• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical weathering and CO2consumption of a high-erosion-rate karstic river:a case study of the Sanchahe River,southwest China

    2015-10-25 02:03:20YanlingAnYiliangHouQixinWuLinQingLongboLi
    Acta Geochimica 2015年4期
    關(guān)鍵詞:根本利益綜述控制策略

    Yanling An·Yiliang Hou·Qixin Wu,2·Lin Qing·Longbo Li

    Chemical weathering and CO2consumption of a high-erosion-rate karstic river:a case study of the Sanchahe River,southwest China

    Yanling An1·Yiliang Hou1·Qixin Wu1,2·Lin Qing1·Longbo Li3

    The Sanchahe River in southwest China is a tributary of the Wujiang River and experiences high erosion rates.Geochemical analysis was conducted on Sanchahe River basin samples collected in the wet and dry seasons of 2014 in order to better understand local chemical weathering processes,anthropogenic influences,and associated CO2consumption.The samples'total dissolved solid concentrations were found to be significantly higher than that of the global river average.Ca2+was the dominant cation in the samples and accounted for 64%and 73%of the total cations in the dry and wet seasons,respectively.HCO3-and SO42-were the dominant anions,accounting for 92%of the total anions.Stoichiometry analyses of the river waters suggested that the water chemistry is controlled by carbonate dissolution by both carbonic and sulfuric acid.The chemical weathering rates of carbonate and silicate evaporites in the Sanchahe River basin were estimated to be approximately 109.2 and 11.0 t/(km2a),respectively,much higher than both the global mean values and the Wujiang River,a typical karstic river. The CO2consumption by carbonate and silicate weathering are estimated to be 597.4×103and 325.5×103mol/(km2a),which are much higher than corresponding values in the Wujiang River,indicating a high erosion rate in the Sanchahe River basin.

    Sanchahe River·Water chemistry·

    1 Introduction

    Chemical characteristics of water can be used to trace the sources of solutes in rivers,and they also help understand chemical weathering rates,geologic background,and CO2consumption of watersheds(Hu et al.1982;Gaillardet et al. 1999;Han and Liu 2004;Hren et al.2007;Chetelat et al. 2008;Liu et al.2008a;Raymond and Oh 2009;Moosdorf et al.2011).Carbon sinks associated with the processes of rock weathering(including carbonates and silicates)can affect the global carbon cycle(Meybeck 1987;Liu et al. 2011;Moosdorf et al.2011).On a geologic time scale,only silicate weathering produces a net impact on atmospheric CO2content(silicates:CaSiO3+H2CO3→CaCO3+ SiO2+H2O;carbonates:CaCO3+H2CO3→CaCO3+ CO2+H2O)(White et al.1999).In the shorter term,however,from several decades to thousands of years,the influence of carbonate weathering can be more significant than the impact of silicate weathering due to carbonates' much higher weathering rate(Blum et al.1998;Kump et al. 2000;Jacobson et al.2002;Liu et al.2010).Chemical weathering rate is affected by several factors,such as geologic background,tectonism,weather,and land use(Gibbs 1970;Raymond and Cole 2003;Das et al.2005;von Blanckenburg 2005;Williams et al.2005).This study contributes to a more complete understanding of regionalweathering processes and to the broader knowledge base around the theory and mechanism of carbon sinks in the context of rock weathering.

    With about 500,000 km2of karst terrain,southwest China is one of the largest karst-covered areas in the world(Han and Liu 2004).Due to the fragile ecological environment of the area,weathering is very intense and water and soil loss are significant.The Sanchahe River is the headwaters river of the Wujiang River,which is the largest river of Southwest China.The Sanchahe River catchment has one of the highest rates of soil erosion in the Wujiang River watershed(Liu et al.2015).There are a number of coal mining enterprises in the Sanchahe River catchment as it is the thermal power base of Guizhou Province,and SO2deposition is significant.The Sanchahe River is a higherosion karst river watershed,and is strongly influenced by human activities.

    2 Study area

    The Sanchahe River(104°18′—106°18′E and 26°10′—27°00′N(xiāo))originates in Weining County,at the east side of Wumeng Mountain,western Guizhou(Jiao et al.2013). The total length of the river is 325.6 km.The watershed area is about 7264 km2,including 80%in mountainous regions,15%plateau and hilly land,and 5%flat ground. The vertical drop of the Sanchahe basin is more than 1300 m from west to east,and the average gradient is approximately 4%.The Sanchahe basin consists of various parent rocks,such as carbonatite and coal-bearing rock strata,as well as basalt(Han and Liu 2004).The western portion of the watershed has a temperate climate,with the remainder falling in the subtropical monsoon climate zone. According to meteorological data from the past 3 years,the annual average temperature in the catchment varies between 12 and 16°C,with annual average precipitation of 546.9 mm.More than 75%of the precipitation falls between May and October.Precipitation is at a minimum in winter(December to February),which accounts for less than 5%of annual precipitation.The mean runoff volume of the Sanchahe basin is about 49.5×108m3.Being related to precipitation,the runoff is distributed unevenly during the hydrologic year,with 80%of the annual runoff occurring in the wet season.

    3 Sampling and analytical methods

    30 wet season water samples and 28 dry season samples were collected from the main river and the tributaries of the Sanchahe(Fig.1).Temperature(T),pH,dissolved oxygen(DO),and electrical conductivity(EC)were determined in situ using multi-parameter water probe meters(WTW-3420).HCO3-was measured on site by acid titration using hydrochloric acid.The HCO3-of each sample was measured at least twice,and the titration error was controlled within 5%.All the water samples were filtered with 0.45 μm mixed cellulose membrane filters(Millipore)on the day they were sampled.After filtration,a fraction of the samples were stored in clean High Density Polyethylene(HDPE)bottles.All the bottles were pre-washed with ultrapurified(double-distilled)HCl and rinsed with Milli-Q 18.2 MΩ water.The samples for cation determination were acidized(pH<2)with HCl.All cations and anions were measured on an ion chromatograph(DIONEX,ICS-1100),with IonPac CS-12A column and IonPac AG-19 column separately,and SiO2was measured by colorimetry.

