• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physiological responses of Brassica napus to fulvic acid under water stress:Chlorophyll a fluorescence and antioxidant enzyme activity

    2015-08-15 01:37:07RminLotfiMohmmdPessrkliPuriyGhrviKouhebghHosseinKhoshvghti
    The Crop Journal 2015年5期
    關鍵詞:端正積極分子融化

    Rmin Lotfi,Mohmmd Pessrkli*,Puriy Ghrvi-Kouhebgh,Hossein Khoshvghti

    aDepartment of Plant Eco-physiology,Faculty of Agriculture,University of Tabriz,Tabriz,IranbSchool of Plant Science,The University of Arizona,Tucson,AZ,USAcDepartment of Agriculture,Payame Noor University(PNU),Iran

    ?

    Physiological responses of Brassica napus to fulvic acid under water stress:Chlorophyll a fluorescence and antioxidant enzyme activity

    Ramin Lotfia,Mohammad Pessaraklib,*,
    Puriya Gharavi-Kouchebagha,Hossein Khoshvaghtic

    aDepartment of Plant Eco-physiology,Faculty of Agriculture,University of Tabriz,Tabriz,IranbSchool of Plant Science,The University of Arizona,Tucson,AZ,USA
    cDepartment of Agriculture,Payame Noor University(PNU),Iran

    A R T I C L E I N F O

    Article history:

    Received in revised form 13 May 2015 Accepted 23 June 2015

    Available online 2 July 2015

    Brassica napus

    Fluorescence

    Antioxidant enzyme Water stress

    Fulvic acid

    A B S T R A C T

    The ameliorative effect of fulvic acid(0,300,and 600 mg L?1)on photosystem II and antioxidant enzyme activity of the rapeseed(Brassica napus L.)plant under water stress (60,100,and 140 mm evaporation from class A pan)was studied using split plots in a randomizedcompleteblockdesign withthreereplications.Resultsindicated that application of fulvic acid(FA)improved the maximum quantum efficiency of PSII(Fv/Fm)and performance index(PI)of plants under both well-watered and limited-water conditions.The time span from Foto Fmand the energy necessary for the closure of all reaction centers was significantly increased,but the size of the plastoquinone pool was reduced with increasing water stress levels.Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions.Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress.Malondialdehyde increased under severe water stress,but application of FA significantly decreased lipid peroxidation.Production of reactive oxygen species(ROS)is a common phenomenon in plants under stress.Under this condition,the balance between the production of ROS and the quenching activity of antioxidants is upset,often resulting in oxidative damage.In this study,application of FA significantly increased fluorescence of chlorophyll a,inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS.Thus,ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Growth and development of plants depend on environmental conditions.Water stress is one of the major factors that affect crop production.Up to 45%of the world agricultural lands are subject to continuous or frequent drought stress[1].To survive under water stress,plants have evolved morphological,physiological,and biochemical responses.Photosynthesis and cell growth are the primary processes affected by stress[2].Water stress in higher plants affects PSII and antioxidant activities.

    Water stress may result in photo-inhibition that includes photo-damage to the photosynthetic apparatus,causing irreversible inactivation of PSII.Water stress also reduces photosynthetic efficiency or increases the dissipation of excess excitation energy as heat,and these effects may lead to changes in fluorescence parameters[3].Chlorophyll a fluorescence,though corresponding to a very small fraction of the dissipated energyfrom the photosynthetic apparatus,is generally accepted as providing access to understanding of its structure and function[4].PSII is responsible for chlorophyll a fluorescence and the rate of PSII photochemical conversion. Chlorophyll a fluorescence allows us to study the different functional levels of photosynthesis indirectly.It is useful to investigate the effects of environmental stresses on plants,given that photosynthesis is often reduced in plants experiencing adverse conditions.Thus,analysis of chlorophyll a fluorescence is considered an important approach for evaluating the health or integrity of the internal apparatus during photosynthesis[5].

    Water stress is one type of oxidative stress that,at the cellular level,enhances the generation of reactive oxygen species(ROS),such as superoxide radicals,hydrogen peroxide,and hydroxyl radicals.ROS in plant cells are controlled by enzymatic and non-enzymatic scavenging mechanisms.Numerous studies have shown that the activity of antioxidant enzymes is correlated with plant tolerance to abiotic stresses,including responses to drought stress in wheat(Triticum aestivum L.)[6,7],alfalfa(Medicago sativa L.)[8],rice(Oryza sativa L.)[9],and chickpea(Cicer arietinum L.)[10].Superoxide dismutase(SOD),considered to be the first defense against ROS,is responsible for the dismutation of O2?to H2O2and O2. CAT,APX,and POD are enzymes that catalyze the conversion of H2O2to water and O2[11].The balance between ROS production and activities of antioxidative enzymes determines whether oxidative signaling and/or damage will occur [12].

    Soil organic matter consists mainly of humic and fulvic acids,which are called humin materials[13].Application of humin materials to plants affects cell membranes,leading to enhanced transportofminerals,improvedproteinsynthesis,plant hormone-like activity,promoted photosynthesis,modified enzyme activities,solubilization of micro and macro elements,reduction of active levels of toxic minerals,and increased microbial populations[14].Rapeseed(Brassica napus L.)is the third largest oilseed crop in the world,following oil palm(Elaeis guineensis)and soybean(Glycine max Merr.)[15].It is unknown whether the application of fulvic acid can improve PSII and antioxidant activities of plants under water-deficit conditions. The present study aimed to investigate this question in rapeseed.

