• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of the four rearranged hopane series in geological bodies and their geochemical significances

    2015-10-25 02:03:08HongleiLiLianJiangXiaohuiChenMinZhang
    Acta Geochimica 2015年4期

    Honglei Li·Lian Jiang·Xiaohui Chen·Min Zhang

    Identification of the four rearranged hopane series in geological bodies and their geochemical significances

    Honglei Li1,2·Lian Jiang1,2·Xiaohui Chen1,2·Min Zhang1,2

    Saturated fractions in a total of 23 oil samples and hydrocarbon source rocks from the Songliao,Tarim,and Ordos Basins have been analyzed by GC—MS and GC—MS—MS.According to the relative retention,mass spectral characteristics,and comparison with existing literature,a complete carbon number distribution ranging from C27to C35(without C28)in the 17α(H)-diahopane series and early-eluting rearranged hopane series is identified.Compounds in the 18α(H)-neohopane series(Ts and C29Ts)and 21-methyl-28-nor-hopane series(29Nsp and 30Nsp)are also noted.These four series of rearranged hopanes seem to occur in both brackish-saline lacustrine and coal measure environments.However,the coal measure and swamp environments being under an oxic condition,compared with brackish-saline lacustrines,are presumably more helpful to the formation of 30E.Diversity in the content and distribution patterns indicate that rearranged hopanes could serve as good indicators of organic facies,depositional environment and maturity in petroleum geology.

    Rearranged hopanes·Early-eluting series· 21-methyl-28-nor-hopanes·Geochemical significances

    1 Introduction

    Rearranged hopanes refer to a class of biomarkers with carbon ring framework identical to that of regular hopanes,but with methane side chain carbon position being distinct from that of regular hopanes.Multiple homologues occur in hydrocarbon source rocks and crude oils.Currently,four series of rearranged hopanes have been reported.They are the 17α(H)-diahopane series,the 18α(H)-neohopane series,theearly-elutingrearrangedhopaneseries,andthe 21-methyl-28-nor-hopane series(or 28-nor-spergulane series).18α(H)-22,29,30-trisnorneohopane(Ts),which has a rearranged methyl group at C-17,is one of the first hopanoid hydrocarbons to be rigorously characterized by X-ray(Whitehead 1974;Smith 1975).Moldowan et al.(1991)identified by nuclear magnetic resonance(NMR)spectroscopy techniques a member of the 18α(H)-neohopane series(denoted‘‘C29Ts'').They also determined(by X-ray crystallography)the structure of 17α-15α-methyl-27-norhopane(C30diahopane),a member of the 17α(H)-diahopane series.Killops and Howell(1991)and Teln?s et al.(1992)noted the occurrence of a further series of unidentified rearranged hopanes in oils.Compounds in this pseudo homologous series are notable in eluting approximately two carbon numbers earlier than the regular hopanes.Farrimond and Teln?s(1996)reported this early-eluting rearranged hopane series,which appears to extend from C27to C35(without C28member).Then,the C30member(C30earlyeluting rearranged hopane or 30E)of the series was synthesized by Nytoft(2007)in the laboratory.The C2928-norspergulane(‘‘X''in Huang et al.2003),which is a member of the 21-methyl-28-nor-hopane series,was first found in some of the lacustrine oils from the Western Pearl River Basin offshore South China.Subsequently,Nytoft et al.(2006)indentified a new series of rearranged hopanesranging from C29to at least C34as 28-nor-spergulanes(or 21-methyl-28-nor-hopanes)using NMR spectroscopy.Most commonly,29Nsp is always the dominant member of the series and seems to be particularly abundant in some oils from lacustrine source rocks in South East Asia.

    In recent years,rearranged hopanes have received increasing attention as biological markers with applications for geochemical studies of petroleum source rocks and crude oils(Huang et al.2003;Li et al.2009;Zhang et al. 2009;Cheng et al.2014).However,systematic identification of the four rearranged hopane series is not reported in the domestic and overseas literature.In this article,on the basis of previous studies,we identify the four series of rearranged hopanes.Their geochemical significances are also discussed,which provides the theoretical foundation for their applications in petroleum geology.

    2 Experimental

    2.1 Samples

    Eight hydrocarbon source rocks were collected in China from the Songliao Basin(two mudstones),Tarim Basin(two coals and a carbonaceous mudstone),and Ordos Basin(three coals).A total of fifteen oil samples were chosen from the Songliao Basin.

    2.2 GC-MS and GC-MS-MS

    All source rocks were crushed into fine powder and extracted with a dichloromethane/methanol mixture(93:7 v/v)using a Soxhlet apparatus for 72 h.The asphaltene was removed from extracts and oils by precipitation in n-hexane.The deasphaltened extracts and oils were fractionated into saturated,aromatic hydrocarbons and polar compounds using open alumina-silica gel(1:2)column chromatography.The solvents for column chromatography are petroleum ether,dichloromethane,and methanol,respectively.The saturated fractions of all the samples were analyzed using gas chromatography-mass spectrometry(GC—MS)and GC—MS—MS.

    GC—MS was carried out with a HP 5973 mass spectrometer,coupled to a HP 6890 GC equipped with a HP-5MS fused silica capillary column(30 m×0.25 mm i.d.,film thicknesses 0.25 μm).The GC temperature was programmed to start at 50°C for 1 min,increase to 100°C at a rate of 20°C/min,and from 100 to 310°C at a rate of 3°C/min with a final hold of 16 min.Helium was used as the carrier gas with a rate of 1.0 ml/min and the ionization source operated at 70 eV.