    4 Results and discussion

    4.1 Composition and temporal variation of the major ions

    Table 1 shows the results of water sample analyses from the Sanchahe River basin in both dry and wet seasons. Samples were generally alkaline.The pH ranged from 7.9 to 10.2 in the dry period,averaging 8.3;while pH values ranged from 6.9 to 7.9 in the wet period,with an average of 7.4.The high pH values might have been impacted by the dissolution of limestone and dolomite in river waters.The pH values in the wet season were lower than those in the dry season,which could be due to the concentrated and heavy acid rainfall in the wet seasons,which would tend to lower pH.The total soluble cations(TZ+=2Ca2++2 Mg2++Na++K+)in river waters during the dry period ranged from 3.2 to 9.3 meq/L,averaging 5.2 meq/L,while those in the wet period ranged between 3.3 and 6.6 meq/L,with an average of 4.4 meq/L—all much higher than the global average value(1.25 meq/L)(Meybeck 1981).The average inorganic charge balance(NICB=(TZ+-TZ-)/ TZ+)of river water samples was 6%and 8%in the dry and wet seasons,respectively.

    Thetotaldissolvedsolid(TDS=Ca2++Mg2+Na++K++HCO3-+SO42-+Cl-+NO3-+SiO2)range in the dry season was 247.8—628.4 mg/L,averaging 367.5 mg/L;while the variation in the wet seasons was 241.3—427.5 mg/L,with an average of 311.4 mg/L.These values are much higher than the global average TDS(100 mg/L)(Gaillardet et al.1999).In comparison with the famous rivers of the world,the Sanchahe River basin displayed higher TDS than the Amazon and Mississippi,but lower than the Nile and Rhine(Table 2).Furthermore,compared with large rivers in China,the Sanchahe River exhibitedhigherTDSthantheYangtzeRiver(TDS=220 mg/L)(Chetelat et al.2008)and the Xijiang River(TDS=241 mg/L)(Xu and Liu 2010),and lower than the Yellow River(TDS=460 mg/L)(Gaillardet et al. 1999).

    Fig.1 Sample locations in the Sanchahe River Basin of dry season and rain season(in the brackets)

    Table 1 Major ionic compositions of the river water samples from Sanchahe River

    The main cation in river waters during the sampling campaign was Ca2+(Fig.2).For the dry season samples,Ca2+accountedfor64%ofallthecations,with concentrations varying between 2.2 and 5.2 meq/L,averaging 3.4 meq/L;while for the wet period samples,Ca2+comprised 73%of all the cations,with concentrations ranging from 2.4 to 4.1 meq/L,and averaging 3.2 meq/L. The second most prevalent cations were Mg2+and Na+,with less Mg2+than Na+in the dry season and more Mg2+than Na+in the wet season.Mg2+and Na+together comprised 15%of the total cations.K+accounted for only about 5%of all cations.During the sampling period,HCO3-and SO42-were the major anions in river water samples,accounting for 48%and 44%of the total anions,respectively.Their concentration variations in the dry season were 1.7—2.9 and 0.8—5.6 meq/L,respectively,with average values of 2.3 and 2.1 meq/L.In the wet season,HCO3-and SO42-comprised 50%and 42%of the total anions,respectively,with concentration ranges 1.1—3.0 and 0.9—4.4 meq/L,and average values of 2.0 and 1.7 meq/L. NO3-and Cl-,together accounted for 7%of the total anions,with higher Cl-than NO3-in the dry period and lower Cl-than NO3-in the wet period.

    Across the basin,all the equivalent concentration ratio data points of(Ca2++Mg2+)/HCO3-fall beneath the slope of 1,while the equivalent concentration ratio data points of(Ca2++Mg2+)/(HCO3-+SO42-)are on either side of the slope 1.Most points plot along the line of 1:1,indicatingagoodbalanceof(Ca2++Mg2+)and(HCO3-+SO42-).This may be caused by watershed erosion and rock weathering combined with SO42-inputfrom oxidation of sulfide minerals and acid precipitation. Previous studies suggest that sulfuric acid in watershed erosion and rock weathering processes of the southwest karst rivers(Li et al.2008)contributes significantly to the chemical composition of river water.The Sanchahe River basin possesses abundant coal resources.Large-scale mining of high-sulfur coal and numerous coal-fired power plants in this area produce and emit SO2into the atmosphere,whichcouldthenformsulfuricacidin precipitation,contributing to rock weathering and erosion in the watershed(Fig.3).

    Table 2 Major ionic compositions of Sanchahe River Basin and other rivers

    Fig.2 Piper diagram of the river water samples from Sanchahe River Basin

    4.2 Source of dissolved load

    4.2.1 Atmospheric input

    Chlorideisthemostusefulreferencetoevaluateatmospheric inputstoriversinmanystudiesbecauseitisconservativeandis not involved in biogeochemical cycling(Gaillardet et al. 1997;Viersetal.2001;Liuetal.2013).Theconcentrationof Cl-in river water is assumed to be entirely derived from the atmosphere;the contribution of evaporites is negligible(Negrel et al.1993).By using the Cl--normalized ratios of rainwater,concentrations of other elements can be corrected with regard to the contribution of atmospheric deposition. AccordingtoLarssenetal.(1999),theaveragelevelofCl-is 0.01 meq/L in rural Guizhou,and about 0.021 meq/L in Guiyang City(Xiao et al.2013).We did not analyze rainwater during the period of study.Consequently,values of atmospheric[Cl]concentrations calculated with evapotranspiration factors were used in the correction of atmospheric inputs for the mainstem.

    The atmospheric contribution of element X(X=Ca2+,Mg2+,Na+,K+,and SO42-)to river water can be derived from the following equation:

    where Xris the contribution of element X from rain to rivers;fetis the evapo-transpiration factor;and(X/Cl-)rainis the molar ratio of element X over Cl-in rainwater. Fet=P/(P-E),where P is annual precipitation(mm)and E is annual mean evaporation(mm).The X/Cl-ratios of volume-weighted mean concentrations of rainwater in Puding reported by Wu et al.(2012)were used as(X/Cl)rain in the calculation;Cl-=0.014 meq/L,Ca2+=0.16-meq/L,Mg2+=0.004 meq/L,Na+=0.011 meq/L,K+=0.009 meq/L,and SO42-=0.15 meq/L.

    The calculation results show the respective contributions of Cl-,Ca2+,Mg2+,Na+,K+,and SO42-from rain to rivers to be 0.042,0.47,0.012,0.033,0.028,and 0.46 meq/ L,explaining only a fraction of the water chemistry of river water.

    Fig.3 Equivalent charge balance of Ca2++Mg2+versus HCO3-and versus HCO3-+SO42-of the Sanchahe River Basin

    4.2.2 Anthropogenic input

    The Sanchahe River basin is characterized by high SO42-content,withtheSO42-/Na+valuemuchlargerthaninother rivers globally.SO42-in the river originates from several sources,such as hydatogenic rock(e.g.,gypsum)dissolution,sulfideoxidation,andatmosphericaciddeposition.The molar ratios of SO42-/Na+and NO3-/Na+can also be used to track the sources of SO42-(Fig.4).SO42-and NO3-of the Sanchahe River basin display a linear relationship,indicating that SO42-and NO3-may have derived from the same source;this source is likely to be anthropogenic,as NO3-is generally considered an anthropogenic emission.

