pyrophyllite system and the dimensions are listed in Table 1.

    Ourmodelofmontmorillonitecorrespondstoalow-charge montmorillonite(0.375e/unitcell),withchargesitestotallyin the octahedral layer.The unit cell formula is Na0.375[Si8][-Al3.625Mg0.375]O20(OH)4,where the first and second bracketedtermsrefertoionsinthetetrahedralandoctahedrallayers,respectively.Montmorillonite model contains 32 unit cells(4×4×2 units in a,b,and c dimensions)(Fig.1b).The modelcontainstwoclaylayers,eachwith6chargesitesinthe octahedrallayer,which are causedbysubstitutions ofMg/Al. The upper interlayer compositions of montmorillonite are listed in Table 1.The bottom interlayer consists of 100 water molecules and 6 sodium atoms.

    Model of kaolinite[Al2Si2O5(OH)4]consisting of 32 unit cells(4×4×2 units in a,b,and c dimensions)is shown in Fig.1c with information of interlayer compositions and box size listed in Table 1.As kaolinite has two different basal surfaces,in the aqueous regions can be placed in two ways:near the siloxane surface and gibbsite surface.So we perform simulations of these two cases,respectively.For each simulation,all aqueous ions are placed randomly within 4 A?from the surface initially.

    2.2Force field and MD simulation

    The CLAYFF force field(Cygan et al.2004)is used to model kaolinite,pyrophyllite,and montmorillonite,while SPC water model(Berendsen et al.1981;Teleman et al. 1987)for water molecules.CLAYFF and SPC water model have been used successfully to obtain structural and dynamical properties of hydrated mineral systems and their interfaces with aqueous solutions(Greathouse and Cygan 2005;Jinhong et al.2012;Liu and Lu 2006;Liu et al.2008,2009;Perry et al.2007).Parameters for the aqueous uranyl ion are taken from Guilbaud and Wipff(1993a,b,1996),which have been used to model a variety of aqueous uranyl complexes including carbonate,hydroxide(Greathouse et al.2002),phosplioryl(Hutschka et al.1998),and tri-nbutlyphosphate(Baaden et al.2002).We employ the carbonate parameters in the study(Greathouse et al.2002),which was modified to obtain satisfactory configurations of uranyl carbonate complexes.

    Table 1 Initial parameters of all simulation boxes

    Fig.1 Initial configurations of different clay/aqueous systems,namely,a pyrophyllite,b montmorillonite,c kaolinite.Atoms are colored as follows:O(red),H(white),Na(purple),Cl(palegreen),Si(yellow),Al(solferino),Mg(green),U(blue)

    All simulations are carried out with the DL_POLY 2.20(Smith and Forester 1996)program on a parallel Linux cluster.We impose periodic boundary conditions on the three dimensions in all simulations.We use the Ewald summation method(Frenkel and Smit 2002)to calculate long-range electrostatic interactions.Also a cutoff of 9 A?is used for short-range interactions.The equations of motion are integrated by using leapfrog's algorithm with time step of 1.0 fs.In each simulation we first run NPT(number of atoms,pressure 1 atm,and temperature 298 K)simulations for at least 500 ps to equilibrate the solid/liquid interfaces. Then,1 ns NVT(number of atoms,volume,and temperature 298 K)simulations are performed to record the trajectories for statistical analysis.

    3 Results and discussion

    3.1In bulk water

    Uranyl forms fivefold complex with 5 water molecules in bulk water without carbonate.It is also the most common coordination number found in experiments(Sylwester et al. 2000)and other simulations(Greathouse et al.2002).[UO2(H2O)5]2+has a pentagonal bipyramidal geometry,with uranyl oxygen atoms in the axial positions(Fig.2a). The average U-Ow(Ow stands for water oxygen)distance of 2.48 A?(Fig.2a)agrees well with the experimental value of 2.41(2)A?,obtained from EXAFS spectroscopy experiments(Hennig et al.2005)and agrees with the MD simulation value of 2.49 A?(Greathouse et al.2002;Yang and Zaoui 2013).

    For simulations of carbonate complexes,carbonates are initially placed at about 8 A?away from the uranyl ion and we find that they quickly entered the first coordination sphere upon equilibration(Fig.2).Carbonate ions form bidentate complexes with uranium(Fig.2b).The presence of carbonate in the uranyl complex results in a split equatorialshellabouttheuraniumatom,withoxygenatomsfrom carbonate occupying positions closer than water oxygen atoms(Fig.2b).Whentwocarbonateionsarecoordinatedto,thefirstcoordinationshellofuranium turnstosixfold coordination shell with four carbonate oxygen atoms and two water oxygen atoms(Fig.2c).In the presence of 3 carbonates,the first coordination shell is occupied by carbonates only(Fig.2d).The equatorial U-Oc(carbonate oxygen)distances are 2.36—2.40 A?(Fig.2b,c,d),agreeing well with previous simulations for[UO2(H2O)3(CO3)]and[UO2(H2O)(CO3)2]2-(2.37-2.39 A?for[UO2(H2O)3(CO3)]and[UO2(H2O)(CO3)2]2-)(Greathouse et al.2002)and EXAFS experiments(2.44 A?for[UO2(CO3)3]4-)(Ikeda et al.2007).

    3.2Interfaces

    3.2.1Atomic density profiles

    An atomic density profile(Boek et al.1995;Greathouse and Cygan 2005;Perry et al.2007;Skipper et al.1995)ρi(z)is a measure of the probability of finding an atom of type i along the c axis,at distance z from a fixed origin. Atomic density profiles were obtained by time-averaging the z distribution of all atoms during the 1 ns simulation. Compared with density profiles of simple ions(i.e.,Li+,Na+,K+)reported in previous studies(Boek et al.1995;Skipper et al.1995),we need to focus on the whole complexes.Thus we can find out the spatial relationship between the complex and surface,which can help us deduce the possible form of adsorption.So we choose four kinds of atoms(uranium,uranyl oxygen,carbon,and carbonateoxygen)into consideration.Corresponding atomic density profiles are shown in Fig.3.