    GC—MS—MS was performed using an Agilent 6890 N gas chromatograph connected to a Waters(Micromass) Quattro Micro GC tandem quadrupole mass spectrometer. AnHP-5MS,aVarianfactorFourVF-5 mscolumn(30 m×0.25 mm i.d.,film thicknesses 0.25 μm)was used.The temperature program was 20°C/min from 50 to 100°C and 3°C/min from 100 to 310°C followed by 16 min at 310°C.

    3 Results and discussion

    3.1 Identification of 17α(H)-diahopanes and earlyeluting rearranged hopanes

    All samples were selected for GC—MS analysis.The pentacyclic triterpenes of oil samples and source rocks exhibit a complex composition.In order to determine the composition and carbon number distribution of these compounds,selected saturated hydrocarbon fractions were analyzed by GC—MS—MS.The use of GC—MS—MS parent ion analysis can reveal homologous series of compounds that are analytically commingled in simple GC—MS analyses.In addition to the ubiquitous regular hopanes,four series of rearranged hopanes can be distinguished:17α(H)-diahopanes,18α(H)-neohopanes,early-elutingrearranged hopanes,and 28-nor-spergulanes.The 17α(H)-diahopane series and early-eluting rearranged hopane series are identified by their relative retention times in comparison with previous literature(Killops and Howell 1991;Moldowan et al.1991;Teln?s et al.1992).

    As shown in Fig.1,the 17α(H)-diahopane series and early-eluting rearranged hopane series are apparent from tandem mass spectrometry(MS—MS)data.The 17α(H)-diahopane series was first detected in crude oil from Prudhoe Bay in Alaska(Moldowan et al.1991),ranging from C27to C35(although the C27member is not distinct),but with no C28member;the C31—C35members elute as pairs of 22S-and 22R-isomers in m/z 191 gas chromatograms.For the samples in this study,the series displays a complete carbon number range from C27,C29—C35(C1—C8in Fig.1),with possible C35member in low abundance.Because of the lack of a distinct peak for the C28member in m/z 191 gas chromatograms,the m/z 384→191 transition was not monitored in GC—MS—MS analysis.Analogously,the early-eluting rearranged hopane series(D1—D8in Fig.1)extends from C29to C35and a C27member is also apparent from the m/z 370→191 transition(retention time around 49.18 min).Doublets are resolved for members above C30.The C30member(30E)of the series is dominated and commonly high in continental oils of China.For instance,30E is abundant in oils from the Yingmaili and Yaha regions of the Tarim Basin in western China(Zhu 1997;Zhu et al.1997).Their carbon number distributions are comparable to those of the regular17α(H)-hopanes.The compounds of the 17α(H)-diahopane series and early-eluting rearranged hopane series are observed to have a linear relationship for GC retention time,indicating that their homologues differ only in the length of the side chain.Relative retention indices(based on hopane carbon numbers)of the various pseudohomologues are given in Table 1 and the series shown in Fig.2.

    Due to co-elutions and low concentrations,it is not possible to obtain mass spectra of all members of the 17α(H)-diahopanes and early-eluting rearranged hopanes. Mass spectra of the C30diahopane and 30E are largely similar(Fig.3a,b).They are all characterized by a m/z 191 base peak,a m/z 412 molecular ion and a pattern of peaks below m/z 191 separated by 14 mass units.However,in comparison with the C30diahopane,30E has a small m/z 287 fragment,which is considered to come from fragmentation through the B-ring.This ion(m/z 287)is absent or insignificant in the spectra of the other compounds.The 30E elutes from the gas chromatograph(m/z 191)behind Ts and just in front of Tm.The elutions of the other members of the series are exhibited in Fig.1.It is clear that the early-eluting rearranged hopanes elute from the gas chromatograph approximately two carbon numbers earlier than the regular hopanes.Retention times of these four series of rearranged hopanes are provided in Table 1.The very elution of the early-eluting rearranged hopane series indicates that they are more volatile than the other hopane and rearranged hopane series.These features should help in their identification.

    3.2 Identification of 18α(H)-neohopanes and 28-norspergulanes

    According to relative retention time,we also identify the 18α(H)-neohopane series(B1—B2in Fig.1).It is clear from Figs.1 and 2 that the carbon number distribution of the 18α(H)-neohopane series differs significantly from those of the 17α(H)-hopane and the other two rearranged hopane series.Compoundsinthe18α(H)-neohopaneseries includes C27and C29—C30members;the C27member(Ts)and C29member(C29Ts)are widely recognized now,while the occurrence of higher homologues(above C31)is still unclear.This observation argues for at least partly different precursor biomolecules,the 18α(H)-neohopanes could be derived from diplopterol and diploptene or a C29hopanoid(Moldowan et al.1991;Farrimond and Teln?s 1996). Usually,Ts elutes well before Tm,C29Ts is barely resolved from,and elutes after,C29regular hopane.The C30diahopane is small in comparison to the neighboring C29Ts,but crudes and hydrocarbon source rocks in our study area show a higher m/z 191 peak from the C30diahopane than from C29Ts.Using GC retention time,F(xiàn)arrimond and Teln?s(1996)tentatively identified the peak eluted after C30regular hopane as the C30member(C30Ts)of the18α(H)-neohopane series in m/z 191 mass chromatogram. However,this member was not observed at the corresponding position in the m/z 412→191 transition in our data.The mass spectrum of C29Ts displays a regular pattern of ions separated by 14 mass units below m/z 191,a m/z 191 base peak,a large m/z 177 fragment,and a m/z 398 molecular ion(Fig.3c).

