• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genomewide association study of Aegilops tauschii traits under seedling-stage cadmium stress

    2015-08-15 01:37:01PengQinLangWangKunLiuShuangshuangMaoZhanyiLiShangGaoHaoranShiYaxiLiu
    The Crop Journal 2015年5期

    Peng Qin,Lang Wang,Kun Liu,Shuangshuang Mao,Zhanyi Li,Shang Gao,Haoran Shi,Yaxi Liu,*

    aCollege of Agronomy and Biotechnology,Yunnan Agricultural University,Kunming 650201,ChinabTriticeae Research Institute,Sichuan Agricultural University,Chengdu 611130,China

    ?

    Genomewide association study of Aegilops tauschii traits under seedling-stage cadmium stress

    Peng Qina,b,1,Lang Wangb,1,Kun Liub,Shuangshuang Maob,Zhanyi Lib,Shang Gaob,Haoran Shib,Yaxi Liub,*

    aCollege of Agronomy and Biotechnology,Yunnan Agricultural University,Kunming 650201,ChinabTriticeae Research Institute,Sichuan Agricultural University,Chengdu 611130,China

    A R T I C L E I N F O

    Article history:

    Received in revised form 22 April 2015

    Accepted 1 June 2015

    Available online 6 June 2015

    Aegilops tauschii

    GWAS

    Cadmium tolerance Biomass

    A B S T R A C T

    Aegilops tauschii Aisawildrelativeofcommonwheat(Triticumaestivum)andactsasanimportant resourceofelitegenesincludinggenesforresistancetobioticandabioticstresses.Toimprovethe cadmium(Cd)toleranceofwheatvarietiesusingA.tauschiiresources,weinvestigatedthegenetic variation of biomass-based Cd tolerance in 235 A.tauschii accessions treated with 0(control)and 100 μmol L?1CdCl2(as Cd stress).Simultaneously,we performed a genomewide association study(GWAS)using a single-nucleotide polymorphism chip containing 7185 markers.Six markerswerefoundtobesignificantlyassociatedwithCdtolerancebyagenerallinearmodeland a mixed linear model.These markers were close to several candidate/flanking genes associated with Cd tolerance according to results in public databases,including pdil5-1,Acc-1,DME-5A,

    TaAP2-D,TaAP2-B,Vrn-B1,and FtsH-like protein gene.The A.tauschii accessions were classified as high,moderate,and low Cd-tolerant according to a secondary index,the synthetic index(SI),in proportions of 9%,57%,and 34%,respectively.By the average SI,accessions from Afghanistan,Turkey,Azerbaijan,and Iran showed relatively high Cd tolerance.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Cadmium (Cd)is one of the most plant-toxic heavy metals and is a pollutant for humans and animals.It is released into the environment mainly through industrial processes and the application of Cd-containing phosphate fertilizers[1]. Excessive Cd accumulation in soils leads to severe problems such as visible phytotoxic symptoms(for example,chlorosis and growth reduction of shoots and roots)[2].Cd can induce oxidative stress in plant cells and inhibit or stimulate the activities of several antioxidant enzymes before toxicity symptoms are visible[3].In China,with the development of modern industry and agriculture,Cd has become a serious problem for safe crop production,and at least 13,330 ha of farmland has been contaminated with varying Cd levels[4].

    Upon Cd stress,plants display many types of responses,including morphological and physiological responses.For example,in wheat,marked changes in plant length,dryweight,chlorophyll,total soluble phenolics,and free proline are observed[5].In maize,at relatively low external Cd levels(<100 μmol L?1),shoot height and biomass increase are stimulated,and growth is inhibited at Cd levels greater than 200 μmol L?1[6].In addition,in maize,chlorophyll b is more sensitive to Cd stress than chlorophyll a,and maize can adapt to the negative effects by changing proline content[6]. In some rice cultivars,a cyanide-resistant respiration mechanism important in Cd detoxification is also promoted under Cd stress[7].In general,the ability to tolerate and accumulate Cd varies among plant species and varieties of the same plant species[8,9].Crop species and cultivars differ in their genetic potential to take up trace elements,and this variation provides new opportunities to minimize harmful elements in the food chain by selecting and breeding crops with lowuptakepotential[10].Thus,exploitingthegenetic potential of plants is an option for remediating heavy metalcontaminated soils,and the development of Cd-tolerant accessions within a given plant species has accordingly become a top priority.

    Wheat(Triticum aestivum L.)is one of the most important food crops worldwide.Cd is easily absorbed and accumulated in wheat compared with other heavy metals,so that the goal of no or low Cd content in wheat has become imperative. However,the low genetic diversity in the Triticum genus has hindered the development of improved Cd-tolerant wheat varieties[11]and it is difficult to screen for Cd-tolerant accessions of wheat.Thus,researchers have paid greater attention to the wild relatives of wheat,which survive under various stress conditions and retain many favorable characters including resistances to drought,salinity and alkalinity,and disease[12].Aegilops tauschii is one of the ancestral species of wheat and the donor species of the D genome of wheat.The species carries a wide range of resistances and tolerances to biotic/abiotic factors[13,14]that can contribute to wheat improvement.However,to date,little work has been performed on the selection of Cd-tolerant A.tauschii accessions,let alone the elucidation of the genetic mechanisms behind these phenotypes.

    Genomewide association studies(GWAS)provide a powerful approach for identifying genes underlying complex diseases at an unprecedented rate[15]and is widely used in plant research.During the past few years,an increasing number of association studies based on the analysis of candidate genes such as flowering-time genes in barley[16],Dwarf8 and the phytoene synthase locus in maize[17,18],rhg-1 in soybean[19],the Psy1-A1 locus in wheat[20],and many candidate genes in Arabidopsis[21,22]have been published.However,to date,few GWAS of Cd tolerance traits have been performed in A.tauschii.

    In the present study we performed a GWAS in a worldwide collection of 235 diverse A.tauschii accessions using 7185 informative single-nucleotide polymorphism(SNP)markers. Among these accessions we aimed to identify accessions with excellent Cd tolerance using biomass-associated traits.We also investigated marker—trait associations(MTAs)for Cd tolerance based on a whole-genome association-mapping approach employing SNP markers.This work is one of the first to identify genomic loci for Cd tolerance in A.tauschii. Thus,it is a tentative exploration in A.tauschii and can be a useful reference for the D-genome of wheat in further identification of Cd tolerance-conferring loci.

    2.Materials and methods

    2.1.Plant materials

    A set of 235 A.tauschii accessions(2n=14,DD)was provided by the Triticeae Research Institute of Sichuan Agricultural University(SAU).Detailed information on the tested accessions is summarized in Supplementary Table S1.

    2.2.Growth conditions

    All A.tauschii plants were grown in a phytotron in Wenjiang,Sichuan Province,China,from March to June 2013.Plant materials were evaluated using hydroponic experiments under 0(control)and 100 μmol L?1CdCl2(Cd stress)conditions in a randomized block design,each treatment with four replicates.The normal nutrient solution was modified based on Hoagland's nutrient solution[23].The modified Hoagland's nutrient solution consisted of Ca(NO3)2·4H2O(4 mmol L?1),KNO3(6 mmol L?1),MgSO4·7H2O(2 mmol L?1),H3BO3(46 μmol L?1),Na·Fe·EDTA (100 μmol L?1),MnCl2·4H2O (9.146 μmol L?1),ZnSO4·7H2O(0.76 μmol L?1),CuSO4·5H2O (0.32 μmol L?1),and(NH4)6Mo7O24·4H2O(0.0161 μmol L?1).

