• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of an Early Silurian-Early Permian paleo-weathering profile in Zunyi,north Guizhou Province,China

    2015-10-25 02:03:09XiaohuiXiongJiafeiXiaoRuizhongHuYiWangJianWangXiugenFu
    Acta Geochimica 2015年4期

    Xiao-hui Xiong·Jia-fei Xiao·Rui-zhong Hu· Yi Wang·Jian Wang·Xiu-gen Fu

    Study of an Early Silurian-Early Permian paleo-weathering profile in Zunyi,north Guizhou Province,China

    Xiao-hui Xiong1,2,3·Jia-fei Xiao1·Rui-zhong Hu1· Yi Wang4·Jian Wang3·Xiu-gen Fu3

    To understand and help settle the controversy around the living time of Pinnatiramosus qianensis Geng,a paleo-weathering profile situated in the town of Yongle near the city of Zunyi,north Guizhou Province,China,was analyzed.The profile formed during a break in sedimentation between the Early Silurian and the Early Permian. Paleosol developed with a depth of several meters.The fossil plant P.qianensis Geng is present,but only in the lower portions(Layer 2)of the paleosol.Another plant with an irregularly branching system is found in Layers 2 and 3.The distinct geochemical characteristics of the lower and upper portions of the Gaojiayan paleosol indicate a compound genesis.Its lower portions(Layers 1 and 2)resulted from in situ weathering of silty mudstone of the lower Silurian Hanjiadian Formation.The upper portions(Layer 3)are allochthonous.Transgression brought substantial concentrations K and Na,and led to K-and Naenrichment in the profile.Pumping of vascular plants and downward leaching enhanced the K enrichment in the middle portions.A superior preservation of P.qianensis Geng was observed in an exposure of Layer 2.Mass balance calculation indicates a great K enrichment related to bioaccumulation in the top of Layer 2 and a K loss in Layer 3.Fossil plants(e.g.,P.qianensis Geng)preserved in the paleosol are Permian rooting systems growing down into the lower Silurian rocks.

    Paleosol·Transgression·Biological process· Early Silurian—Early Permian·Pinnatiramosus qianensis Geng

    1 Introduction

    Paleosols,the weathering products of the geological past,have attracted increasing attention since they were recognized by James Hutton in 1795(Retallack and Mcdowell 1988).A paleosol is reflective of the paleo-environment in which it formed and of the material present during the paleo-weathering processes.The geochemical composition,thickness,maturity,and preservation of paleosol can be used to interpret regional tectonic activity and landscape evolution(Cerling 1992;Driese and Foreman 1992;Holland and Rye 1997;Kraus 1999;Riebe et al.2004).Element distribution in a paleosol profile can be influenced by intense weathering.Elemental analysis can reveal loss and enrichment in different sections relative to that of the bedrock.

    Paleosols do not only exist in a variety of continental depositional settings,including eolian(Brimhall et al. 1988;Soreghan et al.1997),palustrine(Tandon et al. 1995),and deltaic(Arndorff 1993),but are also found in marginal marine strata(Lander et al.1991)and in marine strata in cases that sea-level fell and exposed marine sediment(Webb 1994).Paleosols evolved during long breaks in sedimentation,and often show compound,composite,or cumulative characteristics.Insignificant erosion combinedwith rapid,unsteady sedimentation is generally related to compound paleosols.A rate of pedogenesis in excess of the rate of deposition is associated with composite paleosols. Thick,cumulative paleosols indicate that erosion was insignificant and that sedimentation was relatively steady(Kraus 1999).

    We studied the Gaojiayan paleo-weathering profile.It formed during a break in sedimentation between the Early Silurian and the Early Permian.The time break was also an important period for bauxite deposit formation in this area,especially during the Carboniferous(Liu 1993,2001;Shengand Liao2010).This paleosol has attracted increasing attention in recent years due to the presence of an ancient vascular plant(Pinnatiramosus qianensis Geng),which has been considered to be the earliest vascular plant—a claim recently called into question(Cai et al. 1996;Edwards et al.2007;Wang et al.2013).We hope to contribute evidence to the debate with this paper.Major and trace elements were measured to illustrate the compound genesis of the Gaojiayan profile,which is composed of the lower in situ weathering portions and the upper allochthonous portions.Fossil plants preserved in the paleosol are proposed to be a Permian rooting system that extended into Lower Silurian rocks.

    2 Geological background and features of studied profile

    During the Early Silurian,as part of the Kwangsian Movement,the entire Yangtze Platform was uplifted by the end of the Telychian or possibly in the earliest Wenlock.It was then subjected to prolonged erosion and weathering(Edwards et al.2007).The overlying marine transgressive sequences are variably of the Upper Devonian through the Carboniferous or Permian ages,suggesting time breaks of about50—130 Ma(BureauofGeologyandMineral Resources of Guizhou Province 1987;Chen et al.2002;Edwards et al.2007).During these breaks,the Gaojiayan paleosol developed,and terrestrial vegetation would have evolved.

    The Gaojiayan profile is located in the town of Yongle near Zunyi,north Guizhou Province(Fig.1).It is exposed onaroadcutneartheGaojiayanVillage(Fig.2;27°53′5.5′′N,107°22′18.5′′E).At the top of the profile,the Liangshan Formation(Fm)is comprised of black mediumto thin-bedded siliceous rocks.It has a thickness of about 2 m.

    Light-purplish to rosy mudstone and conglomerate,with a thickness of about 0.33 m,are below the Liangshan Fm,which marks a sedimentary discontinuity.Gravels are wellrounded and composed largely of gray mudstone.Below the discontinuity,the paleosol,with a total thickness of about 2.66 m,is comprised of mottled clayey mudstone in the upper portions and gray mudstone in the lower portions. At the bottom,it gradually changes to gray-black silty mudstone and gray-green silty mudstone and shales of the Hanjiadian Fm of the Early Silurian(Fig.2).

    Hanjiadian Fm consists of dominantly gray-green and yellow-green mudstone,silty mudstone,and shale,indicating low-energy,tidal-flat or shallow-shelf environments(Guo et al.2004;Zhang and Nie 2006;Zhu et al.2010). Paleogeographically,the sequences described here were depositedwithinabroad,shallowembaymentoftheYangtze Sea on the northern margin of the Cathaysian landmass(Fig.1a).The absence of any coarse clastic input into the Hanjiadian sequences both at Yongle and more widely across the Yangtze Platform indicates that the Cathaysian LandwasoflowreliefthroughouttheLateLlandovery,with negligiblesurfacerunoff(Edwardsetal.2007).TheYangtze Platform experienced a rapid regression to non-marine environments above this level according to sea-level curves(Rong et al.1984;Johnson et al.1985).

    Fossil plants(root traces)are distributed in the studied paleosol.The famous P.qianensis Geng(Geng 1986)was identified in the Gaojiayan profile,but only in Layer 2(Fig.3).Another plant with an irregularly branching system(see Fig.15 in appendix)was identified not only in Layer 2 but also in the lower portion of Layer 3(Fig.3).

    3 Sampling and analytical method

    To collect samples,a fresh section was excavated manually on the roadcut.Based on different colors,lithologies,and weathering degrees at various positions,we divided the profile into five layers.Forty-one samples were collected from the top to the bottom at various intervals:

    Layer 5(>2 m)black siliceous rocks of the Liangshan Fm.One sample(GJYII-22H)was collected;

    Layer 4(0.33 m)light-purplish to rosy shale,and muddy basal conglomerate.Six samples(GJYII-B2H—GJYIIB7H)were collected at intervals of 4 to 10 cm;

    Layer 3(1.38 m)mottled mudstone and clayey mudstone.Sixteen samples(GJYII-B8H—GJYII-B23H)were collected.Most of them were semi-consolidated;six samples(GJYII-B13H—GJYII-B18H)were dense and hard. The sampling interval was 5—10 cm.The plant with an irregularly branching system was found in the lower portions of this layer.

