• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geochemical and geochronological studies of the Aketas granite from Fuyun County,Xinjiang:the implications of the petrogenesis and tectonic setting

    2015-10-25 02:03:16XiaofengWeiXinZhangJiuhuaXuRufuDingGuoruiZhangYongTang
    Acta Geochimica 2015年4期
    關鍵詞:角巖含礦順層

    Xiaofeng Wei·Xin Zhang·Jiuhua Xu·Rufu Ding· Guorui Zhang·Yong Tang

    Geochemical and geochronological studies of the Aketas granite from Fuyun County,Xinjiang:the implications of the petrogenesis and tectonic setting

    Xiaofeng Wei1,2·Xin Zhang3·Jiuhua Xu1·Rufu Ding2· Guorui Zhang1·Yong Tang3

    As the wall rock of the Aketas gold deposit,the Aketas granite is about 45 km away from Fuyun County,Xinjiang Province.The zircon weighted mean U—Pb age of the Aketas granite is 309.0±4.7 Ma,indicating that the Aketas granite was emplaced during the late Carboniferous.The Aketas granite belongs to the High-K calcalkaline series,with SiO2content from 63.00 to 68.20%,K2O content from 3.06 to 4.49%and Na2O content from 4.14 to 6.02%.The Alkaline Ratio(AR)of the Aketas granite is high,from 1.89 to 3.47,and is 2.95 on average. The Aketas granite has lowPREE(92.42—122.73 ppm)and highPLREE/PHREE ratios(6.54—11.88).For the trace elements,the Aketas granite is enriched in LILE(Rb,U,Th,K)and incompatible elements,and marked depleted in HFSE(Nb,Ta,P,Ti).The geochemical characteristics of the Aketas granite suggest that it is a typical I-type and volcanic arc granite,and that the crystallization of clinopyroxene and hornblende is notable during the magmatic evolution.In combination with the regional tectonic studies,we propose that the emplacement of the Aketas granite implies the Altai and East Junggar area was still dominated by a subduction system at~309 Ma.

    The Central Asian Orogenic Belt·Volcanic arc granite·Subduction·Zircon U—Pb age

    1 Introduction

    As one of the largest Phanerozoic orogenic belts in the world,the Central Asian Orogenic Belt is located among the Siberia,Eastern Europe,Tarim and North China Cratons(Sengo¨r et al.1993;Badarch et al.2002;Jahn et al. 2004;Yakubchuk 2004;Xiao et al.2008).From the Neoproterozoic to the late Paleozoic,the Central Asian Orogenic Belt had experienced subduction,terrane accretion,craton collision and post-collisional extension.Such a long-term,complex tectonic evolution not only contributed to its massive continental crust growth in the Phanerozoic,but also played a crucial role in the formation of the Central Asian metallogenic province(Sengo¨r et al. 1993;Xiao et al.2004,2009,2010;Chen and Jahn 2004;Windley et al.2007).

    The Siberia-Altai block and Kazakhstan-Junggar block are the important parts of the Central Asian Orogenic Belt,and are located in Russia,Kazakhstan,China and Mongolia-Kazakhstan(Fig.1a,Chen and Jahn 2004).The late Paleozoic tectonic evolution of the Siberia-Altai block and Kazakhstan-Junggar block has drawn extensive attention for the past years(Filippova et al.2001;Li et al.2003;Zhang et al.2003;Buslov et al.2004;Windley et al.2007;Xiao et al.2009,2010,2014).Recent studies show that the Altai orogen was developed as an island arc within the Paleo-Asian Ocean during the early Paleozoic,and was accreted onto the southern margin of the Siberia block during the middle Paleozoic(Sun et al.2008;Cai et al. 2011a,b,c;Xiao and Santosh 2014).Collision between the Siberia and the Kazakhstan blocks probably occurredduring the late Paleozoic,and this collision acted directly between the Altai orogenic belt and the East Junggar(Filippova et al.2001;Li et al.2003;Zhang et al.2003;Buslov et al.2004;Windley et al.2007;Xiao et al.2009,2010,2014).

    Fig.1 a Tectonic sketch map of the Junggar-Altai area;b Geological sketch map of the studied area;c geological sketch map of the Aketas granite(modified after Wang and Xu 2006;Pan et al.2012)

    However,there is a considerable debate on the age of the subduction-collision of the Altai and Junggar blocks:from Ordovician to Silurian(Kheraskova et al.2003),from Devonian to Carboniferous(Hendrix et al.1996),and from Carboniferous to Permian(Filippova et al.2001;Li et al.2003;Zhang et al.2003;Buslov et al.2004). After the final collision between the Siberia and Kazakhstan plates,the Altai and East Junggar region was dominated by a post-collision extensional tectonic setting(Wang et al.2003,2010;Chen 2011;Ren et al.2011;Lu¨ et al.2012a,b).

    The Aketas granite is located at the contact zone between the Altai orogen and East Junggar,which is obviously an ideal place to study the tectonic evolution of Altai orogen and East Junggar(He et al.1994;Li et al. 2003,2006;Xiao et al.2004;Yang et al.2010;Li et al. 2010;Wang et al.2010;Dong et al.2012).However,little is known about the age and petrology of the Aketas granite.Thus,we carriedoutthe geochemicaland geochronological studies of Aketas granite in this work,in order to unravel the petrogenesis and the tectonic setting of the granite.

    2 Regional geological background

    Aketas granite is located at the contact zone of the NWW-trending Sarbulak-Aketas and NNW-trending Kayierte faults(Fig.1b).Theexposedstratainthestudiedareaarethe Middle Devonian Beitashan group(D2b),Yundukala group(D2y)andlateCarboniferousNanmingshuigroup(C1n).The Beitashan group(D2b)is mainly composed of andesite breccia,andesitic volcanic,limestone and tuffaceous sandstone,and the Nanmingshui group(C1n)is comprised of carbonaceoussandstoneandlimestone.Extensivemagmatic activities occurred within this region,and can be subdivided into two phases:during the Devonian,this region was dominated by mafic magmatism,including the rock types of diabase,diorite,dioritic porphyrite;and during the Carboniferous,the leading magmatism was mafic-acidicbimodal,producing the Kalatongke gabbro-norite and the Aketas granite(Fig.1b).

    Fig.2 Field and microscope photographs for the Aketas granite:a field photograph of the Aketas granite;b hand specimen picture of the Aketas granite;c—f microscope pictures of the Aketas granite.Pl plagioclase,Q quartz,Ser sericite,Pr perthite,Mic microcline perthite

    Fig.3 The cathodoluminescence(CL)images of the zircons from the Aketas granite

    Table 1 Zircon U—Pb dating of the Aketas granite

    3 Petrological characteristics of Aketas granite

    The Aketas granite has two oval-shaped rock bodies.The northwestern rock body is defined by a cropping of 400×300 m2,while the other one on the southeast has an area of 400×100 m2(Fig.1c).The Aketas granite intruded into the middle Devonian Beitashan group(D2b)(Fig.1b).The alteration of the wall rocks mainly shows phyllite sericitization,silicification,epidotization,potassic alteration.

    The Aketas granite is light red and light gray in color,with a subhedral granular texture and massive structure in the hand specimen.The rock-forming minerals mainly includeplagioclase(40%—50%),K-feldspar(30%—40%),quartz(10%—15%)and biotite(1%—2%),with a small amount of accessory minerals of zircon,apatite,and magnetite.Under the microscope,the plagioclase is grey in color,and is a hypidiomorphic column,with the size of 0.2—3.0 mm.The polysynthetic twins are developed,with sericitization and clayization alteration.The K-feldspar with a size of 0.3—3.0 mm is a hypidiomorphic-euhedral column in shape.The quartz with the size of 0.5—3.5 mm is a xenomorphic granular(Fig.2).