    Table 1 Hopane retention indices of selected carbon numbers of the three rearranged hopane series

    Fig.2 Retention indices(see Table 1)for different members of the hopane and rearranged hopane series,plotted versus carbon number

    By combining with previous studies(Nytoft et al.2006),two compounds in the 21-methyl-28-nor-hopane series(29Nsp and 30Nsp)are detected in individual oil samples and hydrocarbon source rocks(Fig.4).The 21-methyl-28-norhopane series is recognized later than the other three rearranged hopane series and their applications in petroleum are seldom reported.The carbon number distribution of the 21-methyl-28-nor-hopane series ranges from C27to C34;the C29member is always the dominant member of the series and can be detected in most crude oils or mature sediments using GC—MS.The 29Nsp elutes midway between C30diahopane and 17β(H),21α(H)-30-norhopane(C29moretane)in m/z 191 mass chromatogram;the 30Nsp elutes after C30diahopane(Nytoft et al.2006;Huang et al.2003).Similar to the C29member of the 18α(H)-neohopane series(C29Ts),29Nsp has a m/z 191 base peak,a m/z 398 molecular ion and a pattern of peaks of below m/z 191 separated by 14 mass units typical of hopanes.The most notable feature of the mass spectrum for 29Nsp is the greater abundance of the m/z 369 ion than recorded for C29Ts(Fig.3d).Because of the low content of 30Nsp,its mass spectrum was not obtained,and no members above C30were detected.

    3.3 Geochemical significances of rearranged hopanes

    Rearranged hopanes have been widely applied in maturity assessment of oils,oil-source rock correlation,petroleum study,etc.(Zhuetal.2007;Lietal.2009;Zhang2013;Cheng et al.2014).For instance,Horstad et al.(1990)measured C30diahopane/(C30diahopane+C30hopane)ratios,which increase with maturity in North Sea oils,and were useful to map maturity gradients in North Sea oil fields.Huang et al.(2003)distinguished the various petroleum source facies in the Western Pearl River Basin offshore South China according to the abundance of 29Nsp relative to bicadinanesW and T(m/z 369).Li et al.(2009)differentiated two petroleum systems in the Huachang field of the Fushan Depressionintermsoftherelativeconcentrationofdiahopane and other maturity parameters.However,their genetic mechanisms and influencing factors are controversial.

    Fig.3 Mass spectra of(a)the C30components of the 17α(H)-diahopane series and(b)early-eluting rearranged hopane series and(c)the C29components of the 18α(H)-neohopane series and(d)28-nor-spergulane series,all taken from the same full scan GC—MS analysis of oil sample(SW 103 well,1907.8-1915.6 m)in the Songliao Basin

    Fig.4 m/z 191 and m/z 369 mass chromatograms of a mudstone in the Songliao Basin with a high content of rearranged hopanes(Shuang 101 well,2390.15 m,mudstone).H hopane;D diahopane;Nsp 28-norspergulane

    Many scholars have explored the formation conditions and geochemical attributes of rearranged hopanes.The majority held that C30diahopane may be formed by claymediated acidic catalysis under an oxic or suboxic environment(Philip and Gilbert 1986;Moldowan et al.1991;Peters and Moldowan 1993;Farrimond and Teln?s 1996;Liu et al.2014),whereas some scholars believed that clay catalysis under moderately alkaline conditions is helpful for the formation of C30diahopane(Xiao et al.2004).Zhuet al.(2007)reported that source rocks and oils derived from marine or saline lacustrine environments,with a source dominated by aquatic organisms,contain low abundances of diahopanes and C29Ts and almost lack the early-eluting rearranged hopanes.However,these compounds are rich in lacustrine sediments with a terrestrial higher plants input.Although the precursors of rearranged hopanes are not directly derived from terrestrial higher plants,a genetic connection between them seems apparent. Zhang et al.(2009)suggested that high to extremely high C30diahopane values are indicative of sub-oxidizing environment of fresh-brackish water and shallow to semideep lake.Previous studies indicate that the Songliao Basin develops a brackish-saline lacustrine environment with a mixed input,whereas coal-measure source rocks develop well in sedimentary environments of the Tarim and Ordos Basins(Zhang and Zhu 1996;Zhang et al.2013;Cheng et al.2014).Overall,the conditions of the three basins contributed to the formation of rearranged hopanes.

    As shown in Fig.5,both mudstones in the Songliao Basin and hydrocarbon source rocks in the Tarim and Ordos Basins are found to contain variable contents of rearranged hopanes.Huang et al.(2003)and Nytoft et al.(2006)noted that 29Nsp is abundant in marine oils and lacustrine oils.We also found fairly abundant 29Nsp in coals of the Ordos Basin(Fig.5b).The complexity of geological conditions and diverse study objects result in the differencesintheinfluencingfactorsofrearranged hopanes;thus the concentrations of the other three series of rearranged hopanes differ across the three basins.Hydrocarbon source rocks in the Tarim and Ordos Basins commonly contain high abundances of C30diahopane and 30E and low concentrations of C29Ts.In contrast,the oils in the Songliao Basin are enriched in C29Ts,and the amounts of C30diahopane and 30E are relatively low (Fig.6).In comparison with a brackish-saline lacustrine environment,the coal-measure and swamp environments under an oxic condition are more helpful to the formation of 30E.It is supported by Zhu et al.(2007)and Cheng et al.(2014),who found high contents of 30E in crude oils in the Jurassic reservoirs of central Sichuan Basin and the Lower Permian coal-measure source rocks in northeastern Ordos Basin,respectively.Moreover,abundant 30E has not been reported in a lacustrine environment.The relationship of C30diahopane/C30hopane and 30E/C30hopane with C29Ts/C29hopane are also noted.It is clear from Fig.6 that C30diahopane/C30hopane and 30E/C30hopane ratios of oils in the Songliao Basin increase markedly slower than those of hydrocarbon source rocks in the Tarim and Ordos Basins with the increase of C29Ts/C29hopane ratios.