    Rainwater at Guiyang and Puding contains a high concentration of SO42-(Wu et al.2012;Han et al.2011). Therefore,the high content of SO42-in the rainwater of the Sanchahe River basin implies that the influence of acid rain on water chemistry in the study area is significant.At least some of the SO42-in the river waters is likely due to acid rain input related to extensive and intensive use of S-enriched coal and power production via coal combustion in the research area,one of the most heavily acid rain-polluted areas in China for many years(Larssen et al.1999,2006;Aas et al.2007).

    Concentrations of SO42-and NO3-increased from upstream to downstream(Fig.5),which is consistent with the fact that human activity increases upstream to downstream.The headwaters of the Sanchahe River basin are dominated by agricultural activities,while the lower portions contain the significant industrial base of Liupanshui.

    In addition,δ34S values in river waters and in industrial emissions,coal,and soil in Guizhou Province were reported to be from 2‰ to 8‰ by Hong et al.(1993),while Jiang et al.(2007)reported δ34S of dissolved SO42-from the Sanchahe River at about-7.3‰,indicating SO42-was mainly derived from the oxidation of sulfide.It is therefore suggested that the dissolved SO42-in the Sanchahe River is primarily derived from sulfide oxidation and acid rain deposition.

    4.3 Chemical budget and chemical weathering rate estimation

    4.3.1 Chemical budget

    As was discussed in Sect.4.2,the solutes in river water have several sources,expressed as the following:

    Fig.4 Variations of SO42-/Na+with NO3-/Na+molar ratios of the Sanchahe River waters

    Some hypotheses were needed to calculate the exact sources of each element.First,we assumed that the atmosphere and human activities are the main Cl-contributors.According to the analysis in Sect.4.2.1,Clderived from the atmosphere is about 0.042 meq/L;additional Cl-originates from human activities,and the balance with Na+.Second,that SO42-may stem from precipitation and oxidation of sulfide minerals,with all of the additional SO42-(more than[SO42-]atmospheric)derived from sulfide mineral oxidation.Third,that the cation(Ca2+,Mg2+,Na+,and K+)contribution from human activities to river water is negligible.Based on the above assumptions,we reduced the equations as below:

    Previous studies(Galy and France-Lanord 1999;Han and Liu 2004;Liu et al.2013)demonstrate that it's difficult to distinguish Ca2+and Mg2+produced by carbonate weathering from that produced by silicate weathering. Generally,K+originates from the atmosphere and silicate weathering,and it's challenging to estimate the Mg2+/K+value of silicate weathering because carbonate rock is the bedrock of Sanchahe River region.Galy and France-Lanord(1999)and Han and Liu(2004)propose that for silicate weathering,Mg2+/K+=0.5 and Ca2+/Na+=0.2. Based on this,Ca2+and Mg2+from carbonate weathering was estimated,allowing for the further simplification of Eqs.(8)and(9):

    Fig.5 Spatial distribution of NO3-and SO42-of the Sanchahe River mainstream

    where the ratio of silicate weathering and the total rock weathering could be represented by the ratio of dissolved cations in silicate weathering and that in the total rock weathering,resulting in:

    By calculation,in the dry period,Xsilicaterockof the Sanchahe River basin river water samples varied from 0.02 to 0.56,averaging0.18,and[X]carbonaterangedbetween0.44and 0.98,with an average value of 0.82;while in the wet seasons,Xsilicatevariation was 0.06—0.37,averaging 0.12,and[X]car-bonateranged from 0.63 to 0.94,with an average of 0.88.

    Using Xsilicateand Xcarbonatevalues and hydrologic data of the watershed,the erosion rates of silicate and carbonate rock were estimated.The chemical weathering rate of silicate rock is represented as:

    where Na+,K+,Ca2+,and Mg2+stem from silicate weathering and dissolving,and all SiO2originates from silicate weathering.

    Carbonate weathering is widely distributed,and can occur rapidly.Several sources could be involved incarbonate weathering,such as H2CO3produced by CO2dissolving in the water;SO2input from the atmosphere;and H2SO4formed in sulfide mineral oxidation.In this study,we assumed silicate weathering did not contribute H2SO4as the study area is dominated by carbonate rock,and H2SO4tends to participate in carbonate weathering rather than in silicate weathering.The participation of H2CO3and H2SO4in carbonate weathering can be simplified as follows(Han and Liu 2004):

    4.3.2 Chemical weathering and CO2consumption rate

    As is shown in formula(14),1 mol of H2CO3and 1 mol of H2SO4are needed to dissolve 3 mol carbonate rock,and the equivalent ratio of SO42-and HCO3-is 0.9,which suggests that H2SO4plays a significant role in the watershed weathering.Li et al.(2008)applied carbon isotopes to demonstrate a similar weathering process in Beipanjiang,which is an upstream tributary of the Xijiang River.Liu et al.(2008b)used carbon and sulfur isotopes to verify H2SO4participation in watershed weathering processes of the Wujiang River,Nanpanjiang,and Beipanjiang.

    The chemical weathering process of carbonate rock in the Sanchahe River basin could be affected by H2CO3and H2SO4.We assumed that Ca2+,Mg2+,and HCO3-are not impacted by human activities,and based on Eq.(14),the weathering rate of carbonate rock with the participation of both H2CO3and H2SO4can be expressed as below:

    All HCO3-in the solutes(produced by silicate weathering)stem from atmospheric dissolved CO2.In the solutes generated from carbonate weathering with H2CO3as the only participant,half of the HCO3-was generated from atmospheric dissolved CO2;of the solutes affected by both H2CO3and H2SO4,one-fourth of the HCO3-was derived from atmospheric dissolved CO2.Thus,CO2consumed by silicate and carbonate weathering can be calculated by the following two equations:

    CO2consumed by silicate rock weathering in the Sanchahe River basin was about 70.5×103and 255.0×103mol/(km2a)in the dry and wet periods,respectively.Approximately 325.5×103mol/(km2a)of CO2is consumed by silicate rock weathering,which is triple the average rate across the larger Wujiang drainage area(Han and Liu 2004)and far higher than the rate[128×103mol/(km2a)]in the Beipanjiang watershed(Xu and Liu 2010)(Table 3). Carbonate rock weathering consumed CO2(under bothimpact of carbonic acid and sulfuric acid)at rates of 128.2×103and 469.2×103mol/(km2a)in the dry and wet seasons,respectively.The annual CO2volume consumed by carbonate rock weathering was found to be about 597.4×103mol/(km2),which is similar to the rate in the Wujiang drainage area(Han and Liu 2004),while lower than that of Beipanjiang[966×103mol/(km2a)](Xu and Liu 2010)and higher than that of several rivers in noncarbonate rock areas,such as the Yangtze River,the Yellow River,and the Songhuajiang River(Table 3).The silicate rock weathering rates of the Sanchahe basin in the dry and wet seasons are 2.0 and 9.0 t/(km2a),respectively,while the carbonate rock weathering rates are 3.4 and 85.8 t/(km2a).This is consistent with rates of rivers flowing through carbonate rock(Table 3).