    4 Analytical samples

    4.1 Samples characteristics

    We collected a total of 30 outcrop samples and core samples of the Aketas granite in this study,and tried to avoid contact zones and alteration zones in order to ensure that the samples were fresh.After careful microscopic identification,we picked out six samples on which to conduct the major and trace elements geochemical analysis.Samples for the LA-ICP-MS zircon U—Pb geochronological analysis were all taken from the drill-core,and the coordinates of the sampling location was 46°44′01′N,89°48′04′E.

    4.2 Analytical methods

    Major and trace elements analyses of the Aketas granite were carried out in the analytical laboratory of Beijing Research Institute of Uranium Geology.Major elements were carried out with the X-ray fluorescence(XRF)spectrometry method,XRF was implemented in accordance with the national standard GB/T 14506.28-1993,with RSD<2.5%.The FeO contents were determined by wet chemical analysis separately,and the loss on ignition(LOI)was obtained by baking it in the oven at 1000°C high temperature with 90 min,then weighing.Analysis for trace elements was performed by Element I high-resolutioninductively coupled plasma mass spectrometer(HR-ICPMS)made by Finnigan MAT,with RSD<3%.The analytical processes were performed with room temperature of 20°C and relative humidity of 30%.

    Fig.4 U—Pb concordia diagrams of zircons from the Aketas granite

    Table 2 Major element contents of the Aketas granite(wt%)

    The LA-ICP-MS zircon U—Pb dating was carried out at the State Key Laboratory of Continental Dynamics of the Northwest University.The instrument for the ICP-MS is a combination of the Geo Las 200 M laser ablation system with the Elan 6100DRC ICP-MS made by German Micronas.During the analysis,a laser frequency of 10 Hz, with a laser diameter of 30 μm and laser energy of 32—36 mJ were adopted,with the ablated depths of 20—40 μm.International standard zircon 91500 was used as the external standard.Details of the analytical methods and data processing approach are referred to Yuan et al.2003. The apparent and field dia U—Pb ages were calculated by using the ISOPLOT program(Ludwig 1991).Uncertainty of individual analysis was reported with 1σ and the weighted mean206Pb/238U age was calculated at the 2σ level.

    5 Analytical results

    5.1 Zircon U-Pb field dialog

    The zircons of the Aketas granite are long columnar,euhedral,pale yellow and transparent crystals with a length of 0.05—0.15 mm and a width of 0.05—0.10 mm.

    A total of 18 spots of zircons from the Aketas granite are selected for the determination of the U and Pb isotope.The concentric oscillatory zones of the zircons are observed clearly in the cathodoluminescence(CL)images,showing the typical characteristics of the magmatic zircons(Fig.3). However,some zircons have a dark rim,which was probably produced by the late hydrothermal activity,such as the spots of AG-01-01,AG-01-03,AG-01-05,AG-01-08,or AG-01-16(Fig.3).The U—Pb isotopic compositions of the 18 analyzed zircons are presented in Table 1,showing the features of magmatic zircons with high Th/U ratios of 0.63—1.47,with an average of 0.89(Hoskin and Black 2000).

    In the diagram,16 analyzed spots are very close to the concordantline,withaweightedaverageageof 309.0±4.7 Ma(MSWD=1.4)(Fig.4).Meanwhile,two spots of AG-01-05 and AG-01-16 are deviated from the concordant line,and have younger U—Pb ages of 225.8 and 232.7 Ma.In the CL image,these two spots are quite near the rim of the zircon,and reach the dark edge.In addition,their Th/U ratios are 0.63 and 0.69,lower than the average value of 0.89 of the 18 spots.Therefore,these two measurement points are likely to have been affected by late hydrothermal metasomatism,and they can not represent the native zircon ages(Fig.3).

    5.2 Major element geochemistry

    Fig.5 Classification diagrams of the Aketas granite:a QAP diagram;b TAS diagram;c K2O versus SiO2diagram;d A/NK versus A/CNK diagram(after Maniar and Piccoli 1989;Wilson 1989)

    The Aketas granite's SiO2content ranged from 63.00%to 68.20%,K2O content from 3.06%to 4.49%and Na2O content from 4.14%to 6.02%(Table 2).The major elements show features of high FeO and Al2O3(with FeO content of 3.18%—5.98%and Al2O3content of 15.97%—17.45%),low MgO,TiO2and CaO(with MgO content of 0.22%—1.07%,TiO2content of 0.21%—0.36%and CaO content of 1.14%—2.85%).In the QAP and TAS diagrams,the plots of the Aketas granite fall mainly within the‘quartz monzonite diorite''and the‘quartz monzonite''fields.Combined with the microscopic observations,we named it as quartz monzonite(Fig.5a,b).

    In the SiO2—K2O diagram,the samples of the Aketas granite are distributed in the high-K calc-alkaline series(Fig.5c).In the A/CNK-A/NK diagram,most of the samples fall into the‘metaluminous''or weakly‘peraluminous''area,showing features on a transition from calcalkaline to alkaline(Fig.5d).In addition,the Rittman index(σ)of the Akrtas granite is from 2.82 to 3.89.

    5.3 Trace elements

    In the primitive mantle normalized spider diagram(Fig.7),samples from the Aketas granite are enriched in LILE(Rb,U,Th,K)and incompatible elements,and are relatively depleted in high field strength elements(Nb,Ta,P and Ti),illustrating the participation of a large number of crust source material during the magmatic processes.

    Table 3 Trace element compositions of the Aketas granite(10-6)

    6 Discussion

    6.1 Zircon U-Pb age

    The zircon LA-ICP-MS U—Pb dating of the Aketas granite gives a weighted mean age of 309.0±4.7 Ma,indicating a late Carboniferous age for the emplacement of the granite.

    Fig.6 Chondrite-normalized REE pattern diagram of the Aketas granite(after Sun and McDonough 1979)

    Fig.7 Primitive mantle normalized spider diagram of the Aketas granite(after Sun and McDonough 1979)

    6.2 Petrogenesis

    6.2.1 Rock classification

    In the 10000Ga/Al versus Ce diagram and the 10000Ga/Al versus Zr diagram,the samples of the Aketas granite are plotted into the I-,S-,M-type granite area(Fig.8a,b).In addition,sample spots of the Aketas granite in the SiO2versus Zr diagram and the SiO2versus P2O5diagram show a good match with I-type granite,ruling out the possibility of a S-type granite(Fig.8c,d).Therefore,the Aketas granite can be classified as an I-type granite.

    Fig.8 Geochemical classification diagrams of the Aketas granite:a 10000Ga/Al versus Ce;b 10000Ga/Al versus Zr;c SiO2versus Zr;d SiO2versus P2O5(after Collins et al.1982;Huang et al.2013)

    6.3 Magmatic evolution

    The analytic data of the Aketas granite are consistent with the trend of crystallization differentiation in the Zr versus Zr/Nb diagram,illustrating that its magmatic composition is mainly controlled by crystallization differentiation rather than partial melting during the magmatic evolution(Fig.9a).As shown in the Sr versus Rb/Sr diagram,compared with plagioclase and biotite,the fractional crystallization of orthopyroxene and amphibole is much stronger,which is compatible with the slight Eu depletion feature in the REE diagram(Fig.9b). Likewise,in the Eu/Eu*versus Ba diagram,the sample plots of the Aketas granite show that the fractional crystallization of plagioclase and K-feldspar is obviously limited(Fig.9c). Moreover,as shown in Fig.9d,sample plots from the Aketas granite are parallel to the crust contamination line,indicating a great deal of involvement from the crustal materials.