    Fig.5 m/z 191 mass chromatograms of saturated fractions in representative source rocks from(a)SN 65 well in the Songliao Basin and(b)Su 27-5 well in the Ordos Basin and(c)KP 33 well in the Tarim Basin.H hopane;D diahopane;G gammacerane;E early-eluting rearranged hopane;Nsp 28-nor-spergulane;Ro vitrinite reflectance

    Fig.6 The cross-plots of C30diahopane/C30hopane and 30E/C30hopane versus C29Ts/C29hopane

    As mentioned above,different depositional environments exhibit diverse distributions of rearranged hopanes. It should be noted that rearranged hopanes in many oils and hydrocarbon source rocks from other Chinese sedimentary basins are much less abundant,even though their depositional setting,organic type and maturity level are comparable to those described above.This phenomenon is presumably related to a peculiar environment where a certain biological group highly enriched in precursors of these compounds thrived,or trace elements that cause a marked catalytic effect on the formation of the rearranged hopanes(Zhu et al.2007).Although the precursors of these compounds and genetic mechanisms remain to be determined,the occurrence and distribution of these series of rearranged hopanes indicate that they may serve as good indicators of organic facies,depositional environment and maturity.The wide applications of geochemical parameters of rearranged hopanes in petroleum geology also confirm this(Huang et al.2003;Li et al.2009;Zhang 2013).

    4 Conclusions

    Twenty-three oil samples and hydrocarbon source rocks from the Songliao,Tarim,and Ordos Basins have been analyzed by GC—MS and GC—MS—MS.Based on retention time,mass spectral characteristics and comparison with other studies,four series of rearranged hopanes are systematically identified in oils and hydrocarbon source rocks in the Songliao,Tarim,and Ordos Basins:the 17α(H)-diahopane series(C27,C29—C35),the 18α(H)-neohopane series(C27,C29—C35),the early-eluting rearranged hopane series(Ts and C29Ts),and the 21-methyl-28-nor-hopane series(29Nspand30Nsp).Thesefourseries ofrearrangedhopanes develop well in both brackish-saline lacustrine environments and coal-measure environments.However,the coalmeasure and swamp environments under an oxic condition are presumably more helpful to the formation of 30E.Even though their genetic mechanisms and influencing factors are controversial,thewideapplicationsofgeochemical parameters of rearranged hopanes in petroleum geology indicate that they could serve as good indicators of organic facies,depositional environment,and maturity.

    AcknowledgmentsThis study was financially supported by the National Natural Science Foundation of China(Grant No.41272170)and Nature Science Foundation of Hubei Province(Grant No. 2013CFB97).We are grateful to the editor Binbin Wang and an anonymous reviewer for their helpful comments,suggestions,scientific,and linguistic revisions of the manuscript.

    Cheng X,Chen X,Zhang M(2014)Origin of the 17α(H)-rearranged hopanes in Upper-Palaeozoic coal-bearing source rocks in the Northeast Ordos Basin.Acta Sedimentol Sin 32:790—796(in Chinese with English abstract)

    Farrimond P,Teln?s N(1996)Three series of rearranged hopanes in Toarcian sediments(northern Italy).Org Geochem 25:165—177

    Horstad I,Larter SR,Dypvik H,Aagaard P,Bj?rnvik AM,Johansen PE,Eriksen S(1990)Degradation and maturity controls on oil field petroleum column heterogeneity in the Gullfaks Field Norwegian North Sea.Org Geochem 16:497—510

    Huang B,Xiao X,Zhang M (2003)Geochemistry,grouping and origins of crude oils in the Western Pearl River Mouth Basin,offshore South China Sea.Org Geochem 34:993—1008

    Killops SD,Howell VJ(1991)Complex series of pentacyclic triterpanes in a lacustrine sourced oil from Korea Bay Basin. Chem Geol 91:65—79

    Li M,Wang T,Liu J,Zhang M,Lu H,Ma Q,Gao L(2009)Biomarker 17α(H)-diahopane:a geochemical tool to study the petroleum system of a Tertiary lacustrine basin,Northern South China Sea.Appl Geochem 24:172—183

    Liu H,Zhang M,Li X(2014)Genesis study of high abundant 17α(H)-diahopanes in Lower Cretaceous lacustrine source rocks of the Lishu fault depression,Songliao Basin Northeast China.Chin J Geochem 33:201—206

    Moldowan JM,F(xiàn)ago FJ,Carlson RMK,Young DC,van Duyne G,Clardy J,Schoell M,Pillinger CT,Watt DS(1991)Rearranged hopanes in sediments and petroleum.Geochim Cosmochim Acta 55:3333—3353

    Nytoft HP,Lutn?s BF,Johansen JE(2006)28-Nor-spergulanes,a novel series of rearranged hopanes.Org Geochem 37:772—786

    Nytoft HP,Lund K,Corleone′J?rgensen TK,Thomsen JV,Wendel S?rensen S,Lutn?s B F,Kildahl-Andersen G,Johansen JE(2007).Identification of an early-eluting rearranged hopaneseries.Synthesis from hop-17(21)-enes and detection of intermediates in sediments.The 23rd International Meeting on Organic Geochemistry

    Peters KE,Moldowan JM(1993)The Biomarker Guide:interpreting molecular fossils in petroleum and ancient sediments.Prentice Hall,Englewood Cliffs

    Philip RP,Gilbert TD(1986)Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Org Geochem 10:73—84

    Smith GW(1975)The crystal and molecular structure of 22,29,30-trisnorhopaneII,C27H46.Acta Cryst B31:522—526

    Teln?s N,Isaksen GH,F(xiàn)arrimond P(1992)Unusual triterpane distributions in lacustrine oils.Org Geochem 18:785—789

