• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological Characterization of Book Graph and Stacked Book Graph

    2019-07-18 01:58:50RaghisaKhalidNazeranIdreesandMuhammadJawwadSaif
    Computers Materials&Continua 2019年7期

    Raghisa Khalid, Nazeran Idrees, and Muhammad Jawwad Saif

    Abstract: Degree based topological indices are being widely used in computer-aided modeling, structural activity relations, and drug designing to predict the underlying topological properties of networks and graphs.In this work, we compute the certain important degree based topological indices like Randic index, sum connectivity index, ABC index, ABC4 index, GA index and GA5 index of Book graph Bn and Stacked book graph Bm ,n.The results are analyzed by using edge partition, and the general formulas are derived for the above-mentioned families of graphs.

    Keywords: Topological indices, Book graph Bn , Stacked book graph Bm ,n, network.

    1 Introduction

    Graph theory is used as a tool for designing and modeling chemical structures, complex network, and modeling of daily-life problems.In recent years, chemical structures and pharmaceutical techniques have been rapidly developed.In this period of rapid technological development, a huge number of new crystalline materials, nanomaterial, and drugs are designed using computer-aided modeling techniques.Researchers have found the topological index to be an influential and valuable tool in the narrative of molecular or network structure.A non-empirical scientific amount which quantitates the molecular structure and its branching pattern is described as a topological index of the associated graph.The chemical graph theory put on the tools from graph theory to mathematical models of molecular singularities, which is helpful for the study of molecular modeling and molecular structure.This theory plays a vigorous role in the field of theoretical chemical sciences.

    In this paper all molecular graphs are considered to be connected, finite, loopless and deprived of parallel edges.Let F be a graph with n vertices and m edges.The degree of a vertex is the number of vertices adjacent to q and is signified as d(q) .By these terminologies, certain topological indices are well-defined in the following way.

    The Randic index is the oldest degree based topological index and is signified as χ(F) and presented by Randic [Randic (1975)].He proposed this index for calculating the degree of branching of the carbon-atom skeleton of saturated hydrocarbons.Li et al.[Li and Shi (2008)] gave a comprehensive survey of the Randic index.

    Definition 1.1For any molecular graph F, the Randic index is defined as

    A variation of Randic connectivity index is the sum connectivity index [Zhou and Trinajstic (2009)].

    Definition 1.2.For a molecular graph F, the sum connectivity index is defined as

    Estrada et al.[Estrada, Torres and Rodriguez (1998)] proposed a degree based topological index of graphs, which is said to be the atom-bond connectivity index.Further, he proposed the atom-bond connectivity index of branched alkanes [Estrada (2008)].For the atom-bond connectivity index several upper bounds for graphs are established and also studied in the context of the connected graph, and bicyclic chemical graphs [Chen, Liu and Guo (2012); Chen and Guo (2012); Xing, Zhou and Dong (2011)].

    Definition 1.3.Let F be a molecular graph; then ABC index is defined as

    The geometric-arithmetic index is associated with a variation of physiochemical properties.It can be used as a possible tool for QSPR/QSAR research.Vukicevic et al.[Vukicevic and Furtula (2009)] introduced the geometric-arithmetic( GA) index.

    Definition 1.4.Let F be a molecular graph, then geometric-arithmetic index is defined as

    Ghorbani et al.[Ghorbani and Hosseinzadeh (2010)] presented the fourth ABC index.

    Definition 1.5.Let F be a molecular graph; then ABC4index is defined as

    where Sqis the summation of degrees of all the neighbors of a vertex q in F.

    Recently Graovac et al.[Graovac, Ghorbani and Hosseinzadeh (2011)] proposed the fifth GA index, which is defined below.

    Definition 6.Let F be a molecular graph; then5GA index is defined as

    Degree based topological indices are rigorously studied for nanotubes, computer networks and many other chemical graphs, for recent development in literature [Idrees, Said, Rauf et al.(2017); Gao, Wu, Siddiqui et al.(2018); Idrees, Hussain and Sadiq (2018); Imran, Baig Rehman et al.(2018); Joan (2019)].Some other interesting results about network analysis using topological indices can be found in Hayat et al.[Hayat and Imran (2014); Javaid and Cao (2018)].