    In the primitive mantle normalized spider diagram,samples of the Aketas granite show a negative anomaly of Nb and Ta,indicating a significant contamination of crustal materials(Fig.7,Rudnick and Gao 2003).Commonly,the crustal material is accepted to be sourced from either the partial melting of ancient crust(Nelson et al.1986;Bernard-Griffiths et al.1991)or the subduction-related fluids and sediments(Tatsumi et al.1986;Donnelly et al.2004). Previous studies suggested that the subduction-related fluids are featured by enrichment in LILE(Rb,Ba,Sr),U and Pb(Seghedi et al.2001),hence the high Ba/Nb,Sr/Th andBa/Thratios(46.75—128.18,60.84—250.18and 117.92—271.27,respectively)of the Aketas granite indicate an involvement of subduction-related fluids during the magmatic evolution.In addition,the depletion of Th of the Aketas granite may imply that the involvement of oceanic sediments is limited(Guo et al.2006).

    Fig.9 Diagrams for magmatic evolution of the Aketas granite:a Zr versus Zr/Nb;b Sr versus Rb/Sr;c Eu/Eu*versus Ba;d Th/Nb versus Zr(after Eby 1990;Geng et al.2009;Zhong et al.2013)

    6.4 Tectonic environment

    As shown in the Zr versus Zr/Nb diagram and Sr versus Rb/ Sr diagram,the spots of the Aketas granite are plotted within the island-arc-granite area,indicating that the granite was originated from an island arc tectonic setting(Fig.10a,b).In the(La/Sm)Nversus Ba/Th diagram and the Al2O3+Fe2O3+MgO+TiO2versus Al2O3/(Fe2-O3+MgO+TiO2)diagram,the plots of the Aketas granite match with the trend lines of‘fluid added''and‘high pressure'',indicating that a great amount of fluids were involved in its magma source and that it was formed in a high pressure tectonic environment,which was well accordant with the island-arc magmatism(Fig.10c,d).

    6.5 Petrogenetic model

    The geochemical characteristics of the Aketas granite suggest that it is an I-type island arc granite with intensive crystallization of orthopyroxene and amphibole.As to island-arc magmatism,the Aketas granite was probably derived from the partial melting of the mantle wedge and/ or oceanic curst with the contamination of slab materials,which corresponds to the feature of fluid involvement,as shown in Fig.10c(Pearce et al.1984).Therefore,the petrogenesis of the Aketas granite can be divided into the following three stages:(1)the subducted slab dehydrates due to high pressure;(2)the fluid from the subducted slab triggers the mantle wedge and/or oceanic crust to partial melt;(3)the magma moves upward and crystallizes into granite after a long evolution(Fig.11).

    Fig.10 Tectionic discrimination diagrams of the Aketas granite:a Y+Nb versus Rb;b Rb/30-Hf—Ta*3;c(La/Sm)Nversus Ba/Th;d Al2O3+Fe2O3+MgO+TiO2versus Al2O3/(Fe2O3+MgO+TiO2)(after Pearce et al.1984;Geng et al.2009)

    Fig.11 Sketch map of the tectonic setting of the Altay-East Junggar area during the late Carboniferous(after Xiao et al. 2008;Shen et al.2011)

    RecentzirconU—Pbdatingresultsforigneousrocksindicate that the magmatism was widespread in the Altai-Junggar area,continuously from early Paleozoic to early Mesozoic(Zhu et al.2006;Briggs et al.2007;Yuan et al.2007;Long et al.2007;Sun et al.2008;Cai et al.2011a,b,c;Shen et al. 2011).It is noted that the subduction-related magmatism lasted from 497 Ma to 313 Ma,and the first record of postcollision magmatism of Saertielieke granite in the East Junggar was dated at 308 Ma(Long et al.2007;Sun et al. 2008;Cai et al.2011a,b,c;Shen et al.2011;Wang et al. 2011).ThegeochemicalcharacteristicsoftheAketasgranite indicate that it was probably derived from the island-arc magmatism in a subduction tectonic setting(Fig.11).In combination with the geochronology of the rock,it can beproposed that the Altai-Junggar area was still controlled by subduction at~309 Ma.More recently,after systematic discussions of the petrogenesis and tectonic setting of the granites in the Altai-Junggar area,a late Carboniferous to Early Permian collision is becoming more acceptable to an increasing number of authors(Xiao et al.2008,2009,2010,2014;Chen 2011;Han et al.2010,2011;Xu et al.2014;Zhang et al.2014;Zhang and Zhang 2014;Chen et al.2015;Muhetaer et al.2015;Yang et al.2015).Therefore,the emplacement of this island-arc granite of the Aketas granite demonstrates that the collision of the East Junggar and the Altai orogen probably occurred after~309 Ma,which provides a new evidence for further studies on the exact collision time between the Siberia and Kazakhstan blocks.

    7 Conclusions

    (1) The zircon U—Pb isotope data demonstrate that the Aketas granite was emplaced at 309.0±4.7 Ma.

    (2) The Aketas granite belongs to the High-K cal-calkaline series,with a SiO2content from 63.00%to 68.20%,K2O content from 3.065%to 4.49%and Na2O content from 4.14%to 6.02%.Combined with microscopic observation,we named it as a quartz monzonite.

    (3) The geochemical characteristics reveal that the Aketas granite is an I-type island arc granite.During the magmatic evolution of the Aketas granite,the fractionalcrystallizationofclinopyroxeneand amphibole was intense,and a great deal of crustal materials have involved in its magma source.

    (4) Geochronological studies of the Aketas granite suggest that Altai-East Junggar area was still dominated by a subduction tectonic setting at~309 Ma.

    AcknowledgmentsThis research project was jointly financially supported by the Mineral Prospecting and Assessment project,CGS(1212011085020)and the National Nature Science Foundation of China(40972066).

    Badarch G,Cunningham WD,Windley BF(2002)A new terrane subdivision for Mongolia:implications for the Phanerozoic crustal growth of Central Asia.J Asian Earth Sci 21:87—110

    Bernard-Griffiths J,F(xiàn)ourcade S,Dupuy C(1991)Isotopic study(Sr,Nd,O and C)of lamprophyres and associated dykes from Tamazert(Moroco):crustal contamination processes and source characteristics.Earth Planet Sci Lett 103:190—199

    區(qū)內圍巖蝕變較發(fā)育,主要沿巖體內外接觸帶分布,蝕變主要有矽卡巖化、角巖化。其中含礦矽卡巖出露寬度為200~400m。鉆探表明,矽卡巖順層發(fā)育,受巖性控制明顯,上部為角巖化和矽卡巖化,深部矽卡巖化增強,厚度為50~100m,向南部傾斜,產狀300°~310°∠40°~50°,大致呈層狀披蓋在小巖株南東側。矽卡巖在地表風化后,呈黃褐色的土狀塊體,局部由于含硫化物較高,見赤鐵礦與褐鐵礦分布其中,外觀與鐵帽極為類似。角巖帶主要位于矽卡巖帶之下,以長英質角巖為主,少量呈夾層產于矽卡巖帶內部,并伴有矽卡巖化含銅磁鐵礦礦石。