    Uniform seedlings,grown from seeds germinated for 8 days,were transplanted into holes in a foamboard.A sponge strip was tied around each seedling to prevent falling and the foamboard with the seedlings was placed in a box filled with nutrient solution.All the roots of the seedlings were fully exposed to the nutrient solution for proper nutrient absorption.To ensure the regular growth of all seedlings after transplanting,theywereplantedinanormalsolution supplemented with phosphorus for 4 days.Subsequently,a normal solution with or without CdCl2was used to water A. tauschii accessions under control and Cd stress conditions,respectively.Thesolutionswerereplacedevery4 days. The growth environment of all seedlings was 25/22(±1)°C day/night temperature,65%/85%day/night relative humidity,and a 16-h photoperiod with 500 μmol m?2s?1photon flux density at the plant canopy level.

    2.3.Data collection and phenotypic evaluation

    Total fresh weight(FW)and dry weight(DW)were measured 15 days after transplantation.Each seedling from the four replicates was carefully washed in clean water and the FW was obtained with an electronic balance.Plants were then placed in paper bags,heated at 105°C for 30 min to kill the cells,and then dried at 75°C until a constant mass was obtained,recorded as DW.

    To eliminate inherent biological and genetic differences of the A.tauschii accessions,the Cd stress tolerance index(CTI)was used as an indicator of the diversity of the accessions following the formula:CTI=(TC?TS)/TS[24],where TSand TCare the values of the traits measured under Cd stress and control conditions,respectively.The synthetic index(SI)wasused to evaluate Cd-tolerant accessions and determined by considering the average CTI across FW and DW measures. Heritability was estimated as H=VG/(VG+VE),where VGand VErepresent estimates of genetic and environmental variance,respectively[25].Descriptive analysis and analysis of variance were conducted for the tested traits using IBM SPSS Statistics for Windows,version 20.0(IBM Corp.,Armonk,NY,USA).

    2.4.10K Infinium iSelect SNP array and SNP genotyping

    The construction of the A.tauschii 10K SNP array has been previously reported in detail[26].A total of 7185 polymorphic SNP markers in the array were uniquely mapped to the A. tauschii genetic map and to the physical map of the A.tauschii genome built based on bacterial artificial chromosome clones. SNPs were assayed according to the manufacturer's protocol (Illumina,San Diego,CA,USA)at the Genome Center,University of California,Davis,CA,USA.The detailed information for SNP genotyping of the 235 A.tauschii accessions has been described in our previous study[27].

    2.5.Marker-trait associations

    In our study,only 6905 SNP markers with a minor allele frequency(MAF)greater than 0.05 were used for marker—trait association.To identify marker—trait associations(MTAs),TASSEL v2.1[28]was used,employing a general linear model (GLM)based on principal components(PCs)derived from the TASSEL v2.1 principal component analysis(PCA).To control efficiently for type I and II errors,a mixed linear model(MLM),incorporating both the PCs and kinship matrix(K matrix),was also fitted.Bonferroni-corrected thresholds at α=1 were used as cutoffs.When the number of markers was 6905 SNPs,at α=1,the Bonferroni-corrected threshold for the P-values was 144.823×10?6,with a corresponding?lg(P)-value of 3.84. Significant markers are shown in a Manhattan plot drawn with SAS 9.2(SAS Institute,Cary,NC,USA).Important P-value distributions(observed P-values against cumulative P-values on a?lg scale)are shown in a quantile—quantile plot also drawn with SAS.

    Putative candidate genes were proposed for each significant MTA based on the best match to the National Center for Biotechnology Information(NCBI,http://www.ncbi.nlm.nih. gov/)GenBank nonredundant database using the corresponding extended SNP marker sequence,which was derived from the 5000 bp around each SNP marker and was acquired using BLASTattheInternationalWheatGenomeSequencing Consortium(IWGSC,http://www.wheatgenome.org/)site.

    Table 1-Analysis of variance for total fresh and dry weights in 235 accessions of Aegilops tauschii under Cd stress and a control condition.

    3.Results

    3.1.Genetic variation as revealed by analysis of variance

    The analysis of variance revealed significant variation among accessions for FW and DW (Table 1).The level of variation isreflectedinthedistributionsofthetwotraits(Fig.1).Genotypic variationforthetwotraitswassignificantatP<0.01.Inaddition,significant differences in treatment×genotype interaction were observed for all traits(Table 1).The results show that the two traits were significantly influenced by Cd supply among the 235 A.tauschii accessions,which were subjected to further genetic analysis.

    Phenotypic variation among accessions for each trait was confirmed by the trait mean,standard deviation,and coefficient of variation(Table 2).In comparison with the Cd stress condition,the mean values of the two traits decreased substantially under the control condition.The coefficients of variation under the control condition were 52.52%and 50.03%for FW and DW,respectively.In contrast,under the Cd stress condition,the two traits showed lower coefficients of variation,50.14%and 48.57%for FW and DW,respectively.

    3.2.Heritability

    Medium-to-high heritability estimates were obtained for the two traits(Table 2).Of the two,FW had the higher heritability under the Cd stress condition(0.78)but a heritability of 0.74 under the control condition.For DW,heritability estimates were 0.74 and 0.69 for the control and Cd stress conditions,respectively.Thus,the heritability estimates were not very different from each other.This result shows that DW is highly heritable under the control condition compared with the result obtained under the Cd stress condition.In contrast,FW is highly heritable under Cd stress compared with the result obtained under the control condition.These results also suggest that DW and FW are good indicators for screening Cd tolerance in A.tauschii.

    3.3.Cd stress tolerance index(CTI)and synthetic index(SI)

    The CTI for FW and DW in all 235 A.tauschii accessions and itsSIacrossthetwotraitswerecalculated.Pearson's correlations between FW,DW,CIT,and SI were also computed (Table 3).FW and DW under the control condition were significantly and positively correlated with SI(r=0.358**and r=0.348**,respectively,P<0.01).The CTI for FW was positively correlated with the CTI for DW(r=0.875,P<0.01).TheSI values ranged from ?0.828 to 0.656,indicating that A. tauschii accessions differ in Cd tolerance(Fig.2,Supplementary Table S1).Based on the SI values,the tested A.tauschii accessions could be classified into three groups:20 accessions (9%)showed high Cd tolerance with an SI value of>0,135 (57%)showed moderate Cd tolerance with an SI value between?0.5 and 0,and 80(34%)showed low Cd tolerance with an SI value of<?0.5.Overall,among the 235 A. tauschii accessions,AS623321 showed the highest SI with a value of 0.656 and AS623008 showed the lowest SI with a value of?0.828.These two were selected as extremely tolerant and sensitive accessions,respectively.Among highly Cd-tolerant accessions,the top five A.tauschii accessions were AS623321,AS623402,AS623194,AS623186,and AS623173 with SI values of 0.656,0.629,0.629,0.614,and 0.399,respectively.

    Fig.1-Distribution of total fresh weight and total dry weight phenotyped under 0(control)and 100 μmol L?1CdCl2(Cd stress)conditions in 235 Aegilops tauschii accessions.

    Table 2-Variation and heritability of total fresh and dry weights in 235 accessions of Aegilops tauschii under Cd stress and a control condition.

    3.4.Cd tolerance is associated with the geographic origin of A.tauschii

    The average SI values were used to compare Cd tolerance levels among the different origins of A.tauschii.Table 4 lists the average SI values for A.tauschii accessions from each origin.Among the origins that provided more than 10 A. tauschii accessions,Afghanistan,Turkey,Azerbaijan,and Iran had high SI values(?0.321,?0.323,?0.326,and ?0.371,respectively).The percentages of the selected tolerant accessions were 10.0%,12.9%,8.0%,and 6.7%of the total accessions from Afghanistan,Turkey,Azerbaijan,and Iran,respectively. The higher SI values of these four countries suggest that A. tauschii accessions from these countries have higher than average Cd tolerance.

    Table 3-Genetic correlations among FW,DW,CTI,and SI.

