• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic diversity and association mapping for salinity tolerance in Bangladeshi rice landraces

    2015-08-15 01:37:08RezaEmonMirzaIslamJyotirmoyHalderYeyangFan
    The Crop Journal 2015年5期

    Reza M.Emon,Mirza M.Islam*,Jyotirmoy HalderYeyang Fan**

    aChinese National Center for Rice Improvement/State Key Laboratory of Rice Biology,China National Rice Research Institute,Hangzhou 310006,ChinabBangladesh Institute of Nuclear Agriculture,Mymensingh 2202,Bangladesh

    ?

    Genetic diversity and association mapping for salinity tolerance in Bangladeshi rice landraces

    Reza M.Emona,b,1,Mirza M.Islamb,*,1,Jyotirmoy Halderb,Yeyang Fana,**

    aChinese National Center for Rice Improvement/State Key Laboratory of Rice Biology,China National Rice Research Institute,Hangzhou 310006,China
    bBangladesh Institute of Nuclear Agriculture,Mymensingh 2202,Bangladesh

    A R T I C L E I N F O

    Article history:

    Received in revised form 9 April 2015

    Accepted 1 June 2015

    Available online 6 June 2015

    Oryza sativa L

    Salinity tolerance

    Seedling stage

    Simple sequence repeat Sequence tagged site

    A B S T R A C T

    Breeding for salinity tolerance using Bangladeshi rice landraces and understand genetic diversity has been limited by the complex and polygenic nature of salt tolerance in rice genotypes.A genetic diversity and association mapping analysis was conducted using 96 germplasmaccessionswith variableresponsetosaltstressattheseedlingstage.Theseincluded 86landracesand10indicavarietiesandlinesincludingNonaBokra,fromsouthernBangladesh.A total of 220 alleles were detected at 58 Simple Sequence Repeat(SSR)marker loci randomly distributed on all 12 rice chromosomes and 8 Sequence Tagged Site(STS)markers developed for genes SKC1,DST,and SalT.The average gene diversity was 0.5075 and polymorphism information content value was 0.4426,respectively.Cluster analysis revealed that 68 and 21 accessions were clustered into 2 distinct groups,possibly corresponding to indica and japonica groups,respectively and the remaining 7 landraces were classified as an admixed group.In addition to Wn11463,the STS marker for SKC1,RM22418 on Chr.8 was significantly associated with salinity tolerance,at the location of a QTL detected in previous studies.Our findings of favorable alleles associated with salinity tolerance in Bangladeshi rice landraces,as well as the development of STS markers for salt tolerance genes,will be helpful in future efforts to breed salinity tolerance in rice.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Soil salinity is one of the most important environmental factors restricting rice production.Rice is classified as a salt sensitive crop,especially in the early growth stages[1].There are about 380 million hectares of saline soils globally,which are widely distributed in arid and semi-arid areas as well as seasonally dry coastal areas[2].In Bangladesh 2.8 million hectares of rice land in coastal areas are currently affected by salinity[3].Salt tolerant varieties are considered to be the most economical and effective way to increase crop production on saline lands[3].

    Table 1-STS markers for three salt-tolerant genes.

    Many studies show that salinity tolerance is a complex trait controlled by quantitative trait loci(QTL)[4].For example,11 QTL for seedling survival were identified on chromosomes 1,4,6,7,and 9 using a Nona Bokra×Koshihikari F2:3population. One major QTL for shoot K+concentration on chromosome 1 (qSKC-1)explained 40.1%of the total phenotypic variance[5]. SKC1 was subsequently map-based cloned;it encodes a Na+transporter of the HKT type and is involved in Na+and K+homeostasis[6].Another QTL,SalTol,was fine-mapped to the same region and also acts mainly to control shoot Na+/K+homeostasis,suggesting that SKC1 may be the causal gene underlying the SalTol QTL[7].A salt-induced gene SalT,identified previously,was found to co-localize with SalTol and was 2.4 Mb away from SKC1[8].

    Landraces are currently being exploited as preferred potential donors of abiotic stress tolerance traits because of their local adaptation[4].For instance,favorable alleles at the SKC1 and SalTol loci were derived from indica landraces Nona Bokra[6]and Pokkali[7],respectively.With close genetic similarity to current cultivars,the tolerance traits could readily be introduced into commercial breeding lines[4].

    The southern part of Bangladesh is well known for high salinity and popular landraces from the region are well adapted and regarded as possessing some resistance to salt stress,particularly at the seedling stage[9].The situation is further increased by selection of rice landraces,which has happened in thecaseofassociationanalysisusingcollectedgermplasmfrom thisregion.Anevaluation ofgeneticdiversityandidentification of markers in Bangladesh rice landraces could provide useful information for genetic improvement of salt tolerance.

    SSR have been the predominant molecular markers used in kinship and population studies because they are multiallelic,reproducible,PCR-based,and generally selectively neutral[10]. They can be applied for genetic diversity and association analysisofimportantagronomicandqualitytraitsinrice[11—15].

    In the present study,96 rice accessions from southern Bangladesh were subjected to a genetic diversity and association mapping study using SSR and STS markers.The main objective of the present study was to:1)characterize the genetic diversity and population structure of Bangladesh rice landraces;2)develop novel STS markers for salt-tolerance genes and confirm their effect;and 3)identify loci significantly associated with salinity tolerance in rice.