    Briggs SM,Yin A,Manning CE,Chen ZL,Wang XF,Grove M(2007)Late Paleozoic tectonic history of the Ertix fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System.Geol Soc Am Bull 119:944—960

    Buslov MM,Watanabe T,F(xiàn)ujiwara Y,Iwata K,Smirnova LV,Yu Safonova I,Semakov NN,Kiryanova AP(2004)Late Paleozoic faults of the Altai region,Central Asia:tectonic pattern and model of formation.J Asian Earth Sci 23:655—671

    Cai K,Sun M,Yuan C,Long X,Xiao W (2011a)Geological framework and Paleozoic tectonic history of the Chinese Altai,NW China:a review.Russ Geol Geophys 52:1619—1633

    Cai K,Sun M,Yuan C,Zhao G,Xiao W,Long X,Wu F(2011b)Geochronology,petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai,NW China.Lithos 127:261—281

    Cai K,Sun M,Yuan C,Zhao G,Xiao W,Long X,Wu F(2011c)Prolonged magmatism,juvenile nature and tectonic evolution of the Chinese Altai,NW China:evidence from zircon U—Pb and Hf isotopic study of Paleozoic granitoids.J Asian Earth Sci 42:949—968

    Chen JF(2011)Geochemistry of the Part of the Plate of the Altai No. 3 Pegmatite and its formation and evolution.Institute of Geochemistry,Chinese Academy of Sciences,Guiyang(in Chinese)

    Chen B,Jahn BM (2004)Gensis of post-collisional granitoids an basement nature of the Junggar Terrane,NW China:Nd—Sr isotopeandtraceelementevidence.JAsianEarthSci 23:691—703

    Chen GW,Deng T,Liu R,Xia H,Liu Q(2015)Geochemistry of bimodal volcanic rocks in Permian Taerdetao formation in Awulale area of western Tianshan,Xinjiang.Acta Petrol Sin 31(1):105—118(in Chinese with English abstract)

    Collins WJ,Beams SD,White AJK(1982)Nature and origin of A type granites with particular reference to southeasten Australia. Contrib Mineral Petrol 80:189—200

    Dong LH,Qu X,Zhao TY,Xu SQ,Zhou RH,Wang KZ,Zhu ZX(2012)Magmatic sequence of early Palaeozoic granitic intrusions and its tectonic implications in north Altay orogen,Xinjiang.Acta Petrol Sin 28(08):2307—2316(in Chinese)

    Donnelly KE,Goldstein SL,Langmuir CH,Spiegelman M(2004)Origin of enriched ocean ridge basalts and implications for mantle dynamics.Earth Planet Sci Lett 226:347—366

    Eby GN(1990)A-type granitoids:a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115—134

    Filippova IB,Bush VA,Didenko AN (2001)Middle Paleozoic subduction belts:the leading factor in the formation of the Central Asian fold-and-thrust belt.Russ J Earth Sci 3:405—426

    Geng HY,Sun M,Yuan C,Xiao WJ,Xian WS,Zhao GC,Zhang LF,Wong K,Wu FY(2009)Geochemical,Sr—Nd and zircon U—Pb—Hf isotopic studies of late Carboniferous magmatism in the West Junggar,Xinjiang:implications for ridge subduction?Chem Geol 266:373—398

    Guo Z,Wilson M,Liu J(2006)Post-collisional,potassic and ultrapotassic magmatism of the northern Tibetan plateau:constraints on characteristics of the mantle source,geodynamic setting and uplift mechanisms.J Petrol 47(6):1177—1220

    Han BF,Guo ZJ,Zhang ZC,Zhang L,Chen JF,Song B(2010)Age,geochemistry,and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone,western China.Geol Soc Am Bull 122:627—640

    Han BF,He GQ,Wang XC,Guo ZJ(2011)Late Carboniferous collision between the Tarim and Kazakhstan—Yili terranes in the western segment of the South Tian Shan Orogen,Central Asia,and implications for the Northern Xinjiang,western China.Earth Sci Rev 109:74—93

    He GQ,Li MS,Liu DQ,Tang YL,Zhou RH(1994)Paleozoic crustal evolution and mineralization in Xinjiang of China.Xinjiang People's Publishing House&Hongkong Education and Cultural Press Ltd,Urumqi,pp 1—437(in Chinese)

    Hendrix MS,Graham SA,Amory JY,Badarch G(1996)Noyon Uul syncline,southern Mongolia;lower Mesozoic sedimentaryrecord of the tectonic amalgamation of Central Asia.Geol Soc Am Bull 108:1256—1274

    Hoskin PWO,Black LP(2000)Metamorphic zircon formation by solid-state recrytallization of protolith igneous zircon.J Metamorph Geol 18(4):423—439

    Huang XL,Yu Y,Li J,Tong LX,Chen LL(2013)Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area,South China:middle-lower crustal melting during orogenic collapse.Lithos 177:268—284

    Jahn BM,Windley BF,Natalin's B,Dobretsov N(2004)Phanerozoic continental growth in central Asia.J Asian Earth Sci 23:599—603

    Kheraskova TN,Didenko AN,Bush VA,Volozh YA(2003)The Vendian—Early Paleozoic history of the continental margin of Eastern Paleogondwana,Paleoasian Ocean,and Central Asian Foldbelt.Russ J Earth Sci 5:165—184

    Li JY,Xiao WJ,Wang KZ,Sun GH,Gao LM(2003)Neoproterozoic-Paleozoic tectonostratigraphy,magmatic activities and tectonic evolution of the eastern Xinjiang,NW China.In:Mao J,Goldfarb RJ,Seltman R,Wang DH,Xiao WJ,Hart C(eds)Tectonic evolution and metallogeny of the Chinese Altai and Tianshan,IAGOD Guidebook Series,10CERCAM/NHM,London,pp 31—74

    Li JY,He GQ,Xu X,Li HQ,Sun GH,Yang TN,Gao LM,Zhu ZX(2006)Crustal tectonic framework of Northern Xinjiang and adjacent regions and its formation.Acta Geol Sin 80(1):148—168(in Chinese)

    Li HJ,He GQ,Wu TR,Wu B(2010)Discovery of the early Paleozoic post-collisional granite in Altay,China and its geological significance.Acta Petrol Sin 26(08):2445—2451(in Chinese)

    Long XP,Sun M,Yuan C,Xiao WJ,Lin SF,Wu FY,Xia XP,Cai KD(2007)U—Pb and Hf isotopic study of zircons from metasedimentary rocks in the Chinese Altai:implications for early Palaeozoic tectonic evolution.Tectonics 26:TC5015

    Lu¨SJ,Yang FQ,Chai FM,Zhang XB,Jiang LP,Liu F,Zhang ZX,Geng XX,Ouyang LJ(2012a)Zircon U—Pb dating for intrusions in Laoshankou Ore District in northern margin of east Junggar and their significances.Geol Rev 58(1):149—164(in Chinese)

    Lu¨ZH,Zhang H,Tang Y,Guan SJ(2012b)Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No.112 pegmatite in Altay,Northwestern China:evidence from zircon U—Pb and Hf isotopes.Lithos 154:374—391

    Ludwig KR(1991)Isoplot:a plotting and regression program for radiogenic isotope data.US Geol Surv Open-File Rep 39:91—445