    2.Materials and methods

    2.1.Plant material and treatments

    A split plot experiment(using RCB design)with three replications was conducted in 2012 and repeated in 2013 at the University of Payame Noor,Iran,to determine the effects of foliar application of fulvic acid on PSII and antioxidant enzyme activity of rapeseed (B.napus)under water stress.Three irrigationtreatments,includingwell-wateredconditions (WWC),moderate water stress(MWS),and severe water stress (SWS)(60,100,and 140 mm evaporation from class A pan,respectively),represented main plots and three concentrations of fulvic acid,including 0(control),300,and 600 mg fulvic acid L?1,were allocated to subplots.Seeds of rapeseed were treated with 2 g kg?1benomyl and sown on May 22,2013 at 3 cm depth in a sandy loam soil.Seeding density was 90 seeds m?2.Each plot consisted of 4 rows of 4 m length,spaced 25 cm apart.All plots were irrigated immediately after sowing,and after seedling establishment,plants were thinned to 65 plants m?2. Subsequent irrigations were applied according to the treatments.The two levels of fulvic acid were sprayed on plants at vegetative growth and early flowering stages.

    2.2.Chlorophyll a fluorescence measurements

    Induction of chlorophyll a fluorescence was monitored with a handy-PEA portable fluorometer(Hansatech,UK)at the floweringstage.Fluorescenceemissionfromtheupper surface of the leaves was monitored.Leaves dark-adapted for 30 min and then were exposed to the saturated white light to estimate the initial(Fo)and maximum(Fm)fluorescence values,respectively.The performance index(PI)parameter (photosynthesis relative vitality),TFM(ms;time taken to reach Fm,an indicator of quinone(QA),the reduction rate of the PSII acceptor;thus,the rate of PSII electron transport)and Area (the area above the fluorescence induction curve between Foand Fm,a measure of the size of the plastoquinine pool in PSII)were also monitored.According to Kalaji et al.[16],

    2.3.Enzyme assays

    At the flowering stage,young leaves of rapeseed plants were collected and enzyme activities were assayed.Leaf samples were collected in an ice bucket.Leaves were washed with distilled water and surface moisture was wiped off.Leaf samples(0.5 g)were homogenized in ice-cold 0.1 mol L?1phosphate buffer(pH 7.5)containing 0.5 mmol L?1EDTA,with a pre-chilled mortar and pestle.Homogenates were transferred to centrifuge tubes and centrifuged at 4°C in a refrigerated centrifuge for 15 min at 15,000×g.The supernatant was used for enzyme assay.

    2.3.1.Catalase

    Catalase(CAT)activity was determined according to Aebi[17]. The reaction mixture contained 30 mmol L?1H2O2in a 50 mmol L?1phosphate buffer(pH 7.0),and 0.1 mL enzyme in a total volume of 3 mL.CAT activity was estimated by decreased absorbance of H2O2at 240 nm.

    2.3.2.Peroxidase

    The reaction mixture contained 25 mmol L?1phosphate buffer (pH 7.0),0.05%guaiacol,10 mmol L?1H2O2,andenzyme extract.Activity was determined by the increase in absorbance at 470 nm due to guaiacol oxidation[ε=26.6/(mmol L?1cm)][18].

    2.3.3.Ascorbate peroxidase

    The reaction mixture contained 50 mmol L?1potassium phosphate(pH 7.0),0.2 mmol L?1EDTA,0.5 mmol L?1ascorbic acid,2%H2O2,and 0.1 mL of enzyme extract in a final volume of 3 mL. A decrease in absorbance at 290 nm for 1 min was recorded and the amount of ascorbate oxidized was calculated using the extinction coefficient ε=2.8/(mmol L?1cm).One unit APX activity was defined as 1 mmol ascorbate oxidized/mL per min at 25°C[19].

    2.3.4.Superoxide dismutase

    SOD activity was determined according to Dhindsa and Dhindsa[20]and one unit(U)of SOD was the amount causing 50%inhibition of nitro blue tetrazolium (NBT)reduction in light.Enzyme activity was expressed in terms of specific activity(U mg?1protein)[21].

    2.4.Determination of lipid peroxidation rate

    Lipid was estimated by the content of total 2-thiobarbituric acid reactive substances(TBARS)expressed as equivalents of malondialdehyde(MDA).TBARS content was estimated following Cakmak and Horst[18]with some modifications.Fresh leaf samples(0.2 g)were ground in 5 mL of 0.1% (w/v)trichloroacetic acid(TCA)at 4°C.Following centrifugation at 12,000×g for 5 min,1 mL of the supernatant was added to 4 mL of 0.5%(w/v)thiobarbituric acid(TBA)in 20%(w/v)TCA. Samples were heated at 90°C for 30 min and the reaction was stopped in an ice bath.After centrifugation at 10,000×g for 5 min,absorbance of the supernatant was recorded at 532 nm with a spectrophotometer and was corrected for nonspecific turbidity by subtraction of the absorbance at 600 nm.

    2.5.Statistical analysis

    All the data were analyzed according to the experimental design,using SAS 9.1.3 software.Trait means were compared by Duncan's multiple range test at P≤0.05.

    3.Results

    3.1.Chlorophyll a fluorescence

    Application of fulvic acid(FA)significantly improved maximum efficiency of PSII activity(Fv/Fm)under all irrigation treatments.Treated plants with 600 mg L?1of FA(FA2)had more Fv/Fmthan those in other treatments under both well-watered and limited-water conditions.However,difference between Fv/Fmin FA-treated and untreated plants under moderate water stress(MWS)and severe water stress was not significant(Fig.1-A).

    Photosynthesis relative vitality of plants decreased with increasing water stress levels,but application of FA increased PI of plants under both well-watered condition(WWC)and water stress.The highest and lowest PI were recorded for FA2-treated plants and the control,respectively,under all irrigation conditions.However,under WWC,there was no significant difference in PI either between NFA and FA1or between FA1and FA2.Difference in PI between FA-treated and NFA was not significant under MWS and SWS(Fig.1-B).

    TFMand energy necessary for the closure of all reaction centers(Sm)increased,but the size of the plastoquinine pool in PSII(Area)decreased significantly with increasing water stress levels(Table 1).

    TFMwas significantly affected by application of FA. FA2-treated plants had lower TFMthan did plants under other treatments.No significant difference in TFMof FA1-treated and NFA plants was observed(Fig.2).