    3.5.Association analysis

    We tested two models for detecting associations between SNP markers and traits:GLM with PC to correct for population structure,and MLM with PC and K matrix to correct for population structure.In the PCA analysis performed with TASSEL v2.1 and 6905 SNP markers,the first 5 PCs explained 82.84%of the variance(data not shown),reflecting the complex pedigrees of A.tauschii.Thus,the first 5 PCs were used for computing both GLM and MLM.At a significance level of 3.84,seven and six significant markers were detected by GLM and MLM,respectively(Table 5;Fig.3A,B,D,E,G,H). Under the control condition,significant markers for DW and FW were detected by both GLM and MLM,whereas under the Cd stress condition,significant markers were detected by GLM and MLM for FW,but none for DW.The R2values provide an estimate of the amount of phenotypic variation explained by the markers(Table 5).Six significant markers were detected by both GLM and MLM.The distribution of the observed?lg(P)values should ideally follow a uniform distribution with little deviation from the expected?lg(P)values.In our study,GLM and MLM showed a good fit for the?lg(P)values(Fig.3C,F,I).

    Basedonapublicdatabase,weidentifiedputative candidate/flankinggenes (Table6).Forthesignificant markers GA8KES401BYTBK_134(on chromosome 1D)and BE398279ATwsnp1(on chromosome 3D),we failed to identify any candidate genes and speculated that they are two new loci associated with control of Cd tolerance.For the remainingthreesignificantmarkers,sevencandidate/ flanking genes were identified,including an FtsH-like protein gene,pdil5-1,Acc-1,TaAP2-D,TaAP2-B,Vrn-B1,and DME-5A. The annotation of these genes is shown in Table 7.It is noteworthy that marker GBUVHFX01COE01_159 was associated with DW and FW under the control condition.

    Fig.2-Frequency distribution of the synthetic index(SI)for Cd tolerance in 235 Aegilops tauschii accessions.

    4.Discussion

    4.1.Growth response to Cd toxicity

    Cd produces disturbances in both the uptake and the distribution of elements in many plant species[35,36].In addition,Cd toxicity varies depending on growth conditions,experimental design,Cd availability,duration of Cd treatment,and plant age [24].Effects of Cd toxicity in plants are of two types:stimulatory and inhibitory.The main explanation for stimulatory effects is that metalionsmay serve asactivators of enzymes incytokinin metabolism,which accelerates the growth of plants[37—39];also,low doses of stress may cause changes in plant hormones and cytokinins,which regulate plant growth and development [40].There are two main explanations for the inhibitory effects of Cd.First,these effects may be caused by direct interaction with proteins owing to their affinities for thioyl,histidyl,and carboxyl groups,causing the metals to target structural,catalytic,and transport sites of the cell[41].Second,they may be due to the displacement of essential cations from specificbinding sites,impairing function.Several studies have shown that Cdcan enter cells using the same uptake systememployed by cations such as Fe,Cu,Ca,and Zn,and excess Cd could compete with these elements for transporters,promoting a reduction in both uptake and accumulation of these cations [42].For instance,Cd2+replaces Ca2+in the photosystem II reaction center,inhibiting PSII photoactivation[43].In the present study,A.tauschii growth was inhibited in general under Cd stress in comparison with control conditions,and the mean values of FW and DW were reduced by nearly half under the Cd stress condition.The results suggest that A.tauschii growth was restricted under a 100 μmol L?1Cd concentration.

    Table 4-Comparison of Cd tolerance among different geographic origins of A.tauschii using average SI.

    4.2.Biomass as a crucial trait for evaluating Cd tolerance

    Numerous growth parameters can be used to estimate the ability of plants to endure and survive at a contaminated site. For example,root growth and visible symptoms have been used to assess tolerance to heavy metals in ryegrass[44]. Biomass and root and shoot length have also been used to evaluate tolerance to heavy metal toxicity[45],as well as toxic symptoms and shoot biomass to screen for plants that can effectivelyremedyheavymetal-contaminatedsoils[46]. Relative growth rate and leaf structural properties have been used to measure Cd tolerance in 10 grass species[47],and root growth and density have been used to estimate the different Cd tolerances of Pinus pinaster and Pinus pinea[48].Among the different parameters used,plant biomass has been used to evaluate Cd tolerance in many plant species[49—51].In the present study,the biomass traits FW and DW decreased significantly upon Cd treatment,possibly because Cd stress generally reduces chlorophyll content,resulting in the inhibition of photosynthesis in A.tauschii.The inhibition of photosynthesis is the result of the damage to the PSII reaction center in the leaf[52,53].

    Table 5-Genomewide association study of Cd tolerance in 235 Aegilops tauschii accessions.

    Fig. 3 - GWAS scan for trait DW under Cd stress condition (A, B, C), FW under Cd stress condition (D, E, F), FW under control condition (G, H, I). (A, B) GLM and MLM results for association of DWunder Cd stress condition. (C) Q-Q plots of GLM and MLMfor DWunder Cd stress condition. (D, E) GLM and MLM results for association of FW under Cd stress condition. (F) Q-Q plots of GLM and MLM for FW under Cd stress condition. (G, H) GLM and MLM results for association of FW under control condition. (I) Q-Q plots of GLM and MLM for FW under control condition.

    Table 6-SNPs significantly associated with Cd-tolerance traits and candidate/flanking genes.

    4.3.Comparison of identified Cd tolerance-conferring quantitative trait loci(QTL)with those from previous reports

    In the present study,we report the outcome of a GWAS approach for identifying genomic regions associated with the control of Cd tolerance-conferring traits in A.tauschii using 7185 SNP markers genotyped in a core collection of 235 natural A.tauschii accessions.Linkage mapping can also be used to detect quantitative trait loci(QTL)using different segregating populations and testing them under different environmental conditions.To date,a few QTL associated with Cd tolerance-conferring traits have been identified in various plants using this classical approach.Compared to those analyses,the present approach offers more useful information for identifying loci present in A.tauschii that control Cd tolerance-conferring traits and accordingly present in the D-genome of wheat.

    Genetically,Cd accumulation in plants may be regulated by multiple genes with combined effects on uptake,translocation,and sequestration [54].In Arabidopsis halleri,QTL mapping was used to identify chromosomal regions involved in Cd tolerance and,in addition to the identification of three QTL,a gene named HMA4 encoding a predicted heavy metal ATPase was cloned and functionally characterized[55]. Several QTL associated with Cd accumulation in rice(Oryza sativa L.)have been reported[56,57].In durum wheat,Cd accumulation is governed by Cdu1,which is located on chromosome arm 5BL[58,59].Prior to the current study,few loci associated with control of Cd tolerance-conferring traits had been identified in A.tauschii.Because the genome of A.tauschii could be used as a reference for common wheat,the loci we have identified can be further used in searching for Cd tolerance-conferring genes in wheat.The candidate genes associated with Cd tolerance identified in this study encode diverse enzymes(e.g.pdil5-1 gene,Acc-1,and DME-5A),transcription factors(e.g.TaAP2-D and TaAP2-B),a vernalization-associated gene(Vrn-B1),and a gene(FtsH-like protein gene)with unclear function.In addition,we detected a SNP,GBUVHFX01COE01_159,located on 6D significantly associated with two different traits(FW and DW under the control condition).Although this association may be the result of pleiotropy,it was supported by Pearson's correlation analysis (r=0.936**for FW-C and DW-C,P<0.01).These identified candidate genes indicated once again that the regulation of Cd tolerance is complex and requires deeper study.

    Table 7-Definition of candidate/flanking genes identified by BLAST.