    Maniar PD,Piccoli PM(1989)Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635—643

    Muhetaer Z,Nijat A,Wu ZN(2015)Geochemical characteristics of the volcanics from the southern Jueluotage area and their constraints on the tectonic evolution of Paleo-Asian Ocean.Earth Sci Front 22(1):238—250(in Chinese with English abstract)

    Nelson DR,McCulloch MT,Sun SS (1986)The origins of ultrapotassic rocks as inferred from Sr,Nd and Pb isotopes. Geochim Cosmochim Acta 50:231—245

    Pan D,Ding RF,Zhang H,You J(2012)Main characteristics and prospecting perspective of Aketasi gold field prospecting target areainFuyunCounty,Xinjiang.SciTechnolEng 12(5):1007—1013(in Chinese)

    Pearce JA,Harris NBW,Tindle AG(1984)Trace element discrimination diagrams for the tectonic interpretation of granitic rock. J Petrol 25:956—983

    Ren BQ,Zhang H,Tang Y,Lu¨ZH(2011)LA-ICPMS U—Pb Zircon geochronology of the Altai Pegmatites and its geological significance.Acta Mineral Sin 31(3):587—596(in Chinese)

    Rudnick RL,Gao S(2003)Composition of the continental crust. Treatise Geochem 3:1—64

    Seghedi I,Downes H,Pe′cskay Z(2001)Magma genesis in a subduction-related post-collisional volcanic arc segment:the Ukrainian Carpathians.Lithos 57:237—262

    Sengo¨r AMC,Natalin BA,Burtman VS(1993)Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299—307

    Shen XM,Zhang HX,Wang Q,Wyman DA,Yang YH(2011)Late Devonian—Early Permian A-type granites in the southern Altay Range,NorthwestChina:petrogenesisandimplicationsfortectonic setting of‘‘A2-type''granites.J Asian Earth Sci 42:986—1007

    Sun SS,McDonough WF(1979)Chemical approximationg to the modal QAPF classification of the igneous rocks.N Jb Miner Abh 136:169—206

    Sun M,Yuan C,Xiao W,Long X,Xia X,Zhao G,Lin S,Wu F,Kro¨ner A(2008)Zircon U—Pb and Hf isotopic study of gneissic rocks from the Chinese Altai:progressive accretionary history in the early to middle Palaeozoic.Chem Geol 247:352—383

    Tatsumi Y,Hamilton DL,Nesbitt RW(1986)Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas:evidence from high-pressure experiments and natural rocks.J Volcanol Geoth Res 29:293—309

    Wang JB,Xu X (2006)Post-collisional tectonic evolution and metallogenesis in Northern Xinjiang,China.Acta Geol Sin 80(1):24—27

    Wang DH,Chen YC,Xu ZG(2003)40Ar/39Ar isotope dating on muscovites from Indosinian raremetal deposits in central Altay,northwestern China.Bull Mineral Petrol Geochem 22(1):14—17(in Chinese)

    Wang T,Tong Y,Li S,Zhang JJ,Shi XJ,Li JT,Han BF,Hong DW(2010)Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth:perspectives from Chinese Altay.Acta Petrol Mineral 29(6):605—607(in Chinese)

    Wang YJ,Yuan C,Long XP,Sun M,Xiao WJ,Zhao GC,Cai KD,Jiang YD (2011)Geochemistry,zircon U—Pb ages and Hf isotopes of the Paleozoic volcanic rocks in the northwestern Chinese Altai:petrogenesis and tectonic implications.J Asian Earth Sci 42:969—985

    Wilson M(1989)Igneous petrogenesis.Springer,London

    Windley BF,Alexeiev D,Xiao W,Kroner A,Badarch G(2007)Tectonic models for accretion of the Central Asian Orogenic Belt.J Geol Soc Lond 164:31—47

    Xiao WJ,Santosh M (2014)The western Central Asian Orogenic Belt:a window to accretionary orogenesis and continental growth.Gondwana Res 25(4):1429—1444

    Xiao WJ,Windley BF,Badarch G,Sun S,Li J,Qin K,Wang Z(2004)Palaeozoic accretionary and convergent tectonics of the Southern Altaids:implications for the growth of Central Asia.J Geol Soc Lond 161(3):339—342

    Xiao WJ,Han CM,Yuan C,Sun M,Lin SF,Chen HL,Li ZL,Li JL,Sun S(2008)Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang,NW China:implications for the tectonic evolution of central Asia.J Asian Earth Sci 32:102—117

    Xiao WJ,Kro¨ner A,Windley BF(2009)Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic.Int J Earth Sci 98:1185—1188

    Xiao WJ,Huang BC,Han CM,Sun S,Li JL(2010)A review of the western part of the Altaids:a key to understanding the architecture of accretionary orogens.Gondwana Res 18:253—273

    Xu XY,Li RS,Chen JL,Ma ZP,Li ZP,Wang HL,Bai JK,Tang Z(2014)New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area.Acta Petrol Sin 30(6):1521—1534(in Chinese with English abstract)

    Yakubchuk AS(2004)Architecture and mineral deposit settings of Altaid orogenic collage:a revised model.J Asian Earth Sci 23:761—779

    Yang GX,Li YJ,Li ZC,Liu XY,Yang BK,Wu HE(2010)Genesis and tectonic settings of post-collision volcanic rocks in northeastern margin of East Junggar,Xinjiang.Earth Sci Frontiers 17(1):049—060(in Chinese)

    Yang M,Wang JL,Wang JQ,Liu C(2015)Late Carboniferous intraoceanic subduction and mineralization in western Junggar:evidence from the petrology,geochemistry and zircon U—Pb geochronology of I#ore-bearing granite body in Suyunhe molybdenite orefield,Xinjiang.Acta Petrol Sin 31(2):523—533(in Chinese with English abstract)

    Yuan HL,Wu FY,Gao S,Liu XM,Xu P,Sun DY(2003)LA-ICPMS Zircon U—Pb age and Ree analysis in Cenozoic intrusive rock in northeast China.Chin Sci Bull 48(14):1511—1520(in Chinese)

    Yuan C,Sun M,Xiao WJ,Li XH,Chen HL,Lin SF,Xia XP,Long XP(2007)Accretionary orogenesis of the Chinese Altai:insights from Paleozoic granitoids.Chem Geol 242:22—39

    Zhang X,Zhang H(2014)Geochronological,geochemical,and Sr—Nd—Hf isotopic studies of the Baiyanghe A-type granite porphyry in the western Junggar:implications for its petrogenesis and tectonic setting.Gondwana Res 25:1554—1569

    Zhang HX,Niu HC,Terada K,Yu XY,Sato H,Ito J(2003)Zircon SHRIMP U—Pb dating on plagiogranite from the Kuerti ophiolite in Altay.North Xinjiang.Chinese Science Bulletin 48(2):231—235

    Zhang F,Chen JP,Xu T,F(xiàn)an JJ,Pan AJ,Guo XD,Li JM,Chao YY(2014)Late Paleozoic subduction in the eastern Junggar:evidence from the petrology,geochemistry and geochronology ofCarboniferousvolcanicrocks.GeotectonMetallog 38(1):140—156(in Chinese with English abstract)

    Zhong YF,Ma CQ,Zhang C,Wang SM,She ZB,Liu L,Xu HJ(2013)Zircon U—Pb age,Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite Pluton and Taoyuan mafic—felsic complex at the southeastern margin of the Yangtze Block.J Asian Earth Sci 74:11—24