    2 Main results for Book graph

    Book graph Bnis obtained by taking cartesian product of star graph Sn+1with a path of length two P2, i.e.,Bn:= Sn+1□P2, as shown in Fig.1.The degree based topological indices like Randic index, sum connectivity index, atom-bond connectivity index, geometric-arithmetic index, fourth atom-bond connectivity index, GA5index for Book graph Bnare computed in this section.

    Figure 1: A representation of Book graph nB

    Table 1: Partition of edge created by the sum of adjacent vertices of every line

    Theorem 2.1

    Let Bnbe the book graph.Then

    i) The Randic index of Book graph is

    ii) The Sum-connectivity index of Book graph (Bn)is

    iii) The Atom bond connectivity index of Book graph is

    iv) The geometric-arithmetic index (GA) of Book graph is

    Proof.For the Book graph Bn, we divider the edges of Bninto edges of the form Edq,dr, where qr is an edge.We develop the edges of the form E(2,2), E(2,n+1)andIn Fig.1, E(2,2), E(2,n+1)andare colored in red, lavender and green, respectively.The number of edges of these forms are given in the Tab.1.

    Using Tab.1, we get

    Theorem 2.2

    i) The fourth atom bond connectivity index (ABC4) Book graph is

    ii) The Fifth geometric arithmetic index (5GA)of Book graph is

    Proof.Consider the Book graph Bn.The edges of Bncan be divided into edges of formwhere qr is an edge.We develop the edges of the formandthat are shown in Tab.2 given below, by evaluating sum of degrees of neighboring vertices.

    Table 2: Partition of edges created by the sum of degrees of neighbors of the head-to-head vertices of every edge

    From Tab.2, we get

    Substituting the values from Tab.2,

    and we get the desired result.

    3 Main results for Stacked book graph

    The Stacked book graph of order (m,n), denoted by Bm,nis the Cartesian productof graphs, where Smis a star graph and Pnis the path graph on n points.It is therefore the graph resultant to the edges of n copies of an m-page book stacked one on top of another and is a generalization of the book graph.The degree based topological indices like Randic, sum, atom-bond, geometric-arithmetic, fourth atom-bond, fifth geometric-arithmetic connectivity index for Stacked book graph,mnB are computed in this section.These graph invariants are computed by edge partition based on degrees of end vertices of edges as given in Tab.3 below.

    Figure 2: A representation of Stacked book graph B5,7

    Table 3: Edge partition created by sum of adjacent vertices of every line

    Theorem 3.1

    i) The Randic connectivity index of Stacked book graph is

    χ(Bm,n)=where 6n ≥ .

    ii) The sum connectivity index of Stacked book graph iswhere n ≥ 6.

    iii) The Atom bond connectivity index (ABC)of Stacked book graph is

    iv) The Geometric-Arithmetic index (GA)o stacked book graph is GA( Bm,n)=Proof.Consider the Stacked book graph Bm,n.The edges of Bm,ncan be partitioned into edges of the form Edq,dr, where qr is an edge.In Bm,n, We develop the edges of the formandIn Fig.2,andare colored by red, bright green, lavender, pink, navy blue, and silver.The sum of edges of these forms is given in the Tab.3.

    Substituting the values from Tab.3, we get,

    Substituting the values from Tab.3, we get

    From Tab.3, we get,

    Using edge partition given in Tab.3, we have

    After simplification, we have

    Theorem 3.2

    The Fourth atom bond connectivity index (ABC4) and fifth geometric-arithmetic index (GA5) of Stacked book graph Bm,nare given as

    Proof.Consider the Stacked book graph,mnB .The edges of,mnB can be partitioned into edges of the formwhere qr is an edge.In Bm,n.We develop the edges of the formandthat are shown in Tab.4.

    Table 4: Edge partition created by the sum of degrees of neighbors of the head-to-head vertices of every edge

    Using the edge partition given in Tab.4, we have

    After further simplification, we get

    which yields the required result.