    Table 3 Chemical weathering and CO2consumption rate of Sanchahe River Basin and other basins

    5 Conclusions

    Ca2+is the main cation of Sanchahe River solute,accounting for 64%and 73%of the total cations in the dry and wet periods,respectively;the second most prevalent cations are Mg2+and Na+.The main anions are HCO3-and SO42-,occupying 48%and 44%,respectively,of the total anions in the dry season,and 50%and 42%in the wet seasons;the next most common anions are NO3-and Cl-.

    The weathering rates of carbonate,silicate,and total rock in the Sanchahe River basin during the hydrologic year were calculated to be about 109.2,11.0,and 120.2 t/(km2a),respectively,indicating an intense watershed erosion effect.Rates CO2consumed by carbonate,silicate,and total rock weathering were 597.4×103,325.5×103and 922.9×103mol/(km2a),respectively,similar to the regional rivers of the karst area in Southwest China.

    According to the chemical calculation of the watershed weathering and CO2consumption rates,the Sanchahe River is primarily affected by carbonate weathering,followed by silicate weathering.Sulfuric acid participates in carbonate weathering,and the result suggests a high rate of watershed erosion and rock weathering.

    AcknowledgmentsThis work was supported jointly by China Postdoctoral Science Foundation(No.2014M552388),the Guizhou Natural Science Foundation(Qiankehe-Z[2012]4012,Qiankehe-SY[2013]3133,Qiankehe-J[2013]2130,Qiankehe-J[2013]2298).

    Aas W,Shao M,Jin L,Larssen T,Zhao D,Xiang R,Zhang J,Xiao J,Duan L(2007)Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001—2003. Atmos Environ 41:1706—1716

    Blum JD,Gazis CA,Jacobson AD,Chamberlain CP (1998)Carbonate versus silicate weathering in the Raikhot watershed withintheHighHimalayanCrystallineSeries.Geology 26:411—414

    Chetelat B,Liu CQ,Zhao Z,Wang Q,Li S,Li J,Wang B(2008)Geochemistry of the dissolved load of the Changjiang Basin rivers:anthropogenic impacts and chemical weathering.Geochim Cosmochim Acta 72:4254—4277

    Das A,Krishnaswami S,Sarin MM,Pande K(2005)Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps,India:rates of basalt weathering and their controls.Geochim Cosmochim Acta 69:2067—2084

    Gaillardet J,Dupre B,Allegre CJ,Ne′grel P(1997)Chemical and physical denudation in the Amazon River Basin.Chem Geol 142:141—173

    Gaillardet J,Dupre′B,Louvat P,Allegre C(1999)Global silicate weathering and CO2consumption rates deduced from the chemistry of large rivers.Chem Geol 159:3—30

    Galy A,F(xiàn)rance-Lanord C(1999)Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chem Geol 159:31—60

    Gibbs RJ(1970)Mechanisms controlling world water chemistry. Science 170:1088—1090

    Han G,Liu CQ(2004)Water geochemistry controlled by carbonate dissolution:a study of the river waters draining karst-dominated terrain,Guizhou Province,China.Chem Geol 204:1—21

    Han G,Wu QX,Tang Y(2011)Acid rain and alkalization in southwestern China:chemical and strontium isotope evidence in rainwater from Guiyang.J Atmos chem 68:139—155

    Hong Y,Zhang H,Zhu Y(1993)Sulfur isotopic characteristics of coal in China and sulfur isotopic fractionation during coalburning process.Chin J Geochem 12:51—59(in Chinese)

    綜述,建筑精裝修的施工質(zhì)量管理能有效保障企業(yè)根本利益,還能為企業(yè)發(fā)展提供嶄新平臺(tái)、提高市場(chǎng)競(jìng)爭(zhēng)力。因此,我們必須加強(qiáng)建筑精裝修工程施工質(zhì)量控制,仔細(xì)分析制定質(zhì)量控制策略,進(jìn)而促進(jìn)企業(yè)自身發(fā)展。

    Hren MT,Chamberlain CP,Hilley GE,Blisniuk PM,Bookhagen B(2007)Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river:chemical weathering,erosion,and CO2consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya.Geochim Cosmochim Acta 71:2907—2935

    Hu MH,Stallard RF,Edmond JM (1982)Major ion chemistry of some large Chinese rivers.Nature 298:550—553

    Jacobson AD,Blum JD,Walter LM(2002)Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes:insights from the carbonate geochemistry of stream waters. Geochim Cosmochim Acta 66:3417—3429

    Jiang YK,Liu CQ,Tao FX (2007)Sulfur isotope composition characters of Wujiang river water in Guizhou Province.Adv Water Sci 18:558-565(in Chinese)

    Jiao SL,Liu L,Sun T,Tian QY,Ding R,Xiang S,Ye M(2013)Hydrological characteristics and the atmospheric carbon sink in the chemical weathering processes of the Sanchahe watershed. Geogr Res 32:1025—1032(in Chinese)

    Kump LR,Brantley SL,Arthur MA(2000)Chemical weathering,atmospheric CO2,and climate.Annu Rev Earth Planet Sci 28:611—667

    Larssen T,Seip HM,Semb A,Mulder J,Muniz IP,Vogt RD,Lydersen E,Angell V,Dagang T,Eilertsen O(1999)Acid deposition and its effects in China:an overview.Environ Sci Policy 2:9—24

    Larssen T,Lydersen E,Tang D,He Y,Gao J,Liu H,Duan L,Seip HM,Vogt RD,Mulder J,Shao M,Wang Y,Shang H,Zhang X,Solberg S,Aas W,Okland T,Eilertsen O,Angell V,Li Q,Zhao D,Xiang R,Xiao J,Luo J(2006)Acid rain in China.Environ Sci Technol 40:418—425