    Whitehead EV(1974)The structure of petroleum pentacyclanes.In:Tissot B,Bienner F(eds)Advances in organic geochemistry 1973.Editions Technip,Paris,pp 225—243

    Xiao Z,Huang G,Lu Y,Wu Y,Zhang Q(2004)Rearranged hopanes in oils from the Quele 1 Well,Tarim Basin,and the significance for oil correlation.Pet Explor Dev 31:35—37(in Chinese with English abstract)

    Zhang M(2013)Progress in genesis research on abundant rearranged hopanes in geological bodies.J Oil Gas Technol 9:1—5(in Chinese with English abstract)

    Zhang M,Zhu Y(1996)Geochemical characteristics of crude oils of the Kuche petroleum system in the Tarim Basin.Geol Rev. 3:229—234(in Chinese with English abstract)

    Zhang W,Yang H,Hou L,Liu F(2009)Distribution and geological significance of the 17α(H)-rearranged hopanes from different source rocks in Yanchang Formation of Ordos Basin.Sci China(Ser D)39:1438—1445(in Chinese)

    Zhang M,Li H,Wang X (2013)Geochemical characteristics and an grouping of the crude oils in the Lishu fault depression,Songliao basin,NE China.J Pet Sci Eng 110:32—39

    Zhu Y(1997)Geochemical characteristics of Terrestrial oils in the Tarim Basin.Acta Sedimentol Sin 15:26—30(in Chinese with English abstract)

    Zhu Y,Mei B,F(xiàn)u J,Sheng G(1997)Distribution characteristics of saturated hydrocarbon biomarkers in oils from Tarim Basin. J Jianghan Pet Inst 19:24—29(in Chinese with English abstract)

    Zhu Y,Zhong R,Cai X,Luo Y(2007)Composition and origin approach of rearranged hopanes in Jurassic oils of central Sichuan Basin.Geochimica 36:253—260(in Chinese with English abstract)

    10.1007/s11631-015-0065-3

    2 February 2015/Revised:21 April 2015/Accepted:6 July 2015/Published online:30 August 2015

    ? Min Zhang

    zmipu@163.com

    1Key Laboratory of Exploration Technology for Oil and Gas Research(Yangtze University),Ministry of Education,Wuhan 430100,China

    2School of Earth Environment and Water Resources,Yangtze University,Wuhan 430100,China