    Layer 2(0.98 m)gray mudstone.All 12 samples(GJYII-12H—GJYII-2H)collected in this layer were semiconsolidated and rich in fossil plants(e.g.,P.qianensis Geng)with a sampling interval of 5—15 cm;

    Fig.1 a Location of studied profile,paleo-geographical reconstruction of the late Aeronian(late Middle Llandovery)time in early Silurian for Guizhou Province(modified after Edwards et al.2007,F(xiàn)igure 2 and Rong et al.1996,F(xiàn)igure 5)and regional stratigraphy(bottom left inset);b Regional traffic of Northern Guizhou(modified after Li and Rong 2007,F(xiàn)igure 1a)

    Layer 1(0.3 m)gray-black silty mudstone.One sample(GJYII-1H)was collected.

    Due to difficult sampling at the paleosol collection site,we collected five bedrock samples(GJYI-5H—GJYI-1H)from a paleo-weathering profile of the same horizon 35 m away.The distribution of samples from the Gaojiayan profile is shown in Fig.3.

    Before analyses of major and trace elements(including rare earth elements—REEs),all bulk samples were ground into powder(200 mesh).The major elements were determined using X-ray fluorescence spectroscopy.The instrument used was an Axios(PW4400)with analytical uncertainty<10%.Trace elements were analyzed using inductive-coupled plasma-mass spectroscopy(ICP-MS)techniques(PerkinElmer ELAN DRC-e)with analytical uncertainty<10%.In addition,some samples were selected for mineral analysis using X-ray diffraction(XRD)and determination of Boron concentration with the help ofOptima 5300V.The above analyses and measurements were all performed at the Institute of Geochemistry,Chinese Academy of Sciences,with the exception of determination of Boron which was completed at the Testing and Analysis Center of Guizhou Normal University.

    Fig.2 The outcrop of studied profile(GJYII),Bedrock is gray-green silty mudstone of Hanjiadian Formation of Early Silurian.Subordinate descriptors(s,t)and master horizons(B,BC,C,R)follow the definitions in Retallack(1988)in this and subsequent figures

    4 Results

    The contents of major,trace,and rare earth elements for samples collected from the Gaojiayan profile are listed in Tables 1,2,and 3,respectively.Elemental contents of paleosol samples are notably different from corresponding values in the bedrock(Fig.4).The main component of the Liangshan Fm siliceous rocks is SiO2,accounting for 84.13%.Samples with SiO2content between 40 and 50 wt%dominated the studied paleosol,and an increase in SiO2content downwards was observed.However,contents of Al2O3and K2O varied with depth.A good correlation exists between Al2O3and K2O,likely because they are the main components of illite,the dominant mineral according to XRD data.Mobile components like CaO,MgO,and MnO leach strongly,and were depleted relative to bedrock. Contents of Fe2O3and P2O5showed great losses relative to bedrock in most portions,but were enriched in partial horizons owing to leaching from the upper portions.These data suggest that the study profile experienced extensive chemical weathering.However,less mobile components like TiO2,Nb,Zr,Th,Cr,and V showed enrichment relative to bedrock throughout the paleosol,with the degree of enrichment displaying a sharp increase upwards at the contact of Layers 2 and 3.

    Alkali metals(Na and K)showed enrichment in most horizons of the paleo-weathering profile(Fig.4).K-and Na-enrichment in a paleosol is nearly impossible after long-term weathering in a warm and rainy environment between 20°S and 10°N(Liao 1999;Li and Rong 2007)if no other geological processes are involved.With the help of an A—CN—K(Al2O—CaO*+NaO—K2O)triangular diagram(Fig.5)(Fedo et al.1995),the weathering conditions of the studied profile can be well-illustrated.The diagram shows the weathering trend paralleling the A—CN line at the early stage,then following a path toward the K2O apex.Most samples plot close to the area where illite or muscovite lies,implying the addition of K to the weathering profile.Weathering indices CIA—K and PIA can be used to estimate weathering intensity,but should be appliedwithcautionforKmetasomatismandNa metasomatism.

    The REE distribution patterns normalized by the North American shale composite(NASC)show distinct differences between Layers 1 and 2 and Layer 3(Fig.6).Layers 1 and 2 tested rich in LREEs,and Layer 3 returned low LREE/HREE ratios.HREEs were less mobile relative to LREEs throughout the profile.The distribution patterns of LREEs in Layer 3 were very regular.The concentration ofLREEs increased with depth in Layer 3,implying that LREEs leached from the upper parts,and concentrated in the lower parts.

    Fig.3 Distribution of samples in study profile and lithology descriptions

    5 Discussion

    5.1 In-situ weathering or allochthonous product?

    5.1.1 Characteristics of less mobile elements

    There are variations in mobility among different elements during chemical weathering.Previous studies indicate that low-valent elements such as alkali metal and alkaline earth metal leach easily and are depleted in acid soil.In contrast,other high-valent elements(e.g.,high field strength elements Nb,Ta,Zr,Hf,Ti,and Th)are more resistant and accumulate readily(Nesbitt et al.1980;Marques et al. 2004).Generally,intensive in situ weathering results in strong leaching of mobile elements.Less mobile elements are enriched in place,and their enrichments rise progressivelyupwardswithincreasingweatheringintensity. However,there was a sharp rise in enrichment of less mobile elements at the contact of Layer 2 and Layer 3 in the Gaojiayan profile(Fig.4).Average Zr,Nb,and TiO2concentration values of samples from Layer 2 are 3.6,1.98,and 1.88 times,respectively,those of samples from Layer 3.This indicates different enriching mechanisms of these elements in the two layers.

    Study of modern soils has shown that some ratios of less mobile elements such as Zr,Ti,and Al can be used to test for the in situ nature of a profile as a preliminary screen;if the Ti/Zr ratio departs from that of the host rock by more than 40%,or the Ti/Al ratio departs by more than 50%for moderate degrees of weathering,then a significant allochthonous contribution to the profile is indicated(Maynard 1992).As for strong weathering profiles(CIA—K>90),the deviation of Ti/Al can be much larger,but the Ti/Zr ratio still departs by<100%for an in situ profile(Maynard 1992).Samples from Layers 1 and 2 show a maximumdeviation of Ti/Zr ratio from the average of bedrock of 15.8%(less than 40%),with the maximum deviation of the Ti/Al ratio reaching 31.5%(less than 50%).However,in Layer 3 there are 11 samples whose Ti/Zr ratios surpass 40%and two samples whose Ti/Al ratios surpass 50%. The maximum deviations of Ti/Zr and Ti/Al reached 62.9%and 71.1%,respectively.These data combined suggest the in situ weathering of Layers 1 and 2 and allochthonous genesis of Layer 3.Samples from Layers 1 and 2 plot in the same weathering trend with bedrock,but samples of Layer 3 plot far away from that line in TiO2—Zr,TiO2—Al2O3,Nb—Zr,and Th/Sc—Zr/Sc binary diagrams(Fig.7).

    Table 1 Major element contents of whole-rock samples from study profile

    Table 1 continued

    Table 1 continued

    Previous studies suggest that Zr,Cr,and Ga are largely immobile during weathering and diagenesis.A Zr—Cr—Ga triangular diagram can be used to distinguish the lithological nature of weathering parent rocks(Calagari and Abedini 2007;O¨zlu¨1983).Plots on a Zr—Cr—Ga diagram show that most samples plot in the area of intermediary or argillaceousrocks(Fig.8a),indicatingthattheyall evolved from the gray-green silty mudstone of the Hanjiadian Fm.In La—Th—Sc and Th—Sc—Zr/10 triangular discrimination diagrams(Bhatia and Crook 1986)(Fig.8b,c),samples from Layer 3 plot in a scattered area similar to those of Layer 4.The latter is basal conglomerates that have undergone supergene transportation.In contrast,samples from Layers 1 and 2 and bedrock all plot in a relatively concentrated area.The above analyses support that Layer 3 is an allochthonous product,and Layers 1 and 2 are in situ weathering products of the Hanjiadian Fm gray-green silty mudstone.

    5.1.2 REE characteristics

    In order to evaluate the mobilization of REEs,a method of measuring elemental concentration change relative to parent rock was needed.The mass balance calculation method from Nesbitt(1979)was applied here.We assumed a homogeneous source rock for the Gaojiayan paleosol,and selected Nb as a reference element(I)to evaluate gains and losses of other elements during pedogenesis(Brimhall and Dietrich 1987;Kurtz et al.2000;Little and Lee 2006).The content change of any element(X)in a paleosol sample(S)relative to that of parent rock(P)is given by Eq.1:

    If τ is positive,an influx of material occurred;if τxhas a value of 0(%),this indicates element X is totally immobile,and no migration happened;if τ is negative,then material has left the system.The minimal value of τ is -100(%)and represents total depletion.The mass balance calculation is not influenced by the bulk density change of samples.