    Zhu YF,Zeng Y,Gu L(2006)Geochemistry of the rare metal-bearing pegmatite No.3 vein and related granites in the Keketuohai region,Altay Mountains,northwest China.J Asian Earth Sci 27(1):61—77

    10.1007/s11631-015-0071-5

    25 November 2014/Revised:17 April 2015/Accepted:25 August 2015/Published online:12 September 2015

    ? Xin Zhang

    zhangxin869@126.com

    1University of Science and Technology Beijing,Beijing 100083,People's Republic of China

    2Beijing Institute of Geology for Mineral Resources,Beijing 100012,People's Republic of China

    3Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,People's Republic of China

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    猜你喜歡
    角巖含礦順層
    基于三維數(shù)值模擬的含軟弱夾層順層巖質邊坡開挖穩(wěn)定性研究
    礦產勘查(2020年2期)2020-12-28 00:24:34
    預應力錨索在公路順層巖質邊坡中的應用
    工程與建設(2019年4期)2019-10-10 01:45:46
    紅砂巖順層邊坡監(jiān)測及變形破壞探究
    斑巖型礦床含礦斑巖與非含礦斑巖鑒定特征綜述
    巖型礦床含礦斑巖與非含礦斑巖鑒定特征綜述
    1∶25萬馬爾康幅熱接觸變質帶劃分
    西部資源(2017年2期)2017-05-22 08:25:29
    新疆卡特巴阿蘇金礦床含礦巖石及圍巖地球化學特征與構造環(huán)境簡析
    新疆地質(2016年4期)2016-02-28 19:18:39
    河北省非金屬礦床成礦地質條件及含礦建造劃分
    黑龍江大貫屯一帶角巖特征及成因探討
    地球(2015年7期)2015-10-12 09:02:26
    岷縣閭井—鎖龍一帶天然飾面石材礦成礦條件及礦石特征
    涩涩av久久男人的天堂| 亚洲第一av免费看| 亚洲精品中文字幕在线视频| 黄色视频在线播放观看不卡| 男人舔女人的私密视频| 97在线人人人人妻| 日韩在线高清观看一区二区三区| 国产精品蜜桃在线观看| 久热久热在线精品观看| 亚洲av免费高清在线观看| 欧美人与性动交α欧美精品济南到 | 中文欧美无线码| 亚洲精品,欧美精品| 2022亚洲国产成人精品| 这个男人来自地球电影免费观看 | 亚洲图色成人| av在线老鸭窝| 成年女人在线观看亚洲视频| 深夜精品福利| 国产在线免费精品| 免费女性裸体啪啪无遮挡网站| 1024视频免费在线观看| 亚洲美女搞黄在线观看| 一级a做视频免费观看| 日产精品乱码卡一卡2卡三| 大香蕉久久成人网| 亚洲综合色惰| 男女国产视频网站| 国产高清国产精品国产三级| av卡一久久| 97人妻天天添夜夜摸| 高清毛片免费看| 国产精品久久久久久精品古装| av女优亚洲男人天堂| 五月天丁香电影| 久久综合国产亚洲精品| 久久 成人 亚洲| 亚洲综合精品二区| 9热在线视频观看99| 国产亚洲一区二区精品| 久久人人97超碰香蕉20202| 一级爰片在线观看| 国产成人午夜福利电影在线观看| 岛国毛片在线播放| 中文字幕另类日韩欧美亚洲嫩草| 日韩人妻精品一区2区三区| 少妇人妻久久综合中文| 国内精品宾馆在线| 久久久a久久爽久久v久久| 捣出白浆h1v1| 极品人妻少妇av视频| 亚洲 欧美一区二区三区| 久热久热在线精品观看| 免费高清在线观看日韩| 美女国产视频在线观看| 中文字幕精品免费在线观看视频 | 一区在线观看完整版| 亚洲欧洲精品一区二区精品久久久 | av.在线天堂| 国产成人免费观看mmmm| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 精品福利永久在线观看| 成人18禁高潮啪啪吃奶动态图| 水蜜桃什么品种好| 赤兔流量卡办理| 丝袜人妻中文字幕| 欧美日韩视频高清一区二区三区二| 天堂俺去俺来也www色官网| 欧美老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 美女内射精品一级片tv| 18禁观看日本| 国产精品99久久99久久久不卡 | 国产精品一区二区在线不卡| av女优亚洲男人天堂| 欧美3d第一页| 成人免费观看视频高清| 一本—道久久a久久精品蜜桃钙片| 日韩欧美精品免费久久| 国产色婷婷99| 日本与韩国留学比较| 成人18禁高潮啪啪吃奶动态图| 欧美丝袜亚洲另类| 精品少妇黑人巨大在线播放| 男人操女人黄网站| 午夜福利影视在线免费观看| 精品一品国产午夜福利视频| 久久99蜜桃精品久久| 制服人妻中文乱码| 久热久热在线精品观看| 狠狠婷婷综合久久久久久88av| 亚洲av.av天堂| 国语对白做爰xxxⅹ性视频网站| tube8黄色片| 熟女电影av网| 亚洲av福利一区| 欧美日韩av久久| 成人午夜精彩视频在线观看| 黄片无遮挡物在线观看| 久久午夜福利片| 国产日韩欧美亚洲二区| 1024视频免费在线观看| 亚洲 欧美一区二区三区| 国产深夜福利视频在线观看| 在线天堂最新版资源| 亚洲成国产人片在线观看| www日本在线高清视频| 国产免费又黄又爽又色| 亚洲精品,欧美精品| 亚洲精品久久午夜乱码| 精品亚洲乱码少妇综合久久| 中文字幕另类日韩欧美亚洲嫩草| 男女国产视频网站| 国产精品一二三区在线看| 日本黄色日本黄色录像| 女人精品久久久久毛片| 韩国av在线不卡| 久久久久久久久久成人| 99香蕉大伊视频| 嫩草影院入口| 亚洲三级黄色毛片| 国产黄频视频在线观看| 一二三四中文在线观看免费高清| 在线观看一区二区三区激情| 免费人妻精品一区二区三区视频| 91精品国产国语对白视频| 国产深夜福利视频在线观看| 国产精品 国内视频| 在线观看国产h片| 婷婷色av中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 成人影院久久| 国产亚洲av片在线观看秒播厂| 免费女性裸体啪啪无遮挡网站| 国产亚洲午夜精品一区二区久久| 亚洲国产欧美日韩在线播放| 国产精品久久久久久久电影| 