    Fig.2 Equilibrium snapshots of uranyl complexes resulting from the simulations ofand 320 water molecules withcarbonate molecules.The result complexes are a Complexes are shown as large balls,and free water molecules as sticks.Atomic designations are U(blue),O(red),C(gray)and H(white)

    Figure 3a shows atomic density profiles of the four ionic groups in pyrophyllite system.Both surfaces represent the tetrahedral SiO4surface with the oxygen atoms relaxing outwardslightlyandthesurfacehasaverysmallnetnegative charge,whichattractsionstowardit(Vasconcelosand Bunker 2007).In the study of Vasconcelos and Bunker,they foundthe similarbehaviorofCs+ontheSiO4surface.In the absence of carbonates,the high peaks of uranium and uranyl oxygen curves suggest that the uranyl adsorbs on the layer. Two split peaks of uranyl oxygen around the high uranium peakrevealthattheuranylisnotparallelwiththesurfaceand one uranyl oxygen is closer to the surface.The curves spreading all over the z direction illustrates that the ions are stillactiveandtheadsorptionisnotstrong.Inthepresenceof carbonates,themobilityofthecomplexesislimitedasshown by smaller curve ranges.With 1 or 2 carbonates,the uranyl adsorption found above still exists.Curves of carbon and carbonate oxygen are found a little farther from the surface compared with those of uranium and first uranyl oxygen,which means carbonate is not close to the siloxane layer.In case of dicarbonato uranyl complex,the uranium peak is significantly wider,which means the adsorption isnotstable and the complex is easy to diffuse into the solution.The tricarbonato complex wanders in the middle aqueous layer,and no adsorption exists.The carbonate molecules drive the uranyl ions away from the siloxane surface,caused by the repulsion between the negative carbonates and the outward negative Si-bridging oxygen.

    Fig.3 Atomic density profiles of interlayer space.The four figures stand for different systems shown as follow:a pyropyhllite,b montmorillonite,c kaolinite-siloxane,d kaolinite-gibbsite.Color key:red(uranyl oxygen),blue(uranium),black(carbon),cyan(carbonate oxygen)

    In Fig.3b of montmorillonite,both surfaces are siloxane surfaces just like in the pyrophyllite.But due to the replacement of Al3+by Mg2+,the surfaces are negatively charged and free counter ions are present in the aqueous layer,which play an important role in cations adsorption.When no carbonate is in the system,the uranyl adsorption is found stable near the siloxane layer.With one carbonate,the curves of uranium and uranyl oxygen extend to a larger region.It indicates that the complex is not stable on the siloxane layer and likely to diffuse away.In cases of dicarbonato and tricarbonato complexes,the whole complexes tend to move far from the negatively charged surface due to the electrostatic repulsion.Withmoreandmoreelectronegativecarbonate,the electronegativity of complexes increases and the repulsion between complexes and the negatively charged surface increases.So the complexes with more coordinated carbonates are harder to get close to the surface.

    As kaolinite has two different basal surfaces,the adsorption can be divided into two cases:near the siloxane surface and near the gibbsite surface.

    In the kaolinite-siloxane system(Fig.3c),the adsorptions of noncarbonato and monocarbonato complexes are still found.In cases of dicarbonato and tricarbonato complexes,the complexes wander in the diffuse region and tend to approach to the gibbsite surface.Because of electrostatic interaction mentioned above,the carbonate complexes tend to keep away from the siloxane surface.

    At the kaolinite-gibbsite surface,some different phenomena can be found(Fig.3d).In the absence of carbonate,the uranyl complex goes to the siloxane surface and adsorbs on it,just like those cases observed in other systems.In the presence of carbonates,the complexes are found to adsorb on the gibbsite layer mainly,corresponding to the obvious peaks of the curves.In all three conditions with carbonates,we find that one carbonate oxygen peak is closest to the gibbsite layer.It indicates that these uranylcarbonate complexes adsorbing on the surface in these system can be attributed to some interactions between carbonate oxygen and the gibbsite layer surface.In the case of monocarbonato complex,the tails of atomic densitypeaks extend to the siloxane surface and tiny peaks can be found in the region where curves of none-carbonate condition exist.It suggests that adsorption on siloxane surface is weak.But the high and narrow peaks near the gibbsite layer illustrate that adsorption mainly happens on the gibbsite surface.For dicarbonato and tricarbonato complexes,the tails into the solution disappear,which means the complexes are fixed firmly on the gibbsite layer.

    Fig.4 Equilibrium snapshots of uranyl complexes in the pyrophyllite system.The complexes are a[UO2(H2O)5]2+,b[UO2(H2O)3(CO3)],c[UO2(H2O)2(CO3)2]2-,d[UO2(CO3)3]4-.Complexes are shown as large balls,free water molecules and mineral molecules as sticks.Atomic designations are U(blue),O(red),C(gray),Si(yellow)and H(white)

    3.2.2Micro-structures of adsorbed uranyl complexes

    Figure 4 shows the equilibrium snapshots of uranyl complexes in the pyrophyllite system.In Fig.4 a and b,we find the complexes are near the surface.From the simulation trajectories,we find thattheresidencetime can bemore than 500 ps.The uranyl molecule slants above the surface with oneuranyloxygenclosertothesiloxanesurface,specifically point to the di-trigonal cavity(Fig.4a,b).For the monocarbonato complex,the adsorption site is found to be a little farther than that of[UO2(H2O)5]2+.The carbonate ligand is farther from the surface than other coordinated water molecules,which is due to the repulsion between carbonate and negatively charged surface.For the same reason,the complex of[UO2(H2O)2(CO3)2]2-with stronger electronegativity is found to adsorb on the surface at a farther distance(Fig.4c).Due to the farther distance,the electrostaticattraction betweenuranylandsurfaceisweaker,hence the dicarbonato complex can not adsorb on the surface for a long time(at most 400 ps in our simulations).These three complexesadsorbon the surface via electrostaticinteraction between uranyl and the surface,which makes them outersphere adsorptions.These findings are consistent with theprevious study of Greathouse and Cygan in(2006).They also found that uranyl and oligomeric uranyl complexes can adsorb onto basal surfaces of pyrophyllite(Greathouse and Cygan 2006).The tricarbonato complex tends to stay in the midplane of the aqueous layer shown in Fig.4d and never forms adsorption during our simulations,which is due to high negative charge of complex.

    Fig.5 Equilibrium snapshots of uranyl complexes resulting fromthe simulations ofand 320 water molecules with a 0 and b 1 carbonatemolecules in the montmorillionite/aqueous system.Complexes a ]are shown as large balls,free water molecules and mineral molecules as sticks.Atomic designations are U(blue),O(red),C(gray),Si(yellow)and H(white)

    Fig.6 Equilibrium snapshots of uranyl complexes resulting from the simulations ofand 320 water molecules with a 0 and b 1 carbonate molecules near the kaolinite's siloxane layer.Complexes a ]are shown as large balls,free water molecules and mineral molecules as sticks.Atomic designations are U(blue),O(red),C(gray),Si(yellow)and H(white)

    In the montmorillonite system,only for noncarbonato and monocarbonato uranyl species,outer-sphere adsorptions occur.The structures of the complexes are shown in Fig.5.The complex of[UO2(H2O)5]2+is stable during the whole simulation.The monocarbonate complex gets away from the adsorbing sites occasionally.The dicarbonato and tricarbonato complexes wander in the diffuse region,and rarely get close to the surface.In the studies of Greathouse and Cygan,they also found that uranyl ions and monocarbonato species can adsorb onto the surface(Greathouse and Cygan 2005,2006).