    Li SL,Calmels D,Han G,Gaillardet J,Liu CQ(2008)Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC:examplesfromsouthwestChina.EarthPlanetSciLett 270:189—199

    Liu CQ,Zhao ZQ,Tao F,Li SL(2008a)Chemical weathering of Qinghai-Tibet Plateau:geochemical study of Jinsha Jiang,Lancang Jiang,and Nu Jiang river water,China.Geochim Cosmochim Acta 72:A556—A556

    Liu CQ,Jiang Y,Tao F,Lang YC,Li SL(2008b)Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China.Geochimica 37:404—414

    Liu Z,Dreybrodt W,Wang H(2010)A new direction in effective accounting for the atmospheric CO2budget:considering the combined action of carbonate dissolution,the global water cycle and photosynthetic uptake of DIC by aquatic organisms.Earth Sci Rev 99:162—172

    Liu Z,Dreybrodt W,Liu H(2011)Atmospheric CO2sink:silicate weathering or carbonate weathering?Appl Geochem 26:S292—S294

    Liu B,Liu CQ,Zhang G,Zhao ZQ,Li SL,Hu J,Ding H,Lang YC,Li XD(2013)Chemical weathering under mid-to cool temperate and monsoon-controlled climate:a study on water geochemistry of the Songhuajiang River system,northeast China.Appl Geochem 31:265—278

    Liu L,Liang H,Jiao SL,Dai AN et al(2015)The study of the soil erosion sensitivity based on karst watershed for GIS—taking the three cha he basion in Guizhou province as an example. J Guizhou Normal Univ(Nat Sci)33(2):12—17

    Meybeck M(1981)Pathways of major elements from land to ocean through rivers.In:Martin JM,Burton JD,Eisma D(eds)River inputs to ocean systems.United Nations Press,New York,pp 18—30

    Meybeck M (1987)Global chemical weathering of surficial rocks estimated from river dissolved loads.Am J Sci 287:401—428

    Moosdorf N,Hartmann J,Lauerwald R,Hagedorn B,Kempe S(2011)Atmospheric CO2consumption by chemical weathering in North America.Geochim Cosmochim Acta 75:7829—7854

    Negrel P,Alle`gre CJ,Dupre′B,Lewin E(1993)Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water:the Congo Basin case. Earth Planet Sci Lett 120:59—76

    Raymond PA,Cole JJ(2003)Increase in the export of alkalinity from North America's largest river.Science 301:88—91

    Raymond PA,Oh NH (2009)Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage:insights on the impact of coal mining on regional and global carbon and sulfur budgets.Earth Planet Sci Lett 284:50—56

    Viers J,Dupre B,Braun JJ,F(xiàn)reydier R,Greenberg S,Ngoupayou J,Nkamdjou L(2001)Evidence for Non-Conservative Behaviour of Chlorine in Humid Tropical Environments.Aquat Geochem 7:127—154

    von Blanckenburg F(2005)The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment.Earth Planet Sci Lett 237:462—479

    White AF,Bullen TD,Vivit DV,Schulz MS,Clow DW(1999)The role of disseminated calcite in the chemical weathering of granitoid rocks.Geochim Cosmochim Acta 63:1939—1953

    Williams M,Hopkinson C,Rastetter E,Vallino J,Claessens L(2005)Relationships of land use and stream solute concentrations in the Ipswich River basin,northeastern Massachusetts.Water Air Soil Pollut 161:55—74

    Wu L,Huh Y,Qin J,Du G,van Der Lee S(2005)Chemical weathering in the Upper Huang He(Yellow River)draining the eastern Qinghai-Tibet Plateau.Geochim Cosmochim Acta 69:5279—5294

    Wu Q,Han G,Tao F,Tang Y(2012)Chemical composition of rainwater in a karstic agricultural area,Southwest China:the impact of urbanization.Atmos Res 111:71—78

    Xiao HW,Xiao HY,Long AM,Wang YL,Liu CQ(2013)Chemical composition and source apportionment of rainwater at Guiyang,SW China.J Atmos Chem 70:269—281

    Xu Z,Liu CQ(2010)Water geochemistry of the Xijiang basin rivers,South China:chemical weathering and CO2consumption.Appl Geochem 25:1603—1614

    10.1007/s11631-015-0074-2

    21 June 2015/Revised:21 July 2015/Accepted:14 September 2015/Published online:23 September 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    ? Yanling An

    re.ylan@gzu.edu.cn

    ? Qixin Wu

    wuqixin@mails.gyig.ac.cn

    1Key Laboratory of Karst Environment and Geohazard Prevention,Ministry of Education,Guizhou University,Guiyang 550003,China