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    久久精品国产亚洲av天美| 国产精品久久久久久亚洲av鲁大| 黄色一级大片看看| 日日夜夜操网爽| 99久久成人亚洲精品观看| 免费看日本二区| 干丝袜人妻中文字幕| 非洲黑人性xxxx精品又粗又长| 成人无遮挡网站| 日日干狠狠操夜夜爽| 亚洲欧美日韩卡通动漫| 亚洲国产欧洲综合997久久,| av在线观看视频网站免费| 大型黄色视频在线免费观看| 日本黄色视频三级网站网址| 99视频精品全部免费 在线| 国产伦在线观看视频一区| 日日摸夜夜添夜夜添av毛片 | 永久网站在线| 夜夜看夜夜爽夜夜摸| 久久香蕉精品热| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩东京热| 少妇熟女aⅴ在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 午夜日韩欧美国产| 久久久久久久久中文| 国产在线男女| 精品一区二区三区av网在线观看| 直男gayav资源| 国产在视频线在精品| 久久久久精品国产欧美久久久| 国内久久婷婷六月综合欲色啪| 亚洲美女搞黄在线观看 | 国产精品美女特级片免费视频播放器| 精品人妻熟女av久视频| 久9热在线精品视频| 久99久视频精品免费| 日本撒尿小便嘘嘘汇集6| www.www免费av| 一个人观看的视频www高清免费观看| 99久久无色码亚洲精品果冻| videossex国产| 嫩草影院精品99| 亚洲性夜色夜夜综合| 舔av片在线| 亚洲最大成人av| 亚洲无线在线观看| 亚洲av日韩精品久久久久久密| 九九热线精品视视频播放| 免费高清视频大片| 哪里可以看免费的av片| 变态另类丝袜制服| 国产一区二区亚洲精品在线观看| 床上黄色一级片| 欧美一区二区国产精品久久精品| 久久久久久久午夜电影| 51国产日韩欧美| 最近视频中文字幕2019在线8| 岛国在线免费视频观看| 18禁在线播放成人免费| 久久久久久大精品| 欧美日韩乱码在线| 免费人成视频x8x8入口观看| 久久久久国内视频| 亚洲最大成人手机在线| 好男人在线观看高清免费视频| 国产精品一区www在线观看 | 日本黄大片高清| 亚洲成人久久性| 国产三级中文精品| 亚洲av中文av极速乱 | 亚洲欧美日韩高清专用| 久久久国产成人免费| 97超级碰碰碰精品色视频在线观看| 亚洲一区高清亚洲精品| 校园春色视频在线观看| 久久久久精品国产欧美久久久| 最近最新中文字幕大全电影3| 一本精品99久久精品77| 国产在线精品亚洲第一网站| 国产伦精品一区二区三区四那| 人人妻人人看人人澡| 成人精品一区二区免费| 亚洲成av人片在线播放无| 国产在线男女| 国产成人一区二区在线| 国产毛片a区久久久久| 成人特级黄色片久久久久久久| 日本免费一区二区三区高清不卡| 久久人人精品亚洲av| 搡老岳熟女国产| 亚洲精品成人久久久久久| 国产免费av片在线观看野外av| 国产高清视频在线观看网站| 狂野欧美激情性xxxx在线观看| 日本爱情动作片www.在线观看 | 嫩草影院新地址| 国产精品久久久久久av不卡| www.www免费av| 亚洲成人久久爱视频| 成熟少妇高潮喷水视频| 国产久久久一区二区三区| av在线老鸭窝| 看黄色毛片网站| 久久久久国产精品人妻aⅴ院| 亚洲精品一卡2卡三卡4卡5卡| 小说图片视频综合网站| 1000部很黄的大片| 婷婷精品国产亚洲av在线| 午夜a级毛片| 深夜精品福利| 亚洲精品国产成人久久av| 女人十人毛片免费观看3o分钟| 亚洲欧美清纯卡通| 99热6这里只有精品| 极品教师在线视频| 在线播放国产精品三级| 99久久精品一区二区三区| 特级一级黄色大片| 熟女电影av网| 亚洲精品在线观看二区| 搡女人真爽免费视频火全软件 | 日韩精品青青久久久久久| 无遮挡黄片免费观看| 九九久久精品国产亚洲av麻豆| 国产精品一区二区三区四区久久| 国产精品三级大全| 岛国在线免费视频观看| 日本欧美国产在线视频| 午夜爱爱视频在线播放| 久久精品国产99精品国产亚洲性色| 九九爱精品视频在线观看| 亚洲在线自拍视频| 国产精品人妻久久久久久| 国产毛片a区久久久久| 1000部很黄的大片| 久久热精品热| 国产一区二区三区av在线 | 亚洲av成人精品一区久久| 欧美日本视频| 国产乱人伦免费视频| 国产精品综合久久久久久久免费| 日日啪夜夜撸| 欧美+亚洲+日韩+国产| 成人国产一区最新在线观看| 日本成人三级电影网站| 国产一级毛片七仙女欲春2| 波多野结衣高清无吗| 美女大奶头视频| 日韩欧美三级三区| 欧美性猛交╳xxx乱大交人| 日本 欧美在线| 午夜激情福利司机影院| 黄色丝袜av网址大全| 中国美白少妇内射xxxbb| 99视频精品全部免费 在线| 2021天堂中文幕一二区在线观| 久久天躁狠狠躁夜夜2o2o| 蜜桃亚洲精品一区二区三区| 啦啦啦观看免费观看视频高清| 国产老妇女一区| 亚洲av中文av极速乱 | 91精品国产九色| 国内精品久久久久精免费| 国产免费男女视频| 身体一侧抽搐| 91av网一区二区| 五月玫瑰六月丁香| 超碰av人人做人人爽久久| 成人无遮挡网站| 免费看日本二区| 免费在线观看日本一区| 免费看光身美女| ponron亚洲| 天堂动漫精品| 亚洲七黄色美女视频| 久久精品国产亚洲网站| 中文字幕高清在线视频| 精品人妻偷拍中文字幕| 国产高清视频在线观看网站| 超碰av人人做人人爽久久| 18禁黄网站禁片午夜丰满| 色尼玛亚洲综合影院| 美女被艹到高潮喷水动态| 国产精品99久久久久久久久| 欧美日韩黄片免| 3wmmmm亚洲av在线观看| 亚洲狠狠婷婷综合久久图片| 99riav亚洲国产免费| 麻豆av噜噜一区二区三区| 免费人成在线观看视频色| 国产精品98久久久久久宅男小说| 亚洲av中文av极速乱 | 亚洲在线自拍视频| 亚洲专区国产一区二区| 美女免费视频网站| 日本爱情动作片www.