    Based on a Zr—Cr—Ga triangular diagram(Fig.8a),we hold that samples from Layers 1,2,and 3 share the same parent rocks(silty mudstone of the Hanjiadian Fm),and their elemental concentration changes relative to parent rock can be calculated using the above formula.

    Total REEs are more concentrated in the lower portions of the studied profile.They showed depletion upwards relative to bedrock(Fig.9).LREEs displayed more depletion than HREEs in the upper portions,and more enrichment in the lower.Moreover,the mass change characteristics of REEs are obviously different between samples from Layer 2 and Layer 3.There are 3 τ peaks in Layer 2,which is consistent with the other paleo-weathering profile(GJYI)of the same horizon 35 m away,mentioned above.The strict upside-down relationship with depth of LREEs content in samples from Layer 3 is not consistent with Layer 3 forming as a result of in situ weathering after such a long break in sedimentation(Fig.6).Rather mass change curves should display more and greater τ peaks just as those of GJYI.

    Additionally,the mass change curves of some trace elements such as Rb,Cs,Sc,Pb,Ta,and Th in Layer 3 are approximately symmetric and complementary with those of GJYI in the upper parts(Fig.10).This implies that the source of Layer 3 may be nearby weathering product which slid down along the slope and re-weathered after having been transported from another weathering profile above(Layers 1 and 2).The peak of CIA—K values in the top of Layer 2(Table 1)may support this point.

    5.1.3 Redox characteristics

    Study shows that the REEs share the same fractionation pattern during weathering(Nesbitt 1979),and redox conditions can be indicated by REE anomalies in the soil

    Table 2 Trace element contents of whole-rock samples from Gaojiayan profile

    Table 2 continued

    Table 3 Rare earth element contents of whole-rock samples from Gaojiayan profile

    Table 3 continued

    Table 3 continued

    Fig.4 Major and trace element concentrations(SiO2,Al2O3,K2O,CaO,MgO,Na2O,P2O5,MnO2,F(xiàn)e2O3,V,TiO2,Nb,Zr,Th,and Cr)are plotted by depth.Also plotted are the average concentrations of these elements from bedrock for comparison

    column(e.g.,Little and Lee 2006).A redox proxy Ce anomaly(Ceanom)was defined by Wright et al.(1987):

    where‘‘N''signifies NASC-normalized concentrations;Ceanom>-0.1isanindicationofreduction;and Ceanom<-0.1 is an indication of oxidation.In addition,Th and U are redox-sensitive elements,and Th/U is also an indicator of redox conditions(Little and Lee 2006;Chang et al.2009).Redox environments allow for Th mobility and preferential immobilization of U in the more reducing condition and Th immobility and variable behavior of U in the more oxygenated condition(Langmuir 1997).

    The curves of Ceanomvariation and Th/U ratio change in the study profile present an‘‘S''shape(Fig.11).There is an increase in oxidation upward in Layer 2,but in the bottom of Layer 3 strong reduction is present.Increasing oxidation appears upward in Layer 3.Our explanation for the redox changes is that the top of Layer 2 is the surface of a previous weathering profile,and it is strongly oxidized. Layer 3 was deposited later in a reduced environment during transgression.Finally,Layer 2 with its redox characteristics is well-preserved,and the bottom of Layer 3 still conserves a relatively strong reduction.This explains the redox variation characteristics in Fig.11.

    5.2 Interpretations for K and Na enrichment

    Fig.5 A—CN—K (Al2O3—CaO*+Na2O—K2O)(Fedo et al.1995)triangular diagram of samples from bedrocks and Layers 1,2,3,and 4.The right trend line represents the addition of K to the Gaojiayan profile.Mineral abbreviations:Ka kaolinite,Gi gibbsite,Chl chlorite,Sm smectite,Il illite,Pl plagioclase,Ksp K-feldspar

    Throughout the Gaojiayan paleosol,K2O and Na2O are relatively enriched,especially in the middle-to-upper portions(Fig.4).Generally,mobile elements such as K and Na are stronglydepletedinweatheringprofiles.Thus,wepositother geologicalprocesseswereinvolvedinthemigrationofKand Na during the evolution of the Gaojiayan paleosol.

    5.2.1 K enrichment

    Studies show that there are fairly common occurrences of the enrichment of K in the upper portions of paleosol(Maynard 1992;Macfarlane et al.1994a;Rye and Holland 2000;Sheldon 2003;Soil Survey Staff 1975).Some of them may result from regional metamorphism after burial(Maynard 1992;Macfarlane et al.1994a)or K metasomatism via K-rich hydrothermal fluid or other fluids(such as underground brine,ancient sea water)(Rye and Holland 2000).Furthermore,leaching from an overlying K-rich unit,derived from windborne particles of distal weathering or volcanic ash and biological processes,could also be causes for the enrichment of K in paleosols(Sheldon 2003).

    Fig.6 The REE distribution patterns of paleosol samples(Layers 1,2,3,and 4)and bedrock(average of 5 samples)are presented relative to NASC

    Fig.7 Plots of TiO2versus Zr,TiO2versus Al203,Nb versus Zr,and Th/Sc versus Zr/Sc for study profile

    Fig.8 Zr—Cr—Ga(after Calagari and Abedini 2007 and O¨zlu¨1983),La—Th—Sc and Th—Sc—Zr/10(after Bhatia and Crook 1986)triangular diagrams of samples from the Gaojiayan profile.I,II,III,and IV correspond respectively to areas of influence of ultramafic,mafic,intermediary or argillaceous,and acidic parent rocks

    The vertical distribution of K2O concentrations in the study profile(Fig.4)precludes the possibility of metasomatic addition of potassium via K-rich hydrothermal or other fluids.If metasomatic addition of potassium had taken place,thedistributionpatternofK2Owouldbesymmetrical,and the content of K2O would decrease away from the unconformity(Sheldon2003).Noevidence ofhydrothermal alteration was found in the Gaojiayan profile.During the long break in sedimentation of the Gaojiayan profile,no volcanic activity has been documented to have taken place near the study area;the possibility of the source being windborne particles or volcanic ash is minor.The content of K2O in siliceous rocks from the overlying Liangshan Fm is low,sotheenrichmentofKisnotaconsequence ofleaching from above.In order to address whether or not metamorphism has happened,we compared the behaviors of K and Rb.They are both alkali elements with similar chemical affinity,but Rb is less mobile and decouples with K2O in metasomatic settings(Mitchell and Sheldon 2009;Sheldon 2003;Sheldon and Tabor 2009).The τK2Oand τRbhave a good correlation(R2=0.77)in the studied paleosol profile(Fig.12a).Moreover,the maximum burial depth of the Gaojiayan profile is less than 1.5 km(Bureau of Geology and Mineral Resources of Guizhou Province 1987).Thus thereisnostrongregionalmetamorphismwhich wouldhave led to the enrichment of K.

    Fig.9 Depth profiles of total rare earth content(ΣREE)and their relative mass changes from study profile(GJYII)and another profile GJYI of the same horizon nearby

    Fig.10 Mass change comparison of trace elements(Rb,Cs,Sc,Pb,Ta,and Th)relative to bedrock between GJYII and GJYI

    Fig.11 Depth profile of Th/U and Ce anomaly(Ceanom,after Wright et al.1987)in study profile

    A possible interpretation for the enrichment of K in the Gaojiayanpaleosolisbiologicalinnature.Inthestudyprofile,thedistributionareaoffossilplantsisidenticalwiththeareaof K enrichment,and the dominant fossil plants are vascular plants(such as P.qianensis Geng)which demonstrate very high efficiency of potassium extraction from soil(Knoll and James 1987;Gill and Yemane 1999).As Rb is not a bioessential element,there is only a maximum addition of K in upper parts of Layer 2(Fig.12b),which is related to bioaccumulation and in accordance with enrichment of bio-related P2O5(Fig.4).However,biologicalprocesswasjustonefactor in redistribution of K in the profile.We believe seawater providedmostoftheKfortheGaojiayanprofileandalsomost of the Na.Based on the above analysis,we conclude that the enrichment of K in the upper portions of the Gaojiayan paleosolisacombinedresultofbiologicalprocessesandseawater intrusion,and that the latter plays a more important role.