    3.2.Antioxidant activity

    3.2.1.Peroxidase(POD)

    The POD activity of plants under water stress was higher than that of WWC plants.Application of FA significantly increased POD activity under all irrigation conditions.Maximum and minimum activity of POD were observed in plants treated with FA2under SWS and NFA plants under WWC,respectively.POD activity in FA1-treated plants was similar(P≤0.01)to that of NFA and FA2-treated plants under well-watered and limited-water conditions(Fig.3-A).

    3.2.2.Catalase activity(CAT)

    CAT activity of rapeseed plants increased as a result of water stress and application of FA.CAT activity increased with application of FA under all irrigation treatments.There was no significant difference in CAT activity in plants treated with different concentrations of FA (300 and 600 mg L?1).Also,under MWS and SWS,CAT activity in plants sprayed with FA1was similar(P≤0.01)to that of plants with NFA and FA2(Fig.3-B).

    3.2.3.Ascorbate peroxidase(APX)and superoxide dismutase (SOD)

    Ascorbate peroxidase(APX)and superoxide dismutase(SOD)activities of rapeseed plants were significantly affected by different levels of water stress.However,application of FA had no effect on activity of these enzymes.APX and SOD activities of plants increased with water stress.Maximum and minimum activity of APX and SOD were observed in plants under SWS and WWC,respectively(Table 2).

    3.3.Malondialdehyde(MDA)

    The effects of different levels of water stress and FA on malondialdehyde(MAD)were significant.MAD of plants wasgreater under SWS than under MWS or WWC.However,there was no significant difference in MDA of plants under WWC and MWS(Table 2).Application of FA significantly reduced MDA in rapeseed plants(Fig.4).

    Fig.1-Means of maximum efficiency of PSII activity(Fv/Fm)and photosynthesis relative vitality(PI)in response to fulvic acid under different water stress conditions.Each value is the mean±SE of three replicates(Duncan's multiple range test;P≤0.05). WWC,MWS,and SWS:60,100,and 140 mm evaporation from class A pan,respectively.NFA,FA1,and FA2:control,300,and 600 mg L?1of fulvic acid,respectively.

    Table 1-Means of time taken to reach Fm(TFM),the energy necessary for the closure of all reaction centers (Sm)and the size of the plastoquinine pool in PSII(Area)of rapeseed plants under different water stress conditions.

    Fig.2-Changes in time taken to reach Fm(TFM)of rapeseed plants in response to fulvic acid(FA)application.Each value is the mean±SE of three replicates(Duncan's multiple range test;P≤0.05).NFA,FA1,and FA2:control,300,and 600 mg L?1,respectively,of fulvic acid.

    4.Discussion

    Drought severely impaired PSII activity in leaves of rapeseed plants and led to sustained decline in the Fv/Fmvalue(Fig.1-A). This finding suggests the occurrence of photo-damage to PSII under SWS conditions,whereas no photo-inhibitory or comparatively little photo-damage to the photosynthetic apparatus under MWS was observed.A significant decrease in Fv/Fmalso suggested a decrease in the maximum quantum efficiency of open PSII centers as well as an increase in energy dissipation as heat and increase of photo-damage to the photosynthetic apparatus.This result is in agreement with Kauser et al.[22]in rapeseed(B.napus L.).Foliar application of FA increased chlorophyll a fluorescence by increasing Fv/Fmunder WWC and,in particular,under MWS and SWS(Fig.1-A).This result may have been sustained by a decline in Foand increase in Fmunder these conditions.Changes in Fovalue under water stress affect the probability of energy transfer from light harvesting complex to the PSII reaction center[23].Application of FA may have several effects on PSII activity,one of which may be decreasing the number of inactive reaction centers where electrons can be transferredoutofreducedQAandthisleadtoincreasinginF0and as a result of this Fv/Fmincreased(Fig.1-A).

    Exogenous foliar application of FA significantly improved the performance index(PI)of rapeseed plants under both well-watered and limited-water irrigation conditions(Fig.1-B). PI is an indicator of the vitality of photosynthesis[16]. Increasing PI may be associated with the effects of FA on the number of reaction centers per PSII antenna chlorophyll,the maximum quantum yield of primary photochemistry,and the quantum yield of electron transport.Water stress impaired both light and dark reactions of photosynthesis as a result of reduction of PI(Fig.1-B).

    The present study showed that TFMand Smsignificantly increased with water stress,but that Area was reduced under these conditions(Table 1).Water stress reduced the total electron accepting capacity of leaves,as indicated by increasing Sm,which measures the pool size of electron transporters between PSII and the acceptor side of PSI[24]and consequently TFMincreased.Area is proportional to the pool size of the electron acceptors QAon the reducing side of PSII.Ifelectron transfer from the reaction centers to the quinone pool is blocked,Area will be dramatically reduced[25]. Reduction in TFMwith application of FA led to enhancement of the average redox state of QAin the time span from 0 to TFM(Fig.2).

    Manyofthedegenerativereactionsassociatedwith environmental stresses including water deficit result in the production of ROS in plants,causing additional oxidative stress.Plants can protect themselves by synthesizing antioxidant enzymes(POD,CAT,and APX).Water stress increased POD,CAT(Fig.3-A and B),APX,and SOD(Table 2)activities in rapeseed plants.In this study,application of FA and particularly FA2significantly improved POD and CAT activity under both limited-water and well-watered irrigation conditions (Fig.3-A and B).Higher activity of these antioxidant enzymes in plants with increasing water stress and application of FA suggests more effective H2O2removal in these plants under water stress.CAT converts H2O2to water in peroxisomes. Increase in POD activity under various stress conditions has been linked to protection from oxidative damage,lignification,and crosslinking of cell walls for protection from such adverse conditions[21,26].Increased POD activity during water stress has been reported for wheat and other rapeseed cultivars[27].Increased POD activity with application of FA was observed in plants under both well-watered and waterstressed conditions(Fig.1).Foliar application of humin materials to turfgrasses significantly enhanced the amounts of various antioxidants in leaves.Higher activities of CAT and APX decrease H2O2levels in the cell and increase the stability of membranes and CO2fixation,given that several enzymes of the Calvin cycle within chloroplasts are extremely sensitive to H2O2.Yamazaki et al.[28]found that FA can be used as a growth regulator,improving plant growth and enhancing stress tolerance.