在线观看 | 欧美色欧美亚洲另类二区| 天堂网av新在线| 伦理电影大哥的女人| 最好的美女福利视频网| 亚洲内射少妇av| 嫩草影院入口| 极品教师在线视频| 在线播放无遮挡| 动漫黄色视频在线观看| 99热网站在线观看| 日本免费a在线| 午夜爱爱视频在线播放| 亚洲av成人精品一区久久| 九九在线视频观看精品| 婷婷色综合大香蕉| 色哟哟·www| 亚洲欧美清纯卡通| 久久久久久久亚洲中文字幕| 一级黄色大片毛片| 亚洲精品日韩av片在线观看| 噜噜噜噜噜久久久久久91| 成年人黄色毛片网站| 亚洲第一电影网av| 国内精品一区二区在线观看| 国内少妇人妻偷人精品xxx网站| 国产主播在线观看一区二区| 国产精品精品国产色婷婷| 欧美xxxx性猛交bbbb| 国产 一区 欧美 日韩| 亚洲色图av天堂| 日本色播在线视频| 欧美一区二区亚洲| 人妻少妇偷人精品九色| 国产在线精品亚洲第一网站| av福利片在线观看| 91av网一区二区| 亚洲狠狠婷婷综合久久图片| 国产精品美女特级片免费视频播放器| 亚洲av成人精品一区久久| 国产老妇女一区| 最新中文字幕久久久久| 观看美女的网站| 97超级碰碰碰精品色视频在线观看| 国产色婷婷99| .国产精品久久| 色噜噜av男人的天堂激情| 亚洲av一区综合| 成人性生交大片免费视频hd| 亚洲在线自拍视频| 在线天堂最新版资源| 国产主播在线观看一区二区| 久久6这里有精品| 国产精品久久电影中文字幕| 国产精品亚洲美女久久久| 精品久久久久久,| 乱人视频在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲无线观看免费| 日韩精品青青久久久久久| 露出奶头的视频| 免费在线观看成人毛片| 欧美绝顶高潮抽搐喷水| 日韩精品有码人妻一区| 亚洲av熟女| 亚洲男人的天堂狠狠| 女同久久另类99精品国产91| 国内精品美女久久久久久| 欧美性猛交╳xxx乱大交人| 综合色av麻豆| 中文字幕精品亚洲无线码一区| 啦啦啦观看免费观看视频高清| 亚洲国产高清在线一区二区三| 深夜精品福利| 高清毛片免费观看视频网站| 蜜桃久久精品国产亚洲av| 黄色一级大片看看| 深夜a级毛片| 日日干狠狠操夜夜爽| 高清在线国产一区| 国产精品1区2区在线观看.| 色综合亚洲欧美另类图片| 搡老妇女老女人老熟妇| 麻豆精品久久久久久蜜桃| 91狼人影院| 国产午夜精品久久久久久一区二区三区 | 亚洲中文字幕一区二区三区有码在线看| 亚洲国产欧洲综合997久久,| 久9热在线精品视频| 国产伦精品一区二区三区四那| 欧美一区二区精品小视频在线| 免费高清视频大片| 欧美xxxx性猛交bbbb| 欧美最黄视频在线播放免费| 午夜福利高清视频| 国产一区二区激情短视频| 久久久久性生活片| 国产亚洲精品av在线| 无遮挡黄片免费观看| 日日干狠狠操夜夜爽| 性欧美人与动物交配| 亚洲最大成人中文| 国产高清激情床上av| 欧美色视频一区免费| 国产精品电影一区二区三区| 又粗又爽又猛毛片免费看| 嫩草影院精品99| 性欧美人与动物交配| 色5月婷婷丁香| 亚洲av中文av极速乱 | 亚洲三级黄色毛片| 欧美一区二区精品小视频在线| 色哟哟·www| 亚洲人成伊人成综合网2020| 波多野结衣巨乳人妻| 亚洲中文字幕日韩| 日韩欧美精品v在线| 91麻豆精品激情在线观看国产| 久久午夜福利片| 国产 一区 欧美 日韩| 国产熟女欧美一区二区| 91麻豆精品激情在线观看国产| 婷婷六月久久综合丁香| 女生性感内裤真人,穿戴方法视频| 亚洲成人久久爱视频| 欧美日本视频| 精品人妻视频免费看| 日本免费a在线| 精品久久久久久久久久久久久| 亚洲中文字幕一区二区三区有码在线看| 国产黄a三级三级三级人| 久久精品国产亚洲网站| 中文资源天堂在线| 黄色女人牲交| 久久九九热精品免费| 国产精品野战在线观看| 精品人妻视频免费看| 欧美xxxx黑人xx丫x性爽| 午夜精品一区二区三区免费看| 久久欧美精品欧美久久欧美| 亚洲av熟女| 日本三级黄在线观看| 国产精品亚洲一级av第二区| 国产成人福利小说| 麻豆精品久久久久久蜜桃| 国内精品一区二区在线观看| 成人国产麻豆网| 精品欧美国产一区二区三| 国产精品人妻久久久久久| 搡老岳熟女国产| 一区二区三区免费毛片| 亚洲欧美日韩高清在线视频| 亚洲国产精品sss在线观看| 香蕉av资源在线| 少妇丰满av| 久久香蕉精品热| 精品久久久久久久久久久久久| 99国产精品一区二区蜜桃av| 村上凉子中文字幕在线| 欧美日韩瑟瑟在线播放| 欧美高清性xxxxhd video| a在线观看视频网站| 日韩欧美国产在线观看| 日韩欧美 国产精品| 嫩草影院精品99| 久久精品国产鲁丝片午夜精品 | 亚洲精华国产精华精| 国产在线精品亚洲第一网站| 悠悠久久av| av在线天堂中文字幕| 亚洲av不卡在线观看| .国产精品久久| 十八禁网站免费在线| 欧美色欧美亚洲另类二区| 日韩精品中文字幕看吧| 久久久久久久久大av| 最近在线观看免费完整版| 小蜜桃在线观看免费完整版高清| 美女大奶头视频| 97热精品久久久久久| 成人综合一区亚洲| 国内少妇人妻偷人精品xxx网站| 99在线人妻在线中文字幕| 国内精品久久久久久久电影| 免费无遮挡裸体视频| 97超视频在线观看视频| 成人性生交大片免费视频hd| 亚洲欧美日韩东京热| 亚洲国产欧洲综合997久久,| x7x7x7水蜜桃| 国产黄片美女视频| 丰满人妻一区二区三区视频av| 久久精品国产亚洲网站| 中文亚洲av片在线观看爽| av在线天堂中文字幕| 国产色婷婷99| 一级a爱片免费观看的视频| 成年人黄色毛片网站| netflix在线观看网站| 日韩欧美一区二区三区在线观看| 麻豆成人午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美一区二区三区在线观看| 午夜精品久久久久久毛片777| 国产伦一二天堂av在线观看| 黄色女人牲交| 熟女人妻精品中文字幕| 亚洲欧美日韩东京热| 国产成年人精品一区二区| 午夜激情欧美在线| 老熟妇乱子伦视频在线观看| 久久人人爽人人爽人人片va| 一级黄片播放器| 日本成人三级电影网站| 久久精品综合一区二区三区| 