雷 剛,王 昊,董平川,王 彬,楊 書,吳子森,莫邵元
(1.中國(guó)石油大學(xué)(北京)石油工程教育部重點(diǎn)實(shí)驗(yàn)室,北京102249;2.中國(guó)石化勝利油田分公司石油工程技術(shù)研究院,山東東營(yíng)257000)
非均質(zhì)致密砂巖應(yīng)力敏感性的定量表征
雷剛1,王昊2,董平川1,王彬1,楊書1,吳子森1,莫邵元1
(1.中國(guó)石油大學(xué)(北京)石油工程教育部重點(diǎn)實(shí)驗(yàn)室,北京102249;2.中國(guó)石化勝利油田分公司石油工程技術(shù)研究院,山東東營(yíng)257000)
基于滲透率應(yīng)力敏感實(shí)驗(yàn)研究非均質(zhì)致密砂巖滲透率應(yīng)力敏感性,根據(jù)顆粒Hertz接觸變形法則,建立非均質(zhì)致密砂巖毛管孔隙滲透率應(yīng)力敏感定量表征模型,對(duì)孔隙度、滲透率和滲透率級(jí)差隨有效應(yīng)力變化規(guī)律進(jìn)行了量化分析,并將理論計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比驗(yàn)證,從理論上對(duì)實(shí)驗(yàn)結(jié)果及規(guī)律進(jìn)行了解釋。結(jié)果表明,非均質(zhì)致密砂巖的應(yīng)力敏感性主要表現(xiàn)為滲透率應(yīng)力敏感性,不同巖石滲透率隨有效應(yīng)力的變化具有不同步性,巖石滲透率越低,滲透率下降速度越快,非均質(zhì)巖石滲透率下降速度介于巖石高滲透層與低滲透層滲透率下降速度之間;非均質(zhì)巖石滲透率級(jí)差越大,滲透率應(yīng)力敏感曲線越靠近巖石低滲透層滲透率應(yīng)力敏感曲線,且滲透率級(jí)差隨著有效應(yīng)力的增大而不斷增大。
致密砂巖 非均質(zhì)性 滲透率 應(yīng)力敏感 定量表征
隨著低滲透致密儲(chǔ)層開發(fā)力度的加大,中外學(xué)者對(duì)低滲透致密儲(chǔ)層的研究日益加強(qiáng),通過(guò)大量實(shí)驗(yàn)研究了儲(chǔ)層物性參數(shù)隨有效應(yīng)力的變化關(guān)系[1-8]。但由于實(shí)驗(yàn)研究方法及巖石物性的差異,導(dǎo)致研究成果存在許多不一致[9-11]。有必要建立儲(chǔ)層應(yīng)力敏感定量表征模型,從理論上對(duì)實(shí)驗(yàn)結(jié)果及規(guī)律進(jìn)行解釋,以對(duì)實(shí)驗(yàn)提供理論指導(dǎo)。
目前,中外學(xué)者對(duì)應(yīng)力敏感理論模型的研究較少。劉仁靜等采用變徑毛管束模型,對(duì)低滲透儲(chǔ)層孔隙度和滲透率隨應(yīng)力變化規(guī)律進(jìn)行了研究[12];王厲強(qiáng)等采用不等徑迂曲毛管束模型,根據(jù)彈性力學(xué)厚壁筒理論,對(duì)低滲透油藏應(yīng)力敏感性進(jìn)行了分析[13-14];董平川等基于巖石孔隙結(jié)構(gòu)特征和顆粒接觸變形理論,對(duì)致密砂巖應(yīng)力敏感性進(jìn)行了定量分析,并將理論計(jì)算結(jié)果與實(shí)驗(yàn)測(cè)試結(jié)果進(jìn)行了對(duì)比驗(yàn)證[15];孫軍昌等提出了毛管束孔隙網(wǎng)絡(luò)模型,對(duì)致密砂巖應(yīng)力敏感進(jìn)行了解釋[16],但不能定量分析受壓前后巖石物性的變化。