    MDA in rapeseed plants increased under water stress (Table 2),and application of FA significantly decreased MDA (Fig.4)and decreased lipid peroxidation.The rise in MDA content under water stress conditions suggests that drought stress induces membrane lipid peroxidation by means of ROS [26].The reduction in MDA may be attributed to increases in antioxidant enzymes such as POD and CAT(Fig.3-A and B),APX,and SOD(Table 2)in rapeseed plants.

    4.關注焦點,合理引導。各級管理人員可針對具有某些方面典型表現的協解人員進行特別關注。對勤奮進取的積極分子進行正面宣傳,營造氛圍,讓更多的協解人員在榜樣、榮譽的觸動和感召中端正思想、追求上進;對頑固偏執(zhí)的消極人員采取重點研究,長期觀察,不能聽之任之,應鼓勵幫扶而不能歧視孤立,積極運用集體氛圍感染和個體單獨疏導等多種方法,融化其心理堅冰,爭取其思想轉變。

    Fig.3-Peroxidase(POD)and catalase(CAT)activities in rapeseed plants in response to fulvic acid under different water stress conditions.Duncan's multiple range test;P≤0.05.WWC,MWS,and SWS:60,100,and 140 mm evaporation from class A pan,respectively.NFA,FA1,and FA2:control,300,and 600 mg L?1,respectively,of fulvic acid.

    Table 2-Ascorbate peroxidase(APX;mmol ascorbate oxidized mg?1min?1),superoxide dismutase(SOD;U mg?1protein)and malondialdehyde(MDA;nmol g?1FW)of rapeseed plants under different levels of water stress.

    Fig.4-Malondialdehyde(MDA)of rapeseed plants in response to fulvic acid(FA)application.Duncan's multiple range test;P≤0.05.NFA,FA1,and FA2:control,300,and 600 mg L?1of fulvic acid,respectively.

    5.Conclusions

    Rapeseed plants under water stress produce ROS,which affects plant metabolism such as by lipid peroxidation in membranes.ApplicationofFAsignificantlyimprovedfluorescence of chlorophyll a by reducing the number of inactive reaction centers and increasing the quantum yield of electron transport and the average redox state of QA,thereby inhibiting ROS production.Enhanced antioxidant enzyme activities as a result of FA treatment destroyed ROS.Thus,ROS in plant cells under water stress was reduced by application of FA and consequently lipid peroxidation of plants was reduced.

    R E F E R E N C E S

    [1]M.Ashraf,M.R.Foolad,Roles of glycine-betaine and proline in improving plant abiotic stress resistance,Environ.Exp. Bot.59(2007)206—216.

    [2]R.Munns,R.A.James,A.Lauchli,Approaches to increasing the salt tolerance of wheat and other cereals,J.Exp.Bot.57 (2006)1025—1043.

    [3]B.Efeo?lu,Y.Ekmek?i,N.?i?ek,Physiological responses of three maize cultivars to drought stress and recovery,S.Afr.J. Bot.75(2009)34—42.

    [4]B.Genty,J.Briantais,N.R.Baker,The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence,Biochim.Biophys. Acta Gen.Subj.990(1989)87—92.

    [5]R.Li,P.Guo,M.Baum,S.Grande,S.Ceccarelli,Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley,Agric.Sci.China 5 (2006)751—757.

    [6]A.Abdullah,A.L.A.Ghamdi,Evaluation of oxidative stress in two wheat(Triticum aestivum)cultivars in response to drought,Int.J.Agric.Biol.11(2009)7—12.

    [7]H.Hasheminasab,M.T.Assad,A.Aliakbari,R.Sahhafi,Influence of drought stress on oxidative damage and antioxidant defense systems in tolerant and susceptible wheat genotypes,J.Agric.Sci.4(2012)20—30.

    [9]J.Qin,X.Wang,F.Hu,H.Li,Growth and physiological performance responses to drought stress under nonflooded rice cultivation with straw mulching,Plant Soil Environ.56 (2010)51—59.

    [10]A.Mohammadi,D.Habibi,M.Rihami,S.Mafakheri,Effect of drought stress on antioxidant enzymes activity of some chickpea cultivars,Am.Eurasian J.Agric.Environ.Sci.11 (2011)782—785.

    [11]P.L.Gratao,A.Polle,P.J.Lea,R.A.Azevedo,Making the life of heavy metal-stressed plants a little easier,Funct.Plant Biol. 32(2005)481—494.

    [12]I.M.Moller,P.E.Jensen,A.Hansson,Oxidative modifications to cellular components in plants,Annu.Rev.Plant Biol.58 (2007)459—481.

    [13]J.P.Andriesse,Nature and management of tropical peat soils,FAO Soils Bulletin 59,Food and Agriculture Organization of the United Nations,Rome,1988.

    [14]M.M.Seyed-Bagheri,Influence of humic products on soil health and potato production,Potato Res.53(2010)341—349. [15]Food and Agriculture Organization,Crop Production Statistics,http://www.fao.org/2011.

    [16]H.M.Kalaji,B.Govindjee,K.Bosac,J.Koscielniakd,K. Zuk-Go?aszewskae,Effects of salt stress on photosystem II efficiency and CO2assimilation of two Syrian barley landraces,Environ.Exp.Bot.73(2011)64—72.

    [17]H.Aebi,Catalase in vitro,Methods Enzymol.105(1984)121—126.

    [18]H.M.Hemeda,B.P.Klein,Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts,J. Food Sci.55(1990)184—185.

    [19]Y.Nakano,K.Asada,Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts,Plant Cell Physiol.22(1981)867—880.

    [20]R.S.Dhindsa,P.P.Dhindsa,T.A.Thorpe,Leaf senescence correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase,J.Exp.Bot.32(1980)93—101.

    [21]I.Cakmak,J.Horst,Effect of aluminum on lipid peroxidation,superoxide dismutase,catalase,and peroxidase activities in root tips of soybean(Glycine max),Physiol.Plant.83(1991)463—468.