    Again substituting the values from Tab.4, we get

    4 Conclusion

    In this work, we analyzed the graph-theoretic invariants of certain networks dependent upon connectivity of the nodes like ABC index, ABC4index, Randic connectivity index, sum connectivity index, GA index and5GA index of Book graphnB and Stacked book graph Bm,n.The results can be applied to investigate the topological properties of the computer network and structure-activity relation where the graph correspond to book graph and stacked book graph.We derived the general formulas of various degree based topological indices and computed the results analytically for the above-mentioned families of the graph.These graph-theoretic invariants depend upon connectivity of the nodes of the graph.These results can be employed to further understand the topological properties of graphs with graph-theoretic properties.

    References

    Chen, J.; Li, S.(2011): On the sum-connectivity index of unicyclic graphs with k pendent vertices.Mathematical Communications, vol.16, no.2, pp.359-368.

    Chen, J.; Liu, J.; Guo, X.(2012): Some upper bounds for the atom-bond connectivity index of graphs.Applied Mathematics Letters, vol.25.no.7, pp.1077-1081.

    Chen, J.S.; Guo, X.F.(2012): The atom-bond connectivity index of chemical bicyclic graphs.Applied Mathematics-A Journal of Chinese Universities, vol.27, no.2, pp.243-252.

    Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I.(1998): An atom-bond connectivity index: modelling the enthalpy of formation of alkanes.Indian Journal of Chemistry, vol.37, no.10, pp.849-855.

    Estrada, E.(2008): Atom-bond connectivity and the energetic of branched alkanes.Chemical Physics Letters, vol.463, no.4, pp.422-425.

    Farahani, M.R.(2013): On the fourth atom-bond connectivity index of Armchair Polyhex Nanotubes.Proceedings of Romanian Academy Series B, vol.15, no.1, pp.3-6.

    Ghorbani, M.; Hosseinzadeh, M.A.(2010): Computing ABC4index of nanostar dendrimers.Optoelectronics and Advanced Materials Rapid Communications, vol.4, no.9, pp.1419-1422.

    Graovac, A.; Ghorbani, M.; Hosseinzadeh, M.A.(2011): Computing fifth geometricarithmetic index for nanostar dendrimers.Journal of Mathematical Nanoscience, vol.1, no.1, pp.33-42.

    Hayat, S.; Imran, M.(2014): Computation of topological indices of certain networks.Applied Mathematics and Computation, vol.240, pp.213-228.

    Idrees, N.; Saif, M.; Rauf, A.; Mustafa, S.(2017): First and second Zagreb eccentricity indices of thorny graphs.Symmetry, vol.9, no.1, pp.7-16.

    Idrees, N.; Hussain, F.; Sadiq, A.(2018): Topological properties of benzenoid graphs.University Politehnica of Bucharest Scientific Bulletin Series B-Chemistry and Materials Science, vol.80, no.1, pp.145-156.

    Javaid, M.; Cao, J.(2018): Computing topological indices of probabilistic neural network.Neural Computing and Applications, vol.30, no.12, pp.3869-3876.

    Joan, K.(2019): Some topological indices computing results of archimedean lattices l (4, 6, 12).Computers, Materials & Continua, vol.58, no.1, pp.121-133.

    Li, X.; Shi, Y.(2008): A survey on the Randic index.MATCH Communications in Mathematical and Computational Chemistry, vol.59, no.1, pp.127-56.

    Randic, M.(1975): Characterization of molecular branching.Journal of the American Chemical Society, vol.97, no.23, pp.6609-6615.

    Xing, R.; Zhou, B.; Dong F.(2011): On atom-bond connectivity index of connected graphs.Discrete Applied Mathematics, vol.159, no.15, pp.1617-1630.

    Zhou, B.; Trinajsti?, N.(2009): On a novel connectivity index.Journal of Mathematical Chemistry, vol.46, no.4, pp.1252-1270.