中國(guó)大部分儲(chǔ)層屬于陸相沉積,非均質(zhì)性強(qiáng),而致密儲(chǔ)層非均質(zhì)性更強(qiáng)。對(duì)于縱向非均質(zhì)儲(chǔ)層,各層滲透率不同,應(yīng)力敏感性也不同,開發(fā)過(guò)程中儲(chǔ)層非均質(zhì)性隨著有效應(yīng)力的變化而變化,從而影響開發(fā)效果[17]。目前中外學(xué)者對(duì)于非均質(zhì)儲(chǔ)層應(yīng)力敏感性研究較少[17-18],非均質(zhì)儲(chǔ)層應(yīng)力敏感性是否與均質(zhì)儲(chǔ)層規(guī)律相同,非均質(zhì)儲(chǔ)層應(yīng)力敏感性與均質(zhì)儲(chǔ)層應(yīng)力敏感性差異有多大,非均質(zhì)儲(chǔ)層的非均質(zhì)性隨著有效應(yīng)力如何變化,這些問(wèn)題尚待解決。為此,筆者通過(guò)滲透率應(yīng)力敏感實(shí)驗(yàn)研究了不同滲透率級(jí)差非均質(zhì)致密砂巖滲透率應(yīng)力敏感性,并基于顆粒Hertz接觸變形法則,建立了應(yīng)力敏感性理論表征模型,對(duì)非均質(zhì)致密砂巖孔隙度、滲透率和滲透率級(jí)差隨有效應(yīng)力變化規(guī)律進(jìn)行了定量表征,從理論上對(duì)實(shí)驗(yàn)結(jié)果及規(guī)律進(jìn)行了解釋。
實(shí)驗(yàn)選用3組不同滲透率的人造致密砂巖巖心,每組巖心由2塊均質(zhì)巖心和1塊非均質(zhì)巖心組成,非均質(zhì)巖心的滲透率級(jí)差為2塊均質(zhì)巖心滲透率的比值。各組巖樣物性參數(shù)如表1所示。
表1 巖心基本參數(shù)Table1 Basic parametersof cores
按照SY/T 6385—1999[19],分別對(duì)各組實(shí)驗(yàn)巖心進(jìn)行不同有效應(yīng)力下的滲透率應(yīng)力敏感實(shí)驗(yàn),得到各組巖樣滲透率應(yīng)力敏感曲線。結(jié)果(圖1)表明:在有效應(yīng)力增大的過(guò)程中,致密砂巖巖心滲透率會(huì)產(chǎn)生一定的損失,但損失過(guò)程不同步,滲透率較低巖心滲透率下降速度較快,滲透率較高巖心滲透率下降速度較慢,非均質(zhì)巖心滲透率下降速度介于兩者之間;非均質(zhì)巖心應(yīng)力敏感性受巖心滲透率級(jí)差影響,滲透率級(jí)差越大,非均質(zhì)巖心滲透率應(yīng)力敏感曲線越靠近滲透率低的均質(zhì)巖心滲透率應(yīng)力敏感曲線。
圖1 3組不同巖心滲透率應(yīng)力敏感曲線Fig.1 Permeability stresssensitivity curves of three groupsof cores
2.1模型建立
致密砂巖毛管孔隙由球狀巖石顆粒堆積而成,顆粒受到有效應(yīng)力影響產(chǎn)生變形(圖2),變形符合Hertz接觸變形法則[20]。
根據(jù)Hertz理論,球狀巖石顆粒間接觸半徑為
非均質(zhì)致密砂巖毛管孔隙由屬性不同的顆粒堆積而成,基本堆積單元為4顆粒密堆積。顆粒受到有效應(yīng)力影響產(chǎn)生變形,從而導(dǎo)致毛管孔隙產(chǎn)生變形(圖3)。
顆粒變形前、后毛管孔隙滲流面積分別為
圖2 球狀巖石顆粒變形前后接觸示意Fig.2 A schematic showing the contactofsphere rock particlebeforeand after deformation
圖3 非均質(zhì)致密砂巖毛管孔隙變形示意Fig.3 A schematic showing the deformation of the capillary pore in heterogeneous tightsandstone
其中
顆粒之間所受應(yīng)力應(yīng)滿足F1∶F2∶F3=(R1+R2)∶2R1∶2R2,毛管孔隙受到的有效應(yīng)力為
毛管孔隙變形后孔隙度復(fù)原率和滲透率復(fù)原率計(jì)算式分別為
2.2模型分析
計(jì)算參數(shù)包括:滲透率較高巖石顆粒粒徑為0.25mm,泊松比為0.20,彈性模量為18.9GPa;滲透率較低巖石顆粒粒徑為0.15mm,泊松比為0.25,彈性模量為6.04GPa,儲(chǔ)層初始有效應(yīng)力為5MPa。根據(jù)新建計(jì)算模型,采用Matlab編程計(jì)算,得到巖石毛管孔隙度及滲透率隨有效應(yīng)力變化曲線。計(jì)算結(jié)果(圖4)表明:①隨著有效應(yīng)力的增大,毛管孔隙度復(fù)原率與滲透率復(fù)原率不斷下降;②不同毛管孔隙度與滲透率的下降程度不同,致密程度較高(滲透率較低)巖石毛管孔隙度復(fù)原率和滲透率復(fù)原率下降速度較快,致密程度較低(滲透率較高)巖石毛管孔隙度復(fù)原率和滲透率復(fù)原率下降速度較慢,非均質(zhì)巖石毛管孔隙度復(fù)原率和滲透率復(fù)原率下降速度介于兩者之間;③滲透率復(fù)原率下降的幅度大于孔隙度復(fù)原率的降幅,說(shuō)明巖石滲透率比孔隙度具有更強(qiáng)的應(yīng)力敏感性。