    Figure 6 shows the equilibrium snapshots of uranyl complexes adsorbed on the siloxane surface in the kaolinitesystem.The monocarbonato complex is stable and it rarely wanders away from the adsorption sites.However,the dicarbonato and tricarbonato uranyl species cannot form adsorption complexes on the surface because of repulsion from the negatively charged surface.

    Fig.7 Equilibrium snapshots of uranyl complexes resulting from the simulations ofand 320 water molecules with a 0,b 1,c 2,d 3carbonate molecules near the kaolinite's gibbsite surface.The complexes are a Complexes are shown as large balls,free water molecules and mineral molecules as sticks.Atomic designations are U(blue),O(red),C(gray),Si(yellow),Al(solferino)and H(white)

    In the kaolinite-gibbsite system,in the absence of carbonate,the uranyl complex is initially placed near the gibbsite surface within 4 A?.But it rapidly leaves the gibbsite surface and gets close to the siloxane surface. Then stable outer-sphere adsorption occurs(Fig.7a),which is same as the structure shown above(Fig.6a).This tendency was also seen in earlier study(Liu et al.2011).

    In the presence of carbonate ions,carbonate-uranyl complexescanadsorbonthegibbsitesurface(Fig.7b,c,d).These carbonate-uranyl complexes bind on the gibbsite layer via hydrogenbonds.Thesharpradialdistributionfunction(RDF)peaks around 1.5 A?in Fig.8 suggest that there is strong interaction between carbonate oxygen and hydroxyl hydrogen on the gibbsite surface(Fig.8).In Fig.7c,one can see that hydrogen bond can also form between the hydrogen of the water ligand and the oxygen of surface hydroxyl,which contributes to the complex adsorption.Figure 7d shows that twooutwardcarbonateoxygenatomscaninteractwithsurface hydrogen simultaneously,which firmly fastens the complexes.It is found that monocarbonate complex can leave the gibbsite surface occationally,but it comes back soon.Dicarbonato and tricarbonato uranyl complexes are fixed on the surface during the whole NVT simulation period.

    Fig.8 Plots of the Oc—Ho radial distribution functions from simulations with a 1,b 2 and c 3 carbonates in the system near the gibbsite surface. Oc carbonate oxygen,Ho hydroxyl hydrogen on the gibbsite surface

    Table 2 Adsorption patterns in different clay systems

    4 Summary

    Molecular dynamics simulations were used to study the interaction between uranyl-carbonate complexes and the basal surfaces of clay minerals.Table 2 summarizes the adsorption patterns derived from the simulations.In pyrophyllite system,[UO2(H2O)5]2+,[UO2(H2O)3(CO3)]and[UO2(H2O)2(CO3)2]2-can form outer-sphere complexes on the siloxane surface through electrostatic interaction,while the tricarbonato uranyl complex tends to diffuse away from the siloxane surface.With one or two carbonate ions in the coordination shell of uranium,the uranyl-carbonate complexes adsorb on the surface at farther distances than that of[UO2(H2O)5]2-.In montmorillonite andkaolinite-siloxane system,outer-sphere adsorption of noncarbonato and monocarbonato complexes on siloxane surface is observed.Noncarbonato uranyl complex cannot stay on the kaolinite-gibbsite surface,but it adsorbs at the siloxane surface in the outer-sphere way.In the presence of carbonate ions,we find that different outer-sphere complexes occur via hydrogen bonds at the gibbsite surface of kaolinite.Both the outward carbonate oxygens and water ligands form hydrogen bonds with hydroxyls on the gibbsite surface.These hydrogen bonds fix the complexes on the surface.Overall,we have revealed the microscopic structures of uranyl-carbonate complexes adsorbed at clay interfaces,which are helpful for understanding the transport and fixation of radioactive elements.

    AcknowledgmentsWe thank National Science Foundation of China(Nos.41002013,40973029,41273074 and 41222015),the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201228),Newton International Fellowship Program and the financial support from the State Key Laboratoryfor Mineral Deposits Research.We are grateful to the High Performance Computing Center of Nanjing University for using the IBM Blade cluster system.

    Ames LL,Mcgarrah JE,Walker BA(1983)Sorption of uranium and radium by biotite,muscovite,and phlogopite.Clays Clay Miner 31:343—351

    Baaden M,Schurhammer R,Wipff G(2002)Molecular dynamics study of the uranyl extracion by tri-n-butylphosphate(TBP): demixing of water/''oil''/TBP solutions with a comparison of supercritical CO2and chloroform.J phys Chem B 106:434—441

    Bachmaf S,Merkel BJ(2010)Sorption of uranium(VI)at the clay mineral—water interface.Environ Earth Sci 63:925—934

    Baik MH,Hyun SP,Hahn PS(2003)Surface and bulk sorption of uranium(VI)onto granite rock.J Radioanal Nucl Chem 256:11—18

    Bargar JR,Reitmeyer R,Davis JA(1999)Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on heatite. Environ Sci Technol 33:2481—2484

    Bargar JR,Reitmeyer R,Lenhart JJ,Davis JA(2000)Characterization of U(VI)-carbonato ternary complexes on hematite:EXAFS and electrophoretic mobility measurements.Geochim Cosmochim Acta 64:2737—2749

    Berendsen HJC,Postma JPM,van Gunsteren WF,Hermans J(1981)Interaction models for water in relation to protein hydration.In: Pullman B(ed)Intermolecular forces.Springer,Dordrecht,pp 331—342

    Boek ES(2014)Molecular dynamics simulations of interlayer structure and mobility in hydrated Li-,Na-and K-montmorillonite clays.Mol Phys 112:1472—1483

    Boek ES,Coveney PV,Skipper NT(1995)Monte Carlo molecular modeling studies of hydrated Li-,Na-,and K-smectites: understanding the role of potassium as a clay swelling inhibitor. J Am Chem Soc 117:12608—12617

    Boily JF,Rosso KM (2011)Crystallographic controls on uranyl binding at the quartz/water interface.Phys Chem Chem Phys 13:7845—7851

    Catalano JG,Brown GE(2005)Uranyl adsorption onto montmorillonite:evaluation of binding sites and carbonate complexation. Geochim Cosmochim Acta 69:2995—3005

    Catalano JG,Trainor TP,Eng PJ,Waychunas GA,Brown GE(2005)CTR diffraction and grazing-incidence EXAFS study of U(VI)adsorptionontoα-Al2O3andα-Fe2O3(11ˉ02)surfaces. Geochim Cosmochim Acta 69:3555—3572

    Churakov SV(2006)Ab initio study of sorption on pyrophyllite: structure and acidity of the edge sites.J phys Chem B 110:4135—4146

    Ciavatta L,F(xiàn)erri D,Grenthe I,Salvatore F,Spahiu K(1983)Studies on metal carbonate equilibria.4.reduction of the tris(carbonato)-dioxouranate(VI)ion,UO2(CO3)34-,in hydrogen carbonate solutions.Inorg Chem 22:2088—2092