丰满迷人的少妇在线观看| 999精品在线视频| 国产精品一区二区在线观看99| 女人精品久久久久毛片| 少妇人妻精品综合一区二区| 国产白丝娇喘喷水9色精品| 精品久久久久久电影网| 在线免费观看不下载黄p国产| 宅男免费午夜| 国产成人91sexporn| 老司机影院成人| 80岁老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 国内精品宾馆在线| 精品少妇黑人巨大在线播放| 国产男人的电影天堂91| 如何舔出高潮| 寂寞人妻少妇视频99o| 91久久精品国产一区二区三区| 性色av一级| 亚洲中文av在线| 黑人高潮一二区| 九色亚洲精品在线播放| 免费高清在线观看日韩| 国产高清国产精品国产三级| 极品少妇高潮喷水抽搐| 蜜臀久久99精品久久宅男| 亚洲色图综合在线观看| 午夜视频国产福利| 精品久久久久久电影网| 丰满饥渴人妻一区二区三| 成人免费观看视频高清| 丰满乱子伦码专区| 熟妇人妻不卡中文字幕| 日韩av在线免费看完整版不卡| 啦啦啦中文免费视频观看日本| 亚洲少妇的诱惑av| 国产极品天堂在线| 久久人人爽av亚洲精品天堂| 亚洲av综合色区一区| 中国美白少妇内射xxxbb| 免费在线观看黄色视频的| 亚洲欧美清纯卡通| 伦精品一区二区三区| 搡女人真爽免费视频火全软件| 又黄又粗又硬又大视频| 国产一区二区三区综合在线观看 | 国产午夜精品一二区理论片| 搡女人真爽免费视频火全软件| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 一级片'在线观看视频| 亚洲精品第二区| 欧美日本中文国产一区发布| 成人国语在线视频| 黄色 视频免费看| 美女脱内裤让男人舔精品视频| 久久ye,这里只有精品| 国产欧美日韩一区二区三区在线| 91午夜精品亚洲一区二区三区| 国产av国产精品国产| 免费黄频网站在线观看国产| 日本色播在线视频| 国产片特级美女逼逼视频| 人人妻人人爽人人添夜夜欢视频| 国产精品人妻久久久影院| 欧美成人午夜精品| 人体艺术视频欧美日本| 天美传媒精品一区二区| 久久国产精品男人的天堂亚洲 | 日本91视频免费播放| 这个男人来自地球电影免费观看 | 亚洲精品久久午夜乱码| 久热这里只有精品99| 久久精品国产自在天天线| 女性被躁到高潮视频| 岛国毛片在线播放| 中国国产av一级| 在线观看人妻少妇| 亚洲熟女精品中文字幕| 99热6这里只有精品| 性高湖久久久久久久久免费观看| 美女xxoo啪啪120秒动态图| 成年av动漫网址| 亚洲激情五月婷婷啪啪| 老司机影院成人| 黄色一级大片看看| 亚洲欧洲精品一区二区精品久久久 | av又黄又爽大尺度在线免费看| 日韩一区二区三区影片| 欧美精品人与动牲交sv欧美| 性色avwww在线观看| 欧美+日韩+精品| 精品久久蜜臀av无| 久热久热在线精品观看| 亚洲精品日韩在线中文字幕| 夜夜骑夜夜射夜夜干| 国产毛片在线视频| 亚洲内射少妇av| 亚洲图色成人| 一区在线观看完整版| 亚洲国产精品成人久久小说| 亚洲成人av在线免费| 国产高清国产精品国产三级| 久久狼人影院| 久久精品国产自在天天线| 久久国内精品自在自线图片| 在线天堂中文资源库| 国产精品免费大片| 少妇精品久久久久久久| 波多野结衣一区麻豆| 国产 精品1| 90打野战视频偷拍视频| 亚洲精品av麻豆狂野| 日韩精品免费视频一区二区三区 | 另类精品久久| 男女边摸边吃奶| 一区二区三区乱码不卡18| 国产伦理片在线播放av一区| 国产亚洲午夜精品一区二区久久| 国产精品麻豆人妻色哟哟久久| 国产熟女午夜一区二区三区| 国产精品国产三级国产专区5o| 欧美日韩一区二区视频在线观看视频在线| 美女福利国产在线| 捣出白浆h1v1| 视频中文字幕在线观看| 少妇的逼水好多| 亚洲av成人精品一二三区| 国语对白做爰xxxⅹ性视频网站| 久久婷婷青草| 侵犯人妻中文字幕一二三四区| 如何舔出高潮| 午夜福利,免费看| 汤姆久久久久久久影院中文字幕| 交换朋友夫妻互换小说| 极品人妻少妇av视频| 国产免费一区二区三区四区乱码| 欧美精品亚洲一区二区| 日韩一区二区视频免费看| 日韩人妻精品一区2区三区| av天堂久久9| 婷婷色av中文字幕| 大香蕉久久网| 日韩制服骚丝袜av| 美国免费a级毛片| 免费少妇av软件| 欧美精品人与动牲交sv欧美| 丰满乱子伦码专区| 999精品在线视频| 少妇高潮的动态图| 国产麻豆69| 99久久精品国产国产毛片| 午夜免费观看性视频| 18在线观看网站| 国产av国产精品国产| 免费黄频网站在线观看国产| 七月丁香在线播放| 丝瓜视频免费看黄片| 香蕉国产在线看| 九色亚洲精品在线播放| 亚洲精品aⅴ在线观看| 国产在视频线精品| 最近中文字幕2019免费版| 一区二区三区四区激情视频| 欧美激情国产日韩精品一区| 综合色丁香网| 亚洲性久久影院| 伦理电影免费视频| 考比视频在线观看| 夫妻午夜视频| 少妇被粗大的猛进出69影院 | 人妻少妇偷人精品九色| 满18在线观看网站| 一级毛片我不卡| 九草在线视频观看| 色视频在线一区二区三区| 赤兔流量卡办理| 七月丁香在线播放| 精品99又大又爽又粗少妇毛片| 2022亚洲国产成人精品| 欧美精品亚洲一区二区| 高清黄色对白视频在线免费看| 日日摸夜夜添夜夜爱| 久久毛片免费看一区二区三区| 久久久久久伊人网av| 亚洲国产欧美日韩在线播放| 免费人妻精品一区二区三区视频| 欧美日韩av久久| 老司机影院毛片| 久久人人爽av亚洲精品天堂| 国产不卡av网站在线观看| 国产男人的电影天堂91| tube8黄色片| 日本午夜av视频| 熟女人妻精品中文字幕| 成年美女黄网站色视频大全免费| 一二三四中文在线观看免费高清| 久久久久精品人妻al黑| 精品第一国产精品| 97超碰精品成人国产| 日韩中文字幕视频在线看片| 欧美成人午夜免费资源| 男人操女人黄网站| 国产乱来视频区| 精品福利永久在线观看| 99久国产av精品国产电影| 久久精品人人爽人人爽视色| 久久99热这里只频精品6学生| 80岁老熟妇乱子伦牲交| 国产精品人妻久久久影院| 熟妇人妻不卡中文字幕| av免费观看日本| 一级黄片播放器| 永久网站在线| 一本久久精品| 国产男女超爽视频在线观看| 免费观看无遮挡的男女| 国产探花极品一区二区| 欧美性感艳星| 国产精品人妻久久久久久| 中文精品一卡2卡3卡4更新| 极品少妇高潮喷水抽搐| 亚洲av成人精品一二三区| 美女视频免费永久观看网站| 久久99蜜桃精品久久| 少妇 在线观看| 亚洲欧美一区二区三区黑人 | 99久国产av精品国产电影| 日韩成人伦理影院| 精品一区二区三区四区五区乱码 | av在线老鸭窝| 日韩大片免费观看网站| 亚洲图色成人| 国产一区二区在线观看av| 丝袜在线中文字幕| 国产精品一国产av| 欧美丝袜亚洲另类| 大香蕉久久成人网| 性色av一级| 久久免费观看电影| 