圖4 毛管孔隙度復(fù)原率、滲透率復(fù)原率與有效應(yīng)力的關(guān)系Fig.4 Relationship between theeffective stress and the recovery ratesof capillary porosity and permeability
選取5組由不同粒徑顆粒堆積而成的毛管孔隙,5組巖石顆粒泊松比均為0.22,彈性模量均為12.9GPa,每組毛管孔隙由粒徑分別為0.25,0.20和0.15mm的3種均質(zhì)顆粒與顆粒粒徑比值分別為4∶3 (0.20mm∶0.15 mm)和5∶3(0.25mm∶0.15mm)的2種混合顆粒堆積組成。根據(jù)式(13),可得到5組毛管滲透率隨有效應(yīng)力變化關(guān)系。由圖5可看出:當(dāng)顆粒粒徑比值為4∶3時(shí),混合顆粒堆積而成的毛管滲透率應(yīng)力敏感曲線靠近粗顆粒堆積而成毛管滲透率應(yīng)力敏感曲線;當(dāng)有效應(yīng)力為35MPa時(shí),顆粒粒徑比值為4∶3曲線上點(diǎn)到粒徑為0.15mm曲線上點(diǎn)的距離是粒徑為0.15mm曲線上的點(diǎn)到粒徑為0.2mm曲線上點(diǎn)距離的2/3,而顆粒粒徑比值為5∶3曲線上點(diǎn)到粒徑為0.15mm曲線上點(diǎn)的距離是粒徑為0.15mm曲線上點(diǎn)到粒徑為0.25mm曲線上點(diǎn)的距離的1/2,說(shuō)明隨著顆粒粒徑比值的增大,混合顆粒堆積而成毛管滲透率應(yīng)力敏感曲線有向細(xì)顆粒堆積而成毛管滲透率應(yīng)力敏感曲線靠近的趨勢(shì)。
圖5 不同顆粒堆積毛管滲透率復(fù)原率與有效應(yīng)力的關(guān)系Fig.5 Relationship between effective stressand permeability ofdifferentparticles formed capillaries
圖6 滲透率級(jí)差倍數(shù)與有效應(yīng)力的關(guān)系Fig.6 Relationship between effective stressand the rateofpermeability ratio
由于不同滲透率巖石的滲透率隨有效應(yīng)力變化不同步,非均質(zhì)巖石滲透率級(jí)差會(huì)隨著有效應(yīng)力的變化而發(fā)生變化。由圖6可見,隨著有效應(yīng)力的增大,混合顆粒堆積毛管滲透率級(jí)差倍數(shù)增大,說(shuō)明隨著有效應(yīng)力的增大,非均質(zhì)巖石滲透率級(jí)差變大,非均質(zhì)巖石非均質(zhì)性增強(qiáng)。在非均質(zhì)致密砂巖儲(chǔ)層開采過(guò)程中,有效應(yīng)力過(guò)度增大會(huì)加劇儲(chǔ)層非均質(zhì)性。另外,顆粒粒徑比值越大,混合顆粒堆積毛管滲透率級(jí)差變化倍數(shù)越大,說(shuō)明相對(duì)于非均質(zhì)性較弱儲(chǔ)層,非均質(zhì)性較強(qiáng)儲(chǔ)層受到有效應(yīng)力影響后,非均質(zhì)性加劇程度更大。