    2State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China

    3Guiyang Engineering Corporation,China Power,Guiyang 550081,China

    Carbonate and silicate weathering·CO2consumption

    猜你喜歡
    根本利益綜述控制策略
    考慮虛擬慣性的VSC-MTDC改進(jìn)下垂控制策略
    能源工程(2020年6期)2021-01-26 00:55:22
    從黨史國(guó)史維度看黨的十九大對(duì)人民群眾根本利益探究
    工程造價(jià)控制策略
    山東冶金(2019年3期)2019-07-10 00:54:04
    SEBS改性瀝青綜述
    石油瀝青(2018年6期)2018-12-29 12:07:04
    NBA新賽季綜述
    NBA特刊(2018年21期)2018-11-24 02:47:52
    現(xiàn)代企業(yè)會(huì)計(jì)的內(nèi)部控制策略探討
    淺談人民群眾在歷史發(fā)展中的作用
    JOURNAL OF FUNCTIONAL POLYMERS
    容錯(cuò)逆變器直接轉(zhuǎn)矩控制策略
    與狐謀皮
    亚洲av中文字字幕乱码综合| 老师上课跳d突然被开到最大视频| 国产黄a三级三级三级人| 亚洲真实伦在线观看| 在线天堂最新版资源| 大香蕉久久网| 99久久人妻综合| 日韩 亚洲 欧美在线| 男女视频在线观看网站免费| 亚洲av福利一区| 婷婷色综合大香蕉| 国产精品一区二区性色av| 看免费成人av毛片| 欧美变态另类bdsm刘玥| 天堂影院成人在线观看| 少妇人妻精品综合一区二区| 亚洲人与动物交配视频| 性色avwww在线观看| 亚洲精品影视一区二区三区av| 一级二级三级毛片免费看| 精品午夜福利在线看| 最近最新中文字幕免费大全7| 26uuu在线亚洲综合色| 波野结衣二区三区在线| 伊人久久国产一区二区| 又爽又黄无遮挡网站| 深爱激情五月婷婷| 哪个播放器可以免费观看大片| 色5月婷婷丁香| 日韩一区二区视频免费看| 中文在线观看免费www的网站| 精品久久久久久成人av| 蜜桃久久精品国产亚洲av| 男人狂女人下面高潮的视频| 99热全是精品| 好男人在线观看高清免费视频| 免费不卡的大黄色大毛片视频在线观看 | 97在线视频观看| 国产成年人精品一区二区| 国产精品国产三级国产av玫瑰| 免费播放大片免费观看视频在线观看| 亚洲成人精品中文字幕电影| 精品人妻偷拍中文字幕| 1000部很黄的大片| 国产精品综合久久久久久久免费| 国产av码专区亚洲av| 午夜福利在线观看免费完整高清在| 一个人看的www免费观看视频| 九九在线视频观看精品| 精品少妇黑人巨大在线播放| 国产午夜精品论理片| av在线亚洲专区| 亚洲在久久综合| 色5月婷婷丁香| 亚洲欧美日韩东京热| 伦精品一区二区三区| 夜夜爽夜夜爽视频| 成人美女网站在线观看视频| 午夜久久久久精精品| 在线观看人妻少妇| 丝袜喷水一区| 蜜桃久久精品国产亚洲av| 国产精品精品国产色婷婷| 99热这里只有是精品在线观看| 亚洲av中文字字幕乱码综合| 亚洲乱码一区二区免费版| 国产一区二区亚洲精品在线观看| 亚洲av中文av极速乱| 亚洲欧美精品自产自拍| 亚洲成色77777| 高清午夜精品一区二区三区| 亚洲av日韩在线播放| 国产免费福利视频在线观看| 永久免费av网站大全| 亚洲av日韩在线播放| 汤姆久久久久久久影院中文字幕 | 欧美日韩精品成人综合77777| 哪个播放器可以免费观看大片| 街头女战士在线观看网站| 街头女战士在线观看网站| 国产 一区精品| 久久久久精品久久久久真实原创| 久久这里只有精品中国| 哪个播放器可以免费观看大片| 国产不卡一卡二| 亚洲怡红院男人天堂| 九九久久精品国产亚洲av麻豆| 国产 亚洲一区二区三区 | 亚洲熟女精品中文字幕| 国产伦精品一区二区三区视频9| 99热网站在线观看| 久久久久久久久久黄片| 亚洲精品色激情综合| 丰满乱子伦码专区| 久久精品综合一区二区三区| 天美传媒精品一区二区| 国产精品久久视频播放| 一区二区三区乱码不卡18| 春色校园在线视频观看| 2021少妇久久久久久久久久久| 在线免费十八禁| 韩国av在线不卡| 亚洲av不卡在线观看| 超碰97精品在线观看| 狠狠精品人妻久久久久久综合| 极品教师在线视频| 亚洲美女搞黄在线观看| 国产v大片淫在线免费观看| 久久久色成人| 秋霞在线观看毛片| 极品教师在线视频| 国产美女午夜福利| 乱系列少妇在线播放| 中文字幕亚洲精品专区| 亚洲不卡免费看| 国产v大片淫在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 一级爰片在线观看| 伊人久久国产一区二区| 亚洲三级黄色毛片| 欧美97在线视频| 搞女人的毛片| 秋霞伦理黄片| a级一级毛片免费在线观看| 国产伦在线观看视频一区| 免费大片黄手机在线观看| 大香蕉久久网| 国产成人精品久久久久久| 亚洲乱码一区二区免费版| 免费黄频网站在线观看国产| 午夜爱爱视频在线播放| 99热6这里只有精品| 亚洲人成网站在线播| 黄色欧美视频在线观看| 日韩在线高清观看一区二区三区| 国产成人freesex在线| 在线a可以看的网站| 日韩一本色道免费dvd| 国产真实伦视频高清在线观看| 亚洲精品,欧美精品| 日韩精品有码人妻一区| 午夜激情久久久久久久| a级毛片免费高清观看在线播放| 两个人视频免费观看高清| 性色avwww在线观看| 精品人妻熟女av久视频| 成人二区视频| 成年av动漫网址| 天堂网av新在线| 国产亚洲精品av在线| 尾随美女入室| 成人亚洲精品一区在线观看 | 婷婷色麻豆天堂久久| 哪个播放器可以免费观看大片| 免费av毛片视频| 亚洲国产欧美人成| 国产综合精华液| 少妇猛男粗大的猛烈进出视频 | or卡值多少钱| 青春草亚洲视频在线观看| 国产av不卡久久| 欧美另类一区| 国产免费视频播放在线视频 | 成年版毛片免费区| 你懂的网址亚洲精品在线观看| 你懂的网址亚洲精品在线观看| 亚洲激情五月婷婷啪啪| 深夜a级毛片| 久久精品国产自在天天线| 日韩一本色道免费dvd| 婷婷六月久久综合丁香| 亚洲av免费在线观看| 欧美另类一区| 国产成人a∨麻豆精品| 丰满少妇做爰视频| 国产精品久久久久久av不卡| 国产成人aa在线观看| 久久草成人影院| 久久久欧美国产精品| av在线蜜桃| 国产不卡一卡二| 淫秽高清视频在线观看| 午夜老司机福利剧场| 在线免费观看不下载黄p国产| 亚洲av电影不卡..