    [22]R.Kauser,H.U.R.Athar,M.Ashraf,Chlorophyll fluorescence a potential indicator for rapid assessment of water stress tolerance in canola(Brassica napus L.),Pak.J.Bot.38(2006)1501—1509.

    [23]G.H.Krause,E.Weis,Chlorophyll fluorescence as a tool in plant physiology:II.Interpretation of fluorescence signals,Photosynth.Res.5(1984)139—157.

    [24]A.Pinior,G.Grunewaldt-St?cker,H.Alten,R.J.Strasser,Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence,proline content and visual scoring,Mycorrhiza 15(2005)596—605.

    [25]P.Mehta,A.Jajoo,S.Mathur,S.Bharti,Chlorophyll a fluorescence study effects of high salt stress on photosystem II in wheat leaves,Plant Physiol.Biochem.48(2010)16—20.

    [26]H.Moussa,S.M.Abdel-Aziz,Comparative response of drought tolerant and drought sensitive maize genotypes to water stress,Aust.J.Crop.Sci.1(2008)31—36.

    [27]T.Abedi,H.Pakniyat,Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.),Czech J.Genet.Plant Breed.46(2010)27—34.

    [28]J.Yamazaki,A.Ohashi,Y.Hashimoto,E.Negishi,S.Kumagai,T.Kubo,T.Oikawa,E.Maruta,Y.Kamimura,Effects of high light and low temperature during harsh winter on needle photo-damage of Abies mariesii growing at the forest limit on Mt.Norikura in Central Japan,Plant Sci.165(2003)257—264.

    Abbreviations:APX,ascorbate peroxidase;CAT,catalase;FA,fulvic acid;MDA,malondialdehyde;MWS,moderate water stress;POD,peroxidase;SWS,severe water stress;WWC,well-watered condition;PI,performance index;PSII,photosystem II;SOD,superoxide dismutase.

    *Corresponding author.

    E-mail address:pessarak@email.arizona.edu(M.Pessarakli).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    http://dx.doi.org/10.1016/j.cj.2015.05.006