    Clark DL,Hobart DE,Neu MP(1995)Actinide carbonate complexes and their importance in actinide environmental chemistry.Chem Rev 95:25—48

    Cygan RT,Liang JJ,Kalinichev AG(2004)Molecular models of hydroxide,oxyhydroxide,and clay phases and the development of a general force field.J phys Chem B 108:1255—1266

    Denecke MA,Rothe J,Dardenne K,Lindqvist-Reis P(2003)Grazing incidence(GI)XAFS measurements of Hf(iv)and U(vi)sorption onto mineral surfaces.Phys Chem Chem Phys 5:939—946

    Doudou S,Vaughan DJ,Livens FR,Burton NA(2012)Atomistic simulations of calcium uranyl(VI)carbonate adsorption on calcite and stepped-calcite surfaces.Environ Sci Technol 46:7587—7594

    Drot R,Roques J,Simoni E′(2007)Molecular approach of the uranyl/ mineral interfacial phenomena.C R Chim 10:1078—1091

    Duff MC,Amrhein C(1996)Uranium(VI)adsorption on goethite and soil in carbonate solutions.Soil Sci Soc Am J 60:1393—1400

    Elzinga EJ,Tait CD,Reeder RJ,Rector KD,Donohoe RJ,Morris DE(2004)Spectroscopic investigation of U(VI)sorption at the calcite-waterinterface.GeochimCosmochimActa 68:2437—2448

    Fenter P,Lee SS,Park C,Soderholm L,Wilson RE,Schwindt O(2010)Interaction of muscovite(001)with Pu3+bearing solutions at pH 3 through ex situ observations.Geochim Cosmochim Acta 74:6984—6995

    Frenkel D,Smit B(2002)Understanding molecular simulation,2nd edn.Academic Press,New York

    Gabriel U,Charlet L,Schlapfer CW,Vial JC,Brachmann A,Geipel G(2001)Uranyl surface speciation on silica particles studied by time-resolved laser-induced fluorescence spectroscopy.J Colloid Interface Sci 239:358—368

    Glezakou VA,deJong WA(2011)Cluster-models for uranyl(VI)adsorption on alpha-alumina.J Phys Chem A 115:1257—1263

    Godelitsas A,Misaelides P,F(xiàn)ilippidis A,Charistos D,Anousis I(1996)Uranium sorption from aqueous solutions on sodiumform of heu-type zeolite crystals.J Radioanal Nucl Chem 208:393—402

    Greathouse JA,Cygan RT(2005)Molecular dynamics simulation of uranyl(VI)adsorption equilibria onto an external montmorillonite surface.Phys Chem Chem Phys 7:3580—3586

    Greathouse JA,Cygan RT(2006)Water structure and aqueous uranyl(VI)adsorptionequilibriaonto extermal surfaes of beidellite,montmorillonite,andpyrophyllite:resultsfrom molecular simulations.Environ Sci Technol 40:3865—3871

    Greathouse JA,Brien RJ,Bemis G,Pabalan RT(2002)Molecular dynamics study of aqueous uranyl interactions with quartz(010). J phys Chem B 106:1646—1655

    Greenwell HC,Jones W,Coveney PV,Stackhouse S(2006)On the application of computer simulation techniques to anionic and cationic clays:a materials chemistry perspective.J Mater Chem 16:708

    Grenthe I,Lagerman B(1991)Studies on metal carbonate euilibria. 22.A coulometric study of the uranium(VI)-carbonate system,the composition of the mixed hydroide carbonate species.Acta Chem Scand 45:122—128

    Guilbaud P,Wipff G(1993a)Hydration of UO2(2+)cation and its NO3(-)and 18-crown-6 adducts sudied by molecular dynamics simulations.J Phys Chem 97:5685—5692

    Guilbaud P,Wipff G(1993b)Selective complexation of UO2(2+)by the calix[6]arene(6-)anion:structure and haydration studied by molecular dynamics simulations.J Incl Phenom Mol Recognit Chem 16:169—188

    Guilbaud P,Wipff G(1996)Force field representation of the UO22+cation from free energy MD simulations in water.Tests on its 18-crown-6 and NO3-adducts,and on its calix[6]arene6-and CMPO complexes.J Mol Struct 366:55—63

    Hennig C,Tutschku J,Rossberg A,Bernhard G,Scheinost AC(2005)Comparative EXAFS investigation of uranium(VI)and-(IV)aquo chloro complexes in solution using a newly developed spectroelectrochemical cell.Inorg Chem 44:6655—6661

    Hudson EA,Terminello LJ,Viani BE,Denecke M,Reich T,Allen PG,Bucher JJ,Shuh DK,Edelstein NM(1999)The structure of U6+sorption complexes on vermiculite and hydrobiotite.Clays Clay Miner 47:439—457

    Hutschka F,Dedieu A,Troxler L,Wipff G(1998)Theoretical studies on the UO22+and Sr2+complexation by phosphoryl-containing O=PR3 ligands:QM ab initio calculations in the gas phase and MD FEP calculations in aqueous solution.J Phys Chem A 102:3773—3781

    Ikeda A,Hennig C,Tsushima S,Takao K,Ikeda Y,Scheinost AC,Bernhard G (2007)Comparative study of uranyl(VI)and -(V)carbonato complexes in an aqueous solution.Inorg Chem 46:4212—4219

    Jinhong Z,Xiancai L,Jianxi Z,Xiandong L,Jingming W,Qing Z,Peng Y,Hongping H(2012)Interlayer structure and dynamics of HDTMA+-intercalated rectorite with and without water:a molecular dynamics study.J Phys Chem C 116:13071—13078

    Kalinichev AG,Wang J,Kirkpatrick RJ(2007)Molecular dynamics modeling of the structure,dynamics and energetics of mineral—water interfaces:application to cement materials.Cem Concr Res 37:337—347

    Kerisit S,Liu C(2014)Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces.Environ Sci Technol 48:3899—3907

    Kremleva A,Kruger S,Rosch N(2008)Density functional model studies of uranyl adsorption on(001)surfaces of kaolinite. Langmuir 24:9515—9524

    Kremleva A,Martorell B,Kruger S,Rosch N (2012)Uranyl adsorption on solvated edge surfaces of pyrophyllite:a DFT model study.Phys Chem Chem Phys 14:5815—5823

    Krepelova A,Brendler V,Sachs S,Baumann N,Bernhard G(2007)U(VI)-kaolinite surface complexation in absence and presence of humic acidstudied byTRLFS.Environ Sci Technol 41:6142—6147

    Krepelova A,Reich T,Sachs S,Drebert J,Bernhard G (2008)Structural characterization of U(VI)surface complexes on kaolinite in the presence of humic acid using EXAFS spectroscopy.J Colloid Interface Sci 319:40—47