    Fig.1-Average ln P(D)with K=1-10 and ΔK with K=2-9.

    2.Materials and methods

    2.1.Rice materials

    A total of 96 rice accessions were collected by Bangladesh Institute of Nuclear Agriculture(BINA)and used in this study. They included 86 landraces from southern Bangladesh,9 indica varieties and lines,and salt tolerant Nona Bokra,the donor of SKC1,was used as the tolerant control(Table S1).

    2.2.Screening for salinity tolerance

    Hydroponic system based on the IRRI protocol[16]was used in the glasshouse at BINA to evaluate the salt tolerance responses of rice genotypes at the seedling stage.Three replications of 20 plants were tested under salt stress of 12 dS m?1.The modified standard evaluation score(SES)of IRRI[17]was used to assess visual symptoms of salt toxicity 21 days after sowing.Binadhan-8 was used as a second tolerant control and Binadhan-7 was the susceptible control.

    2.3.Marker genotyping

    DNA was extracted from 6—8 individuals in each accession following the method of Zheng et al.[18].To facilitatemarker-assisted selection(MAS),sequence tagged site(STS)markers,rather than single nucleotide polymorphism (SNP)markers,were developed based on Insertion/Deletions(InDels)between the Nipponbare and 9311 genome sequences at the SKC1(Chr.1)[6],SalT(Chr.1)[8]andDST(Chr.3)[19]loci.Primers (Table 1)were designed using Oligo 7.0 software.Eight STS markers were developed,2 for SKC1,3 for SalT and 3 for DST(Table 1).Wn11463 and Wn11466 were designed based on 4 bp and 17 bp InDels downstream of SKC1(LOC_Os01g20160);Wn13900 was based on a 4 bp InDel upstream of SalT (LOC_Os01g24710);Wn13902 and Wn13903 were based on 7 bp and8 bpInDelsintheSalTcodingregion;Th32637wasbasedon a 3 bp InDel upstream in DST(LOC_Os03g57240);and Th32638 and Th32369 were based on 12 bp and 18 bp InDels in the coding region of DST.

    One hundred and ninety-four SSR markers randomly distributed across 12 chromosomes of rice were selected from Gramene(http://www.gramene.org/)and used to screen for polymorphisms in 4 DNA pools bulked by 24 genotypes each. Finally,58polymorphicmarkerswereselectedtogenotypeeach accession,of which 8,5,8,3,4,7,3,7,3,4,1,and 5 were located on each of 12 chromosomes,respectively.Chromosome 11 was represented by only one marker.

    PCRwascarriedoutina20 μLreactionmixtures containing 10 μL of 2×Taq MasterMix II(Beijing Cowin BiotechCo.,Ltd.),0.5 μmol L?1SSRprimersand1.0 μL oftemplateDNA.Amplificationswereperformedwith pre-denaturation of 2 min at 94°С,30 cycles of 30 s at 94°С,30 s at 50—55°С,30 s at 72°С and extension of 2 min at 72°С. PCR products were visualized on 2%agarose gels using GelRed staining or on 6%non-denaturing polyacrylamide gel using silver staining.

    Fig.2-Neighbor-joining tree for 96 rice accessions based on 66 molecular markers.The triangles,circles and squares indicate Group 1,Group 2 and the admixed group,respectively.The blue triangles filled with blue and black color represent the 9 indica lines and the black triangle is Nona Bokra.

    Fig.3-Population structure of 96 rice accessions based on 66 molecular markers(K=2).

    2.4.Statistical analyses

    Genetic diversity was assessed using PowerMarker version 3.25 [20],and was measured by the number of alleles per locus,major allele frequency,gene diversity,and polymorphism information content(PIC).Nei's distance was calculated and used for the unrooted phylogeny reconstruction though the neighbor joining method implemented in PowerMarker with Treeview using MEGA 4.0[21].Population structure of the rice germplasm was analyzed using STRUCTURE v2.0[22].Models with putative numbers of sub-populations(K)from 1 to 10 with admixture and correlated allele frequencies were considered. Seven independent runs with burn-in of 10,000,and run length of 100,000 iterations for each K were implemented.Both ln P(D)value and Evanno's ΔK were used to determine the K-value[23]. ln P(D)is the log likelihood of the observed genotype distribution in K clusters and was found by STRUCTURE simulation. Evanno's ΔK takes into consideration the variance of ln P(D)among repeated runs and indicates the ideal K.The optimum value of K was then used to determine inferred ancestries.An individual was assigned to a specific population if it had more than 0.8 membership in that population,whereas individuals withmembershipprobabilitieslessthan0.8wereassignedtoan admixed group.

    Association between marker alleles and salinity tolerance data was performed using a mixed linear model(MLM)function based on population structure(Q)+relative kinship(K)in TASSEL 3.0.For each locus,rare alleles(frequency<5%)were treatedasnullalleles.Therelativekinshipmatrixwascalculated by Tassel.Significant marker-trait associations were declared by P≤0.05 with relative magnitudes represented by the R2value as the portion of variation explained by the marker.

    Fig.4-Distribution of seedling salinity tolerance scores among 96 rice accessions.