在线观看| 午夜久久久久精精品| 久久这里有精品视频免费| 欧美+日韩+精品| 看十八女毛片水多多多| 日韩av在线免费看完整版不卡| 少妇丰满av| 亚洲欧洲日产国产| 91在线精品国自产拍蜜月| 婷婷色综合www| 亚洲成人久久爱视频| 干丝袜人妻中文字幕| 夜夜爽夜夜爽视频| 特级一级黄色大片| 美女脱内裤让男人舔精品视频| 国产极品天堂在线| 亚洲av成人av| 久久综合国产亚洲精品| 午夜精品在线福利| 别揉我奶头 嗯啊视频| 内射极品少妇av片p| 男人舔奶头视频| 日韩大片免费观看网站| 男女视频在线观看网站免费| 久久99热6这里只有精品| 极品少妇高潮喷水抽搐| 日本熟妇午夜| 22中文网久久字幕| 亚洲精品乱久久久久久| 91精品伊人久久大香线蕉| 国产69精品久久久久777片| 免费观看精品视频网站| 日本免费在线观看一区| 黄片wwwwww| 嫩草影院新地址| 久久精品久久久久久久性| 中文字幕av在线有码专区| 国产伦一二天堂av在线观看| 22中文网久久字幕| 免费电影在线观看免费观看| 91久久精品国产一区二区成人| 亚洲精品中文字幕在线视频 | 乱系列少妇在线播放| 日韩欧美国产在线观看| 国产一区二区三区综合在线观看 | 97人妻精品一区二区三区麻豆| 亚洲国产欧美在线一区| 色播亚洲综合网| 伊人久久精品亚洲午夜| 日本午夜av视频| 日韩欧美精品免费久久| 夜夜爽夜夜爽视频| 亚洲成人精品中文字幕电影| 久久综合国产亚洲精品| 亚洲av电影不卡..在线观看| 亚洲第一区二区三区不卡| 夫妻午夜视频| 亚洲精品中文字幕在线视频 | av福利片在线观看| 欧美精品国产亚洲| 麻豆精品久久久久久蜜桃| 国产午夜精品论理片| 91aial.com中文字幕在线观看| 听说在线观看完整版免费高清| 少妇人妻精品综合一区二区| 国产日韩欧美在线精品| 九九在线视频观看精品| 国产精品av视频在线免费观看| 观看美女的网站| 乱系列少妇在线播放| 精品一区二区三卡| 一区二区三区高清视频在线| xxx大片免费视频| 99久国产av精品国产电影| 乱码一卡2卡4卡精品| 黄色日韩在线| 日韩伦理黄色片| 亚洲精品久久午夜乱码| 天堂俺去俺来也www色官网 | 精品国产露脸久久av麻豆 | 欧美成人a在线观看| 久久久久久久国产电影| 麻豆成人av视频| 中文欧美无线码| 久久久精品欧美日韩精品| 久久99热6这里只有精品| 人妻一区二区av| 成人国产麻豆网| 亚洲高清免费不卡视频| 日本三级黄在线观看| 成人高潮视频无遮挡免费网站| av播播在线观看一区| 日韩强制内射视频| 国产淫片久久久久久久久| 中文字幕久久专区| ponron亚洲| 亚洲国产欧美人成| 亚洲成人久久爱视频| 免费人成在线观看视频色| 日韩人妻高清精品专区| 国产亚洲午夜精品一区二区久久 | 春色校园在线视频观看| 日日啪夜夜爽| av.在线天堂| 天堂√8在线中文| 插阴视频在线观看视频| 国产在视频线在精品| 国产男女超爽视频在线观看| 日本wwww免费看| 一级毛片我不卡| 国产成人精品一,二区| 国产乱人视频| 狂野欧美激情性xxxx在线观看| 亚洲欧美一区二区三区国产| 在线播放无遮挡| av在线观看视频网站免费| 我要看日韩黄色一级片| 国产精品蜜桃在线观看| 伦理电影大哥的女人| 亚洲精品成人久久久久久| 免费观看无遮挡的男女| 中文字幕免费在线视频6| 看免费成人av毛片| 在线免费观看的www视频| 日本一二三区视频观看| 一级毛片aaaaaa免费看小| 久久精品人妻少妇| 免费大片18禁| 欧美成人精品欧美一级黄| 国产黄片美女视频| 99热网站在线观看| 久久久久九九精品影院| 天堂网av新在线| 精品人妻偷拍中文字幕| a级毛片免费高清观看在线播放| 免费看av在线观看网站| 精品少妇黑人巨大在线播放| 亚洲成人中文字幕在线播放| 欧美日韩视频高清一区二区三区二| 建设人人有责人人尽责人人享有的 | av线在线观看网站| 成人亚洲精品一区在线观看 | 能在线免费看毛片的网站| videos熟女内射| 精品国产一区二区三区久久久樱花 | 99久久中文字幕三级久久日本| 一本久久精品| 天堂av国产一区二区熟女人妻| 亚洲精品视频女| 91久久精品国产一区二区成人| 老师上课跳d突然被开到最大视频| 亚洲av二区三区四区| 久久这里只有精品中国| 一区二区三区乱码不卡18| 联通29元200g的流量卡| 汤姆久久久久久久影院中文字幕 | 精品人妻熟女av久视频| 国产亚洲精品av在线| 国产真实伦视频高清在线观看| 欧美xxxx黑人xx丫x性爽| 免费人成在线观看视频色| 22中文网久久字幕| 亚洲av一区综合| 国产一级毛片在线| 波野结衣二区三区在线| 97超视频在线观看视频| 51国产日韩欧美| 国产高清不卡午夜福利| 精品一区在线观看国产| 日本黄大片高清| 久久99精品国语久久久| 亚洲精品久久午夜乱码| 高清在线视频一区二区三区| 22中文网久久字幕| 久久久久久国产a免费观看| 干丝袜人妻中文字幕| 九九在线视频观看精品| 美女国产视频在线观看| 亚洲国产精品成人久久小说| 99re6热这里在线精品视频| 亚洲综合色惰| 熟女人妻精品中文字幕| 日韩,欧美,国产一区二区三区| 在线免费观看的www视频| 午夜爱爱视频在线播放| 伊人久久精品亚洲午夜| 一级毛片 在线播放| 水蜜桃什么品种好| 女人久久www免费人成看片| 国产成人精品婷婷| 99热全是精品| 色综合色国产| 一级片'在线观看视频| 亚洲最大成人手机在线| 日韩视频在线欧美| 国产av在哪里看| 日韩av在线大香蕉| 99热这里只有是精品50| 亚洲精品乱码久久久久久按摩| 午夜亚洲福利在线播放| 中文在线观看免费www的网站| 亚洲精品自拍成人| 国模一区二区三区四区视频| 80岁老熟妇乱子伦牲交| 亚洲欧美成人综合另类久久久| 一区二区三区乱码不卡18| 免费av观看视频| 