    2214-5141?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    3 April 2015

    猜你喜歡
    端正積極分子融化
    如何培養(yǎng)教育入黨積極分子?
    黨課參考(2025年3期)2025-02-21 00:00:00
    最勤奮的理由
    門牙會長正
    功能完善,聲音端正大氣,對得起售價 TEAC(第一音響)NT-505SE
    確定發(fā)展對象必須聽取哪些人的意見?
    端正中蘊含大氣的特質TARA LABS(超時空) The Echo Limited Edition電源線
    一起融化
    民族音樂(2016年1期)2016-08-28 20:02:52
    入黨積極分子培養(yǎng)聯系人,你合格嗎?
    黨的生活(2016年3期)2016-07-21 05:09:43
    融化的Ice Crean
    健康女性(2014年8期)2015-05-12 03:10:47
    冰如何開始融化
    性欧美人与动物交配| 精品久久久久久久久久久久久| 一边摸一边抽搐一进一小说| 色精品久久人妻99蜜桃| 一进一出抽搐动态| 精品久久久久久久人妻蜜臀av| 在线a可以看的网站| 国产av在哪里看| 日韩三级视频一区二区三区| 在线观看免费午夜福利视频| 99久久精品一区二区三区| av天堂中文字幕网| 黄片小视频在线播放| 免费人成视频x8x8入口观看| 色av中文字幕| 国产精品一区二区精品视频观看| 美女午夜性视频免费| 天天添夜夜摸| 欧美丝袜亚洲另类 | 午夜福利18| 丰满人妻一区二区三区视频av | 性色av乱码一区二区三区2| 亚洲av日韩精品久久久久久密| 亚洲精品在线美女| 欧美日韩福利视频一区二区| 国产精品爽爽va在线观看网站| 国产精品自产拍在线观看55亚洲| 欧美日韩乱码在线| 国产成人精品无人区| 精品一区二区三区av网在线观看| 日韩有码中文字幕| 非洲黑人性xxxx精品又粗又长| 久久精品国产99精品国产亚洲性色| 人妻久久中文字幕网| 国产久久久一区二区三区| 精品一区二区三区av网在线观看| 十八禁网站免费在线| 国产又色又爽无遮挡免费看| 久久久久久久久久黄片| 国产精品久久久久久精品电影| 久久精品aⅴ一区二区三区四区| 国内毛片毛片毛片毛片毛片| 欧美中文日本在线观看视频| 老熟妇乱子伦视频在线观看| 国产精品综合久久久久久久免费| 最近最新中文字幕大全电影3| АⅤ资源中文在线天堂| 九色成人免费人妻av| 国内毛片毛片毛片毛片毛片| 日韩欧美免费精品| cao死你这个sao货| 亚洲精品乱码久久久v下载方式 | 国产一级毛片七仙女欲春2| 色综合亚洲欧美另类图片| 免费人成视频x8x8入口观看| 天堂影院成人在线观看| 亚洲中文字幕一区二区三区有码在线看 | 国产精品爽爽va在线观看网站| 精品熟女少妇八av免费久了| 91在线观看av| 啦啦啦免费观看视频1| 亚洲狠狠婷婷综合久久图片| 成人性生交大片免费视频hd| 99热精品在线国产| 男女午夜视频在线观看| 一夜夜www| 狂野欧美激情性xxxx| 欧美乱色亚洲激情| 国产伦精品一区二区三区视频9 | 午夜激情欧美在线| 老司机深夜福利视频在线观看| 男女午夜视频在线观看| 夜夜爽天天搞| 久久久久久久久免费视频了| 91字幕亚洲| 国产一区二区三区在线臀色熟女| 亚洲一区高清亚洲精品| 亚洲av五月六月丁香网| 国产欧美日韩一区二区三| 一边摸一边抽搐一进一小说| 高潮久久久久久久久久久不卡| 人妻夜夜爽99麻豆av| 久久久水蜜桃国产精品网| 国产淫片久久久久久久久 | 麻豆成人午夜福利视频| 99久久99久久久精品蜜桃| 999久久久国产精品视频| 国产99白浆流出| 一二三四在线观看免费中文在| 亚洲人与动物交配视频| 性欧美人与动物交配| 99国产精品99久久久久| 激情在线观看视频在线高清| 亚洲精品在线美女| 亚洲 国产 在线| 老熟妇乱子伦视频在线观看| av天堂中文字幕网| 久久天堂一区二区三区四区| 69av精品久久久久久| 美女高潮的动态| 国产成人精品久久二区二区免费| 日韩中文字幕欧美一区二区| 热99在线观看视频| 欧美成人性av电影在线观看| 欧美xxxx黑人xx丫x性爽| 国产69精品久久久久777片 | 日韩精品青青久久久久久| 国产精品久久久人人做人人爽| 90打野战视频偷拍视频| 男插女下体视频免费在线播放| 91麻豆av在线| 一区二区三区国产精品乱码| 黑人巨大精品欧美一区二区mp4| 精品人妻1区二区| 深夜精品福利| 99久久无色码亚洲精品果冻| 日本撒尿小便嘘嘘汇集6| 91老司机精品| 老司机在亚洲福利影院| av天堂在线播放| 亚洲av成人av| 色精品久久人妻99蜜桃| 少妇的丰满在线观看| 啦啦啦韩国在线观看视频| 国产精品亚洲一级av第二区| 天天躁狠狠躁夜夜躁狠狠躁| 九色成人免费人妻av| 在线观看午夜福利视频| 91麻豆av在线| 日日夜夜操网爽| 激情在线观看视频在线高清| 我的老师免费观看完整版| 国内揄拍国产精品人妻在线| 国产精品女同一区二区软件 | 久久天堂一区二区三区四区| 天天躁日日操中文字幕| bbb黄色大片| 精品久久久久久久久久久久久| 免费看光身美女| 黄色片一级片一级黄色片| 日韩有码中文字幕| 国产av一区在线观看免费| 亚洲中文日韩欧美视频| 亚洲中文字幕日韩| 99re在线观看精品视频| 五月玫瑰六月丁香| 欧美日韩精品网址| 国产精品久久久久久亚洲av鲁大| 亚洲精品美女久久av网站| 亚洲五月天丁香| 精品日产1卡2卡| 久久久久久久久中文| 亚洲一区二区三区色噜噜| 国产精品久久久人人做人人爽| 两个人视频免费观看高清| 国产97色在线日韩免费| 成人精品一区二区免费| 国产亚洲av高清不卡| 五月伊人婷婷丁香| 久久久国产成人免费| 亚洲国产欧美网| 色噜噜av男人的天堂激情| 高清毛片免费观看视频网站| 亚洲一区二区三区不卡视频| 欧美黄色片欧美黄色片| 免费看日本二区| 国产视频一区二区在线看| 国产午夜精品久久久久久| xxxwww97欧美| 国产极品精品免费视频能看的| 国产高清视频在线观看网站| 色av中文字幕| 此物有八面人人有两片| 黄片大片在线免费观看| 国产亚洲精品一区二区www| 在线永久观看黄色视频| aaaaa片日本免费| 国产毛片a区久久久久| 