基于顆粒Hertz接觸變形法則,對(duì)非均質(zhì)致密砂巖孔隙度、滲透率和滲透率級(jí)差隨有效應(yīng)力變化規(guī)律進(jìn)行了定量表征,并對(duì)非均質(zhì)致密砂巖應(yīng)力敏感性進(jìn)行了分析。隨著有效應(yīng)力的增大,不同滲透率巖石的滲透率變化具有不同步性,滲透率較低巖石滲透率下降速度較快,滲透率較高巖石滲透率下降速度較慢,非均質(zhì)巖石滲透率下降速度介于兩者之間。非均質(zhì)巖石滲透率級(jí)差越大,巖石滲透率應(yīng)力敏感曲線越靠近低滲透層滲透率應(yīng)力敏感曲線。非均質(zhì)致密砂巖滲透率級(jí)差隨著有效應(yīng)力增大而不斷增大。因此,有效應(yīng)力的過(guò)度增大,會(huì)加劇致密砂巖儲(chǔ)層非均質(zhì)性,且致密砂巖儲(chǔ)層非均質(zhì)性越強(qiáng),受壓后儲(chǔ)層非均質(zhì)性加劇程度越大。
符號(hào)解釋:
a——球狀巖石顆粒間接觸半徑,mm;F——顆粒上所受應(yīng)力,N;R1——滲透率較高巖石顆粒粒徑,mm;R2——滲透率較低巖石顆粒粒徑,mm;v1——滲透率較高巖石顆粒泊松比;E1——滲透率較高巖石顆粒彈性模量,GPa;v2——滲透率較低巖石顆粒泊松比;E2——滲透率較低巖石顆粒彈性模量,GPa;S——顆粒變形前毛管孔隙滲流面積,mm2;F1——顆粒A和顆粒C中軸線上所受應(yīng)力,N;F2——顆粒A和顆粒B中軸線上所受應(yīng)力,N;F3——顆粒C和顆粒D中軸線上所受應(yīng)力,N;S′——顆粒變形后毛管孔隙滲流面積,mm2;a1——顆粒A和顆粒C的接觸半徑,mm;a2——顆粒A和顆粒B的接觸半徑,mm;a3——顆粒C和顆粒D的接觸半徑,mm;σ——毛管孔隙所受有效應(yīng)力,MPa;σ0——儲(chǔ)層初始時(shí)刻所受有效應(yīng)力,MPa;?′——毛管孔隙變形后的孔隙度;?——毛管孔隙變形前的孔隙度;K′——毛管孔隙變形后的滲透率,10-3μm2;K——變形前毛管孔隙初始滲透率,10-3μm2。
[1] Warpinski N R,Teufel LW,Graf D C.Effect of stress and pressureon gas flow through natural fractures[C].SPE 22666,1991.
[2] Aguilera R.Effectof fracture compressibility on gas-in-place calculations of stress-sensitive naturally fractured reservoirs[C]. SPE 100451,2006.
[3] 宋考平,崔曉娜,蘇旭,等.大慶外圍特低滲透儲(chǔ)層合理流壓確定與應(yīng)用[J].特種油氣藏,2014,21(1):102-105. Song Kaoping,Cui Xiaona,Su Xu,etal.Determination and application of reasonable flowing pressure in ultra-low permeability reservoirs,peripheral Daqing[J].Special Oil&Gas Reservoirs,2014,21(1):102-105.
[4] 雷剛,董平川,楊書,等.致密砂巖氣藏?cái)M穩(wěn)態(tài)流動(dòng)階段氣井產(chǎn)能分析[J].油氣地質(zhì)與采收率,2014,21(5):94-97. LeiGang,Dong Pingchuan,Yang Shu,etal.Productivity analysis of tight sandstone gas reservoir in pseudo-steady state[J].Petroleum Geology and Recovery Efficiency,2014,21(5):94-97.
[5] 代平,孫良田,李閩.低滲透砂巖儲(chǔ)層孔隙度、滲透率與有效應(yīng)力關(guān)系研究[J].天然氣工業(yè),2006,26(5):93-95. Dai Ping,Sun Liangtian,LiMin.Study on relation between porosity/permeability and effective stress of sand reservoirwith low permeability[J].NaturalGas Industry,2006,26(5):93-95.