    4.4.Use of A.tauschii in wheat variety improvement

    To date,wild species have been considered more as sources of resistance to biotic and abiotic stresses than as sources ofdiversity,permitting the deep modification of the architecture and physiology of cultivated species[60,61].A.tauschii is one of the ancestral species of wheat and the donor species of the D genome of wheat.Aegilops species are found in Mediterranean climates,being indigenous from the Canary Islands to the western part of Asia,in Afghanistan and western China [62].Their ability to spread widely is probably associated with their great adaptability,which also explains why they carry many agronomically valuable traits including tolerance to drought,salt,low phosphorus,and extreme environments,all of which could be used in plant breeding[63—65].Given that the D genome was involved in the evolution of bread wheat[66,67],the genetic diversity present in Aegilops species bearing the D genome is of considerable interest[68].These potential sources of genetic variation and alleles are useful for wheat breeding purposes,and can serve as a secondary gene pool for this species[69,70].The rich genetic diversity for resistance to various biotic and abiotic stresses has already contributed to wheat improvement[14,71,72].In the present study,we identified 20 A.tauschii accessions with high tolerance to Cd.Most of them were originally from the Turkey—Iran—Afghanistan zone,a finding in keeping with the path of A.tauschii range expansion.The five accessions with highest Cd tolerance were AS623321,AS623402,AS623194,AS623186,and AS623173,and may be used as germplasm resources to widen the genetic diversity of cultivated wheat. Their use could shorten the procedure of wheat breeding for no or low Cd content.

    5.Conclusions

    WeperformedagenomewideassociationstudyofCd tolerance-conferring traits in a population of 235 A.tauschii plants using 7185 single-nucleotide polymorphism markers. Six significant markers were detected using both general and mixed linear models.At significant loci and in flanking regions,we identified candidate genes that might control Cd tolerance-conferring traits,including pdil5-1,Acc-1,DME-5A,TaAP2-D,TaAP2-B,Vrn-B1,and FtsH-like protein gene.The identified SNPs and genes offer information for cloning genes associated with Cd tolerance in A.tauschii and wheat. Concurrently,we screened the 235 A.tauschii accessions for Cd-tolerant accessions using biomass-associated traits.The results indicate that A.tauschii accessions from Afghanistan,Turkey,Azerbaijan,and Iran have higher Cd tolerance than those from other origins.Using the average SI value,20 A. tauschii accessions with high tolerance to applied Cd were identified.The five most tolerant accessions,AS623321,AS623402,AS623194,AS623186,and AS623173,could be useful for wheat improvement.Collectively,our results may provide a foundation for breeding Cd tolerant wheat cultivars.

    Acknowledgments

    We thank Assad Siham(ICARDA,Syria),Jon W.Raupp(Kansas State University,USA),Shuhei Nasuda(Komugi,Japan)and Harold Bockelman(USDA,USA)for plant materials.This study was supported by the International Science&Technology CooperationProgramofChina(2015DFA30600)andthe National Natural Science Foundation of China(31301317).

    Supplementary data

    Supplementary table to this article can be found online at http://dx.doi.org/10.1016/j.cj.2015.04.005.

    R E F E R E N C E S

    [1]M.Prasad,Cadmium toxicity and tolerance in vascular plants,Environ.Exp.Bot.35(1995)525—545.

    [2]U.Shukla,J.Singh,P.Joshi,P.Kakkar,Effect of bioaccumulation of cadmium on biomass productivity,essential trace elements,chlorophyll biosynthesis,and macromolecules of wheat seedlings,Biol.Trace Elem.Res.92(2003)257—273.

    [3]L.Sandalio,H.Dalurzo,M.Gomez,M.Romero-Puertas,L. Del Rio,Cadmium-induced changes in the growth and oxidative metabolism of pea plants,J.Exp.Bot.52(2001)2115—2126.

    [4]W.Liu,Q.Zhou,Y.Sun,R.Liu,Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety,Environ.Pollut.157(2009)1961—1967.

    [5]I.?ncel,Y.Kele?,A.üstün,Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings,Environ.Pollut.107(2000)315—320.

    [6]C.Wang,L.Tao,J.Ren,The response of maize seedlings to cadmium stress under hydroponic conditions,Russ.J.Plant Physiol.60(2013)295—299.

    [7]M.J.Hassan,G.Shao,G.Zhang,Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation,J.Plant Nutr.28 (2005)1259—1270.

    [8]D.Chan,B.Hale,Differential accumulation of Cd in durum wheat cultivars:uptake and retranslocation as sources of variation,J.Exp.Bot.55(2004)2571—2579.

    [9]P.Verma,K.George,H.Singh,R.Singh,Modeling cadmium accumulation in radish,carrot,spinach and cabbage,Appl. Math.Model.31(2007)1652—1661.

    [10]C.Grant,J.Clarke,S.Duguid,R.Chaney,Selection and breeding of plant cultivars to minimize cadmium accumulation,Sci.Total Environ.390(2008)301—310.

    [11]X.Jia,C.J.Zhou,S.M.Dong,Progress of research on the effects of Cd~(2+)stress on wheat and the response of wheat to Cd~(2+),J.Triticeae Crops 31(2011)786—792.

    [12]J.Zhang,Z.Liu,J.Xiao,W.Wang,Study and utilization of wild relatives of wheat in xinjiang uygur autonomous regin,Chin. Agric.Sci.Bull.27(2011)29—32.

    [13]J.Valkoun,Dostal,D.Ku?erová,Triticum×Aegilops hybrids through embryo culture,in:Y.P.S.Bajaj(Ed.),Biotechnology in Agriculture and Forestry,Springer,Berlin 1990,pp.152—166.

    [14]T.Cox,W.Raupp,D.Wilson,S.Leath,W.Bockus,L.Browder,Resistance to foliar diseases in a collection of Triticum tauschii germ plasm,Plant Dis.(USA)76(1992)1061—1064.

    [15]D.Altshuler,M.J.Daly,E.S.Lander,Genetic mapping in human disease,Science 322(2008)881—888.

    [16]S.Stracke,G.Haseneyer,J.B.Veyrieras,H.H.Geiger,S. Sauer,A.Graner,H.P.Piepho,Association mapping reveals gene action and interactions in the determination of flowering time in barley,Theor.Appl.Genet.118(2009)259—273.

    [17]J.M.Thornsberry,M.M.Goodman,J.Doebley,S.Kresovich,D.Nielsen,E.S.Buckler,Dwarf8 polymorphisms associate with variation in flowering time,Nat.Genet.28(2001)286—289.

    [18]K.A.Palaisa,M.Morgante,M.Williams,A.Rafalski,Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci,Plant Cell 15(2003)1795—1806.

    [19]Y.H.Li,C.Zhang,Z.S.Gao,M.J.M.Smulders,Z.Ma,Z.X.Liu,H.Y.Nan,R.-Z.Chang,L.J.Qiu,Development of SNP markers and haplotype analysis of the candidate gene for rhg1,which confers resistance to soybean cyst nematode in soybean,Mol. Breed.24(2009)63—76.

    [20]A.Singh,S.Reimer,C.Pozniak,F.Clarke,J.Clarke,R.Knox,A. Singh,Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain,Theor.Appl.Genet. 118(2009)1539—1548.

    [21]I.M.Ehrenreich,Y.Hanzawa,L.Chou,J.L.Roe,P.X.Kover,M.D. Purugganan,Candidate gene association mapping of Arabidopsis flowering time,Genetics 183(2009)325—335.

    [22]K.Zhao,M.J.Aranzana,S.Kim,C.Lister,C.Shindo,C.Tang,C. Toomajian,H.Zheng,C.Dean,P.Marjoram,An Arabidopsis example of association mapping in structured samples,PLoS Genet.3(2007)e4.

    [23]D.R.Hoagland,D.I.Arnon,The water-culture method for growing plants without soil,Circular,Calif.Agric.Exp.Station. 347(1950).

    [24]A.Metwally,V.I.Safronova,A.A.Belimov,K.J.Dietz,Genotypic variation of the response to cadmium toxicity in Pisum sativum L,J.Exp.Bot.56(2005)167—178.