    3.Results

    3.1.Genetic diversity

    A total of 220 alleles were detected using 58 SSR markers randomly distributed on rice 12 chromosomes and 8 STS markers(Table S2).The average major allele frequency was 0.61,ranging from 0.35 to 0.92,indicating that 61%of loci shared a common major allele at any given locus.The average number of alleles per locus was 3.33,ranging from 2 to 7.The average gene diversity was 0.51,ranging from 0.15 to 0.73 and the average PIC value was 0.44,ranging from 0.14 to 0.68.

    3.2.Population structure

    The ln P(D)value increased with K from 1 to 10,but showed a large increase at K=2(Fig.1),suggesting two distinct groups. There was also a sharp peak of Evanno's ΔK at K=2(Fig.1).A neighbor-joining tree was constructed based on Nei's genetic distance(Fig.2).The same result was revealed based on STRUCTURE membership assignment for the 96 accessions (Fig.3).The majority of accessions,including 58 landraces,9 varieties/lines and Nona Bokra were assigned to Group 1 and 21 landraces comprised Group 2(Table S1).Seven landraces with membership probabilities ranging from 0.56 to 0.79 were classified as an admixed group.Nine indica genotypes,as well as Nona Bokra,were all in Group 1,indicating that Group 1 corresponds to ssp.indica.

    3.3.Association mapping

    There was a large variance in seedling response to salt stress (Fig.4,Table S1).The controls responded as expected.The SES scores for Nona Bokra and Binadhan-8 were 3.0 and 3.7 (tolerant),whereas that for Binadhan-7 was 8.3 indicative of low tolerance.Among all 96 accessions 12 were tolerant(1<score≤3),30moderatelytolerant(3<score≤5),18 sensitive(5<score≤7),and 36 highly sensitive(7<score≤9). None was highly tolerant(score=1).

    Two markers showed significant association with salinity tolerance score(Fig.5,Table S3).Wn11463,a marker for SKC1 gene on Chr.1 was significantly associated with tolerance with a P-value of 0.028 and explained 11.7%of the phenotypic variation.RM22418 on Chr.8,also showed a significant association with salinity tolerance(P=0.028)accounting for 17.8%of the variation.

    For Wn11463,the accessions carrying the alleles 120 bp (the size of PCR product for the markers,the same as below)and 113 bp had significantly(P<0.01)lower SES scores,as did those carrying the 160 bp and 152 bp alleles at RM22418 (P<0.01),indicating these alleles could be useful in breeding.

    Fig.5-Manhattan plots for salinity tolerance.Negative lg-transformed P-values were plotted against chromosomal position.

    4.Discussion

    Our results indicated two major groups of southern Bangladeshi germplasm;Group 1 apparently corresponded to ssp. indica.Wang et al.recently detected three distinct groups corresponding to ssp.indica,aus,and japonica among 151 Bangladeshi accessions using 47 SSR markers[24].Yesmin et al.found38Bangladeshi landraces in2majorgroups described as indica and aromatic using 34 SSR markers[9]. Some accessions in the previous studies were the same as those in the present work.Variety BRRI Dhan41 and landraces Raja Shail and Kali Boro were classified as indica[9],whereas Bouari(or Boari in [24])was in the japonica group[24],suggesting that two main groups I and 2 in the present work probably corresponded to ssp.indica and japonica,respectively.

    Eight new STS markers based on 3 salt tolerance genes were developed,but only Wn11463,a marker for SKC1,was significantly associated with salt tolerance,indicating that SKC1 is likely to be present in some Bangladeshi landraces. Wn11463 was designed based on a 4 bp InDel located 1 kb downstream of SKC1,suggesting that it might be a functional marker for selection of SKC1.The STS marker Wn11463 would be helpful in MAS for rice salinity breeding.

    Locus RM22418 on the short arm of Chr.8 also showed a significant association with salinity tolerance,corresponding to the physical position of 3326 kb in Nipponbare genome. QTL for traits related to salt tolerance have been detected repeatedly in this region(Table S4).The QTL in RM38-RM25 (2115—4378 kb)interval showed significant effect to score of salt toxicity of leaves and survival days of seedlings at the seedling stage,as well as fresh weight at the tillering stage[25].A QTL was also identified for Na+in straw at high salt in the interval of RM1235-RM25(1209—4378 kb)accounting for 14.05%of the total variation[26].These results suggested that RM22418-contained region were essential for rice growth under salt stress.

    In summary,of 86 southern Bangladeshi rice landraces,11 (12.6%)were identified as having seedling tolerance(SES score 3.0)to salt stress,and 25(28.7%)were moderately tolerant. These accessions could be suitable sources of salinity tolerance in breeding programs.

    Acknowledgments

    We thank Prof.Jieyun Zhuang for support and suggestions and Dr.Caihong Wang for guidance in statistical analysis. This work was supported by the National High Technology Research and Development Program of China(2012AA101102)and the Technology Research Program of Zhejiang province (2011C24001).

    Supplementary material

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cj.2015.04.006.

    R E F E R E N C E S

    [1]K.Kumar,M.Kumar,S.R.Kim,H.Ryu,Y.G.Cho,Insights into genomics of salt stress response in rice,Rice 6(2013)27.

    [2]J.H.Xie,F(xiàn).J.Zapata-Arias,M.Shen,R.Afza,Salinity tolerant performance and genetic diversity of four rice varieties,Euphytica 116(2000)105—110.