[6] 董平川,江同文,唐明龍.異常高壓氣藏應(yīng)力敏感性研究[J].巖石力學(xué)與工程學(xué)報(bào),2008,27(10):2 087-2 093. Dong Pingchuan,Jiang Tongwen,Tang Minglong.Research on stress-sensitivity in abnormal high pressure gas reservoir[J].Chinese Journal ofRock Mechanics and Engineering,2008,27(10):2 087-2 093.
[7] 劉順,何衡,賀艷祥,等.低滲透油藏應(yīng)力敏感實(shí)驗(yàn)數(shù)據(jù)處理方法對(duì)比[J].油氣地質(zhì)與采收率,2012,19(4):71-73. Liu Shun,He Heng,He Yanxiang,et al.Data processing correlation on stress sensitivity experiment for low-permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2012,19 (4):71-73.
[8] 雷剛,董平川,尤文浩,等.低滲透變形介質(zhì)砂巖油藏注水見效時(shí)間及影響因素[J].油氣地質(zhì)與采收率,2013,20(6):69-72. LeiGang,Dong Pingchuan,YouWenhao,etal.Water flooding response and its affecting factors in low permeability deformedmedium sandstone reservoirs[J].Petroleum Geology and Recovery Efficiency,2013,20(6):69-72.
[9] 王培璽,劉仁靜.低滲透儲(chǔ)層應(yīng)力敏感系數(shù)統(tǒng)一模型[J].油氣地質(zhì)與采收率,2012,19(2):75-77. Wang Peixi,Liu Renjing.Universalmodel of stress sensitive coefficient for low permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2012,19(2):75-77.
[10]高建,呂靜,王家祿.儲(chǔ)層條件下低滲透巖石應(yīng)力敏感評(píng)價(jià)[J].巖石力學(xué)與工程學(xué)報(bào),2009,28(S2):3 899-3 902. Gao Jian,LüJing,Wang Jialu.Evaluation on stress sensibility of low permeability rock under reservoir condition[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(S2):3 899-3 902.
[11]焦春艷,何順利,謝全,等.超低滲透砂巖儲(chǔ)層應(yīng)力敏感性實(shí)驗(yàn)[J].石油學(xué)報(bào),2011,32(3):489-494. Jiao Chunyan,He Shunli,Xie Quan,et al.An experimental study on stress-dependent sensitivity of ultra-low permeability sandstone reservoirs[J].Acta PetroleiSinica,2011,32(3):489-494.
[12]劉仁靜,劉慧卿,張紅玲,等.低滲透儲(chǔ)層應(yīng)力敏感性及其對(duì)石油開發(fā)的影響[J].巖石力學(xué)與工程學(xué)報(bào),2011,30(S1):2 697-2 702. Liu Renjing,Liu Huiqing,Zhang Hongling,et al.Study of stress sensitivity and its influence on oil development in low permeability reservoir[J].Chinese Journalof Rock Mechanics and Engineering,2011,30(S1):2 697-2 702.
[13]王厲強(qiáng),劉慧卿,甄思廣,等.低滲透儲(chǔ)層應(yīng)力敏感性定量解釋研究[J].石油學(xué)報(bào),2009,30(1):96-99. Wang Liqiang,Liu Huiqing,Zhen Siguang,et al.Quantitative research on stress sensitivity of low permeability reservoir[J].Acta PetroleiSinica,2009,30(1):96-99.
[14]王學(xué)武,黃延章,楊正明.致密儲(chǔ)層應(yīng)力敏感性研究[J].巖土力學(xué),2010,31(S1):182-186. Wang Xuewu,Huang Yanzhang,Yang Zhengming.Study of stress sensitivity of tight reservoir[J].Rock and Soil Mechanics,2010,31(S1):182-186.
[15]董平川,雷剛,計(jì)秉玉,等.考慮變形影響的致密砂巖油藏非線性滲流特征[J].巖石力學(xué)與工程學(xué)報(bào),2013,32(S2):3 187-3 196. Dong Pingchuan,Lei Gang,Ji Bingyu,et al.Nonlinear seepage regularity of tightsandstone reservoirswith consideration ofmedium deformation[J].Chinese Journal ofRock Mechanicsand Engineering,2013,32(S2):3 187-3 196.