    少妇人妻一区二区三区视频| 欧美潮喷喷水| 性欧美人与动物交配| 性色avwww在线观看| 一夜夜www| 噜噜噜噜噜久久久久久91| 十八禁网站免费在线| 婷婷六月久久综合丁香| 婷婷色综合大香蕉| 亚洲国产精品sss在线观看| 亚洲专区中文字幕在线| 身体一侧抽搐| 波野结衣二区三区在线| 特级一级黄色大片| 午夜免费男女啪啪视频观看 | 久久久久免费精品人妻一区二区| 欧美潮喷喷水| 国产色婷婷99| 夜夜躁狠狠躁天天躁| 欧美国产日韩亚洲一区| 91麻豆av在线| 首页视频小说图片口味搜索| 老司机午夜十八禁免费视频| 亚洲成人久久爱视频| 最近在线观看免费完整版| 99riav亚洲国产免费| 午夜福利在线观看吧| 最近中文字幕高清免费大全6 | 在线观看免费视频日本深夜| 久久久久久久久久成人| 亚洲欧美日韩东京热| 欧美不卡视频在线免费观看| 日日摸夜夜添夜夜添小说| 特大巨黑吊av在线直播| 久久草成人影院| 亚洲精品456在线播放app | а√天堂www在线а√下载| 国产av不卡久久| 久久精品国产自在天天线| 日韩人妻高清精品专区| h日本视频在线播放| 亚洲午夜理论影院| 日本三级黄在线观看| 亚洲欧美激情综合另类| 高清毛片免费观看视频网站| 18禁在线播放成人免费| 深夜a级毛片| 看十八女毛片水多多多| 在线看三级毛片| 禁无遮挡网站| 亚洲av熟女| 午夜福利免费观看在线| 色吧在线观看| 亚洲美女黄片视频| 午夜福利高清视频| 在线天堂最新版资源| 99国产精品一区二区三区| 国产色婷婷99| 国产大屁股一区二区在线视频| 极品教师在线视频| 欧美一区二区亚洲| 草草在线视频免费看| 国产三级在线视频| 91久久精品电影网| 欧美区成人在线视频| 成年版毛片免费区| 国产精品亚洲美女久久久| 免费观看精品视频网站| 国产v大片淫在线免费观看| 国产美女午夜福利| 亚洲精华国产精华精| 少妇裸体淫交视频免费看高清| 亚洲内射少妇av| 热99在线观看视频| 国产一区二区在线观看日韩| 午夜免费成人在线视频| 久久精品91蜜桃| 国产精品98久久久久久宅男小说| 一个人看视频在线观看www免费| 中文字幕高清在线视频| 国产色婷婷99| 久久国产精品人妻蜜桃| 国产久久久一区二区三区| 国产单亲对白刺激| 国产精品久久久久久久电影| 天堂网av新在线| 亚洲精品乱码久久久v下载方式| 在线看三级毛片| 日韩有码中文字幕| 麻豆成人午夜福利视频| 一本久久中文字幕| 亚洲精品久久国产高清桃花| 日本 欧美在线| 老鸭窝网址在线观看| 亚洲欧美日韩卡通动漫| 少妇裸体淫交视频免费看高清| 国产一区二区三区在线臀色熟女| 国产一区二区三区在线臀色熟女| 国产欧美日韩一区二区三| 久久久久亚洲av毛片大全| 国产精品久久久久久亚洲av鲁大| 国产一区二区在线观看日韩| av在线观看视频网站免费| 一个人看的www免费观看视频| 亚洲中文日韩欧美视频| 在线播放国产精品三级| 国产视频内射| 99riav亚洲国产免费| 国产伦人伦偷精品视频| 亚洲熟妇熟女久久| 一级a爱片免费观看的视频| 全区人妻精品视频| 欧美激情国产日韩精品一区| 一本精品99久久精品77| 国产精品伦人一区二区| 成人av在线播放网站| 免费人成视频x8x8入口观看| a级毛片免费高清观看在线播放| 亚洲av.av天堂| 99久久精品热视频| 男女床上黄色一级片免费看| 少妇的逼好多水| 我要看日韩黄色一级片| 亚洲av第一区精品v没综合| 夜夜爽天天搞| 十八禁人妻一区二区| 麻豆成人午夜福利视频| 老司机午夜十八禁免费视频| 欧美丝袜亚洲另类 | 