    [25]S.Smith,R.Kuehl,I.Ray,R.Hui,D.Soleri,Evaluation of simple methods for estimating broad-sense heritability in stands of randomly planted genotypes,Crop Sci.38(1998)1125—1129.

    [26]M.C.Luo,Y.Q.Gu,F.M.You,K.R.Deal,Y.Ma,Y.Hu,N.Huo,Y. Wang,J.Wang,S.Chen,A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii,the wheat D-genome progenitor,Proc. Natl.Acad.Sci.U.S.A.110(2013)7940—7945.

    [27]J.Wang,M.C.Luo,Z.Chen,F.M.You,Y.Wei,Y.Zheng,J. Dvorak,Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat,New Phytol.198(2013)925—937.

    [28]P.J.Bradbury,Z.Zhang,D.E.Kroon,T.M.Casstevens,Y. Ramdoss,E.S.Buckler,TASSEL:software for association mapping of complex traits in diverse samples,Bioinformatics 23(2007)2633—2635.

    [29]J.Dvorak,E.D.Akhunov,Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum Alliance,Genetics 171(2005)323—332.

    [30]E.d'Aloisio,A.Paolacci,A.Dhanapal,O.Tanzarella,E. Porceddu,M.Ciaffi,The protein disulfide isomerase gene family in bread wheat(T.aestivum L.),BMC Plant Biol.10 (2010)e101.

    [31]D.Chalupska,H.Y.Lee,J.D.Faris,A.Evrard,B.Chalhoub,R. Haselkorn,P.Gornicki,Acc homoeoloci and the evolution of wheat genomes,Proc.Natl.Acad.Sci.U.S.A.105(2008)9691—9696.

    [32]S.Ning,N.Wang,S.Sakuma,M.Pourkheirandish,J.Wu,T. Matsumoto,T.Koba,T.Komatsuda,Structure,transcription and post-transcriptional regulation of the bread wheat orthologs of the barley cleistogamy gene Cly1,Theor.Appl. Genet.126(2013)1273—1283.

    [33]A.B.Shcherban,T.T.Efremova,E.A.Salina,Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time,Mol.Breed.29(2012)675—685.

    [34]W.Shanshan,W.Nuan,P.Jinsong,G.Langen,R.A.T. Brew-Appiah,J.H.Mejias,C.Osorio,Y.Mingming,R.Gemini,C.P.Moehs,R.S.Zemetra,K.Karl-Heinz,L.Bao,W.Xingzhi,D.von Wettstein,S.Rustgi,Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health,Proc.Natl.Acad. Sci.U.S.A.109(2012)20543—20548.

    [35]E.E.Rogers,D.J.Eide,M.L.Guerinot,Altered selectivity in an Arabidopsis metal transporter,Proc.Natl.Acad.Sci.U.S.A.97 (2000)12356—12360.

    [36]V.E.Tsyganov,A.A.Belimov,A.Y.Borisov,V.I.Safronova,M. Georgi,K.J.Dietz,I.A.Tikhonovich,A chemically induced new pea(Pisum sativum)mutant SGECdt with increased tolerance to,and accumulation of,cadmium,Ann.Bot.99(2007)227—237.

    [37]M.Kamínek,Progress in cytokinin research,Trends Biotechnol.10(1992)159—164.

    [38]P.Nyitrai,K.Bóka,L.Gáspár,é.Sárvári,á.Keresztes,Rejuvenation of ageing bean leaves under the effect of low-dose stressors,Plant Biol.6(2004)708—714.

    [39]W.Liu,Q.Zhou,J.An,Y.Sun,R.Liu,Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars,J.Hazard.Mater.173(2010)737—743.

    [40]H.Yu,J.Wang,W.Fang,J.Yuan,Z.Yang,Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice,Sci.Total Environ.370(2006)302—309.

    [41]C.Foy,R.T.Chaney,M.White,The physiology of metal toxicity in plants,Annu.Rev.Plant Physiol.29(1978)511—566.

    [42]S.Clemens,Toxic metal accumulation,responses to exposure and mechanisms of tolerance in plants,Biochimie 88(2006)1707—1719.

    [43]P.Faller,K.Kienzler,A.Krieger-Liszkay,Mechanism of Cd2+toxicity:Cd2+inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+site,Biochim. Biophys.Acta Bioenerg.1706(2005)158—164.

    [44]M.Wong,A.Bradshaw,A comparison of the toxicity of heavy metals,using root elongation of rye grass,Lolium perenne,New Phytol.91(1982)255—261.

    [45]A.Baker,P.L.Walker,Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity,Chem.Speciat.Bioavailab.1(1989)7—17.

    [46]S.H.Wei,Q.X.Zhou,X.Wang,W.Cao,L.P.Ren,Y.F.Song,Potential of weed species applied to remediation of soils contaminated with heavy metals,J.Environ.Sci.16(2004)868—873.

    [47]S.Sabreen,S.I.Sugiyama,Trade-off between cadmium tolerance and relative growth rate in 10 grass species,Environ.Exp.Bot.63(2008)327—332.

    [48]I.Arduini,D.L.Godbold,A.Onnis,Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings,Physiol.Plant.92(1994)675—680.

    [49]G.Shi,Q.Cai,Cadmium tolerance and accumulation in eight potential energy crops,Biotechnol.Adv.27(2009)555—561.

    [50]Y.Sun,Q.Zhou,C.Diao,Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L,Bioresour.Technol.99(2008)1103—1110.

    [51]M.J.Wang,W.X.Wang,Cadmium in three marine phytoplankton:accumulation,subcellular fate and thiol induction,Aquat.Toxicol.95(2009)99—107.

    [52]D.Tanyolac,Y.Ekmek?i,?.ünalan,Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.)leaves exposed to excess copper,Chemosphere 67(2007)89—98.

    [53]M.Li,L.J.Zhang,L.Tao,W.Li,Ecophysiological responses of Jussiaea rapens to cadmium exposure,Aquat.Bot.88(2008)347—352.

    [54]P.Tanhuanp??,R.Kalendar,A.Schulman,E.Kiviharju,A major gene for grain cadmium accumulation in oat,Genome 50(2007)588—594.

    [55]M.Courbot,G.Willems,P.Motte,S.Arvidsson,N.Roosens,P. Saumitou-Laprade,N.Verbruggen,A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4,a gene encoding a heavy metal ATPase,Plant Physiol.144(2007)1052—1065.

    [56]T.Kashiwagi,K.Shindoh,N.Hirotsu,K.Ishimaru,Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice,BMC Plant Biol.9(2009)e8.

    [57]D.Ueno,I.Kono,K.Yokosho,T.Ando,M.Yano,J.Ma,A major quantitative trait locus controlling cadmium translocation in rice(Oryza sativa),New Phytol.182(2009)644—653.

    [58]J.Clarke,D.Leisle,G.Kopytko,Inheritance of cadmium concentration in five durum wheat crosses,Crop Sci.37 (1997)1722—1726.

    [59]G.Scoles,R.Knox,C.Pozniak,F.Clarke,J.Clarke,S. Houshmand,A.Singh,Chromosomal location of the cadmium uptake gene(Cdu1)in durum wheat,Genome 52 (2009)741—747.

    [60]P.Monneveux,M.Zaharieva,D.Rekika,The utilisation of Triticum and Aegilops species for the improvement of durum wheat,in:C.Royo(Ed.),Durum Wheat Improvement in the Mediterranean Region:New Challenges,Ciheam,Zaragoza 2000,pp.71—81.

    [61]K.Mguis,A.Albouchi,M.Abassi,A.Khadhri,M.Ykoubi-Tej,A.Mahjoub,N.B.Brahim,Z.Ouerghi,Responses of leaf growth and gas exchanges to salt stress during reproductive stage in wild wheat relative Aegilops geniculata Roth.and wheat(Triticum durum Desf.),Acta Physiol.Plant.35(2013)1453—1461.