    5.2.2 Na enrichment

    Boron is incorporated in fine-grained sediments in amounts proportional to the salinity of the depositional environment(Boon and Macintyre 1968).There is a double logarithm linear relationship between boron and salinity(Lendergren andCarvajal1969),namelyFreundlichadsorptionisotherm:

    where B is boron uptake(ppm),S is paleosalinity(‰),and C1 and C2 are constants.Once boron is absorbed by clay minerals in the form of adsorption state or entering crystal lattices,it will not migrate with physical or chemical condition changes(Yi et al.2009).

    Couch(1971)modified the equation to:

    where Bkis‘‘kaolinite boron''(ppm)and equals B/(4Xi+2Xm+Xk)(B=measured boron concentration in<1 μ fraction in ppm.Xi,Xm,and Xkare weight fractions of illite,montmorillonite,and kaolinite,respectively.B is determined by X-ray diffraction);Sp=paleosalinity(‰).

    Boron contents of four samples(GJYII-B14H,-B15H,-B17H,and-B22)from Layer 3 were determined at 426,594,420,and 546 ppm,respectively.Many studies support that boron content of fresh water sediment is less than 100 ppm,but that of marine sediment is generally more than 100 ppm(e.g.,Guo 1991;Chen et al.1997).

    XRD data of B14H shows that the proportions of illite and montmorillonite are 87.61%and 4.01%,respectively,and no kaolinite is detected.The calculated paleo-salinity is 34.29‰.The mineral composition in Layer 3 is quite constant and dominated by illite.We assumed samples B15H,B17H,and B22 share the same mineral composition with B14H.Then calculated paleo-salinity for the samples is 44.45‰,33.92‰,41.63‰,respectively.

    Fig.12 a The correlation diagram between τK2O(%)and τRb(%)of samples from Layer 1,2 and 3.b Comparison of relative mass change of K2O and Rb in study profile

    Fig.13 Depth profile for τAl2O3(%)and τSiO2(%)in study profile

    According to Blatt et al.(1980)and Jutras et al.(2009),Si is less mobile than Al in both strongly acidic(pH<4)and strongly alkaline(pH>8)conditions.This suggests that pH values of soil environment in the study profile should be 4—8 for the greater mobility of Si than Al(Fig.13).The data of Cantrell and Byrne(1987)indicate that the REEs are present as Ln(CO3)2-and LnCO3+complexes in seawater.Moreover,Wood(1990)holds that the LnCO3+complex is favored at pH values between 6.5 and 8,and/or lower dissolved carbonate concentrations,promoting greater mobility of LREEs relative to HREEs(Macfarlane et al.1994b).Thus,we suggest that the Gaojiayan profile has experienced weathering in a neutral-alkaline soil environment,which is consistent with a seawater environment diluted by fresh water.

    In light of the above discussion,we propose that the formation of Layer 3 is related to transgression,and clay minerals absorbed Na+from seawater.Though some Na was leached,it is still enriched in the soil profile relative to bedrock.Other elements such as Sr,K,and Mg are also rich in seawater;however,they do not show enrichment at the same levels.They display different leaching characteristics after the second weathering.Although some of the elemental distribution characteristics have been erased,many related to transgression are still preserved.

    5.3 Evolutionary model of the Gaojiayan profile

    During the long break in sedimentation,the Gaojiayan profile experienced complicated evolutionary processes and was affected by paleoclimatic changes,transgression,growth of terrestrial vascular plants,and other supergene processes.A simplified evolutionary model of the Gaojiayan profile is illustrated in Fig.14.The bedrocks are silty mudstone and shales of the Hanjiadian Fm:

    Stage A During the Early Silurian,the entire Yangtze Platform was affectedbythe Kwangsian Movement,and was uplifted by the end of the Telychianor possiblyin the earliest Wenlock.The Gaojiayan profile was subjected to prolonged erosionandweathering,andstarteditscomplicatedevolution.

    Stage B Through long-term chemical weathering,elements were leached from upper portions and enriched in the lower,or just leached without enrichment.

    Stage C The transgression happened later(Bureau of Geology and Mineral Resources of Guizhou Province 1987;Liu 1993,2001).The Gaojiayan profile(GJYII)was located in a topographic low.Weathering products re-deposited on GJYII with clay development.Seawater provided plenty of K+,Na+,and other components.At the same time,the mineral composition was dominated by illite that was stable in a neutral-alkaline soil environment.

    Stage D After a brief period of transgression(Layer 2),seawater regressed.The Gaojiayan profile re-emerged and continued its weathering.

    Stage E An extensive transgression happened again in the Early Permian.The top of the Gaojiayan profile was covered by a set of Liangshan Fm black siliceous rocks with basal conglomerate developing in its bottom.From then on,a burial stage followed.

    Precise dating of paleo-weathering profiles still presents challenges(Sun et al.2000).To know the precise time of transgression recorded by the Gaojiayan profile,the K/Ar or40Ar/39Ar dating of illite may be a feasible method.This will be the key point of our next stage of research.

    5.4 Fossil plant implication

    Fossil plants are very common in the Gaojiayan paleosol. P.qianensis Geng and another plant with an irregular branching system can be recognized.It is still a controversy whether Pinnatiramosus is the earliest vascular plant or a later rooting system(Edwards et al.2007).

    In this study,relative mass change of K2O(τ%)in Layer 3 was negative.P.qianensis was not found in Layer 3.Only anotherplantwithanirregularbranchingsystemwasfoundin the lower portions of this Layer,and studies show that it is of Permianage(Wangetal.2013).Strongweatheringmayhave ledtoKlossandlessplantpreservationinLayer3.Webelieve Layer 2 was exposed,too.However,the K enrichment in its top related to bioaccumulation and superior preservation of fossilplantsleadsustobelievethatP.qianensisGenginLayer 2isalsoaplantofthePermian,witharootingsystemgrowing down into lower Silurian rocks.

    6 Conclusions

    Detailed geochemical characteristics were investigated in the Gaojiayanpaleo-weatheringprofile fromthetownofYongle,ZunyiDistrictofGuizhou,China.Wediscusseditsformationand evolution,and the implications for the time range of P. qianensis Geng.The following conclusions were reached:

    Fig.14 Evolutionary model for the Gaojiayan paleo-weathering profile.a Bedrock is silty mudstone and shale,and a—e represent idealized τ weathering trends resulting from leaching and accumulating of elements in the Gaojiayan profile.Positive τ values reflect elemental accumulation in excess of bedrock and negative values lower than in fresh rock

    1.The Gaojiayan paleo-weathering profile(GJYII)is a compound paleosol profile,with Layers 1 and 2 being products of in situ weathering of the Hanjiadian Fm and Layer 3 being an allochthonous product.

    2.K and Na enrichment relative to bedrock in the profile is mainly due to transgression.Seawater provides plenty of K+,Na+,and other components for the Gaojiayan profile.The growth of terrestrial vascular plants enhances the enrichment of K.

    3.P.qianensis Geng is a Permian rooting system growing down into lower Silurian rocks.

    AcknowledgmentsThis work was supported by the 12th Five-Year Plan Project of State Key Laboratory of Ore Deposit Geochemistry,Chinese Academy of Sciences(SKLODG-ZY125-08);funds from the State Key Laboratory of Palaeobiology and Stratigraphy,Chinese Academy of Sciences;and the National Basic Research Program of China(2007CB411408).We thank professor Shijie Wang(Institute of Geochemistry,CAS)for giving good advice before writing this paper,and also thank Xiaoyan Hu for major element analysis,Jing Hu for trace element analysis,and Guohong Gong for XRD analysis.

    Appendix

    See Fig.15.