国产精品爽爽va在线观看网站| 欧美性猛交黑人性爽| 综合色av麻豆| 免费观看人在逋| 男女视频在线观看网站免费| 亚洲欧美清纯卡通| 麻豆成人午夜福利视频| 老司机午夜十八禁免费视频| 精品日产1卡2卡| 中文字幕免费在线视频6| 丰满人妻熟妇乱又伦精品不卡| 91麻豆av在线| 国产成人aa在线观看| 午夜福利在线观看吧| 免费人成视频x8x8入口观看| 亚洲五月婷婷丁香| 国产成人aa在线观看| 久久草成人影院| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产在线精品亚洲第一网站| 真人做人爱边吃奶动态| 麻豆成人av在线观看| 午夜福利高清视频| 久久精品国产自在天天线| 九色成人免费人妻av| 一个人免费在线观看电影| 51午夜福利影视在线观看| 女人十人毛片免费观看3o分钟| 色精品久久人妻99蜜桃| 禁无遮挡网站| 国产精品美女特级片免费视频播放器| 国产成人av教育| 两人在一起打扑克的视频| 欧美3d第一页| 亚洲男人的天堂狠狠| 国产aⅴ精品一区二区三区波| 啦啦啦韩国在线观看视频| 在线国产一区二区在线| 韩国av一区二区三区四区| 欧美日韩瑟瑟在线播放| 精品福利观看| 久久香蕉精品热| 91久久精品电影网| 国产三级在线视频| 精品国产三级普通话版| 亚洲av免费在线观看| 99在线人妻在线中文字幕| 舔av片在线| 69av精品久久久久久| 高清毛片免费观看视频网站| 别揉我奶头~嗯~啊~动态视频| 久久久久性生活片| 亚洲avbb在线观看| 中文在线观看免费www的网站| 国产一级毛片七仙女欲春2| 免费av观看视频| 亚洲中文日韩欧美视频| 搞女人的毛片| 在线观看66精品国产| 国产精品综合久久久久久久免费| 亚洲av成人不卡在线观看播放网| 亚洲国产精品999在线| 黄色女人牲交| 床上黄色一级片| 最近中文字幕高清免费大全6 | 国产精品一区二区三区四区免费观看 | 亚洲久久久久久中文字幕| 淫妇啪啪啪对白视频| 老熟妇乱子伦视频在线观看| 亚洲经典国产精华液单 | 长腿黑丝高跟| 亚洲18禁久久av| 国产一区二区在线av高清观看| 亚洲国产欧美人成| 性插视频无遮挡在线免费观看| 简卡轻食公司| 尤物成人国产欧美一区二区三区| 人人妻人人看人人澡| 国产精品亚洲一级av第二区| 91字幕亚洲| www.色视频.com| av在线天堂中文字幕| 高清毛片免费观看视频网站| 桃色一区二区三区在线观看| 老女人水多毛片| 国产午夜精品论理片| 国产午夜福利久久久久久| 一级a爱片免费观看的视频| 亚洲18禁久久av| 亚洲欧美日韩卡通动漫| 国产人妻一区二区三区在| 日韩欧美在线二视频| 18+在线观看网站| 麻豆成人av在线观看| 久久精品人妻少妇| 国产91精品成人一区二区三区| 免费大片18禁| 久9热在线精品视频| 中文字幕免费在线视频6| 久久久久久久久中文| 女同久久另类99精品国产91| 亚洲精品一区av在线观看| 美女高潮喷水抽搐中文字幕| 日本a在线网址| 能在线免费观看的黄片| 日本在线视频免费播放| 美女被艹到高潮喷水动态| 亚洲色图av天堂| 日韩欧美精品v在线| 亚洲国产欧洲综合997久久,| 好男人在线观看高清免费视频| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在 | 久久精品国产亚洲av涩爱 | 亚洲第一区二区三区不卡| 丁香欧美五月| 国产高清视频在线观看网站| 91在线精品国自产拍蜜月| 欧美日韩福利视频一区二区| 亚洲人成网站在线播| 中文字幕av在线有码专区| 