中文字幕最新亚洲高清| 在线免费观看不下载黄p国产| 日韩,欧美,国产一区二区三区| 久久午夜综合久久蜜桃| 亚洲精品久久成人aⅴ小说| 久久人人爽人人爽人人片va| 秋霞伦理黄片| 91久久精品国产一区二区三区| 午夜视频国产福利| 国产日韩一区二区三区精品不卡| 亚洲,欧美,日韩| 观看美女的网站| 日韩,欧美,国产一区二区三区| xxxhd国产人妻xxx| 九草在线视频观看| 18禁在线无遮挡免费观看视频| 日韩熟女老妇一区二区性免费视频| 亚洲 欧美一区二区三区| 在线天堂中文资源库| 久久久久久久精品精品| 成年人免费黄色播放视频| 啦啦啦中文免费视频观看日本| 久久久久精品人妻al黑| 在线观看免费高清a一片| 伦理电影大哥的女人| 久久 成人 亚洲| 久久精品人人爽人人爽视色| 欧美 亚洲 国产 日韩一| 精品少妇黑人巨大在线播放| 国产1区2区3区精品| 久久精品人人爽人人爽视色| 美国免费a级毛片| 男女免费视频国产| 水蜜桃什么品种好| 日本av免费视频播放| 丝袜在线中文字幕| 少妇人妻 视频| 国产在线一区二区三区精| 99热网站在线观看| 国产色婷婷99| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品久久午夜乱码| 女性生殖器流出的白浆| 精品国产国语对白av| 99国产综合亚洲精品| 国产在视频线精品| 久久久久久久久久久久大奶| 国产精品一二三区在线看| 69精品国产乱码久久久| 国产爽快片一区二区三区| 免费播放大片免费观看视频在线观看| 久久人人97超碰香蕉20202| www.色视频.com| 久久久a久久爽久久v久久| 777米奇影视久久| 久久婷婷青草| av天堂久久9| 99国产精品免费福利视频| 日日摸夜夜添夜夜爱| 欧美最新免费一区二区三区| 女性被躁到高潮视频| 成人毛片a级毛片在线播放| 国产精品99久久99久久久不卡 | 色5月婷婷丁香| 国产亚洲欧美精品永久| 久久精品国产a三级三级三级| 18在线观看网站| 久久精品国产综合久久久 | 夫妻午夜视频| 久久久a久久爽久久v久久| 最黄视频免费看| 亚洲欧美日韩另类电影网站| 香蕉丝袜av| 国产1区2区3区精品| 国产成人午夜福利电影在线观看| 日韩人妻精品一区2区三区| 精品卡一卡二卡四卡免费| 狠狠婷婷综合久久久久久88av| 久久久久精品性色| 午夜av观看不卡| 亚洲精品国产av蜜桃| 久久这里只有精品19| 涩涩av久久男人的天堂| 日本猛色少妇xxxxx猛交久久| 18+在线观看网站| 日本爱情动作片www.在线观看| 久久精品人人爽人人爽视色| 99久久精品国产国产毛片| 母亲3免费完整高清在线观看 | 成年av动漫网址| 色吧在线观看| 两个人免费观看高清视频| 免费大片18禁| 亚洲av电影在线进入| 我要看黄色一级片免费的| 伊人亚洲综合成人网| 成人二区视频| 国产成人91sexporn| 在线观看免费视频网站a站| 国国产精品蜜臀av免费| 亚洲成av片中文字幕在线观看 | 少妇人妻精品综合一区二区| 69精品国产乱码久久久| 久久久国产欧美日韩av| 国国产精品蜜臀av免费| 精品酒店卫生间| 2021少妇久久久久久久久久久| av网站免费在线观看视频| 黄网站色视频无遮挡免费观看| av福利片在线| 美女中出高潮动态图| 亚洲av电影在线观看一区二区三区| 黄色一级大片看看| 热99国产精品久久久久久7| 婷婷色麻豆天堂久久| 国产成人欧美| 桃花免费在线播放| 国产精品国产av在线观看| 国精品久久久久久国模美| 香蕉丝袜av| 最近的中文字幕免费完整| 国产熟女午夜一区二区三区| 免费少妇av软件| 成人18禁高潮啪啪吃奶动态图| 五月开心婷婷网| 99久久精品国产国产毛片| 亚洲精品日韩在线中文字幕| 中文字幕制服av| 爱豆传媒免费全集在线观看| 熟女av电影| 亚洲成人手机| 天天操日日干夜夜撸| 国产无遮挡羞羞视频在线观看| 日本vs欧美在线观看视频| 久热这里只有精品99| 啦啦啦中文免费视频观看日本| 国产精品久久久久久久电影| 久久久精品区二区三区| 日本vs欧美在线观看视频| 日韩欧美一区视频在线观看| 一区二区三区四区激情视频| 国产成人精品无人区| 欧美3d第一页| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产av在线观看| 卡戴珊不雅视频在线播放| 午夜福利在线观看免费完整高清在| 日韩一区二区三区影片| 日本vs欧美在线观看视频| 18+在线观看网站| 男男h啪啪无遮挡| 精品福利永久在线观看| 中文字幕亚洲精品专区| 国产国拍精品亚洲av在线观看| 人妻一区二区av| 午夜91福利影院| a级毛片在线看网站| 中文字幕制服av| 国产成人精品婷婷| 精品人妻熟女毛片av久久网站| 春色校园在线视频观看| 91国产中文字幕| 国产亚洲精品第一综合不卡 | 美女脱内裤让男人舔精品视频| 少妇 在线观看| 草草在线视频免费看| 日韩欧美一区视频在线观看| 丝袜美足系列| 午夜日本视频在线| 国产乱人偷精品视频| 91久久精品国产一区二区三区| 国产男女超爽视频在线观看| 青春草国产在线视频| 亚洲综合色惰| 欧美+日韩+精品| 国产亚洲精品久久久com| 超色免费av| 精品亚洲成国产av| 天美传媒精品一区二区| 亚洲欧美一区二区三区黑人 | av有码第一页| 欧美精品亚洲一区二区| 精品国产一区二区久久| 午夜免费男女啪啪视频观看| 久久午夜福利片| 国产黄频视频在线观看| 巨乳人妻的诱惑在线观看| 天美传媒精品一区二区| 欧美精品一区二区大全| 天天躁夜夜躁狠狠躁躁| 精品亚洲乱码少妇综合久久| 成人国语在线视频| 亚洲国产毛片av蜜桃av| 亚洲综合色网址| 国产又色又爽无遮挡免| 9色porny在线观看| 十八禁网站网址无遮挡| 亚洲国产最新在线播放| 亚洲av国产av综合av卡| 亚洲av在线观看美女高潮| 久久ye,这里只有精品| av.在线天堂| 美女视频免费永久观看网站| 男女边吃奶边做爰视频| 亚洲成色77777| 久久精品久久久久久久性| 亚洲精品乱久久久久久| www.av在线官网国产| 国产精品99久久99久久久不卡 | av播播在线观看一区| 一级爰片在线观看| 亚洲色图综合在线观看| 亚洲av中文av极速乱| 新久久久久国产一级毛片| 日本av手机在线免费观看| 国产免费福利视频在线观看| 欧美成人午夜免费资源| 搡老乐熟女国产| 午夜福利在线观看免费完整高清在| 亚洲国产欧美日韩在线播放| 国产精品欧美亚洲77777| 免费高清在线观看日韩| 蜜桃国产av成人99| 久久久国产一区二区| 夫妻性生交免费视频一级片| 国产精品一二三区在线看| 久久人人爽人人爽人人片va| 久久久国产精品麻豆| 少妇熟女欧美另类| 亚洲av福利一区| 伦理电影大哥的女人| 丰满饥渴人妻一区二区三| 国产成人精品婷婷| 亚洲成色77777| 999精品在线视频| av一本久久久久|