[16]孫軍昌,楊正明,劉學(xué)偉,等.低滲多孔介質(zhì)滲透率應(yīng)力敏感新機(jī)理[C]//樊菁.第七屆全國(guó)流體力學(xué)學(xué)術(shù)會(huì)議論文摘要集.第七屆全國(guó)流體力學(xué)學(xué)術(shù)會(huì)議.桂林:中國(guó)力學(xué)學(xué)會(huì)流體力學(xué)專業(yè)委員會(huì),CSTAM2012-B03-0076. Sun Junchang,Yang Zhengming,Liu Xuewei,et al.A new mechanism for permeability stress-sensitivity of low permeability porousmedia[C]//Fan Jing.The 7th National Conference on Fluid Mechanics Abstract Set.The 7th National Conference on Fluid Mechanics.Guilin:The Chinese Society of Theoretical and Applied Mechanics,CSTAM2012-B03-0076.
[17]譚習(xí)群,岳湘安,劉向陽(yáng),等.低滲透非均質(zhì)油藏壓敏性及其對(duì)流體分布的影響——以CO2驅(qū)油藏為例[J].油氣地質(zhì)與采收率,2009,16(5):92-94. Tan Xiqun,Yue Xiang’an,Liu Xiangyang,et al.Stress sensitivity of low permeability heterogeneous reservoir and its influences on fluid distribution-taking CO2-drive oil reservoir as example[J]. Petroleum Geology and Recovery Efficiency,2009,16(5):92-94.
[18]王銳.低滲透油藏提高采收率機(jī)理及方法研究[D].北京:中國(guó)石油大學(xué)(北京),2009. Wang Rui.Research on enhanced oil recovery mechanism and methods for low permeability reservoirs[D].Beijing:China University ofPetroleum(Beijing),2009.
[19]閔令元,呂成遠(yuǎn),張保衛(wèi),等.SY/T 6385—1999覆壓下巖石孔隙度和滲透率測(cè)定方法[S].北京:石油工業(yè)出版社,1999. Min Lingyuan,LüChengyuan,Zhang Baowei,et al.SY/T 6385-1999 The porosity and permeability measurement of core in net confining stress[S].Beijing:Petroleum Industry Press,1999.
[20]Gangi A F.Variation ofwhole and fractured porous rock permeability with confining pressure[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics,1978,15(5):249-257.
編輯常迎梅
Quantitativeanalysison stresssensitivity of heterogeneous tight sandstone
LeiGang1,Wang Hao2,Dong Pingchuan1,Wang Bin1,Yang Shu1,Wu Zisen1,Mo Shaoyuan1
(1.MOEKey Laboratory ofPetroleum Engineering,China University ofPetroleum(Beijing),Beijing City,102249,China;2.Research InstituteofPetroleum Engineering,ShengliOilfield Company,SINOPEC,Dongying City,Shandong Province,257000,China)
The stress-dependent permeability in the heterogeneous tight sandstone has been studied based on the experiment of permeability stress sensitivity.Based on Hertz contact deformation principle,a capillarymodel for heterogeneous tightsandstonewasestablished to characterize the stresssensitivity of capillary and porousmedia.The variation ofporosity,permeability and permeability ratio under different effective stresswas quantitatively analyzed.The theoretical calculation resultswere compared with the experimentalones as validation,and the experimental resultswere explained in theory.Research results show that the stress sensitivity of the heterogeneous tight sandstone ismainly presented as permeability stress sensitivity.Rock permeability varies with effective stress in different cores.The lower the rock permeability is,the faster the permeability declines.The permeability declining speed of the heterogeneous rock lies between those of the high permeability layer and the low permeability layer.When the permeability ratio increases,the stress-dependentpermeability curves of heterogeneous rock are closer to thatof the low permeability layer in rock.Heterogeneous tightsandstone permeability ratiobecomes largerwhen effective stress increases.
tightsandstone;heterogeneity;permeability;stress sensitivity;quantitative analysis
TE311
A
1009-9603(2015)03-0090-05
2015-03-09。
雷剛(1987—),男,湖北洪湖人,在讀博士研究生,從事油氣田開發(fā)工程方面的研究。聯(lián)系電話:15011314843,E-mail:leigang 5000@126.com。
國(guó)家自然科學(xué)基金項(xiàng)目“裂縫性油氣藏流固耦合滲流基礎(chǔ)研究”(50004002)。