国产精品亚洲一级av第二区| 99国产极品粉嫩在线观看| 国产精品免费一区二区三区在线| 黄色视频,在线免费观看| 亚洲欧美清纯卡通| 婷婷丁香在线五月| 日日摸夜夜添夜夜添小说| av福利片在线观看| 国产午夜精品久久久久久一区二区三区 | 人人妻,人人澡人人爽秒播| 丰满人妻一区二区三区视频av| 欧美日韩乱码在线| 国产淫片久久久久久久久 | 一个人看视频在线观看www免费| 12—13女人毛片做爰片一| 热99在线观看视频| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩高清专用| 色综合欧美亚洲国产小说| 99热这里只有是精品50| 国产激情偷乱视频一区二区| 在线观看66精品国产| 日韩欧美精品v在线| 亚洲精品粉嫩美女一区| 亚洲五月天丁香| 日本黄色片子视频| 欧美最黄视频在线播放免费| 网址你懂的国产日韩在线| 亚洲自拍偷在线| 久久精品影院6| 中亚洲国语对白在线视频| 中文字幕精品亚洲无线码一区| 亚洲人成网站高清观看| 白带黄色成豆腐渣| 国产精品日韩av在线免费观看| 日日干狠狠操夜夜爽| 午夜激情福利司机影院| 怎么达到女性高潮| 亚洲专区国产一区二区| www日本黄色视频网| 舔av片在线| 好男人在线观看高清免费视频| www.熟女人妻精品国产| 少妇熟女aⅴ在线视频| 波多野结衣高清无吗| 十八禁网站免费在线| www.www免费av| 亚洲美女搞黄在线观看 | 久久久精品欧美日韩精品| 午夜精品久久久久久毛片777| 国产大屁股一区二区在线视频| .国产精品久久| 99热只有精品国产| 国产精品久久久久久人妻精品电影| 又爽又黄a免费视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲综合色惰| 俄罗斯特黄特色一大片| 男人和女人高潮做爰伦理| 成人亚洲精品av一区二区| 国产av麻豆久久久久久久| 亚洲最大成人中文| 亚洲成人久久性| 亚洲美女视频黄频| 国内毛片毛片毛片毛片毛片| 成人午夜高清在线视频| 久久久久九九精品影院| 久久精品国产99精品国产亚洲性色| 日韩大尺度精品在线看网址| 老熟妇乱子伦视频在线观看| 日韩欧美国产一区二区入口| 丰满的人妻完整版| 免费看美女性在线毛片视频| 久久午夜亚洲精品久久| 极品教师在线视频| 中文字幕高清在线视频| 成年女人看的毛片在线观看| 亚洲欧美日韩无卡精品| 丝袜美腿在线中文| 淫妇啪啪啪对白视频| 亚洲成人久久性| 少妇的逼好多水| 一本一本综合久久| 日韩大尺度精品在线看网址| 亚洲一区二区三区色噜噜| 亚洲精品色激情综合| 欧美xxxx黑人xx丫x性爽| 日本在线视频免费播放| 久久国产精品影院| 国产精品久久久久久精品电影| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久久久久| 白带黄色成豆腐渣| 日韩欧美一区二区三区在线观看| 一区二区三区免费毛片| 一本精品99久久精品77| 精品一区二区三区视频在线观看免费| 美女高潮喷水抽搐中文字幕| 嫁个100分男人电影在线观看| 九色国产91popny在线| 亚洲精品在线美女| 国产成人福利小说| 简卡轻食公司| 中文字幕高清在线视频| 国产av在哪里看| 国产伦人伦偷精品视频| 久久草成人影院| 老熟妇乱子伦视频在线观看| 婷婷六月久久综合丁香| 十八禁人妻一区二区| 久久久久久久亚洲中文字幕 | 性色av乱码一区二区三区2| 特大巨黑吊av在线直播| h日本视频在线播放| 我的女老师完整版在线观看| 1024手机看黄色片| 