    [3]M.M.Islam,S.N.Begum,R.M.Emon,J.Halder,A.C.Manidas,Carbon isotope discrimination in rice under salt affected conditions in Bangladesh,IAEA-TECDOC-1617,Greater Agronomic Water Use Efficiency in Wheat and Rice Using Carbon Isotope Discrimination,International Atomic Energy Agency,Vienna 2012,pp.7—23.

    [4]S.J.Roy,E.J.Tucker,M.Tester,Genetic analysis of abiotic stress tolerance in crops,Curr.Opin.Plant Biol.14(2011)232—239.

    [5]H.X.Lin,M.Z.Zhu,M.Yano,J.P.Gao,Z.W.Liang,W.A.Su,X.H. Hu,Z.H.Ren,D.Y.Chao,QTLs for Na+and K+uptake of the shoots and roots controlling rice salt tolerance,Theor.Appl. Genet.108(2004)253—260.

    [6]Z.Ren,J.Gao,L.Li,X.Cai,W.Huang,D.Chao,M.Zhu,Z. Wang,S.Luan,H.Lin,A rice quantitative trait locus for salt tolerance encodes a sodium transporter,Nat.Genet.37(2005)1141—1146.

    [7]M.J.Thomson,M.Ocampo,J.Egdane,M.A.Rahman,A.G. Sajise,D.L.Adorada,E.Tumimbang-Raiz,E.Blumwald,Z.I. Seraj,R.K.Singh,G.B.Gregorio,A.M.Ismail,Characterizing the saltol quantitative trait locus for salinity tolerance in rice,Rice 3(2010)148—160.

    [8]S.Negr?o,M.C.Almadanim,I.S.Pires,I.A.Abreu,J.Maroco,B.Courtois,G.B.Gregorio,K.L.McNally,M.M.Oliverira,New allelic variants found in key rice salt-tolerance genes:an association study,Plant Biotechnol.J.11(2013)87—100.

    [9]N.Yesmin,S.M.Elias,M.S.Rahman,T.Haque,A.K.M.M. Hasan,Z.I.Seraj,Unique genotypic differences discovered among indigenous Bangladeshi rice landraces,Int.J.Genomics (2014)210328,http://dx.doi.org/10.1155/2014/210328.

    [10]C.Zhu,M.Gore,E.S.Buckler,J.Yu,Status and prospects of association mapping in plants,Plant Genome 1(2008)5—20.

    [11]H.A.Agrama,G.C.Eizenga,W.Yan,Association mapping of yield and its components in rice cultivars,Mol.Breed.19 (2007)341—356.

    [12]W.Wen,H.Mei,F(xiàn).Feng,S.Yu,Z.Huang,J.Wu,L.Chen,X.Xu,L.Luo,Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice(Oryza sativa L.),Theor.Appl.Genet.119(2009)459—470.

    [13]L.Jin,Y.Lu,P.Xiao,M.Sun,H.Corke,J.Bao,Genetic diversity and population structure of a diverse set of rice germplasm for association mapping,Theor.Appl.Genet.121(2010)475—487.

    [14]P.Zhang,J.Li,X.Li,X.Liu,X.Zhao,Y.Lu,Population structure and genetic diversity in a rice core collection(Oryza sativa L.)investigated with SSR markers,PLoS One 6(2011)e27565,http://dx.doi.org/10.1371/journal.pone.0027565.

    [15]P.Zhang,X.Liu,H.Tong,Y.Lu,J.Li,Association mapping for important agronomic traits in core collection of rice(Oryza sativa L.)with SSR markers,PLoS One 9(2014)e111508,http:// dx.doi.org/10.1371/journal.pone.0111508.

    [16]S.Yoshida,D.A.Forno,J.H.Cook,K.A.Gomez,Laboratory Manual for Physiological Studies of Rice,International Rice Research Institute,Los Ba?os,Laguna,Philippines,1976.61—66.

    [17]G.B.Gregorio,D.Senadhira,R.D.Mendoza,Screening rice for salinity tolerance,IRRI Discussion Paper Series no.22,International Rice Research Institute,Manila,Philippines 1997,pp.1—30.

    [18]K.Zheng,N.Huang,J.Bennett,G.S.Khush,PCR-based marker-assisted selection in rice breeding,IRRI Discussion Paper Series No.12,International Rice Research Institute,Manila,Philippines,1995.

    [19]X.Huang,D.Chao,J.Gao,M.Zhu,M.Shi,H.Lin,A previously unknown zinc finger protein,DST,regulates drought and salt tolerance in rice via stomatal aperture control,Genes Dev.23 (2009)1805—1817.

    [20]K.Liu,S.V.Muse,PowerMarker:integrated analysis environment for genetic marker data,Bioinformatics 21 (2005)2128—2129.

    [21]K.Tamura,J.Dudley,M.Nei,S.Kumar,MEGA4:molecular evolutionary genetics analysis(MEGA)software version 4.0,Mol.Biol.Evol.24(2007)1596—1599.

    [22]D.Falush,M.Stephens,J.K.Pritchard,Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies,Genetics 164(2003)1567—1587.

    [23]G.Evanno,S.Regnaut,J.Goudet,Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study,Mol.Ecol.14(2005)2611—2620.

    [24]M.Wang,Z.Zhu,L.Tan,F(xiàn).Liu,Y.Fu,C.Sun,H.Cai,Complexity of indica—japonica varietal differentiation in Bangladesh rice landraces revealed by microsatellite markers,Breed.Sci.63(2013)227—232.