    Kubicki JD,Halada GP,Jha P,Phillips BL(2009)Quantum mechanical calculation ofaqueuousuraniumcomplexes:carbonate,phosphate,organic and biomolecular species.Chem Cent J 3:10

    Lectez S,Roques J,Salanne M,Simoni E(2012)Car-Parrinello molecular dynamics study of the uranyl behaviour at the gibbsite/water interface.J Chem Phys 137:154705

    Lieser KH,Quandtklenk S,Thybusch B(1992)Sorption of uranyl ions on hydrous silicon dioxide.Radiochim Acta 57:45—50

    Liu X,Lu X(2006)A thermodynamic understanding of clay-swelling inhibition of interlayer potassium ion.Geochim Cosmochim Acta 70:A365

    Liu X,Lu X,Wang R,Zhou H(2008)Effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectite.Geochim Cosmochim Acta 72:1837—1847

    Liu X,Lu X,Wang R,Zhou H,Xu S(2009)Molecular dynamics insight into the cointercalation of hexadecyltrimethyl-ammonium and acetate ions into smectites.Am Mineral 94: 143—150

    Liu XY,Li C,Tian WY,Chen T,Wang LH,Zheng Z,Zhu JB,Sun M,Liu CL(2011)Molecular dynamics modeling of uranyl ion adsorption onto the basal surfaces of kaolinite.Acta Phys Chim Sin 27:59—64

    Liu X,Cheng J,Sprik M,Lu X,Wang R(2013a)Understanding surface acidity of gibbsite with first principles molecular dynamics simulations.Geochim Cosmochim Acta 120:487—495

    Liu XY,Wang LH,Zheng Z,Kang ML,Li C,Liu CL(2013b)Molecular dynamics simulation of the diffusion of uranium species in clay pores.J Hazard Mater 244—245:21—28

    Marques Fernandes M,Baeyens B,Da¨hn R,Scheinost AC,Bradbury MH(2012)U(VI)sorption on montmorillonite in the absence and presence of carbonate:a macroscopic and microscopic study.Geochim Cosmochim Acta 93:262—277

    Martorell B,Kremleva A,Kruger S,Rosch N (2010)Density functional model study of uranyl sdsorption on the solvated(001)surface of kaolinite.J phys Chem C 114:13287—13294

    Park C,F(xiàn)enter PA,Sturchio NC,Nagy KL(2008)Thermodynamics,interfacial structure,and pH hysteresis of Rb+and Sr2+ adsorption at the muscovite(001)-solution interface.Langmuir 24:13993—14004

    Perry TD,Cygan RT,Mitchell R(2007)Molecular models of a hydrated calcite mineral surface.Geochim Cosmochim Acta 71:5876—5887

    Privalov T,Schimmelpfennig B,Wahlgren U,Grenthe I(2003)Reduction of uranyl(VI)by iron(II)in solutions:an ab initio study.J Phys Chem A 107:587—592

    Riley,R.G.,Zachara,J.M.,1992.Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research,U.S.Department of Energy,Office of Energy Research:Washington,DC

    Rossberg A,Ulrich K,Weiss S,Tsushima S,Sccheinost A(2009)Identification of uranyl surface complexes on ferrihydrite: advanced EXAFS data analysis and CD-MUSIC modeling. Environ Sci Technol 43:1400—1406

    Schmidt M,Lee SS,Wilson RE,Soderholm L,F(xiàn)enter P(2012)Sorption of tetravalent thorium on muscovite.Geochim Cosmochim Acta 88:66—76

    Schoonheydt RA,Johnston CT(2006)Surface and interface chemistry of clay minerals.In:Bergaya F,Theng BGK,Lagaly G(eds)Handbookofclayscience.Elsevier,Amsterdam,pp 87—112

    Sherman DM,Peacock CL,Hubbard CG (2008)Surface complexation of U(VI)on goethite(α-FeOOH).Geochim Cosmochim Acta 72:298—310

    Skipper NT,Sposito G,Chang FRC(1995)Monte-Carlo simulation of interlayer molecular-structure in swelling clay-minerals.2. Monolayer hydrates.Clays Clay Miner 43:294—303

    Smith W,F(xiàn)orester TR(1996)DL_POLY_2.0:a general-purpose parallelmoleculardynamicssimulationpackage.JMol Graph 14:136—141

    Sposito G(1984)The surface chemistry of soils.Oxford Univ.Press,New York

    Steele HM,Wright K,Hillier IH(2002)Modelling the adsorption of uranyl on the surface of goethite.Geochim Cosmochim Acta 66:1305—1310

    Sylwester ER,Hudson EA,Allen PG(2000)The structure of uranium(VI)sorption complexes on silica,alumina,and montmorillonite. Geochim Cosmochim Acta 64:2431—2438

    Teleman O,Jonsson B,Engstrom S(1987)A molecular dynamics simulation of a water model with intramolecular degrees of freedom.Mol Phys 60:193—203

    Teppen BJ,Rasmussen K,Bertsch PM,Miller DM,Schafer L(1997)Molecular dynamics modeling of clay minerals.1.Gibbsite,kaolinite,pyrophyllite,andbeidellite.JPhysChemB 101:1579—1587

    Teppen BJ,Yu CH,Miller DM,Schafer L (1998)Molecular dynamics simulations of sorption of organic compounds at the clay mineral aqueous solution interface.J Comput Chem 19:144—153

    Tunega D,Benco L,Haberhauer G,Gerzabek MH,Lischka H(2002)Ab initio molecular dynamics study of adsorption sites on the(001)surfaces of 1:1 dioctahedral clay minerals.J Phys Chem B 106:11515—11525

    Vasconcelos IF,Bunker BA(2007)Molecular dynamics modeling of ion adsorption to the basal surfaces of kaolinite.J Phys Chem C 111:6753—6762

    Walter M,Arnold T,Reich T,Bernhard G(2003)Sorption of uranium(VI)onto ferric oxides in surfate-rich acid waters. Environ Sci Technol 37:2898—2904

    Walter M,Arnold T,Geipel G,Scheinost A,Bernhard G(2005)An EXAFS and TRLFS investigation on uranium(VI)sorption to pristine and leached albite surfaces.J Colloid Interface Sci 282:293—305

    Wander MCF,Kerisit S,Rosso KM,Schoonen MAA(2006)Kinetics of triscarbonato uranyl reduction by aqueous ferrous iron:a theoretical study.J Phys Chem A 110:9691—9701

    Wang J,Kalinichev AG,Kirkpatrick RJ(2006)Effects of substrate structure and composition on the structure,dynamics,and energetics of water at mineral surfaces:a molecular dynamics modeling study.Geochim Cosmochim Acta 70:562—582

    Wang Z,Lee SW,Catalano JG,Lezama-Pacheco JS,Bargar JR,Tebo BM,Giammar DE (2013)Adsorption of uranium(VI)to manganese oxides:X-ray absorption spectroscopy and surface complexation modeling.Environ Sci Technol 47:850—858