精品国内亚洲2022精品成人| 人妻夜夜爽99麻豆av| 国产精品女同一区二区软件 | 亚洲人与动物交配视频| 亚洲,欧美,日韩| 精品久久久久久久久亚洲 | 亚洲狠狠婷婷综合久久图片| 日韩 亚洲 欧美在线| 人人妻人人看人人澡| 国产野战对白在线观看| 亚洲性夜色夜夜综合| 成年女人毛片免费观看观看9| 又黄又爽又免费观看的视频| 婷婷色综合大香蕉| 最近最新免费中文字幕在线| 国产又黄又爽又无遮挡在线| 国产精品一区二区性色av| 久久久久久久午夜电影| 色视频www国产| 黄色一级大片看看| 一进一出好大好爽视频| 给我免费播放毛片高清在线观看| 日韩大尺度精品在线看网址| 欧美+亚洲+日韩+国产| 我要搜黄色片| 亚洲不卡免费看| 国产亚洲精品久久久久久毛片| 一二三四社区在线视频社区8| 国产成人av教育| 欧美激情国产日韩精品一区| 热99在线观看视频| 毛片女人毛片| 波多野结衣巨乳人妻| 少妇人妻一区二区三区视频| 精品久久久久久久末码| 午夜精品一区二区三区免费看| 日本五十路高清| 中文字幕熟女人妻在线| 成年免费大片在线观看| 国产熟女xx| 一级a爱片免费观看的视频| 一区二区三区四区激情视频 | 久久久久久久亚洲中文字幕 | 亚洲精品成人久久久久久| 天美传媒精品一区二区| 高潮久久久久久久久久久不卡| 亚洲成人精品中文字幕电影| 亚洲七黄色美女视频| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 亚洲最大成人av| 国产精品久久电影中文字幕| 亚洲 欧美 日韩 在线 免费| a级毛片a级免费在线| 欧美极品一区二区三区四区| 国产亚洲精品久久久久久毛片| 国产一区二区激情短视频| 亚洲精品456在线播放app | 久久久久免费精品人妻一区二区| 欧美在线黄色| 亚洲最大成人手机在线| netflix在线观看网站| 日本 av在线| 亚洲五月婷婷丁香| 一本综合久久免费| 五月玫瑰六月丁香| 在现免费观看毛片| 国产伦一二天堂av在线观看| 在线观看一区二区三区| 天天躁日日操中文字幕| av专区在线播放| 久久精品国产自在天天线| 成年人黄色毛片网站| 欧美日韩国产亚洲二区| 国产蜜桃级精品一区二区三区| 欧美乱妇无乱码| 亚洲,欧美,日韩| 亚州av有码| 久久精品国产99精品国产亚洲性色| 久久国产精品影院| 午夜福利免费观看在线| 亚洲avbb在线观看| 国产高潮美女av| 久久久久久久精品吃奶| 中文字幕久久专区| 中文字幕人成人乱码亚洲影| 亚洲av免费高清在线观看| 搡老熟女国产l中国老女人| 久久精品国产清高在天天线| 麻豆av噜噜一区二区三区| 永久网站在线| 欧美成人性av电影在线观看| 在线播放无遮挡| 波多野结衣高清作品| 欧美国产日韩亚洲一区| 欧美日本亚洲视频在线播放| 日韩 亚洲 欧美在线| 成人特级黄色片久久久久久久| av在线天堂中文字幕| 精品人妻一区二区三区麻豆 | 色综合站精品国产| 内地一区二区视频在线| 精品人妻偷拍中文字幕| 精品久久久久久久末码| 国产亚洲精品综合一区在线观看| 美女高潮喷水抽搐中文字幕| 悠悠久久av| 国产国拍精品亚洲av在线观看| 99精品久久久久人妻精品| 亚洲国产精品合色在线| 亚洲av免费在线观看| 一级av片app| 91久久精品电影网| 日本 欧美在线| 韩国av一区二区三区四区| 亚洲av美国av| 亚洲av不卡在线观看| 好男人电影高清在线观看| 亚洲精华国产精华精| 99久久99久久久精品蜜桃| 97超视频在线观看视频| 国产v大片淫在线免费观看| 男人舔奶头视频| 在现免费观看毛片| 成人精品一区二区免费| 