精品久久久久久成人av| 国产精品综合久久久久久久免费| 国产精品女同一区二区软件 | 亚洲精品日韩av片在线观看| 男人的好看免费观看在线视频| 18+在线观看网站| 免费av毛片视频| 夜夜夜夜夜久久久久| 成人特级黄色片久久久久久久| 狂野欧美激情性xxxx在线观看| 亚洲国产精品久久男人天堂| 又粗又爽又猛毛片免费看| 97热精品久久久久久| 午夜免费男女啪啪视频观看 | 久久精品夜夜夜夜夜久久蜜豆| 人妻少妇偷人精品九色| 国产精品亚洲美女久久久| 99热只有精品国产| xxxwww97欧美| 动漫黄色视频在线观看| 俄罗斯特黄特色一大片| av黄色大香蕉| 神马国产精品三级电影在线观看| 欧美zozozo另类| 欧美3d第一页| 在线国产一区二区在线| 又粗又爽又猛毛片免费看| 国产精品三级大全| www.www免费av| 乱码一卡2卡4卡精品| 小说图片视频综合网站| 久久精品国产自在天天线| 成人午夜高清在线视频| 亚洲精品456在线播放app | 99热网站在线观看| 男人的好看免费观看在线视频| 国产精品一区二区免费欧美| 亚洲中文字幕日韩| 99热只有精品国产| 成年人黄色毛片网站| 黄色欧美视频在线观看| 美女被艹到高潮喷水动态| 久久99热这里只有精品18| aaaaa片日本免费| 99久久久亚洲精品蜜臀av| 国产精品久久视频播放| 日韩精品中文字幕看吧| 久久久久久伊人网av| 最新中文字幕久久久久| 99热这里只有是精品在线观看| ponron亚洲| 俺也久久电影网| .国产精品久久| 久久久久久久精品吃奶| 91狼人影院| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av天美| 国产精品亚洲一级av第二区| 色播亚洲综合网| 老司机深夜福利视频在线观看| 嫩草影院精品99| 国产激情偷乱视频一区二区| 天堂动漫精品| 国产 一区 欧美 日韩| 精品一区二区免费观看| 免费看日本二区| 国产av在哪里看| 一进一出抽搐动态| 身体一侧抽搐| 春色校园在线视频观看| 亚洲av五月六月丁香网| 午夜亚洲福利在线播放| 久久久精品大字幕| 亚洲国产精品专区欧美| 一级av片app| 只有这里有精品99| 狂野欧美激情性bbbbbb| av在线蜜桃| 夜夜骑夜夜射夜夜干| 成人亚洲精品一区在线观看 | 青春草国产在线视频| 欧美精品一区二区大全| 国语对白做爰xxxⅹ性视频网站| 国产欧美亚洲国产| 国产黄片视频在线免费观看| 久久av网站| 我要看日韩黄色一级片| 久热这里只有精品99| 日韩中文字幕视频在线看片 | 久久精品国产自在天天线| 久久99热6这里只有精品| 亚洲一区二区三区欧美精品| av女优亚洲男人天堂| 最近中文字幕2019免费版| 好男人视频免费观看在线| www.av在线官网国产| 亚洲国产精品一区三区| 99久久精品一区二区三区| 大片电影免费在线观看免费| 久久久a久久爽久久v久久| 一级毛片 在线播放| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩无卡精品| 韩国高清视频一区二区三区| freevideosex欧美| 97精品久久久久久久久久精品| 亚洲av欧美aⅴ国产| 久久午夜福利片| 欧美最新免费一区二区三区| 卡戴珊不雅视频在线播放| 日韩国内少妇激情av| 免费大片18禁| 中国美白少妇内射xxxbb| 黑人猛操日本美女一级片| 成人一区二区视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 熟妇人妻不卡中文字幕| 欧美日韩精品成人综合77777| 国产69精品久久久久777片| 男女边摸边吃奶| 免费黄色在线免费观看| 日韩av在线免费看完整版不卡| 日韩 亚洲 欧美在线| 亚洲精品自拍成人| 亚洲国产色片| 中文天堂在线官网| 精品一区二区三区视频在线| 亚洲av日韩在线播放| 久久久久网色| 91久久精品电影网| 国产成人aa在线观看| 这个男人来自地球电影免费观看 | 小蜜桃在线观看免费完整版高清| 2018国产大陆天天弄谢| 免费少妇av软件| 亚洲av福利一区| 日本欧美视频一区| 777米奇影视久久| 亚洲av成人精品一区久久| 97超视频在线观看视频| 国产成人精品一,二区| 五月玫瑰六月丁香| 亚洲人成网站高清观看| 高清日韩中文字幕在线| 日日啪夜夜爽| 成人国产av品久久久| 国产精品嫩草影院av在线观看| 日韩欧美 国产精品| 一级黄片播放器| av在线观看视频网站免费| 亚洲精品456在线播放app| 五月伊人婷婷丁香| 内地一区二区视频在线| 日本wwww免费看| 亚洲人成网站高清观看| 我的女老师完整版在线观看| 一个人免费看片子| 一级片'在线观看视频| h视频一区二区三区| 一级毛片电影观看| 亚洲欧美成人精品一区二区| 丰满乱子伦码专区| 久久这里有精品视频免费| 夫妻午夜视频| 国产欧美日韩精品一区二区| 亚洲精品国产色婷婷电影| 久久亚洲国产成人精品v| 在线观看美女被高潮喷水网站| 国产在线视频一区二区| 国产精品久久久久久av不卡| 你懂的网址亚洲精品在线观看| 午夜福利影视在线免费观看| 国产av精品麻豆| 热99国产精品久久久久久7| 永久网站在线| a 毛片基地| av在线观看视频网站免费| 蜜桃亚洲精品一区二区三区| 一区二区av电影网| videos熟女内射| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 亚洲aⅴ乱码一区二区在线播放| 成人免费观看视频高清| 婷婷色综合www| 成人毛片a级毛片在线播放| 中文乱码字字幕精品一区二区三区| 亚洲精品亚洲一区二区| 久久人人爽人人片av| 国产 一区精品| 狠狠精品人妻久久久久久综合| 亚洲欧美成人综合另类久久久| 精品亚洲乱码少妇综合久久| 亚洲一级一片aⅴ在线观看| 男女无遮挡免费网站观看| 丰满迷人的少妇在线观看| 亚洲欧美日韩东京热| 国产精品久久久久久av不卡| 国产有黄有色有爽视频| 熟女人妻精品中文字幕| 成人黄色视频免费在线看| 精品亚洲乱码少妇综合久久| 国产成人精品婷婷|