    Yang W,Zaoui A(2013)Uranyl adsorption on(001)surfaces of kaolinite:amoleculardynamicsstudy.ApplClaySci 80—81:98—106

    24 December 2014/Revised:29 December 2014/Accepted:29 December 2014/Published online:18 April 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    69av精品久久久久久| 色噜噜av男人的天堂激情| 国产极品天堂在线| 蜜臀久久99精品久久宅男| 亚洲乱码一区二区免费版| 男女做爰动态图高潮gif福利片| 亚洲av男天堂| 久久久久久久久久黄片| 国产视频首页在线观看| 国产精品精品国产色婷婷| 日韩成人av中文字幕在线观看| 国产黄色小视频在线观看| 国产成人a∨麻豆精品| 99久国产av精品国产电影| 久99久视频精品免费| 极品教师在线视频| 91狼人影院| 国产精品久久久久久亚洲av鲁大| 亚洲国产欧美人成| 美女 人体艺术 gogo| 中文字幕久久专区| 国产乱人视频| 天堂√8在线中文| 午夜免费激情av| 日本在线视频免费播放| 免费无遮挡裸体视频| 18禁黄网站禁片免费观看直播| www日本黄色视频网| 亚洲欧洲国产日韩| 九九热线精品视视频播放| 99久久无色码亚洲精品果冻| 美女内射精品一级片tv| 三级毛片av免费| 中文在线观看免费www的网站| 国产毛片a区久久久久| 久久99精品国语久久久| 男女边吃奶边做爰视频| 高清毛片免费观看视频网站| 久久草成人影院| 国产伦理片在线播放av一区 | 国产视频内射| 免费黄网站久久成人精品| 波多野结衣巨乳人妻| h日本视频在线播放| 婷婷色综合大香蕉| 国产视频首页在线观看| 欧美成人一区二区免费高清观看| 一级黄片播放器| 天堂网av新在线| av福利片在线观看| 最好的美女福利视频网| 国产精品av视频在线免费观看| 狂野欧美激情性xxxx在线观看| 老司机影院成人| 久久久a久久爽久久v久久| av在线亚洲专区| 人妻夜夜爽99麻豆av| eeuss影院久久| 成年女人永久免费观看视频| 精品一区二区三区视频在线| 免费黄网站久久成人精品| 久久亚洲国产成人精品v| 小说图片视频综合网站| 少妇丰满av| 日韩欧美三级三区| 亚洲国产精品成人综合色| 日韩一区二区三区影片| 91精品国产九色| 国产色婷婷99| 夫妻性生交免费视频一级片| 人人妻人人澡欧美一区二区| 99久久中文字幕三级久久日本| 国产黄色小视频在线观看| 少妇人妻精品综合一区二区 | 国语自产精品视频在线第100页| 村上凉子中文字幕在线| 亚洲一级一片aⅴ在线观看| 岛国在线免费视频观看| 国产黄色视频一区二区在线观看 | av黄色大香蕉| 波多野结衣巨乳人妻| 变态另类成人亚洲欧美熟女| 亚洲人成网站在线播放欧美日韩| 国产精品综合久久久久久久免费| 亚洲欧美成人综合另类久久久 | 丝袜美腿在线中文| 99热这里只有是精品在线观看| 亚洲成a人片在线一区二区| 色尼玛亚洲综合影院| 亚洲人成网站在线观看播放| 婷婷精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 变态另类丝袜制服| 夜夜爽天天搞| 国产视频内射| 免费人成在线观看视频色| 三级男女做爰猛烈吃奶摸视频| 日本五十路高清| 国产亚洲91精品色在线| 卡戴珊不雅视频在线播放| 狂野欧美白嫩少妇大欣赏| 久久人妻av系列| 精品少妇黑人巨大在线播放 | 青春草视频在线免费观看| 日本熟妇午夜| 99久久久亚洲精品蜜臀av| 国产高清激情床上av| 九九热线精品视视频播放| 欧美激情久久久久久爽电影| 日韩国内少妇激情av| 寂寞人妻少妇视频99o| 亚洲欧美日韩无卡精品| 变态另类丝袜制服| 久久6这里有精品| 又爽又黄无遮挡网站| 国产精品99久久久久久久久| 高清日韩中文字幕在线| 精品一区二区三区视频在线| 亚洲最大成人中文| 亚州av有码| 亚洲欧美中文字幕日韩二区| 人妻制服诱惑在线中文字幕| 99久久精品热视频| 免费观看的影片在线观看| 亚洲丝袜综合中文字幕| 黄片无遮挡物在线观看| 97热精品久久久久久| 国产日韩欧美在线精品| 91aial.com中文字幕在线观看| 色播亚洲综合网| 国产乱人偷精品视频| 不卡一级毛片| 狠狠狠狠99中文字幕| 在线播放国产精品三级| av在线蜜桃| 99九九线精品视频在线观看视频| 国产久久久一区二区三区| 成年女人看的毛片在线观看| 日本av手机在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 色哟哟哟哟哟哟| 激情 狠狠 欧美| 一卡2卡三卡四卡精品乱码亚洲| 在线观看66精品国产| 波多野结衣高清作品| 在线免费观看不下载黄p国产| 国产成人freesex在线| 男女做爰动态图高潮gif福利片| 99久久精品国产国产毛片| 看片在线看免费视频| 亚洲乱码一区二区免费版| 欧美成人a在线观看| 99热这里只有是精品50| 91av网一区二区| 在线观看午夜福利视频| 欧美日本视频| 久久久久久久久久黄片| 日韩一区二区三区影片| 欧美最新免费一区二区三区| 久久久精品欧美日韩精品| 一卡2卡三卡四卡精品乱码亚洲| 欧美三级亚洲精品| а√天堂www在线а√下载| 精品人妻一区二区三区麻豆| 2021天堂中文幕一二区在线观| 色播亚洲综合网| 国内精品久久久久精免费| 蜜臀久久99精品久久宅男| 99久久无色码亚洲精品果冻| 日韩欧美在线乱码| 久久久久久久久久黄片| 中文字幕制服av| 亚洲电影在线观看av| 哪里可以看免费的av片| 直男gayav资源| 麻豆久久精品国产亚洲av| 超碰av人人做人人爽久久| 久久久久久久久久久丰满| 一区二区三区高清视频在线| 午夜福利在线观看吧| 联通29元200g的流量卡| 国内揄拍国产精品人妻在线| 亚洲欧美日韩高清专用| 久久久久久久久久久免费av| 久久久精品欧美日韩精品| 国产久久久一区二区三区| 久久久久久九九精品二区国产| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 免费观看a级毛片全部| 