    Fig.15 Photos of Pinnatiramosus qianensis Geng and another plant with irregular branching system

    Arndorff L(1993)Lateral relations of deltaic paleosols from the lower Jurassic Ronne formation on the island of Bornholm,Denmark. Palaeogeogr Palaeoclimatol Palaeoecol 100(3):235—250

    Bhatia MR,Crook KAW (1986)Trace-element characteristics of graywackes and tectonic setting discrimination of sedimentary basins.Contrib Mineral Petrol 92(2):181—193

    Blatt H,Middleton G,Murray R(1980)Origin of sedimentary rocks,2nd edn.Englewood Cliffs,Prentice-Hall

    Boon JD,Macintyre WG(1968)The boron-salinity relationship in estuarine sediments of the Rappahannock River,Virginia. Chesapeake Sci 9(1):21—26

    Brimhall GH,Dietrich WE(1987)Constitutive mass balance relations between chemical-composition,volume,density,porosity,and strain in metasomatic hydrochemical systems—results on weathering and pedogenesis.Geochim Cosmochim Acta 51(3):567—587

    Brimhall GH et al(1988)Metal enrichment in bauxites by deposition of chemically mature aeolian dust.Nature 333(6176):819—824

    Bureau of Geology and Mineral Resources of Guizhou Province(1987)Regional geology of Guizhou Province geological publishing house Beijing(in Chinese with English abstract)

    Cai CY,Ouyang S,Wang Y,F(xiàn)ang Z(1996)An early Silurian vascular plant.Nature 379(6566):592—592

    Calagari AA,Abedini A (2007)Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh,east of Bukan,West-Azarbaidjan,Iran.J Geochem Explor 94(1—3):1—18

    Cantrell KJ,Byrne RH(1987)Rare-earth element complexation by carbonateandoxalateions.GeochimCosmochimActa51(3):597—605 Cerling TE(1992)Use of carbon isotopes in paleosols as an indicator of the carbon dioxide partial pressure of the paleoatmosphere. Global Biogeochem Cycles 6(3):307—314

    Chang HJ,Chu XL,F(xiàn)eng LJ,Huang J,Zhang QR(2009)Redox sensitive trace elements as paleoenvironments proxies.Geol Rev 55(1):91—99(in Chinese with English abstract)

    ChenZY,ChenZL,ZhangWG(1997)Quaternarystratigraphyandtrace element indicates of the Yangtze delta,eastern China,with special reference to marine transgressions.Quatern Res 47:181—191

    Chen X,Rong J-Y,Wang C-Y,Geng L-Y,Deng Z-Q,Wu H-J,Xu J-T,Chen T-E(2002)Telychian rocks in the Yangtze Region.In:Holland CH,Bassett MG(eds)Telychian rocks of the British Isles and China(Silurian,Llandovery Series):an experiment to test precision in stratigraphy.National Museum of Wales Geological Series No.21,Cardiff,pp 13—43

    Couch EL(1971)Calculation of paleosalinities from boron and clay mineral data.Am Assoc Pet Geol Bull 55(10):1829—1839

    Driese SG,F(xiàn)oreman JL(1992)Paleopedology and paleoclimatic implications of Late Ordovician vertic paleosols,Juniata formation,Southern Appalachians.J Sediment Petrol 62(1):71—83

    Edwards D,Yi W,Bassett MG,Sen LC(2007)The earliest vascular plant or a later rooting system?Pinnatiramosus qianensis from the marine lower Silurian Xiushan Formation,Guizhou Province,China.Palaios 22(2):155—165

    Fedo CM,Nesbitt HW,Young GM(1995)Unraveling the effects of potassium metasomatism in sedimentary-rocks and paleosols,with implications for paleo-weathering conditions and provenance.Geology 23(10):921—924

    Geng BY(1986)Anatomy and morphology of Pinnatiramosus,a new plant from the middle Silurian(Wenlockian)of China.Acta Bot Sin 28:664—670

    Gill S,Yemane K(1999)Illitization in a Paleozoic,peat-forming environment as evidence for biogenic potassium accumulation. Earth Planet Sci Lett 170(3):327—334

    Guo XP(1991)An approach to the depositional environment of the Cretaceous Kizilsu Group:the lowermost marine horizon of the Cretaceousin the western Tarim Basin.Acta Geol Sin 2:188—198(in Chinese with English abstract)

    Guo Y,Li Z,Li D,Zhang T,Wang Z,Yu J,Xi Y(2004)Lithofacies palaeogeography of the Early Silurian in Sichuan area.J Palaeogeogr 6(1):20—29(in Chinese with English abstract)

    Holland HD,Rye R(1997)Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota:comment.Geology 25(9):857—858

    Johnson ME,Rong JY,Yang XC(1985)Intercontinental correlation by sea-level events in the Early Silurian of North-America and China(Yangtze Platform).Geol Soc Am Bull 96(11):1384—1397

    Jutras P,Quillan RS,LeForte MJ(2009)Evidence from Middle Ordovicianpaleosolsforthepredominanceofalkaline groundwater at the dawn of land plant radiation.Geology 37(1):91—94

    Knoll MA,James WC(1987)Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time.Geology 15(12):1099—1102

    Kraus MJ(1999)Paleosols in clastic sedimentary rocks:their geologic applications.Earth Sci Rev 47(1—2):41—70

    Kurtz AC,Derry LA,Chadwick OA,Alfano MJ(2000)Refractory element mobility in volcanic soils.Geology 28(8):683—686

    Lander RH,Bloch S,Mehta S,Atkinson CD(1991)Burial diagenesis of paleosols in the Giant Yacheng gas-field,Peoples-Republicof-China—bearing on Illite reaction pathways.J Sediment Petrol 61(2):256—268

    Langmuir D(1997)Aqueous environmental geochemistry,vol 1. Prentice Hall,Upper Saddle River

    Lendergren S,Carvajal MC(1969)Geochemistry of boron.III.The relationship between boron concentration in marine clay sedimentsandthesalinityofthedepositionalenvironments expressed as an adsorption isotherm.Arkiv Mineralogioch Geologi 5:13—22

    Li Y,Rong J(2007)Shell concentrations of Early Silurian virgianid brachiopods in northern Guizhou:temporal and spatial distribution and tempestite formation.Chin Sci Bull 52(12):1680—1691

    Liao SHF(1999)Some advances in study of sedimentary deposits. GuozhouGeol16(2):122—135 (inChinesewithEnglish abstract)

    Little MG,Lee CTA (2006)On the formation of an inverted weathering profile on Mount Kilimanjaro,Tanzania:buried paleosolorgroundwaterweathering?ChemGeol 235(3—4):205—221

    Liu P(1993)An additional discussion on bauxite deposit of Guizhou(III)—their metallogenetic epoch,material source and metallogenetic model.Guozhou Geol 10(2):105—113(in Chinese with English abstract)

    Liu P(2001)Discussion on the metallogenic setting of the Qianzhong-Yu'nan bauxite in Guizhou and Its genesis.Guozhou Geol 18(4):238—243(in Chinese with English abstract)

    Macfarlane AW,Danielson A,Holland HD(1994a)Geology and major and trace-element chemistry of late archean weathering profiles in the Fortescue Group,Western-Australia—implications for atmospheric P-O2.Precambr Res 65(1—4):297—317

    Macfarlane AW,Danielson A,Holland HD,Jacobsen SB(1994b)REE chemistry and Sm-Nd systematics of late archean weatheringprofilesintheFortescue-Group,Western-Australia. Geochim Cosmochim Acta 58(7):1777—1794

    Marques JJ,Schulze DG,Curi N,Mertzman SA(2004)Trace element geochemistryinBrazilianCerradosoils.Geoderma 121(1—2):31—43

    Maynard JB(1992)Chemistry of modern soils as a guide to interpreting precambrian paleosols.J Geol 100(3):279—289

    Mitchell RL,Sheldon ND(2009)Weathering and paleosol formation inthe1.1 GaKeweenawanRift.PrecambrRes 168(3—4):271—283

    Nesbitt HW(1979)Mobility and fractionation of rare-earth elements during weathering of a granodiorite.Nature 279(5710):206—210

    Nesbitt HW,Markovics G,Price RC(1980)Chemical processes affecting alkalis and alkaline earths during continental weathering.Geochim Cosmochim Acta 44(11):1659—1666

    O¨zlu¨N(1983)Trace-element content of‘‘Karst Bauxites''and their parentrocksinthemediterraneanbelt.MinerDeposita 18(3):469—476

    Retallack G(1988)Field recognition of paleosols.Geol Soc Am Bull 216:1—20

    Retallack G,Mcdowell P(1988)Penrose conference report—paleoenvironmentalinterpretationofpaleosols.Geology 16(4):375—376