    [25]J.Zang,Y.Sun,Y.Wang,J.Yang,F(xiàn).Li,Y.Zhou,L.Zhu,J.Reys,M.Fotokian,J.Xu,Z.Li,Dissection of genetic overlap of salt tolerance QTLs at the seedling and tilling stage using backcross introgression lines in rice,Sci.China Ser.C 51 (2008)583—591.

    [26]A.Pandit,V.Rai,S.Bal,S.Sinha,V.Kumar,M.Chauhan,R.K. Gautam,R.Singh,P.C.Sharma,A.K.Singh,K.Gaikwad,T.R. Sharma,T.Mohapatra,N.K.Singh,Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.),Mol.Genet.Genomics 284(2010)121—136.

    *Correspondence to:M.M.Islam,Bangladesh Institute of Nuclear Agriculture,Mymensingh 2202,Bangladesh.Tel.:+880 91 67834.

    **Correspondence to:Y.Fan,Chinese National Center for Rice Improvement/State Key Laboratory of Rice Biology,China National Rice Research Institute,Hangzhou 310006,China.Tel.:+86 571 63370364.

    E-mail addresses:mirza_islam@yahoo.com(M.M.Islam),fanyeyangcnrri@163.com(Y.Fan).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.1These authors contributed equally to this work.

    http://dx.doi.org/10.1016/j.cj.2015.04.006

    2214-5141/?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    29 January 2015