亚洲va在线va天堂va国产| 看黄色毛片网站| 久久精品久久久久久噜噜老黄 | 青春草视频在线免费观看| 国产真实伦视频高清在线观看| 成人无遮挡网站| 久久久欧美国产精品| 精品国产三级普通话版| 色视频www国产| 99视频精品全部免费 在线| 亚洲精品国产成人久久av| 欧美高清性xxxxhd video| 三级国产精品欧美在线观看| 国产成人a∨麻豆精品| 99精品在免费线老司机午夜| 久久久久久久久大av| 秋霞在线观看毛片| 永久网站在线| 六月丁香七月| 欧美+日韩+精品| 亚洲精品色激情综合| 日本黄色片子视频| 久久热精品热| 午夜免费激情av| 色5月婷婷丁香| 在线免费观看的www视频| 麻豆av噜噜一区二区三区| 欧美三级亚洲精品| 亚洲高清免费不卡视频| 久久久欧美国产精品| 日日撸夜夜添| 91精品国产九色| 国产高潮美女av| 99久久无色码亚洲精品果冻| 国产午夜精品一二区理论片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲人成网站在线播放欧美日韩| av在线天堂中文字幕| av黄色大香蕉| 久久精品久久久久久噜噜老黄 | 国产精品不卡视频一区二区| 99在线人妻在线中文字幕| 中文字幕制服av| 在线观看av片永久免费下载| 天天躁日日操中文字幕| 国产免费男女视频| 天堂√8在线中文| 精品久久久久久成人av| 国产精品无大码| av卡一久久| 成人综合一区亚洲| 黄色配什么色好看| 亚洲av不卡在线观看| 日韩成人伦理影院| 国产极品天堂在线| 国产黄片视频在线免费观看| 日本黄色片子视频| 欧美日韩国产亚洲二区| 亚洲欧美精品专区久久| 一夜夜www| 中出人妻视频一区二区| 一个人看视频在线观看www免费| 国产一区二区三区av在线 | 国产高清三级在线| 婷婷精品国产亚洲av| avwww免费| 欧美成人一区二区免费高清观看| 尤物成人国产欧美一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产高清激情床上av| 欧美成人a在线观看| 蜜桃亚洲精品一区二区三区| 欧美+亚洲+日韩+国产| 一本久久精品| 亚洲经典国产精华液单| 日日摸夜夜添夜夜爱| 人人妻人人看人人澡| 国产精品国产三级国产av玫瑰| 国产精品久久久久久久久免| 神马国产精品三级电影在线观看| 亚洲国产精品成人久久小说 | 狂野欧美白嫩少妇大欣赏| 九九在线视频观看精品| 天天躁日日操中文字幕| 白带黄色成豆腐渣| 一区二区三区四区激情视频 | 欧美xxxx黑人xx丫x性爽| 国产伦在线观看视频一区| 长腿黑丝高跟| 亚洲人成网站高清观看| 我的女老师完整版在线观看| 中文字幕免费在线视频6| 男人舔奶头视频| 久久久色成人| 日本黄色视频三级网站网址| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩东京热| 成年女人永久免费观看视频| 亚洲丝袜综合中文字幕| 哪里可以看免费的av片| 联通29元200g的流量卡| 长腿黑丝高跟| 青春草视频在线免费观看| 日韩制服骚丝袜av| 人妻久久中文字幕网| 午夜福利在线在线| 少妇熟女欧美另类| 22中文网久久字幕| 熟女人妻精品中文字幕| 久久久久久九九精品二区国产| 99久久精品国产国产毛片| 婷婷精品国产亚洲av| 我要搜黄色片| 亚洲无线观看免费| 听说在线观看完整版免费高清| 成人美女网站在线观看视频| 国产精品国产三级国产av玫瑰| 蜜桃久久精品国产亚洲av| 人人妻人人澡欧美一区二区| 99热全是精品| 人人妻人人澡欧美一区二区| 99热6这里只有精品| 天堂中文最新版在线下载 | 日韩国内少妇激情av| 久久久久久大精品| 午夜免费男女啪啪视频观看| 国产国拍精品亚洲av在线观看| 在线播放国产精品三级| 久久久久久伊人网av| 内地一区二区视频在线| av国产免费在线观看| 夜夜夜夜夜久久久久| 在线观看av片永久免费下载| 一进一出抽搐动态| 日韩一本色道免费dvd| 老司机影院成人| 全区人妻精品视频| 午夜福利视频1000在线观看| av.在线天堂| 亚洲高清免费不卡视频| 在线观看66精品国产| 夜夜爽天天搞| 伦理电影大哥的女人| 一个人免费在线观看电影| 日韩在线高清观看一区二区三区| 久久久久久大精品| 日韩成人伦理影院| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 一级毛片久久久久久久久女| 欧美激情国产日韩精品一区| 嫩草影院新地址| 特级一级黄色大片| 两个人视频免费观看高清| 欧美激情国产日韩精品一区| 91在线精品国自产拍蜜月| 久久久久久久久久成人| 日本av手机在线免费观看| 麻豆成人av视频| 偷拍熟女少妇极品色| 18+在线观看网站| 淫秽高清视频在线观看| 久久亚洲国产成人精品v| 狂野欧美激情性xxxx在线观看| 波多野结衣巨乳人妻| 国产精品日韩av在线免费观看| 啦啦啦韩国在线观看视频| 精品午夜福利在线看| 久久久a久久爽久久v久久| 美女国产视频在线观看| 中文在线观看免费www的网站| 精品一区二区免费观看| 午夜久久久久精精品| 久久久久久久久大av| 国产在视频线在精品| 久久久久久伊人网av| av黄色大香蕉| 国产男人的电影天堂91| 啦啦啦韩国在线观看视频| 少妇的逼好多水| 免费人成在线观看视频色| 亚洲精品粉嫩美女一区| 国产成人午夜福利电影在线观看| 欧美一区二区亚洲| 日韩国内少妇激情av| 国产高清有码在线观看视频| 黄色日韩在线| 性色avwww在线观看| 国产精品久久久久久久电影| 麻豆成人午夜福利视频| 国产精品久久久久久亚洲av鲁大| 女人被狂操c到高潮| 91av网一区二区| 如何舔出高潮| 国产伦精品一区二区三区视频9| 免费黄网站久久成人精品| 色噜噜av男人的天堂激情| 免费黄网站久久成人精品| 久久精品国产亚洲av香蕉五月| 亚洲第一电影网av| 亚洲18禁久久av| 免费观看精品视频网站| 欧美性猛交黑人性爽| 18+在线观看网站| 久久综合国产亚洲精品| 日韩国内少妇激情av| 欧美zozozo另类| 国语自产精品视频在线第100页| 欧美xxxx黑人xx丫x性爽| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看| 久久热精品热| 