    Riebe CS,Kirchner JW,F(xiàn)inkel RC(2004)Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes.Earth Planet Sci Lett 224(3—4):547—562

    Rong J-Y,Johnson ME,Yang X-C(1984)Early Silurian(Llandovery)sealevel changes in the Upper Yangtze region of central and southwestern China.Acta Palaeontol Sin 23:687—697

    Rong J,Johnson ME,Zhao Y(1996)Geological significance of an ancient karst rocky shoreline—a case study of an Early Silurian rocky shoreline in Guizhou.Geol Rev 42(5):448—459(in Chinese with English abstract)

    Rye R,Holland HD(2000)Geology and geochemistry of paleosols developed on the Hekpoort basalt,Pretoria Group,South Africa. Am J Sci 300(2):85—141

    Sheldon ND(2003)Pedogenesis and geochemical alteration of the Picture Gorge subgroup,Columbia River Basalt,Oregon.Geol Soc Am Bull 115(11):1377—1387

    Sheldon ND,Tabor NJ(2009)Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols.Earth Sci Rev 95(1—2):1—52

    Sheng ZQ,Liao LP(2010)Sedimentary mode and mineralization of sedimentary bauxite deposit of fossil weathering crust in Guizhou.Guizhou Geol 27(4):255—259(in Chinese with English abstract)

    Soil Survey Staff(1975)Soil taxonomy:A basic system of soil classification for making and interpreting soil surveys.United States Department of Agriculture Soil Conservation Service,Washington,DC

    Soreghan GS,Elmore RD,Katz B,Cogoini M,Banerjee S(1997)Pedogenically enhanced magnetic susceptibility variations preserved in Paleozoic loessite.Geology 25(11):1003—1006

    Sun CX,Wang SJ,Liu XM,Ji HB(2000)Review on the dating of the weathering profiles.Bull Mineral Petrol Geochem 19(1):54—59(in Chinese with English abstract)

    Tandon SK,Sood A,Andrews JE,Dennis PF(1995)Paleoenvironments of the dinosaur-bearing lameta beds(Maastrichtian),Narmada valley,Central India.Palaeogeogr Palaeoclimatol Palaeoecol 117(3—4):153—184

    Wang Y,Edwards D,Bassett M,Xu H,Xiao J,Jiang Q,Zhang X(2013)Enigmatic occurrence of Permian plant roots in lower Silurianrocks,GuizhouProvince,China.Palaeontology 56(4):679—683

    Webb GE(1994)Paleokarst,paleosol,and rocky-shore deposits at the Mississippian-Pennsylvanianunconformity,northwestern Arkansas.Geol Soc Am Bull 106(5):634—648

    Wood SA (1990)The aqueous geochemistry of the rare-earth elements and yttrium.1.Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural-waters.Chem Geol 82(1—2):159—186

    Wright J,Schrader H,Holser WT(1987)Paleoredox variations in ancient oceans recorded by rare-earth elements in fossil apatite. Geochim Cosmochim Acta 51(3):631—644

    Yi HS,Shi ZQ,Zhu YT,Ma X(2009)Reconstruction of paleosalinity and lake-level fluctuation history by using boron concentration in lacustrine mudstones.J Lake Sci 21(1):77—83(in Chinese with English abstract)

    Zhang C,Nie RZ(2006)Silurian sequence stratigraphic framework and the pre-analysis of petroleum exploration in northern Guizhou Province.Xinjiang Geol 24(2):161—164(in Chinese with English abstract)

    Zhu Z,Chen H,Liu L,Hou M,Chen A,Zhong Y(2010)Depositional system evolution characteristics in the framework of sequences of silurian and prediction of favorable zones in the northern GuizhousoutheasternSichuan.ActaSedimentolSin 28(2):243—253(in Chinese with English abstract)