    日本黄大片高清| 免费观看av网站的网址| 亚洲av男天堂| 99re6热这里在线精品视频| 久久久久久久精品精品| 欧美日韩一区二区视频在线观看视频在线| 狂野欧美白嫩少妇大欣赏| 一级二级三级毛片免费看| 一区二区三区精品91| 18+在线观看网站| 国产在视频线精品| 婷婷色综合大香蕉| 精品亚洲成国产av| 99久久中文字幕三级久久日本| 伊人亚洲综合成人网| 伊人久久国产一区二区| 在线观看免费高清a一片| 七月丁香在线播放| 亚洲精华国产精华液的使用体验| 久久久久国产精品人妻一区二区| 国产极品粉嫩免费观看在线 | 国产成人免费无遮挡视频| 汤姆久久久久久久影院中文字幕| 一级爰片在线观看| 亚洲av电影在线观看一区二区三区| 爱豆传媒免费全集在线观看| 少妇丰满av| av播播在线观看一区| 久久99一区二区三区| 欧美97在线视频| 2021少妇久久久久久久久久久| 如日韩欧美国产精品一区二区三区 | 国产精品国产三级专区第一集| 赤兔流量卡办理| a级毛色黄片| 91在线精品国自产拍蜜月| 纵有疾风起免费观看全集完整版| 精品久久久久久久久亚洲| 精品视频人人做人人爽| 久久精品国产亚洲网站| 久久久精品94久久精品| 成人手机av| a级毛片在线看网站| 国产成人精品一,二区| 久久午夜福利片| 日韩精品有码人妻一区| 成人免费观看视频高清| 十八禁高潮呻吟视频| 嫩草影院入口| 97在线视频观看| 欧美日韩成人在线一区二区| 欧美一级a爱片免费观看看| 久久久久网色| 99热网站在线观看| 国产欧美亚洲国产| 99热全是精品| 一级毛片电影观看| 中文天堂在线官网| 蜜桃在线观看..| 国产成人a∨麻豆精品| 看非洲黑人一级黄片| 蜜臀久久99精品久久宅男| 国产黄色免费在线视频| 成年美女黄网站色视频大全免费 | 成人黄色视频免费在线看| 亚洲欧洲国产日韩| 777米奇影视久久| 久久久久人妻精品一区果冻| 春色校园在线视频观看| 热re99久久精品国产66热6| 在线 av 中文字幕| 免费久久久久久久精品成人欧美视频 | 亚洲精品乱久久久久久| 亚洲av男天堂| 欧美人与性动交α欧美精品济南到 | 亚洲不卡免费看| 一级黄片播放器| 久久韩国三级中文字幕| 久久久久精品久久久久真实原创| 永久免费av网站大全| 性高湖久久久久久久久免费观看| 人妻少妇偷人精品九色| 色视频在线一区二区三区| 有码 亚洲区| a级毛片免费高清观看在线播放| 亚洲欧美日韩卡通动漫| 91在线精品国自产拍蜜月| 久久人人爽av亚洲精品天堂| 精品久久蜜臀av无| 久久久久视频综合| www.色视频.com| 久久99精品国语久久久| 欧美日本中文国产一区发布| 久久久精品免费免费高清| 免费黄频网站在线观看国产| 久久久久久久国产电影| 午夜福利影视在线免费观看| 欧美另类一区| av免费在线看不卡| 七月丁香在线播放| 制服人妻中文乱码| 在线观看美女被高潮喷水网站| 国产日韩一区二区三区精品不卡 | av不卡在线播放| 亚洲四区av| 亚洲欧美一区二区三区国产| 老熟女久久久| 一个人免费看片子| 日韩电影二区| 美女脱内裤让男人舔精品视频| 欧美三级亚洲精品| 国产永久视频网站| 日本wwww免费看| 男女边吃奶边做爰视频| 日本av手机在线免费观看| 男男h啪啪无遮挡| 久久久久精品性色| 另类精品久久| 热re99久久精品国产66热6| 亚洲国产精品国产精品| 免费看光身美女| 人人妻人人澡人人爽人人夜夜| 亚洲第一区二区三区不卡| 成年美女黄网站色视频大全免费 | 国产精品人妻久久久影院| 久久影院123| 在现免费观看毛片| 欧美成人精品欧美一级黄| 欧美+日韩+精品| 久久热精品热| 久久精品国产自在天天线| 一级毛片电影观看| 久久韩国三级中文字幕| 美女cb高潮喷水在线观看| 亚洲精品国产av成人精品| 日本欧美国产在线视频| 日韩 亚洲 欧美在线| 一级黄片播放器| 飞空精品影院首页| 涩涩av久久男人的天堂| 亚洲少妇的诱惑av| 夜夜爽夜夜爽视频| 99久久精品一区二区三区| 久久av网站| 久久鲁丝午夜福利片| 欧美亚洲 丝袜 人妻 在线| 日韩大片免费观看网站| 91久久精品国产一区二区成人| 夜夜骑夜夜射夜夜干| 亚洲五月色婷婷综合| 久久久久久人妻| 久久这里有精品视频免费| 亚洲人成77777在线视频| 亚洲精品视频女| 亚洲伊人久久精品综合| 久久精品国产自在天天线| 免费久久久久久久精品成人欧美视频 | kizo精华| 在线看a的网站| 一边亲一边摸免费视频| 一本大道久久a久久精品| 国产精品久久久久久精品古装| 亚洲不卡免费看| 午夜免费男女啪啪视频观看| 亚洲经典国产精华液单| a级毛片在线看网站| 久久久久久久久大av| 人人妻人人添人人爽欧美一区卜| 下体分泌物呈黄色| 亚洲图色成人| kizo精华| 熟女电影av网| 99久久中文字幕三级久久日本| 久久久久久久精品精品| 国产日韩欧美视频二区| 飞空精品影院首页| 色5月婷婷丁香| 免费人妻精品一区二区三区视频| 午夜久久久在线观看| av国产精品久久久久影院| 日韩免费高清中文字幕av| 在现免费观看毛片| 亚洲综合精品二区| 日韩强制内射视频| 一本色道久久久久久精品综合| 人人妻人人澡人人看| 一区二区av电影网| 午夜日本视频在线| 亚洲激情五月婷婷啪啪| 高清黄色对白视频在线免费看| 纵有疾风起免费观看全集完整版| 国产 一区精品| 久久99精品国语久久久| 中文欧美无线码| 99精国产麻豆久久婷婷| 一个人看视频在线观看www免费| 另类亚洲欧美激情| 亚洲精品久久成人aⅴ小说 | 久久精品国产a三级三级三级| 国产亚洲av片在线观看秒播厂| 国产毛片在线视频| 成人毛片a级毛片在线播放| 国产一区二区在线观看av| xxx大片免费视频| 国产精品欧美亚洲77777| 亚洲综合色网址| 最近最新中文字幕免费大全7| 中国三级夫妇交换| 大码成人一级视频| 亚洲av电影在线观看一区二区三区| 美女xxoo啪啪120秒动态图| 人人澡人人妻人| 插阴视频在线观看视频| 婷婷色av中文字幕| 