    [62]M.W.van Slageren,Wild wheats:a monograph of Aegilops L. and Amblyopyrum(Jaub.&Spach)Eig(Poaceae),Wageningen Agricultural University Papers,1994.7—95.

    [63]I.Molnár,L.Gáspár,é.Sárvári,S.Dulai,B.Hoffmann,M. Molnár-Láng,G.Galiba,Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought,Funct.Plant Biol.31(2004)1149—1159.

    [64]T.D.Colmer,T.J.Flowers,R.Munns,Use of wild relatives to improve salt tolerance in wheat,J.Exp.Bot.57(2006)1059—1078.

    [65]L.Wang,K.Liu,S.Mao,Z.Li,Y.Lu,J.Wang,Y.Liu,Y.Wei,Y. Zheng,Large-scale screening for Aegilops tauschii tolerant genotypes to phosphorus deficiency at seedling stage,Euphytica(2014)http://dx.doi.org/10.1007/s10681-014-1327-6.

    [66]J.Dvorak,M.Luo,Z.Yang,H.Zhang,The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat,Theor.Appl.Genet.97(1998)657—670.

    [67]G.Petersen,O.Seberg,M.Yde,K.Berthelsen,Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A,B,and D genomes of common wheat(Triticum aestivum),Mol.Phylogenet.Evol.39(2006)70—82.

    [68]F.Bordbar,M.R.Rahiminejad,H.Saeidi,F.R.Blattner,Phylogeny and genetic diversity of D-genome species of Aegilops and Triticum(Triticeae,Poaceae)from Iran based on microsatellites,ITS,and trnL-F,Plant Syst.Evol.291(2011)117—131.

    [69]M.Feldman,E.R.Sears,The wild gene resources of wheat,Sci. Am.244(1981)102—112.

    [70]B.Kilian,K.Mammen,E.Millet,R.Sharma,A.Graner,F. Salamini,K.Hammer,H.Ozkan,Aegilops,in:C.Kole(Ed.),Wild Crop Relatives:Genomic and Breeding Resources,Cereals,Springer,Berlin 2011,pp.1—76.

    [71]T.Hussien,R.Bowden,B.Gill,T.Cox,Chromosome location of leaf rust resistance gene Lr43 from Aegilops tauschii in common wheat,Crop Sci.37(1997)1764—1766.

    [72]A.Mujeeb-Kazi,L.Gilchrist,G.Fuentes-Davila,R.Delgado,Production and utilization of D genome synthetic hexaploids in wheat improvement,Proceedings of the Third International Triticeae Symposium,ICARDA,Science Publishers Enfield,NH,1998.

    *Corresponding author.Tel.:+86 28 86290951;fax:+86 28 82650350.

    E-mail address:liuyaxi@sicau.edu.cn(Y.Liu).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.1These authors contributed equally to this work.

    http://dx.doi.org/10.1016/j.cj.2015.04.005

    2214-5141/?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    27 January 2015