    10.1007/s11631-015-0070-6

    24 June 2014/Revised:23 July 2015/Accepted:24 August 2015/Published online:8 October 2015

    ? Jia-fei Xiao

    xiaojiafei5@163.com

    1State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China

    2Chinese Academy of Geological Sciences,Beijing 100037,China

    3Chengdu Institute of Geology and Mineral Resources,Chengdu 610083,China

    4Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences,Nanjing 210008,China

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    亚洲视频免费观看视频| 午夜福利影视在线免费观看| 久久精品久久久久久噜噜老黄| 中文欧美无线码| 欧美日韩一级在线毛片| 成人手机av| 99香蕉大伊视频| 亚洲av国产av综合av卡| 一区二区三区精品91| 免费高清在线观看视频在线观看| 汤姆久久久久久久影院中文字幕| 成年人黄色毛片网站| 一区在线观看完整版| 亚洲成国产人片在线观看| 最新的欧美精品一区二区| 国产精品 国内视频| 精品久久久久久久毛片微露脸 | 亚洲精品国产av成人精品| 亚洲精品日本国产第一区| a级毛片黄视频| 国产亚洲av高清不卡| 国产高清视频在线播放一区 | 国产精品久久久久久精品电影小说| 亚洲欧美一区二区三区国产| 免费在线观看影片大全网站 | 90打野战视频偷拍视频| 男女下面插进去视频免费观看| 日本av免费视频播放| 各种免费的搞黄视频| 夫妻午夜视频| av国产精品久久久久影院| 国产免费视频播放在线视频| 中国国产av一级| 国产成人精品久久二区二区免费| 国产片内射在线| 欧美国产精品一级二级三级| 欧美日韩亚洲国产一区二区在线观看 | 女人精品久久久久毛片| 日韩制服骚丝袜av| 可以免费在线观看a视频的电影网站| 欧美亚洲 丝袜 人妻 在线| 又大又爽又粗| 亚洲av美国av| 欧美老熟妇乱子伦牲交| 精品视频人人做人人爽| 国产伦理片在线播放av一区| 久久性视频一级片| 人人澡人人妻人| 97人妻天天添夜夜摸| 国产黄色免费在线视频| av一本久久久久| 老司机影院成人| 国产野战对白在线观看| 久久人妻熟女aⅴ| 亚洲av成人精品一二三区| 人人妻人人添人人爽欧美一区卜| 妹子高潮喷水视频| 1024香蕉在线观看| 电影成人av| 91麻豆av在线| 中文字幕精品免费在线观看视频| 国产成人系列免费观看| 最近最新中文字幕大全免费视频 | 久久精品国产a三级三级三级| 国产深夜福利视频在线观看| 纯流量卡能插随身wifi吗| 999精品在线视频| 新久久久久国产一级毛片| 五月开心婷婷网| 精品熟女少妇八av免费久了| 亚洲精品av麻豆狂野| 超碰97精品在线观看| 亚洲av美国av| 99热国产这里只有精品6| 看免费av毛片| 亚洲av在线观看美女高潮| 大香蕉久久网| 七月丁香在线播放| 老司机亚洲免费影院| 丝袜喷水一区| 一级片免费观看大全| 美女扒开内裤让男人捅视频| 一级黄片播放器| 国产午夜精品一二区理论片| 久久天躁狠狠躁夜夜2o2o | 人人妻人人爽人人添夜夜欢视频| 操出白浆在线播放| 日日摸夜夜添夜夜爱| 欧美成人精品欧美一级黄| 欧美黑人欧美精品刺激| 视频区图区小说| 丁香六月欧美| 精品人妻一区二区三区麻豆| 国产成人精品久久二区二区91| 色综合欧美亚洲国产小说| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 日韩一本色道免费dvd| 午夜激情久久久久久久| 午夜两性在线视频| 亚洲第一青青草原| 成人黄色视频免费在线看| 午夜免费鲁丝| 老熟女久久久| 人成视频在线观看免费观看| 久久综合国产亚洲精品| 亚洲专区中文字幕在线| 你懂的网址亚洲精品在线观看| 狂野欧美激情性xxxx| 高清欧美精品videossex| 免费黄频网站在线观看国产| 一级,二级,三级黄色视频| 一级毛片电影观看| 另类精品久久| 午夜福利免费观看在线| 国产男女内射视频| 亚洲av综合色区一区| 亚洲精品美女久久久久99蜜臀 | 国产野战对白在线观看| 中国美女看黄片| 亚洲精品国产色婷婷电影| 亚洲欧美日韩另类电影网站| 国产亚洲欧美在线一区二区| 亚洲伊人久久精品综合| 热99国产精品久久久久久7| 男人添女人高潮全过程视频| 只有这里有精品99| 我的亚洲天堂| 男女午夜视频在线观看| av网站免费在线观看视频| 一级片'在线观看视频| 欧美日韩精品网址| 精品人妻熟女毛片av久久网站| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 晚上一个人看的免费电影| 国产精品九九99| 国产成人一区二区三区免费视频网站 | 久久人人爽人人片av| 欧美激情 高清一区二区三区| 国产黄频视频在线观看| 欧美乱码精品一区二区三区| 日本欧美视频一区| 国产精品 国内视频| 久久人人爽av亚洲精品天堂| 老司机靠b影院| 女性生殖器流出的白浆| 大码成人一级视频| 日韩中文字幕欧美一区二区 | 欧美 亚洲 国产 日韩一| av欧美777| 1024视频免费在线观看| 丰满迷人的少妇在线观看| 欧美成人精品欧美一级黄| 夫妻性生交免费视频一级片| 亚洲欧洲日产国产| 超碰97精品在线观看| 视频区欧美日本亚洲| 国产成人欧美在线观看 | 国产精品国产三级专区第一集| 天堂8中文在线网| www.自偷自拍.com| 最近最新中文字幕大全免费视频 | 国产三级黄色录像| 一本色道久久久久久精品综合| 成年人午夜在线观看视频| 久热这里只有精品99| 青草久久国产| 大片免费播放器 马上看| 久久久国产欧美日韩av| 国产精品成人在线| 中文字幕精品免费在线观看视频| 深夜精品福利| 亚洲精品乱久久久久久| 妹子高潮喷水视频| 国产免费福利视频在线观看| 久久午夜综合久久蜜桃| 91成人精品电影| 日韩av不卡免费在线播放| 亚洲欧美日韩高清在线视频 | 中文字幕高清在线视频| 精品视频人人做人人爽| 久久精品亚洲av国产电影网| 国语对白做爰xxxⅹ性视频网站| 日韩 欧美 亚洲 中文字幕| 超色免费av| 国产成人免费无遮挡视频| av在线老鸭窝| 久久99精品国语久久久| 激情五月婷婷亚洲| 热99国产精品久久久久久7| 免费在线观看影片大全网站 | 电影成人av| 亚洲免费av在线视频| 9191精品国产免费久久| tube8黄色片| 汤姆久久久久久久影院中文字幕| 国产成人a∨麻豆精品| 日韩 欧美 亚洲 中文字幕| 成人手机av| 咕卡用的链子| 久久av网站| 色婷婷av一区二区三区视频| 国产日韩欧美视频二区| 黄频高清免费视频| 国产人伦9x9x在线观看| 在线观看人妻少妇| 最黄视频免费看| av不卡在线播放| 黄片小视频在线播放| 国产麻豆69| 亚洲国产精品成人久久小说| 中文字幕人妻丝袜一区二区| 午夜激情久久久久久久| 久久精品国产a三级三级三级| 亚洲黑人精品在线| 色播在线永久视频| 国产伦理片在线播放av一区| 大片电影免费在线观看免费| 亚洲国产欧美日韩在线播放| 国产精品 国内视频| 日日摸夜夜添夜夜爱| 国产xxxxx性猛交| 免费高清在线观看视频在线观看| 老司机影院成人| 99re6热这里在线精品视频| 亚洲av男天堂| 性色av一级| 你懂的网址亚洲精品在线观看| 国产人伦9x9x在线观看| 女人高潮潮喷娇喘18禁视频| 中文欧美无线码| 午夜福利影视在线免费观看| www.av在线官网国产| 久久久久国产一级毛片高清牌| 一区二区三区激情视频| 亚洲av日韩在线播放| 中文字幕最新亚洲高清| 男女午夜视频在线观看| 婷婷色综合大香蕉| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| av一本久久久久| 日本五十路高清| 男女边摸边吃奶| 国产成人a∨麻豆精品| 国产av一区二区精品久久| 人人妻人人澡人人看| 9热在线视频观看99| 大香蕉久久网| 人人澡人人妻人| 久久国产精品男人的天堂亚洲| 两性夫妻黄色片| 国产精品熟女久久久久浪| 亚洲国产日韩一区二区| 在线观看国产h片| 91成人精品电影| 亚洲色图 男人天堂 中文字幕| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| 久久久久精品国产欧美久久久 | 久久狼人影院| 女人精品久久久久毛片| 好男人电影高清在线观看| 电影成人av| 欧美日韩国产mv在线观看视频| 久久精品aⅴ一区二区三区四区| 99热国产这里只有精品6| 日韩 亚洲 欧美在线| 波野结衣二区三区在线| 亚洲精品久久午夜乱码| 国产欧美日韩一区二区三 | 大码成人一级视频| 日本五十路高清| 久久九九热精品免费| 成年人午夜在线观看视频| 亚洲av日韩精品久久久久久密 | 黑人巨大精品欧美一区二区蜜桃| 色94色欧美一区二区| 在线观看免费日韩欧美大片| 午夜激情av网站| 精品亚洲成a人片在线观看| 一级片免费观看大全| 两个人看的免费小视频| 亚洲少妇的诱惑av| 亚洲av国产av综合av卡| 亚洲国产精品一区三区| 日本五十路高清| 成年美女黄网站色视频大全免费| 观看av在线不卡| 