成人鲁丝片一二三区免费| 美女大奶头视频| 成熟少妇高潮喷水视频| 日韩制服骚丝袜av| 国内精品久久久久精免费| 国产黄a三级三级三级人| 久久这里有精品视频免费| 噜噜噜噜噜久久久久久91| 国产伦理片在线播放av一区 | 亚洲欧美成人精品一区二区| 亚洲av免费在线观看| 国产精品久久电影中文字幕| 亚洲中文字幕日韩| 国产 一区精品| 麻豆乱淫一区二区| 国产探花极品一区二区| 午夜亚洲福利在线播放| 国产伦在线观看视频一区| 亚洲真实伦在线观看| 中文字幕精品亚洲无线码一区| 国产成人freesex在线| 美女国产视频在线观看| 日韩一区二区三区影片| 边亲边吃奶的免费视频| 午夜精品在线福利| 赤兔流量卡办理| 免费av毛片视频| 校园春色视频在线观看| 日韩欧美精品v在线| 亚洲国产色片| 成人亚洲欧美一区二区av| 女人十人毛片免费观看3o分钟| 男女那种视频在线观看| 国产色婷婷99| 五月伊人婷婷丁香| 久久久久性生活片| 国产高潮美女av| av女优亚洲男人天堂| 亚洲欧美精品自产自拍| 偷拍熟女少妇极品色| 成人一区二区视频在线观看| 亚洲av男天堂| 色尼玛亚洲综合影院| 又粗又爽又猛毛片免费看| 99riav亚洲国产免费| 精品久久久久久久人妻蜜臀av| 国产蜜桃级精品一区二区三区| 一级毛片我不卡| 国产探花极品一区二区| 亚州av有码| 蜜桃亚洲精品一区二区三区| 波多野结衣高清无吗| 99久国产av精品国产电影| av福利片在线观看| 久久婷婷人人爽人人干人人爱| 欧美xxxx性猛交bbbb| 国产伦理片在线播放av一区 | 欧美精品一区二区大全| 午夜福利在线观看吧| 三级经典国产精品| 成人午夜高清在线视频| 大香蕉久久网| 精品免费久久久久久久清纯| 在线国产一区二区在线| 长腿黑丝高跟| 久久久久久久亚洲中文字幕| 啦啦啦观看免费观看视频高清| 在线观看一区二区三区| 久久99热6这里只有精品| 成人毛片60女人毛片免费| 男插女下体视频免费在线播放| 国产亚洲精品av在线| 成年女人永久免费观看视频| 久久久久久久亚洲中文字幕| 午夜a级毛片| 女人被狂操c到高潮| 亚洲精品乱码久久久久久按摩| 午夜福利视频1000在线观看| 三级男女做爰猛烈吃奶摸视频| 99久久无色码亚洲精品果冻| 久久久久国产网址| 日本免费a在线| 亚洲性久久影院| 青青草视频在线视频观看| 亚洲人成网站在线观看播放| 黑人高潮一二区| 老司机福利观看| 人人妻人人看人人澡| 久久精品国产亚洲av香蕉五月| 欧美另类亚洲清纯唯美| 在线观看一区二区三区| 久久精品夜色国产| 麻豆久久精品国产亚洲av| 久久国内精品自在自线图片| 美女脱内裤让男人舔精品视频 | 日日摸夜夜添夜夜爱| 久久精品国产亚洲av涩爱 | 赤兔流量卡办理| or卡值多少钱| 亚洲欧美成人精品一区二区| a级毛片a级免费在线| 99热精品在线国产| 亚洲一级一片aⅴ在线观看| 久久草成人影院| 男人舔女人下体高潮全视频| 亚洲欧美日韩高清专用| 国产探花极品一区二区| 中国国产av一级| 日韩在线高清观看一区二区三区| 一级毛片电影观看 | 久久久久久久亚洲中文字幕| h日本视频在线播放| 一级毛片我不卡| 国产精品.久久久| 91久久精品国产一区二区成人| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 国产一级毛片七仙女欲春2| 在线观看午夜福利视频| av福利片在线观看| 国产黄片视频在线免费观看| 国产日韩欧美在线精品| 26uuu在线亚洲综合色| 欧美丝袜亚洲另类| 国产精品综合久久久久久久免费| 国产真实乱freesex| 天堂中文最新版在线下载 | 亚洲国产欧美在线一区| 亚洲丝袜综合中文字幕| 国产黄a三级三级三级人| 大又大粗又爽又黄少妇毛片口| 久久人人爽人人爽人人片va| 亚洲三级黄色毛片| 久久人人爽人人爽人人片va| 国产在线精品亚洲第一网站| 亚洲国产欧洲综合997久久,| 观看免费一级毛片| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 免费观看a级毛片全部| 国产v大片淫在线免费观看| 国产午夜精品久久久久久一区二区三区| 久久草成人影院| 亚洲av.av天堂| 看片在线看免费视频| 国产黄片视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 可以在线观看的亚洲视频| 亚洲精品日韩av片在线观看| 99久久成人亚洲精品观看| 久久精品影院6| 国产伦理片在线播放av一区 | 天堂av国产一区二区熟女人妻| 亚洲av一区综合| 在线观看66精品国产| 久99久视频精品免费| 一区福利在线观看| 老师上课跳d突然被开到最大视频| 欧美精品国产亚洲| 91狼人影院| 日韩欧美精品免费久久| 91午夜精品亚洲一区二区三区| 人妻久久中文字幕网| 97超视频在线观看视频| 啦啦啦观看免费观看视频高清| 色综合站精品国产| 99热精品在线国产| av在线天堂中文字幕| 国产精品1区2区在线观看.| 我要搜黄色片| 91精品一卡2卡3卡4卡| 免费搜索国产男女视频| 亚洲一区二区三区色噜噜| 一级黄片播放器| 村上凉子中文字幕在线| 亚洲人与动物交配视频| 亚洲成人精品中文字幕电影| 国产69精品久久久久777片| 少妇丰满av| 亚洲第一电影网av| 又粗又硬又长又爽又黄的视频 | 日韩欧美精品v在线| 蜜桃久久精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 欧美变态另类bdsm刘玥| 久久精品综合一区二区三区| 国产精品99久久久久久久久| 中国美女看黄片| 99视频精品全部免费 在线| 嫩草影院入口| h日本视频在线播放| 亚洲国产精品成人久久小说 | a级毛色黄片| 日韩中字成人| 一本精品99久久精品77| 少妇的逼好多水| 在线国产一区二区在线| 一夜夜www| 人体艺术视频欧美日本| 精品人妻熟女av久视频| 美女大奶头视频| 乱码一卡2卡4卡精品| 欧美一区二区国产精品久久精品| 日韩国内少妇激情av| 99riav亚洲国产免费| 日韩人妻高清精品专区| 蜜桃亚洲精品一区二区三区| 日韩制服骚丝袜av| 99久久精品一区二区三区| 一级二级三级毛片免费看| 亚洲国产高清在线一区二区三| videossex国产| 我的老师免费观看完整版|