亚洲国产精品专区欧美| 99热6这里只有精品| 人人妻人人澡人人爽人人夜夜 | 禁无遮挡网站| 尾随美女入室| 国产成人91sexporn| 久久久久网色| 日韩国内少妇激情av| 高清日韩中文字幕在线| 免费在线观看成人毛片| 免费av不卡在线播放| 嫩草影院精品99| 色尼玛亚洲综合影院| 日韩av在线免费看完整版不卡| 丝袜美腿在线中文| av专区在线播放| 亚洲av中文av极速乱| 六月丁香七月| 亚洲国产日韩欧美精品在线观看| 免费播放大片免费观看视频在线观看| 国产人妻一区二区三区在| 岛国毛片在线播放| 久久久国产一区二区| 精品99又大又爽又粗少妇毛片| 在线观看av片永久免费下载| 免费观看无遮挡的男女| 99久久精品一区二区三区| 日本wwww免费看| 久久久久性生活片| 亚洲av二区三区四区| 麻豆国产97在线/欧美| 丝瓜视频免费看黄片| 黄片无遮挡物在线观看| 午夜精品在线福利| 搞女人的毛片| 免费不卡的大黄色大毛片视频在线观看 | 午夜精品国产一区二区电影 | 国产伦理片在线播放av一区| 久久久久久伊人网av| 午夜精品在线福利| 久久久久久久久久成人| 亚洲精品乱久久久久久| 国产亚洲一区二区精品| 22中文网久久字幕| 美女内射精品一级片tv| 亚洲国产日韩欧美精品在线观看| 亚洲av免费在线观看| 亚洲av不卡在线观看| av网站免费在线观看视频 | 久久久久久久国产电影| 日韩一本色道免费dvd| 69av精品久久久久久| 欧美潮喷喷水| 热99在线观看视频| 欧美xxxx性猛交bbbb| 国产精品99久久久久久久久| 夫妻午夜视频| 九九爱精品视频在线观看| 久久久亚洲精品成人影院| 亚洲高清免费不卡视频| 色5月婷婷丁香| 久久久国产一区二区| 熟妇人妻不卡中文字幕| 男女边摸边吃奶| 亚洲综合精品二区| 国产成人freesex在线| 亚洲内射少妇av| 国产在线一区二区三区精| 亚洲精品乱码久久久久久按摩| 亚洲欧美清纯卡通| 国产一区二区三区综合在线观看 | 在线 av 中文字幕| 日本熟妇午夜| 2018国产大陆天天弄谢| 亚洲图色成人| 久久99精品国语久久久| 高清视频免费观看一区二区 | 小蜜桃在线观看免费完整版高清| 日本午夜av视频| 少妇人妻精品综合一区二区| 亚洲第一区二区三区不卡| av专区在线播放| 九九久久精品国产亚洲av麻豆| 国产69精品久久久久777片| 边亲边吃奶的免费视频| 69av精品久久久久久| 亚洲国产日韩欧美精品在线观看| 五月玫瑰六月丁香| 久久精品国产亚洲av天美| 亚洲乱码一区二区免费版| 中文乱码字字幕精品一区二区三区 | 神马国产精品三级电影在线观看| 一本一本综合久久| 黄色日韩在线| 嫩草影院新地址| 麻豆成人av视频| 国产精品精品国产色婷婷| 欧美97在线视频| 一级毛片 在线播放| 成人亚洲精品av一区二区| 亚洲乱码一区二区免费版| 国产人妻一区二区三区在| 国产av码专区亚洲av| 女人十人毛片免费观看3o分钟| 欧美人与善性xxx| 国产精品爽爽va在线观看网站| 夜夜爽夜夜爽视频| 五月玫瑰六月丁香| 精品人妻一区二区三区麻豆| 少妇丰满av| 欧美日韩亚洲高清精品| av播播在线观看一区| 三级毛片av免费| 午夜福利网站1000一区二区三区| 亚洲精品国产av成人精品| 人体艺术视频欧美日本| 六月丁香七月| 免费无遮挡裸体视频| 久久97久久精品| 中国美白少妇内射xxxbb| 男女国产视频网站| 免费人成在线观看视频色| 国产成年人精品一区二区| 国产乱人偷精品视频| 国内揄拍国产精品人妻在线| 如何舔出高潮| 97人妻精品一区二区三区麻豆| 麻豆精品久久久久久蜜桃| 国产黄色免费在线视频| 51国产日韩欧美| 身体一侧抽搐| 大香蕉97超碰在线| 在线天堂最新版资源| 精品久久久精品久久久| 国产黄片美女视频| 亚洲欧美日韩卡通动漫| 国产伦在线观看视频一区| 我要看日韩黄色一级片| 波多野结衣巨乳人妻| 国产国拍精品亚洲av在线观看| 国产一区有黄有色的免费视频 | 午夜福利视频精品| 大香蕉久久网| 亚洲精品久久午夜乱码| 免费av观看视频| 噜噜噜噜噜久久久久久91| av专区在线播放| 成人特级av手机在线观看| 欧美高清成人免费视频www| 欧美另类一区| 看黄色毛片网站| 久久久精品94久久精品| 国产伦精品一区二区三区四那| 高清av免费在线| 中文字幕久久专区| 国产av不卡久久| 国产探花在线观看一区二区| 久久久国产一区二区| 成年女人在线观看亚洲视频 | 日本猛色少妇xxxxx猛交久久| 成人综合一区亚洲| 国产国拍精品亚洲av在线观看| 国产成人精品一,二区| 国产亚洲91精品色在线| 成年女人在线观看亚洲视频 | 一级片'在线观看视频| 欧美97在线视频| 国产国拍精品亚洲av在线观看| 联通29元200g的流量卡| 一级片'在线观看视频| 青春草视频在线免费观看| 亚洲综合色惰| 内地一区二区视频在线| 日产精品乱码卡一卡2卡三| 春色校园在线视频观看| 免费av观看视频| 亚洲欧洲国产日韩| 在线免费十八禁| 免费av观看视频| 久久久久久久久大av| 久久精品久久久久久久性| 精品一区二区三区人妻视频| 男女视频在线观看网站免费| 日韩视频在线欧美| 亚洲内射少妇av| 免费人成在线观看视频色| 国产精品国产三级国产av玫瑰| 十八禁国产超污无遮挡网站| 少妇的逼好多水| 日韩在线高清观看一区二区三区| 18禁在线播放成人免费| 内射极品少妇av片p| 国产av国产精品国产| 欧美最新免费一区二区三区| av卡一久久| .国产精品久久| 亚洲综合精品二区| 男的添女的下面高潮视频| 国产成人aa在线观看| 在线观看av片永久免费下载| 三级毛片av免费| 亚洲乱码一区二区免费版| 蜜桃久久精品国产亚洲av| 亚洲av.av天堂| 啦啦啦韩国在线观看视频| 激情五月婷婷亚洲| 国产伦在线观看视频一区| 日日摸夜夜添夜夜爱| 欧美区成人在线视频| 日韩亚洲欧美综合| 午夜福利高清视频| 欧美3d第一页| 精华霜和精华液先用哪个| 又爽又黄a免费视频| 久久久国产一区二区| 日韩在线高清观看一区二区三区| 国产精品女同一区二区软件| 日韩,欧美,国产一区二区三区| 国产精品久久久久久av不卡| 女人久久www免费人成看片| 男插女下体视频免费在线播放| 国内少妇人妻偷人精品xxx网站| 亚洲精品第二区| 少妇人妻一区二区三区视频|