午夜福利视频精品| videos熟女内射| 久久人妻福利社区极品人妻图片 | 亚洲精品一卡2卡三卡4卡5卡 | 亚洲男人天堂网一区| 国产一区亚洲一区在线观看| 老司机靠b影院| 欧美日韩亚洲综合一区二区三区_| 国产麻豆69| 亚洲熟女精品中文字幕| 亚洲一区二区三区欧美精品| 丁香六月欧美| 日本欧美视频一区| 久久久亚洲精品成人影院| 精品少妇久久久久久888优播| 极品少妇高潮喷水抽搐| 日韩av在线免费看完整版不卡| 天堂8中文在线网| 99久久人妻综合| 香蕉丝袜av| 啦啦啦在线观看免费高清www| 美女国产高潮福利片在线看| 80岁老熟妇乱子伦牲交| 久久99精品国语久久久| xxxhd国产人妻xxx| 亚洲精品国产av蜜桃| 波野结衣二区三区在线| 啦啦啦在线观看免费高清www| 精品国产超薄肉色丝袜足j| 亚洲男人天堂网一区| 亚洲色图 男人天堂 中文字幕| 色视频在线一区二区三区| 老司机靠b影院| 亚洲av日韩精品久久久久久密 | 亚洲中文字幕日韩| www.999成人在线观看| 老司机午夜十八禁免费视频| 美国免费a级毛片| 国产淫语在线视频| 国产精品成人在线| 国产成人a∨麻豆精品| 丝袜喷水一区| 1024视频免费在线观看| 久久精品久久精品一区二区三区| 韩国精品一区二区三区| 亚洲七黄色美女视频| 在线观看国产h片| 男人舔女人的私密视频| 免费女性裸体啪啪无遮挡网站| 美女扒开内裤让男人捅视频| 日韩中文字幕欧美一区二区 | 91精品国产国语对白视频| 精品人妻1区二区| 日韩人妻精品一区2区三区| 黑人欧美特级aaaaaa片| 日韩制服丝袜自拍偷拍| 国产福利在线免费观看视频| av天堂久久9| 人人妻,人人澡人人爽秒播 | 日韩av免费高清视频| 久久精品久久久久久久性| 99国产综合亚洲精品| 国产精品欧美亚洲77777| 欧美 日韩 精品 国产| 成在线人永久免费视频| 日本猛色少妇xxxxx猛交久久| 超碰97精品在线观看| 成人亚洲欧美一区二区av| www.精华液| 另类精品久久| 午夜福利在线免费观看网站| 欧美日韩亚洲国产一区二区在线观看 | 又粗又硬又长又爽又黄的视频| 久久人人爽人人片av| 色94色欧美一区二区| 久久久久久亚洲精品国产蜜桃av| 国产精品免费视频内射| 国产伦人伦偷精品视频| 亚洲 欧美一区二区三区| 亚洲第一av免费看| 国产精品一国产av| 2021少妇久久久久久久久久久| 尾随美女入室| e午夜精品久久久久久久| 亚洲熟女毛片儿| 国产亚洲精品久久久久5区| 高潮久久久久久久久久久不卡| 丝袜喷水一区| 69精品国产乱码久久久| 手机成人av网站| 五月开心婷婷网| 黑人猛操日本美女一级片| 午夜视频精品福利| 高清黄色对白视频在线免费看| 看免费av毛片| 在线观看免费视频网站a站| 精品国产一区二区久久| 国产精品一区二区精品视频观看| 久久久国产精品麻豆| 亚洲欧洲日产国产| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影观看| av国产久精品久网站免费入址| 两个人免费观看高清视频| 国产成人免费观看mmmm| 久久精品久久久久久久性| 美女脱内裤让男人舔精品视频| 搡老乐熟女国产| 亚洲欧美色中文字幕在线| 波多野结衣一区麻豆| av不卡在线播放| av有码第一页| 欧美国产精品一级二级三级| 三上悠亚av全集在线观看| a级毛片在线看网站| 美国免费a级毛片| 国产av一区二区精品久久| 少妇人妻久久综合中文| 亚洲中文字幕日韩| 亚洲av日韩在线播放| 精品少妇内射三级| 黄片小视频在线播放| 777米奇影视久久| 久久久久久久大尺度免费视频| 国产精品久久久久久人妻精品电影 | 99久久人妻综合| 国产精品一国产av| 亚洲精品一卡2卡三卡4卡5卡 | 精品人妻在线不人妻| 黄色片一级片一级黄色片| 少妇 在线观看| 久久女婷五月综合色啪小说| 欧美另类一区| videos熟女内射| 婷婷色综合大香蕉| 午夜激情av网站| 久久人妻熟女aⅴ| 美女福利国产在线| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 天堂俺去俺来也www色官网| 99精国产麻豆久久婷婷| 久久人人爽av亚洲精品天堂| 男女无遮挡免费网站观看| 菩萨蛮人人尽说江南好唐韦庄| 激情视频va一区二区三区| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| 国产欧美日韩一区二区三区在线| a级毛片在线看网站| 欧美日韩国产mv在线观看视频| 成年人免费黄色播放视频| 亚洲国产中文字幕在线视频| 亚洲国产精品国产精品| 久久九九热精品免费| 在现免费观看毛片| 国产成人精品久久二区二区91| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 精品少妇久久久久久888优播| 99re6热这里在线精品视频| 日韩大片免费观看网站| 亚洲精品成人av观看孕妇| 黄频高清免费视频| 老司机深夜福利视频在线观看 | 精品一区二区三卡| 麻豆国产av国片精品| 99久久综合免费| 国产男女超爽视频在线观看| 一级毛片 在线播放| 伊人久久大香线蕉亚洲五| 精品国产国语对白av| 久久鲁丝午夜福利片| 免费av中文字幕在线| 一个人免费看片子| 国产国语露脸激情在线看| 丰满饥渴人妻一区二区三| 亚洲国产欧美一区二区综合| 欧美国产精品va在线观看不卡| 天天躁夜夜躁狠狠久久av| 精品国产超薄肉色丝袜足j| 精品国产乱码久久久久久小说| 亚洲国产精品国产精品| 美女扒开内裤让男人捅视频| 国产精品二区激情视频| 午夜日韩欧美国产| 天天操日日干夜夜撸| 建设人人有责人人尽责人人享有的| 成人黄色视频免费在线看| av天堂在线播放| 午夜激情久久久久久久| 亚洲av美国av| 99九九在线精品视频| 男女下面插进去视频免费观看| 99热全是精品| 视频区图区小说| 免费少妇av软件| 丰满人妻熟妇乱又伦精品不卡| 91精品三级在线观看| av国产久精品久网站免费入址| 亚洲一码二码三码区别大吗| 国产日韩欧美视频二区| 国产精品秋霞免费鲁丝片| 日韩视频在线欧美| 久久综合国产亚洲精品| 夫妻性生交免费视频一级片| 手机成人av网站| 国产黄频视频在线观看| 国产在线一区二区三区精| 777米奇影视久久| 亚洲精品一二三| 免费一级毛片在线播放高清视频 | 三上悠亚av全集在线观看| 爱豆传媒免费全集在线观看| 午夜免费男女啪啪视频观看| 91精品国产国语对白视频| 国产成人精品久久久久久| 国产精品国产三级国产专区5o| 人人妻人人澡人人看| 午夜影院在线不卡| 中国国产av一级| 亚洲av电影在线进入| 欧美日韩av久久| 麻豆国产av国片精品| 久久久国产欧美日韩av| 亚洲av电影在线观看一区二区三区| 色94色欧美一区二区| 老司机在亚洲福利影院| 亚洲人成电影免费在线| 青春草视频在线免费观看| 久久综合国产亚洲精品| 国产熟女欧美一区二区| 黄网站色视频无遮挡免费观看| 18禁黄网站禁片午夜丰满| 亚洲国产看品久久| av国产精品久久久久影院| 欧美xxⅹ黑人| 婷婷成人精品国产| 国产精品人妻久久久影院| 国产成人一区二区在线| 美国免费a级毛片| 汤姆久久久久久久影院中文字幕| 人人妻,人人澡人人爽秒播 | 国产成人系列免费观看| 黄片播放在线免费| 免费女性裸体啪啪无遮挡网站| 黄网站色视频无遮挡免费观看| 日本vs欧美在线观看视频| 另类亚洲欧美激情| 精品国产国语对白av| 免费看十八禁软件| 亚洲精品一区蜜桃| 国产视频首页在线观看| 色网站视频免费| 麻豆乱淫一区二区| 免费不卡黄色视频| 免费看不卡的av| 色播在线永久视频| 丝袜人妻中文字幕| 国产日韩欧美亚洲二区| 国产人伦9x9x在线观看| 最近中文字幕2019免费版| 亚洲五月色婷婷综合| 老司机午夜十八禁免费视频| 1024香蕉在线观看| 婷婷色综合www| 成年人黄色毛片网站| 亚洲国产毛片av蜜桃av| 久久久久久久精品精品| 亚洲欧美一区二区三区黑人| 欧美成人精品欧美一级黄| 啦啦啦在线观看免费高清www| 日本黄色日本黄色录像| 男人爽女人下面视频在线观看| 欧美日韩福利视频一区二区| 欧美黑人精品巨大| 亚洲av片天天在线观看| 汤姆久久久久久久影院中文字幕| 国产野战对白在线观看| 91老司机精品| 欧美xxⅹ黑人| 久久久久久人人人人人| 男女边吃奶边做爰视频| 老司机影院毛片| 建设人人有责人人尽责人人享有的| 一本—道久久a久久精品蜜桃钙片| 亚洲,欧美,日韩| 免费在线观看视频国产中文字幕亚洲 | 久久精品成人免费网站| 欧美+亚洲+日韩+国产| 亚洲成国产人片在线观看| 久热这里只有精品99| 啦啦啦中文免费视频观看日本| 亚洲黑人精品在线| 亚洲av在线观看美女高潮| 国产日韩一区二区三区精品不卡| 少妇裸体淫交视频免费看高清 | 国产在线一区二区三区精| 制服人妻中文乱码| 成年美女黄网站色视频大全免费| 欧美 日韩 精品 国产| 国产精品欧美亚洲77777| 欧美日韩综合久久久久久| 热re99久久精品国产66热6| 777米奇影视久久| 性高湖久久久久久久久免费观看| 国产亚洲av高清不卡| 各种免费的搞黄视频| 岛国毛片在线播放| 秋霞在线观看毛片| 精品欧美一区二区三区在线| 女性生殖器流出的白浆| 亚洲欧美激情在线| 国产男人的电影天堂91| 色94色欧美一区二区| 久久久精品区二区三区| 久久久国产一区二区| 免费高清在线观看日韩| 超碰97精品在线观看| 免费久久久久久久精品成人欧美视频| 国产精品一区二区在线观看99| 亚洲精品在线美女| 亚洲综合色网址| 成人亚洲精品一区在线观看| 韩国高清视频一区二区三区|