不卡视频在线观看欧美| 免费高清在线观看视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产精品三级大全| 天美传媒精品一区二区| 王馨瑶露胸无遮挡在线观看| 午夜91福利影院| 夜夜骑夜夜射夜夜干| 性色av一级| 伊人久久国产一区二区| 久久精品国产亚洲av天美| av黄色大香蕉| 99国产精品免费福利视频| 99精国产麻豆久久婷婷| 一级,二级,三级黄色视频| 欧美bdsm另类| 少妇的逼好多水| a 毛片基地| 女性被躁到高潮视频| 久久精品久久久久久久性| 99久久人妻综合| 精品人妻在线不人妻| 亚洲精品美女久久av网站| 欧美xxⅹ黑人| 国产精品成人在线| 美女国产视频在线观看| 日韩强制内射视频| videossex国产| 麻豆精品久久久久久蜜桃| 精品人妻一区二区三区麻豆| 久久亚洲国产成人精品v| 人体艺术视频欧美日本| 国产精品国产三级专区第一集| 精品一区二区免费观看| av一本久久久久| 亚洲综合精品二区| 美女视频免费永久观看网站| 日本欧美视频一区| 成年人免费黄色播放视频| 寂寞人妻少妇视频99o| 国产精品一国产av| 十分钟在线观看高清视频www| 天天躁夜夜躁狠狠久久av| 国产免费一级a男人的天堂| 婷婷色综合大香蕉| 免费久久久久久久精品成人欧美视频 | 韩国高清视频一区二区三区| 伊人久久国产一区二区| 大香蕉久久网| 免费观看在线日韩| 日本-黄色视频高清免费观看| 日本与韩国留学比较| 精品久久蜜臀av无| 久久精品久久精品一区二区三区| 99久国产av精品国产电影| 特大巨黑吊av在线直播| 欧美成人午夜免费资源| 免费黄网站久久成人精品| av线在线观看网站| av专区在线播放| 黄色一级大片看看| a级毛片在线看网站| 黑人高潮一二区| 高清不卡的av网站| a 毛片基地| 国产高清三级在线| 午夜免费观看性视频| 熟女电影av网| 国产成人91sexporn| 色视频在线一区二区三区| 能在线免费看毛片的网站| 丰满饥渴人妻一区二区三| 成年女人在线观看亚洲视频| 永久免费av网站大全| 亚洲内射少妇av| 亚洲精品国产av成人精品| 国产精品久久久久久久久免| 国产毛片在线视频| a级毛片在线看网站| 成人国语在线视频| 亚洲高清免费不卡视频| 韩国高清视频一区二区三区| 久久久精品区二区三区| 亚洲av不卡在线观看| 久热这里只有精品99| 国产男女超爽视频在线观看| 日本av免费视频播放| 黑人猛操日本美女一级片| 毛片一级片免费看久久久久| 亚洲国产精品成人久久小说| a级毛色黄片| 成人综合一区亚洲| 九草在线视频观看| 午夜日本视频在线| 亚洲天堂av无毛| 日韩av免费高清视频| 国产精品久久久久久av不卡| 亚洲精品第二区| 高清毛片免费看| 大香蕉久久网| 人人妻人人澡人人看| 亚洲欧美日韩卡通动漫| 国产在线一区二区三区精| 人妻制服诱惑在线中文字幕| av免费观看日本| av在线播放精品| 欧美成人午夜免费资源| 国产欧美亚洲国产| 亚洲av成人精品一二三区| 啦啦啦视频在线资源免费观看| 亚洲av在线观看美女高潮| av网站免费在线观看视频| 日本av手机在线免费观看| 欧美精品高潮呻吟av久久| 交换朋友夫妻互换小说| 精品午夜福利在线看| 51国产日韩欧美| 日本91视频免费播放| videosex国产| 国产极品粉嫩免费观看在线 | 亚洲成人手机| 国产精品麻豆人妻色哟哟久久| 99视频精品全部免费 在线| 亚州av有码| 午夜老司机福利剧场| 亚洲av不卡在线观看| 成年人免费黄色播放视频| 日本色播在线视频| 亚洲情色 制服丝袜| 欧美亚洲日本最大视频资源| 国产精品一区www在线观看| 三上悠亚av全集在线观看| 日韩熟女老妇一区二区性免费视频| 婷婷色综合大香蕉| 人妻人人澡人人爽人人| 久久狼人影院| 一区二区三区精品91| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品国产精品| 永久免费av网站大全| 久久影院123| 久久久久久人妻| 成年美女黄网站色视频大全免费 | 熟妇人妻不卡中文字幕| 久久久国产精品麻豆| 各种免费的搞黄视频| 亚洲五月色婷婷综合| 国产成人精品福利久久| 最近最新中文字幕免费大全7| 国产精品嫩草影院av在线观看| 纯流量卡能插随身wifi吗| 亚洲国产精品999| 欧美日韩视频精品一区| 免费大片18禁| 啦啦啦啦在线视频资源| 亚洲无线观看免费| 国产精品一国产av| 亚洲精品久久午夜乱码| 免费看av在线观看网站| 一级毛片aaaaaa免费看小| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区 | 免费观看a级毛片全部| 一区二区三区四区激情视频| 一个人免费看片子| 在线看a的网站| 18禁裸乳无遮挡动漫免费视频| 好男人视频免费观看在线| 一个人免费看片子| 日韩av在线免费看完整版不卡| 夫妻午夜视频| 简卡轻食公司| 久久精品熟女亚洲av麻豆精品| 99国产综合亚洲精品| 最新中文字幕久久久久| 黄色毛片三级朝国网站| 精品亚洲成a人片在线观看| 成人毛片a级毛片在线播放| 在线观看美女被高潮喷水网站| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 国产亚洲精品久久久com| 亚洲国产精品999| 国产精品人妻久久久影院| 曰老女人黄片| 久久精品熟女亚洲av麻豆精品| 最新的欧美精品一区二区| 制服人妻中文乱码| 91精品国产九色| 18+在线观看网站| 男的添女的下面高潮视频| 少妇的逼好多水| 国产精品久久久久久精品电影小说| 国产av一区二区精品久久| 18在线观看网站| 午夜免费鲁丝| 亚洲少妇的诱惑av| 最近中文字幕2019免费版| 精品国产一区二区久久| av卡一久久| 国产欧美日韩一区二区三区在线 | 日韩伦理黄色片| 最后的刺客免费高清国语| 国产乱人偷精品视频| 2022亚洲国产成人精品| 