色噜噜av男人的天堂激情| 一本久久中文字幕| 亚洲无线观看免费| 色综合亚洲欧美另类图片| 午夜激情福利司机影院| av天堂中文字幕网| 琪琪午夜伦伦电影理论片6080| 精品99又大又爽又粗少妇毛片 | 好看av亚洲va欧美ⅴa在| 久久99热这里只有精品18| 日韩av在线大香蕉| 亚洲av中文字字幕乱码综合| 精品国产三级普通话版| bbb黄色大片| 激情在线观看视频在线高清| 天堂√8在线中文| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 3wmmmm亚洲av在线观看| 欧美色视频一区免费| 免费无遮挡裸体视频| 乱人视频在线观看| 看免费av毛片| 欧美午夜高清在线| 成年女人毛片免费观看观看9| ponron亚洲| 中亚洲国语对白在线视频| 内射极品少妇av片p| 日本精品一区二区三区蜜桃| 免费看日本二区| 欧美+亚洲+日韩+国产| 国产亚洲av嫩草精品影院| 白带黄色成豆腐渣| 少妇裸体淫交视频免费看高清| 亚洲片人在线观看| 在线观看午夜福利视频| 成人国产综合亚洲| 国产精品精品国产色婷婷| 99热精品在线国产| 美女黄网站色视频| 国产精品久久电影中文字幕| 亚洲自拍偷在线| 日韩有码中文字幕| 一区二区三区激情视频| 男女视频在线观看网站免费| 在线国产一区二区在线| 免费高清视频大片| 在线播放国产精品三级| 男女下面进入的视频免费午夜| 首页视频小说图片口味搜索| 91午夜精品亚洲一区二区三区 | 欧美xxxx黑人xx丫x性爽| 婷婷亚洲欧美| 亚洲av第一区精品v没综合| 中文资源天堂在线| 久久久久久大精品| 成人一区二区视频在线观看| 国产精品,欧美在线| 欧美国产日韩亚洲一区| 国产不卡一卡二| 最新在线观看一区二区三区| 亚洲 国产 在线| 国产美女午夜福利| 91字幕亚洲| 欧美乱妇无乱码| 久久国产精品影院| 夜夜爽天天搞| 久久久精品大字幕| 久久精品影院6| 亚洲av成人精品一区久久| 欧美午夜高清在线| av黄色大香蕉| www.色视频.com| 天堂网av新在线| 少妇的逼好多水| 国产精品人妻久久久久久| 中文字幕熟女人妻在线| 欧美激情国产日韩精品一区| 一个人免费在线观看电影| 欧美精品啪啪一区二区三区| 亚洲国产精品成人综合色| 国产精品99久久久久久久久| 亚洲黑人精品在线| 在线a可以看的网站| 一本久久中文字幕| 国产极品精品免费视频能看的| 简卡轻食公司| 成人国产一区最新在线观看| 99riav亚洲国产免费| 女同久久另类99精品国产91| 最后的刺客免费高清国语| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 黄色一级大片看看| 夜夜爽天天搞| 变态另类成人亚洲欧美熟女| 亚洲五月天丁香| 在线观看免费视频日本深夜| 18禁裸乳无遮挡免费网站照片| 老司机深夜福利视频在线观看| 免费观看人在逋| 少妇熟女aⅴ在线视频| 免费人成视频x8x8入口观看| 一个人看的www免费观看视频| 精品久久久久久久末码| 国产视频一区二区在线看| 亚洲欧美清纯卡通| 亚洲一区二区三区色噜噜| 一级作爱视频免费观看| 又粗又爽又猛毛片免费看| 99热这里只有是精品在线观看 | 久久亚洲真实| 日本成人三级电影网站| 日韩欧美精品免费久久 | 亚洲黑人精品在线| av福利片在线观看| 给我免费播放毛片高清在线观看| 1000部很黄的大片| 中文字幕精品亚洲无线码一区| 2021天堂中文幕一二区在线观| 老司机午夜福利在线观看视频| 男女下面进入的视频免费午夜| av黄色大香蕉|