精品乱码久久久久久99久播| 欧美丝袜亚洲另类 | 一级作爱视频免费观看| 在线十欧美十亚洲十日本专区| 香蕉av资源在线| 日韩有码中文字幕| 国产精品99久久99久久久不卡| 长腿黑丝高跟| 国产精品 欧美亚洲| 三级国产精品欧美在线观看 | 国产视频一区二区在线看| 久久精品综合一区二区三区| 特大巨黑吊av在线直播| 欧美一区二区精品小视频在线| 18禁美女被吸乳视频| 中文在线观看免费www的网站| 又粗又爽又猛毛片免费看| 69av精品久久久久久| 国产探花在线观看一区二区| 亚洲精品一区av在线观看| 亚洲精华国产精华精| 免费一级毛片在线播放高清视频| 久久天堂一区二区三区四区| 99久久综合精品五月天人人| 麻豆久久精品国产亚洲av| 搡老妇女老女人老熟妇| 一级毛片女人18水好多| 欧美在线黄色| 午夜激情福利司机影院| 国产亚洲av高清不卡| 亚洲av电影在线进入| 久久伊人香网站| 18禁观看日本| 两性夫妻黄色片| 国产伦在线观看视频一区| 91麻豆精品激情在线观看国产| x7x7x7水蜜桃| 色哟哟哟哟哟哟| 日本a在线网址| 欧美最黄视频在线播放免费| 国产精品久久久人人做人人爽| 非洲黑人性xxxx精品又粗又长| 在线观看66精品国产| 中文字幕熟女人妻在线| 亚洲 欧美一区二区三区| 国产一区在线观看成人免费| 三级毛片av免费| 在线观看66精品国产| 精品久久久久久久毛片微露脸| 在线播放国产精品三级| 免费av不卡在线播放| 五月伊人婷婷丁香| 亚洲精华国产精华精| 精品一区二区三区av网在线观看| 成人特级黄色片久久久久久久| 亚洲av日韩精品久久久久久密| 女人被狂操c到高潮| 国产精品一区二区精品视频观看| 国产精品,欧美在线| 一级作爱视频免费观看| 久久精品亚洲精品国产色婷小说| 草草在线视频免费看| 久9热在线精品视频| 亚洲国产日韩欧美精品在线观看 | 国产又色又爽无遮挡免费看| 亚洲欧美一区二区三区黑人| 性欧美人与动物交配| 久久久久国产精品人妻aⅴ院| 欧美在线黄色| 免费观看人在逋| 欧美色欧美亚洲另类二区| 中文资源天堂在线| 成人三级黄色视频| 成人午夜高清在线视频| 亚洲男人的天堂狠狠| av福利片在线观看| 国产精品,欧美在线| 欧美色视频一区免费| 国产伦精品一区二区三区四那| av天堂在线播放| 亚洲精品中文字幕一二三四区| 欧美中文综合在线视频| 在线观看免费视频日本深夜| 亚洲av成人av| 欧美色欧美亚洲另类二区| 香蕉久久夜色| 午夜福利欧美成人| 午夜激情福利司机影院| 18禁观看日本| 别揉我奶头~嗯~啊~动态视频| 免费无遮挡裸体视频| 亚洲av电影在线进入| 久久久久久久久免费视频了| 日本 av在线| 最新在线观看一区二区三区| av天堂在线播放| 真人一进一出gif抽搐免费| 老司机在亚洲福利影院| 少妇裸体淫交视频免费看高清| 一级毛片精品| 日韩三级视频一区二区三区| 天堂网av新在线| 国内揄拍国产精品人妻在线| 成熟少妇高潮喷水视频| 美女免费视频网站| www国产在线视频色| 久久精品人妻少妇| 别揉我奶头~嗯~啊~动态视频| 日本成人三级电影网站| 午夜福利在线观看吧| 不卡av一区二区三区| 一个人免费在线观看的高清视频| 亚洲av成人精品一区久久| 久久亚洲精品不卡| 久久久久国产一级毛片高清牌| 欧美又色又爽又黄视频| 国产欧美日韩一区二区精品| 国产一级毛片七仙女欲春2| 国产免费男女视频| 国产高清视频在线观看网站| 淫妇啪啪啪对白视频| 亚洲美女视频黄频| 亚洲男人的天堂狠狠| 日韩欧美精品v在线| 热99re8久久精品国产| 精品一区二区三区视频在线观看免费| 亚洲五月婷婷丁香| 国产午夜福利久久久久久| 精品久久久久久久末码| 婷婷精品国产亚洲av| 51午夜福利影视在线观看| 在线观看舔阴道视频| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3| 午夜福利欧美成人| 在线观看免费午夜福利视频| 人妻丰满熟妇av一区二区三区| 99久国产av精品| 特级一级黄色大片| 国产免费av片在线观看野外av| 国产精品98久久久久久宅男小说| 精品乱码久久久久久99久播| 久久久国产成人免费| 搞女人的毛片| 免费av毛片视频| 欧美日韩福利视频一区二区| 欧美绝顶高潮抽搐喷水| 色综合亚洲欧美另类图片| 国产美女午夜福利| 亚洲午夜精品一区,二区,三区| 亚洲,欧美精品.| 久久久久性生活片| 一个人看的www免费观看视频| 99在线人妻在线中文字幕| 中出人妻视频一区二区| 日本黄色视频三级网站网址| 国产精品精品国产色婷婷| 一本精品99久久精品77| 日韩精品青青久久久久久| 一个人观看的视频www高清免费观看 | 非洲黑人性xxxx精品又粗又长| 又黄又爽又免费观看的视频| 岛国在线免费视频观看| 欧美日韩精品网址| 欧美成人一区二区免费高清观看 | 在线观看日韩欧美| 日韩人妻高清精品专区| 女警被强在线播放| 精品人妻1区二区| 免费在线观看成人毛片| av中文乱码字幕在线| 老司机午夜十八禁免费视频| av中文乱码字幕在线| 老司机午夜十八禁免费视频| 村上凉子中文字幕在线| 又爽又黄无遮挡网站| 国产三级在线视频| 中出人妻视频一区二区| 一区福利在线观看| 国产人伦9x9x在线观看| 久久精品国产亚洲av香蕉五月| 欧美日韩亚洲国产一区二区在线观看| 国产精品av视频在线免费观看| 欧美中文综合在线视频| 国产私拍福利视频在线观看| 久久人妻av系列| 国产精品免费一区二区三区在线| 精品国产乱子伦一区二区三区| 美女黄网站色视频| 国产精品一区二区免费欧美| 九色成人免费人妻av| 窝窝影院91人妻| 亚洲精品国产精品久久久不卡| 99精品在免费线老司机午夜| 亚洲中文av在线| 亚洲中文日韩欧美视频| 免费大片18禁| 又黄又爽又免费观看的视频| 中国美女看黄片| av福利片在线观看| 给我免费播放毛片高清在线观看| 国产精品综合久久久久久久免费| 三级毛片av免费| 神马国产精品三级电影在线观看| 很黄的视频免费| 欧美日本亚洲视频在线播放| 人妻久久中文字幕网| av欧美777| 日韩欧美在线二视频| 99久久精品热视频| 精品一区二区三区av网在线观看| 国产精品九九99| 免费一级毛片在线播放高清视频| 99国产综合亚洲精品| 香蕉久久夜色| 色播亚洲综合网| 变态另类成人亚洲欧美熟女| 香蕉国产在线看| 人妻夜夜爽99麻豆av| 