最近中文字幕高清免费大全6| 久热久热在线精品观看| 日韩成人伦理影院| 亚洲精品视频女| 视频中文字幕在线观看| 亚洲成人一二三区av| 女人久久www免费人成看片| 亚洲精品日韩av片在线观看| 视频中文字幕在线观看| 最近的中文字幕免费完整| 秋霞伦理黄片| 亚洲精品,欧美精品| 色视频在线一区二区三区| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 日韩三级伦理在线观看| 在线 av 中文字幕| 亚洲欧美成人精品一区二区| 一本—道久久a久久精品蜜桃钙片| 成人二区视频| 我的老师免费观看完整版| 丝袜美足系列| 精品亚洲成国产av| 国产一区二区在线观看日韩| 在现免费观看毛片| 在线观看人妻少妇| 久久人妻熟女aⅴ| 黑人猛操日本美女一级片| 99热这里只有是精品在线观看| 黄色配什么色好看| 国产一区亚洲一区在线观看| 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 亚洲精品国产色婷婷电影| 一个人免费看片子| 国产一区二区三区av在线| 熟女人妻精品中文字幕| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 精品一品国产午夜福利视频| 亚洲综合色惰| 欧美日韩亚洲高清精品| 美女大奶头黄色视频| av国产精品久久久久影院| 成年女人在线观看亚洲视频| 亚洲欧美成人综合另类久久久| 国产精品嫩草影院av在线观看| 人妻 亚洲 视频| 日本av免费视频播放| 国产亚洲精品久久久com| 亚洲精品美女久久av网站| 久久久精品94久久精品| 亚洲国产毛片av蜜桃av| 久久精品久久久久久噜噜老黄| 麻豆精品久久久久久蜜桃| 欧美日韩av久久| 久久久久久久久久人人人人人人| 狂野欧美激情性xxxx在线观看| 新久久久久国产一级毛片| 久久精品久久久久久噜噜老黄| 青春草国产在线视频| av网站免费在线观看视频| 久久国内精品自在自线图片| 色94色欧美一区二区| 99九九线精品视频在线观看视频| 国产亚洲精品第一综合不卡 | 久久久久久久久久成人| 精品国产一区二区久久| 国产日韩欧美视频二区| 精品国产露脸久久av麻豆| 久久99热这里只频精品6学生| 免费少妇av软件| 最新中文字幕久久久久| 久久精品国产亚洲网站| 国产有黄有色有爽视频| 久久97久久精品| 久久精品国产亚洲av涩爱| 亚洲国产精品一区三区| 天天影视国产精品| 99热国产这里只有精品6| 日韩 亚洲 欧美在线| 日本-黄色视频高清免费观看| av国产久精品久网站免费入址| 久久久久国产网址| 97在线视频观看| 在线观看人妻少妇| 亚洲国产精品专区欧美| 欧美日韩亚洲高清精品| 在线观看免费日韩欧美大片 | 九九在线视频观看精品| xxxhd国产人妻xxx| 热99久久久久精品小说推荐| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久久久久丰满| 国产精品成人在线| 国产精品蜜桃在线观看| 少妇丰满av| 九九爱精品视频在线观看| 午夜av观看不卡| 国产日韩欧美视频二区| av在线观看视频网站免费| 在线免费观看不下载黄p国产| 亚洲精品aⅴ在线观看| av不卡在线播放| 成人亚洲欧美一区二区av| 国产免费视频播放在线视频| 一个人看视频在线观看www免费| 9色porny在线观看| 欧美老熟妇乱子伦牲交| 久久久久人妻精品一区果冻| 国产成人午夜福利电影在线观看| 九色成人免费人妻av| 大又大粗又爽又黄少妇毛片口| 日韩三级伦理在线观看| 新久久久久国产一级毛片| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲乱码少妇综合久久| 久久久久久久久大av| 天天影视国产精品| 亚洲内射少妇av| 免费人成在线观看视频色| 精品久久国产蜜桃| videos熟女内射| 黑人高潮一二区| 日本欧美视频一区| 黑人猛操日本美女一级片| 亚洲在久久综合| 亚洲精品av麻豆狂野| 久久久国产精品麻豆| 国模一区二区三区四区视频| 99国产综合亚洲精品| 精品久久久精品久久久| 国产av精品麻豆| 2021少妇久久久久久久久久久| 国产av码专区亚洲av| av卡一久久| 国产在线免费精品| 亚洲成人手机| 99国产综合亚洲精品| 美女福利国产在线| 十八禁网站网址无遮挡| 久久综合国产亚洲精品| 欧美人与善性xxx| 日本av手机在线免费观看| 一个人看视频在线观看www免费| 色视频在线一区二区三区| 久久精品国产亚洲av涩爱| 啦啦啦视频在线资源免费观看| av有码第一页| 99久久综合免费| 夫妻性生交免费视频一级片| 亚洲国产最新在线播放| 成人亚洲精品一区在线观看| av国产久精品久网站免费入址| 国产免费福利视频在线观看| 老司机影院成人| 美女脱内裤让男人舔精品视频| 久久韩国三级中文字幕| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 免费看光身美女| 少妇猛男粗大的猛烈进出视频| 国产高清不卡午夜福利| 亚洲国产最新在线播放| 免费观看在线日韩| 美女国产高潮福利片在线看| 日韩一本色道免费dvd| 九色亚洲精品在线播放| 日韩av在线免费看完整版不卡| 下体分泌物呈黄色| 美女大奶头黄色视频| a 毛片基地| 亚洲精品自拍成人| 秋霞在线观看毛片| av网站免费在线观看视频| 人妻少妇偷人精品九色| 亚洲av国产av综合av卡| 久久精品久久久久久久性| 日韩中字成人| videos熟女内射| 五月玫瑰六月丁香| 欧美精品高潮呻吟av久久| 大片电影免费在线观看免费| 在线观看免费视频网站a站| 中文精品一卡2卡3卡4更新| av专区在线播放| 亚洲国产精品一区三区| 日韩,欧美,国产一区二区三区| av在线播放精品| 精品酒店卫生间| 少妇猛男粗大的猛烈进出视频| 国产高清不卡午夜福利| 免费观看的影片在线观看| 久久热精品热| 嘟嘟电影网在线观看| 亚洲av.av天堂|