    av免费在线看不卡| 亚洲欧美中文字幕日韩二区| 日韩大片免费观看网站| 2022亚洲国产成人精品| 人妻一区二区av| 最近的中文字幕免费完整| 国产精品欧美亚洲77777| 少妇被粗大猛烈的视频| 日本-黄色视频高清免费观看| 秋霞伦理黄片| 久久久久久久国产电影| 亚洲va在线va天堂va国产| 中国国产av一级| 亚洲欧洲国产日韩| 日日啪夜夜撸| 岛国毛片在线播放| 国产乱人偷精品视频| 纯流量卡能插随身wifi吗| 美女cb高潮喷水在线观看| 国产男女内射视频| 久久久久久伊人网av| 日韩制服骚丝袜av| 永久免费av网站大全| 亚洲成色77777| 内射极品少妇av片p| 日本91视频免费播放| 麻豆成人午夜福利视频| 亚洲精品国产成人久久av| 久久人人爽人人爽人人片va| 人人澡人人妻人| 国产亚洲欧美精品永久| 色网站视频免费| 黑人巨大精品欧美一区二区蜜桃 | 人妻人人澡人人爽人人| 欧美性感艳星| 欧美精品国产亚洲| 国产精品秋霞免费鲁丝片| 亚洲精品,欧美精品| 久久99精品国语久久久| 男女免费视频国产| 精品酒店卫生间| av天堂中文字幕网| 高清午夜精品一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 大香蕉久久网| 免费看不卡的av| 成人午夜精彩视频在线观看| videos熟女内射| 纯流量卡能插随身wifi吗| 日韩一区二区三区影片| 五月天丁香电影| 亚洲国产色片| 亚洲国产精品成人久久小说| 夜夜骑夜夜射夜夜干| 亚洲欧美日韩卡通动漫| 嫩草影院新地址| a级毛片免费高清观看在线播放| 亚洲伊人久久精品综合| 精品一区二区免费观看| 日本午夜av视频| 国产精品久久久久久久电影| 国产黄片美女视频| .国产精品久久| 99国产精品免费福利视频| 欧美高清成人免费视频www| 久久久a久久爽久久v久久| 免费看日本二区| 一级av片app| 免费看av在线观看网站| 国产精品国产三级国产专区5o| 国产成人aa在线观看| 丝袜脚勾引网站| 亚洲va在线va天堂va国产| 插阴视频在线观看视频| 99九九在线精品视频 | 国产在线男女| 男女无遮挡免费网站观看| 欧美一级a爱片免费观看看| 久久狼人影院| 少妇的逼水好多| 欧美老熟妇乱子伦牲交| 久久亚洲国产成人精品v| 国产成人一区二区在线| 91精品一卡2卡3卡4卡| 熟女av电影| 少妇被粗大的猛进出69影院 | 亚洲第一区二区三区不卡| 国产精品一区二区在线观看99| 大香蕉久久网| 国产精品99久久久久久久久| 午夜福利,免费看| 亚洲无线观看免费| 久久亚洲国产成人精品v| 色5月婷婷丁香| 不卡视频在线观看欧美| 国产一区二区三区综合在线观看 | 久久青草综合色| 天堂8中文在线网| 狂野欧美激情性xxxx在线观看| 成人18禁高潮啪啪吃奶动态图 | 成年美女黄网站色视频大全免费 | 在线精品无人区一区二区三| 99re6热这里在线精品视频| 看免费成人av毛片| 久久久精品免费免费高清| 在线观看人妻少妇| 国产色爽女视频免费观看| 久久久久久久久久久丰满| 丰满饥渴人妻一区二区三| 日韩一区二区三区影片| 少妇人妻精品综合一区二区| 18禁动态无遮挡网站| 少妇熟女欧美另类| 国产片特级美女逼逼视频| 免费观看的影片在线观看| 最近手机中文字幕大全| 色网站视频免费| 国产无遮挡羞羞视频在线观看| 一级黄片播放器| 国产亚洲一区二区精品| 99热这里只有是精品在线观看| 人妻系列 视频| 亚洲国产精品成人久久小说| 熟女人妻精品中文字幕| 97精品久久久久久久久久精品| 男男h啪啪无遮挡| 一区二区三区乱码不卡18| 亚洲成人手机| 国产高清有码在线观看视频| 亚洲av电影在线观看一区二区三区| 欧美少妇被猛烈插入视频| av一本久久久久| 国产综合精华液| 天堂8中文在线网| 9色porny在线观看| 精品一区在线观看国产| 久久久精品94久久精品| 亚洲欧洲日产国产| 爱豆传媒免费全集在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品久久久久久精品电影小说| 麻豆成人午夜福利视频| 啦啦啦啦在线视频资源| av线在线观看网站| 国产精品国产av在线观看| 久久久久久久久久成人| 亚洲av二区三区四区| 99精国产麻豆久久婷婷| 亚洲精品aⅴ在线观看| 欧美三级亚洲精品| 国产高清不卡午夜福利| 女人久久www免费人成看片| 伦理电影大哥的女人| 国产男女超爽视频在线观看| 国产精品久久久久久久电影| a级毛片在线看网站| 亚洲国产精品一区二区三区在线| 亚洲欧美精品自产自拍| 肉色欧美久久久久久久蜜桃| 国产高清不卡午夜福利| 在线看a的网站| 欧美三级亚洲精品| 精品国产露脸久久av麻豆| 国产有黄有色有爽视频| 欧美三级亚洲精品| 91午夜精品亚洲一区二区三区| 精品人妻偷拍中文字幕| 中文天堂在线官网| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品一区二区三区在线| 精华霜和精华液先用哪个| 看非洲黑人一级黄片| 一级毛片 在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | av线在线观看网站| 乱码一卡2卡4卡精品| 午夜影院在线不卡| 欧美变态另类bdsm刘玥| 高清视频免费观看一区二区| 九草在线视频观看| 国产精品一区二区在线观看99| 欧美三级亚洲精品| 久久免费观看电影| 亚洲美女黄色视频免费看| 亚洲av成人精品一二三区| xxx大片免费视频| 欧美性感艳星| 久久韩国三级中文字幕| 一级毛片我不卡| 女性被躁到高潮视频| 国产一级毛片在线| 又黄又爽又刺激的免费视频.| 少妇被粗大的猛进出69影院 | 欧美bdsm另类| 久久久久视频综合| 搡老乐熟女国产| 高清欧美精品videossex| 三级国产精品片| 久久久久久人妻| 成人综合一区亚洲| 中国美白少妇内射xxxbb| 人人妻人人澡人人爽人人夜夜| 午夜福利网站1000一区二区三区| 日日啪夜夜撸| 亚洲欧洲国产日韩| 日韩av免费高清视频| 最近中文字幕高清免费大全6| 亚洲va在线va天堂va国产| 国产无遮挡羞羞视频在线观看| 中文字幕亚洲精品专区| 新久久久久国产一级毛片| 欧美一级a爱片免费观看看| 亚洲精华国产精华液的使用体验| 国产黄片美女视频| 日本猛色少妇xxxxx猛交久久| 一级a做视频免费观看| 亚洲高清免费不卡视频| 99热这里只有是精品在线观看| videos熟女内射| 久久久久久久久久成人| 亚洲av日韩在线播放| 黄片无遮挡物在线观看| 五月玫瑰六月丁香| av卡一久久| 久久精品国产亚洲网站| 日韩精品免费视频一区二区三区 | 男的添女的下面高潮视频| 3wmmmm亚洲av在线观看| 免费人妻精品一区二区三区视频| av免费观看日本| 自拍欧美九色日韩亚洲蝌蚪91 | 在线免费观看不下载黄p国产| 嘟嘟电影网在线观看| 三级国产精品片| 精品人妻一区二区三区麻豆| 精品一品国产午夜福利视频| www.av在线官网国产| 黄色日韩在线| 国产精品福利在线免费观看| 七月丁香在线播放| 中国国产av一级| 我要看黄色一级片免费的| 在现免费观看毛片| 亚洲精品国产av蜜桃| 男女无遮挡免费网站观看| 国产在线免费精品| 久久免费观看电影| 九九久久精品国产亚洲av麻豆| 日本猛色少妇xxxxx猛交久久| 精品一区在线观看国产| 在线观看免费高清a一片| 久久精品夜色国产| 高清在线视频一区二区三区| 亚洲国产精品999| 一区在线观看完整版| 能在线免费看毛片的网站| 丁香六月天网| 99视频精品全部免费 在线| 97在线视频观看| 97精品久久久久久久久久精品| 麻豆成人av视频| 国产精品秋霞免费鲁丝片| 好男人视频免费观看在线| 亚洲精品中文字幕在线视频 | 美女大奶头黄色视频| 亚洲伊人久久精品综合| 精品国产国语对白av| 久久久久久人妻| 免费看光身美女| 精品国产乱码久久久久久小说| 国产免费视频播放在线视频| 国产乱人偷精品视频| 夜夜看夜夜爽夜夜摸| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区www在线观看| 成人午夜精彩视频在线观看| 亚洲av中文av极速乱| 色哟哟·www| 最近2019中文字幕mv第一页| 黑人巨大精品欧美一区二区蜜桃 | 在线观看国产h片| 国产在视频线精品| 嘟嘟电影网在线观看| 久久精品熟女亚洲av麻豆精品| 插逼视频在线观看| 日本午夜av视频| av一本久久久久| 大香蕉97超碰在线| 国产欧美日韩一区二区三区在线 | 日韩欧美一区视频在线观看 | 国产黄片视频在线免费观看| 国产成人aa在线观看| 日本91视频免费播放| 免费大片黄手机在线观看| 欧美亚洲 丝袜 人妻 在线| 国产精品国产三级国产av玫瑰| 少妇裸体淫交视频免费看高清| 成人无遮挡网站| 国产一级毛片在线| 国产伦精品一区二区三区四那| 老司机影院毛片| 欧美精品一区二区免费开放| 少妇的逼好多水| 99九九在线精品视频 | 国产女主播在线喷水免费视频网站| 草草在线视频免费看| 青春草亚洲视频在线观看| 高清欧美精品videossex| 中文字幕制服av| 97超碰精品成人国产| 国产免费福利视频在线观看| 人人妻人人澡人人看| 嫩草影院新地址| 51国产日韩欧美| av黄色大香蕉| 国产白丝娇喘喷水9色精品| 欧美日韩在线观看h| 有码 亚洲区| 大香蕉97超碰在线| 亚洲图色成人| 99re6热这里在线精品视频| 精品国产乱码久久久久久小说| 国精品久久久久久国模美| 久久毛片免费看一区二区三区| 久久av网站| 啦啦啦啦在线视频资源| 又黄又爽又刺激的免费视频.