可以在线观看的亚洲视频| 此物有八面人人有两片| 久久草成人影院| 一a级毛片在线观看| 欧美中文综合在线视频| 美女高潮喷水抽搐中文字幕| 国产1区2区3区精品| 精品久久久久久久毛片微露脸| 韩国av一区二区三区四区| 俄罗斯特黄特色一大片| 老熟妇乱子伦视频在线观看| 亚洲五月婷婷丁香| 91字幕亚洲| 国产视频内射| 在线观看一区二区三区| 久久人妻av系列| 哪里可以看免费的av片| 亚洲中文日韩欧美视频| 日本a在线网址| 国产精品99久久99久久久不卡| 又大又爽又粗| 999精品在线视频| bbb黄色大片| 欧美日本亚洲视频在线播放| 亚洲国产中文字幕在线视频| 亚洲精品色激情综合| 国产av麻豆久久久久久久| 天天添夜夜摸| 成年版毛片免费区| 成年人黄色毛片网站| 好男人电影高清在线观看| 美女高潮的动态| 在线观看一区二区三区| 亚洲av成人精品一区久久| 国产一区二区在线av高清观看| 中文字幕av在线有码专区| 午夜亚洲福利在线播放| 国产精品1区2区在线观看.| 青草久久国产| 久久精品人妻少妇| 精品日产1卡2卡| 性欧美人与动物交配| 国产野战对白在线观看| 国产成人啪精品午夜网站| 精品乱码久久久久久99久播| 中文字幕av在线有码专区| 国产黄色小视频在线观看| 国产精品98久久久久久宅男小说| 欧美乱妇无乱码| www.自偷自拍.com| 午夜福利成人在线免费观看| 日韩欧美三级三区| 成人精品一区二区免费| 亚洲欧美日韩卡通动漫| 999久久久精品免费观看国产| 亚洲成人久久爱视频| 精品久久久久久,| 午夜成年电影在线免费观看| 亚洲av免费在线观看| 一级毛片高清免费大全| 两个人视频免费观看高清| 久久香蕉精品热| 可以在线观看的亚洲视频| 精品久久久久久,| 国产精品 欧美亚洲| 亚洲国产欧洲综合997久久,| 好看av亚洲va欧美ⅴa在| 91久久精品国产一区二区成人 | 日韩人妻高清精品专区| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| 夜夜躁狠狠躁天天躁| 舔av片在线| 老熟妇乱子伦视频在线观看| 99在线视频只有这里精品首页| 人人妻,人人澡人人爽秒播| 久久精品国产99精品国产亚洲性色| 国产伦精品一区二区三区视频9 | 成人高潮视频无遮挡免费网站| 十八禁人妻一区二区| ponron亚洲| 中出人妻视频一区二区| 精品乱码久久久久久99久播| 99久久99久久久精品蜜桃| 免费搜索国产男女视频| 国产高潮美女av| 少妇的丰满在线观看| 久久精品国产清高在天天线| 99国产精品99久久久久| 国产精品久久久久久人妻精品电影| 日韩中文字幕欧美一区二区| 国产日本99.免费观看| 国内揄拍国产精品人妻在线| 国产激情欧美一区二区| 国产成人精品久久二区二区91| 精品一区二区三区视频在线观看免费| e午夜精品久久久久久久| 久久亚洲精品不卡| 精品国产乱子伦一区二区三区| 免费大片18禁| 亚洲 欧美 日韩 在线 免费| 久久久久性生活片| 国产精品久久久人人做人人爽| 国产伦精品一区二区三区四那| 最近最新中文字幕大全免费视频| av在线蜜桃| 亚洲精品456在线播放app | 91在线观看av| 在线观看午夜福利视频| 亚洲精品在线观看二区| 国内久久婷婷六月综合欲色啪| 国产一区二区激情短视频| 岛国在线观看网站| 国产真实乱freesex| 日韩欧美精品v在线| 观看免费一级毛片| 国内毛片毛片毛片毛片毛片| 亚洲国产高清在线一区二区三| 可以在线观看的亚洲视频| 精华霜和精华液先用哪个| 亚洲在线自拍视频| 日本免费a在线| 国产极品精品免费视频能看的| 美女高潮的动态| 国产精品免费一区二区三区在线| 久久久久免费精品人妻一区二区| 性色avwww在线观看| 午夜免费成人在线视频| 国产高清videossex| 亚洲精品美女久久久久99蜜臀| 国产伦在线观看视频一区| 桃红色精品国产亚洲av| 久久人人精品亚洲av| 亚洲欧洲精品一区二区精品久久久| 综合色av麻豆| 九九在线视频观看精品| 色视频www国产| 97超视频在线观看视频| 搞女人的毛片| 精品一区二区三区视频在线 | 51午夜福利影视在线观看| 国产一区二区三区视频了| 国产v大片淫在线免费观看| 国产高清视频在线观看网站| 久久精品亚洲精品国产色婷小说| 香蕉国产在线看| 巨乳人妻的诱惑在线观看| 脱女人内裤的视频| 免费搜索国产男女视频| 日韩精品青青久久久久久| 黄色丝袜av网址大全| 视频区欧美日本亚洲| 免费看光身美女| 99在线视频只有这里精品首页| 精品久久久久久,| 人妻丰满熟妇av一区二区三区| 两个人视频免费观看高清| 麻豆久久精品国产亚洲av| 熟女少妇亚洲综合色aaa.| 色综合站精品国产| 亚洲欧美精品综合一区二区三区| aaaaa片日本免费| 亚洲激情在线av| 亚洲国产欧美网| 午夜免费激情av| 欧美日本亚洲视频在线播放| 久久久精品大字幕| av视频在线观看入口| 999久久久国产精品视频| 蜜桃久久精品国产亚洲av| 国产成人福利小说| 免费av不卡在线播放| 夜夜夜夜夜久久久久| 亚洲精品美女久久久久99蜜臀| 激情在线观看视频在线高清| 非洲黑人性xxxx精品又粗又长| 18禁国产床啪视频网站| 国产伦一二天堂av在线观看| 精品一区二区三区视频在线 | 国产精品久久久久久人妻精品电影| 18禁观看日本| 校园春色视频在线观看| 欧美黄色片欧美黄色片| 麻豆一二三区av精品| 国产伦人伦偷精品视频| 老司机在亚洲福利影院| 国产亚洲精品久久久com| 好男人电影高清在线观看| 国产97色在线日韩免费| 亚洲国产看品久久| 欧美大码av| 亚洲精品粉嫩美女一区| 亚洲一区二区三区不卡视频| 色播亚洲综合网| 国产极品精品免费视频能看的| 中文字幕精品亚洲无线码一区| 国产成人系列免费观看| 国产av一区在线观看免费| 麻豆国产97在线/欧美| 欧美绝顶高潮抽搐喷水| 一边摸一边抽搐一进一小说| 悠悠久久av| 久久久国产成人精品二区| 免费av毛片视频| 99久久精品一区二区三区| 亚洲av第一区精品v没综合| 久久香蕉精品热| 美女 人体艺术 gogo| 午夜a级毛片| 免费在线观看日本一区| 在线观看美女被高潮喷水网站 | 欧美在线一区亚洲| 亚洲中文字幕一区二区三区有码在线看 | 成人一区二区视频在线观看| 我要搜黄色片| 动漫黄色视频在线观看| 亚洲成a人片在线一区二区| 国内揄拍国产精品人妻在线|