| 女性生殖器流出的白浆| 国产精品福利在线免费观看| 成人特级av手机在线观看| 大香蕉97超碰在线| 亚洲精品一区蜜桃| 人妻制服诱惑在线中文字幕| 国产亚洲5aaaaa淫片| 在线观看免费高清a一片| 婷婷色av中文字幕| 免费看不卡的av| 国产永久视频网站| 免费久久久久久久精品成人欧美视频 | 亚洲欧美精品自产自拍| 十分钟在线观看高清视频www | 欧美3d第一页| 97超碰精品成人国产| 亚洲精品视频女| 激情五月婷婷亚洲| 国产成人aa在线观看| 久久久精品免费免费高清| 纵有疾风起免费观看全集完整版| 国产精品人妻久久久影院| 春色校园在线视频观看| 新久久久久国产一级毛片| 一级毛片黄色毛片免费观看视频| 少妇人妻久久综合中文| 亚洲高清免费不卡视频| 亚洲精品国产av蜜桃| 日本黄色日本黄色录像| 国产午夜精品久久久久久一区二区三区| 午夜福利视频精品| 国产伦精品一区二区三区四那| 免费播放大片免费观看视频在线观看| 日韩亚洲欧美综合| kizo精华| 国产真实伦视频高清在线观看| 欧美日韩国产mv在线观看视频| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 国产老妇伦熟女老妇高清| 国产成人freesex在线| 精品午夜福利在线看| 18禁动态无遮挡网站| 日韩人妻高清精品专区| 六月丁香七月| 人人妻人人爽人人添夜夜欢视频 | 成人漫画全彩无遮挡| 婷婷色av中文字幕| 亚洲久久久国产精品| 午夜av观看不卡| 国精品久久久久久国模美| 特大巨黑吊av在线直播| 女性生殖器流出的白浆| 日韩精品有码人妻一区| 国产免费视频播放在线视频| 国产爽快片一区二区三区| 欧美最新免费一区二区三区| 99久久中文字幕三级久久日本| 人妻人人澡人人爽人人| 一个人免费看片子| 欧美日韩一区二区视频在线观看视频在线| 亚洲av男天堂| 热99国产精品久久久久久7| 日本欧美视频一区| 亚洲欧美一区二区三区黑人 | 精品国产一区二区三区久久久樱花| 国产国拍精品亚洲av在线观看| 女的被弄到高潮叫床怎么办| a级毛片在线看网站| 一区二区三区免费毛片| 欧美高清成人免费视频www| 少妇人妻 视频| 狂野欧美激情性bbbbbb| kizo精华| 亚洲天堂av无毛| 99九九在线精品视频 | 精品久久久久久久久亚洲| 国产免费视频播放在线视频| 十八禁高潮呻吟视频 | 亚洲高清免费不卡视频| 国产一区有黄有色的免费视频| 亚洲av欧美aⅴ国产| av天堂久久9| 久热久热在线精品观看| 国产白丝娇喘喷水9色精品| 桃花免费在线播放| 婷婷色综合www| 精品视频人人做人人爽| 国产亚洲5aaaaa淫片| 嫩草影院新地址| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品自产自拍| 成人漫画全彩无遮挡| 自线自在国产av| 日本-黄色视频高清免费观看| a级毛片免费高清观看在线播放| 嘟嘟电影网在线观看| 国产av码专区亚洲av| 成人影院久久| 欧美成人午夜免费资源| 91久久精品电影网| 色视频在线一区二区三区| 乱人伦中国视频| 亚洲av欧美aⅴ国产| 9色porny在线观看| 91成人精品电影| 亚洲精品视频女| 国产免费视频播放在线视频| 在线观看一区二区三区激情| 国产亚洲5aaaaa淫片| 国产免费一区二区三区四区乱码| 日韩一区二区视频免费看| 欧美bdsm另类| 五月天丁香电影| 精品少妇黑人巨大在线播放| 国产成人免费观看mmmm| 水蜜桃什么品种好| 成人亚洲精品一区在线观看| 九色成人免费人妻av| 久久久久久人妻| 日日啪夜夜撸| av国产精品久久久久影院| 伊人久久国产一区二区| 在线看a的网站| 欧美日韩视频高清一区二区三区二| 高清毛片免费看| 国产成人精品无人区| 亚洲精品自拍成人| 久久综合国产亚洲精品| 精品人妻一区二区三区麻豆| 男女啪啪激烈高潮av片| 国产成人免费无遮挡视频| 国产色婷婷99| 少妇丰满av| 男人爽女人下面视频在线观看| 新久久久久国产一级毛片| 一级毛片久久久久久久久女| 久久精品国产鲁丝片午夜精品| 日韩人妻高清精品专区| 久久午夜福利片| 在线播放无遮挡| 久久人人爽人人爽人人片va| 黑人巨大精品欧美一区二区蜜桃 | 亚洲,一卡二卡三卡| 日韩欧美一区视频在线观看 | 欧美丝袜亚洲另类| 大陆偷拍与自拍| 最近中文字幕高清免费大全6| 美女中出高潮动态图| 亚洲怡红院男人天堂| 久久精品久久久久久久性| 免费av不卡在线播放| 偷拍熟女少妇极品色| 中文字幕人妻熟人妻熟丝袜美| 国产永久视频网站| 亚洲综合精品二区| 国产精品不卡视频一区二区| 五月玫瑰六月丁香| 久久久久久久久久久丰满| 日日啪夜夜撸| 美女cb高潮喷水在线观看| 久久久久国产网址| 成人影院久久| 成人美女网站在线观看视频| 久久国产乱子免费精品| 国产精品嫩草影院av在线观看| 午夜福利,免费看| 国产一区亚洲一区在线观看| 国产91av在线免费观看| 男人舔奶头视频| 高清欧美精品videossex| 国产探花极品一区二区| 777米奇影视久久| 日日啪夜夜爽| 深夜a级毛片| 丝袜脚勾引网站| 亚洲成人av在线免费| 一级二级三级毛片免费看| tube8黄色片| 又大又黄又爽视频免费| 久久精品夜色国产| 中文字幕人妻丝袜制服| 色视频在线一区二区三区| 又黄又爽又刺激的免费视频.| 亚洲熟女精品中文字幕| 国产成人aa在线观看| 久久人妻熟女aⅴ| 日日摸夜夜添夜夜爱| 97超碰精品成人国产| 色哟哟·www| 老女人水多毛片| av免费在线看不卡| 狠狠精品人妻久久久久久综合| 久久热精品热| 久久国内精品自在自线图片| 黄色一级大片看看| 久久久精品94久久精品| 欧美精品高潮呻吟av久久| 又大又黄又爽视频免费| 丰满饥渴人妻一区二区三| 国内少妇人妻偷人精品xxx网站| videossex国产| 免费看光身美女| 国产日韩一区二区三区精品不卡 | 嫩草影院入口| 十八禁网站网址无遮挡 | 亚洲国产毛片av蜜桃av| 一区二区av电影网| 亚洲成人一二三区av| 伊人亚洲综合成人网| 亚洲综合精品二区| 看免费成人av毛片| 久久久久人妻精品一区果冻| 免费少妇av软件| 成人国产av品久久久| 啦啦啦视频在线资源免费观看| 日韩欧美一区视频在线观看 | 免费黄网站久久成人精品| freevideosex欧美| 国产精品久久久久久精品电影小说| 成年美女黄网站色视频大全免费 | 久久综合国产亚洲精品| 最黄视频免费看| 美女福利国产在线| 伦精品一区二区三区| 伦理电影免费视频| 免费人成在线观看视频色| 日韩制服骚丝袜av| 嘟嘟电影网在线观看| 边亲边吃奶的免费视频| 中文字幕精品免费在线观看视频 | 日韩免费高清中文字幕av| av天堂中文字幕网| 午夜福利视频精品| 国产探花极品一区二区| 黄色怎么调成土黄色| 久久国产精品男人的天堂亚洲 | 水蜜桃什么品种好| 午夜福利在线观看免费完整高清在| 精品久久久精品久久久| 女性生殖器流出的白浆| 日日摸夜夜添夜夜爱| 国产在线视频一区二区| 美女xxoo啪啪120秒动态图| 国产精品人妻久久久久久| 国产日韩一区二区三区精品不卡 | 一本一本综合久久| 九九在线视频观看精品| 精品少妇内射三级| 久久女婷五月综合色啪小说| 国精品久久久久久国模美| 精品人妻熟女毛片av久久网站| 噜噜噜噜噜久久久久久91| 久热这里只有精品99| 又粗又硬又长又爽又黄的视频| 91成人精品电影| av免费在线看不卡| 日本91视频免费播放| 少妇人妻久久综合中文| 内地一区二区视频在线| 3wmmmm亚洲av在线观看| 免费看日本二区| 少妇被粗大猛烈的视频| 成年av动漫网址| 精品国产一区二区久久| 精品人妻一区二区三区麻豆| 亚洲av男天堂| videos熟女内射| 一本—道久久a久久精品蜜桃钙片| 久久精品国产亚洲av天美| 国产成人免费观看mmmm| 一个人免费看片子| xxx大片免费视频| 久久久精品免费免费高清| 成人特级av手机在线观看| a级一级毛片免费在线观看| 亚洲精品国产色婷婷电影| av视频免费观看在线观看| 久久午夜综合久久蜜桃| 久久av网站| 人人澡人人妻人| 国产伦在线观看视频一区| 久久人人爽av亚洲精品天堂| 国产探花极品一区二区| 嫩草影院新地址| 亚洲成色77777| 人妻人人澡人人爽人人| 国产av码专区亚洲av|