• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Dataset Classi fi cation Approach Based on Neighbor Searching and Kernel Fuzzy C-Means

    2015-08-09 02:00:36LiLiuAoleiYangWenjuZhouXiaofengZhangMinruiFeiandXiaoweiTu
    IEEE/CAA Journal of Automatica Sinica 2015年3期

    Li Liu,Aolei Yang,Wenju Zhou,Xiaofeng Zhang,Minrui Fei,and Xiaowei Tu

    Robust Dataset Classi fi cation Approach Based on Neighbor Searching and Kernel Fuzzy C-Means

    Li Liu,Aolei Yang,Wenju Zhou,Xiaofeng Zhang,Minrui Fei,and Xiaowei Tu

    —Dataset classi fi cation is an essential fundament of computational intelligence in cyber-physical systems(CPS).Due to the complexity of CPS dataset classi fi cation and the uncertainty of clustering number,this paper focuses on clarifying the dynamic behavior of acceleration dataset which is achieved from micro electro mechanical systems(MEMS)and complex image segmentation.To reduce the impact of parameters uncertainties with dataset classi fi cation,a novel robust dataset classi fi cation approach is proposed based on neighbor searching and kernel fuzzy c-means(NSKFCM)methods.Some optimized strategies, including neighbor searching,controlling clustering shape and adaptive distance kernel function,are employed to solve the issues of number of clusters,the stability and consistency of classi fi cation,respectively.Numerical experiments fi nally demonstrate the feasibility and robustness of the proposed method.

    Index Terms—Dataset classi fi cation,neighbor searching,variable weight,kernel fuzzy c-means,robustness estimation.

    I.INTRODUCTION

    IN applications of cyber-physical systems(CPS),the dataset classi fi cation is the essential fundament of computational intelligence.The dataset in general can be achieved from sensors,images,videos and audio fi les.The clustering is an unsupervised learning process for dataset classi fi cation,which makes a cluster including more similar data than that of other clusters.The unsupervised learning as a main algorithm in the classi fi cation can be applied to image segmentation,pattern recognition,data mining and bioinformatics.

    For the dataset classi fi cation,fuzzy clustering methods are divided into hard c-means(HCA)[1]and fuzzy c-means (FCM)[2]in the unsupervised learning.In contrast to the HCA,the FCM has better performance on the signi fi cantdata presentation and clustering effect.Based on it,Wu et al.proposed a new metric which is called alternative hard c-means(AHCM)and alternative fuzzy c-means(AFCM) clustering algorithms[3].The two algorithms actually modify the distance function,but the clustering result is fuzzy,because the value is less than 1 during iteration.Ahmed et al.presented a bias corrected FCM(BCFCM)algorithm[4].This method introduces a spatial term of immediate neighborhood which allows a point to be in fl uenced by the labels.Its weakness is high time consumption in the iteration.In addition,Chen et al.investigated a preprocessing image smoothing step based on the BCFCM,but it cannot control the trade-off between smoothing and clustering[5].Szilagyi et al.presented an enhanced FCM(EnFCM)algorithm using biases to solve the piecewise homogeneous labeling problem[6].Although the relevant classi fi cation is effective,it fails in the piecewise partition according to the label interval.A semi-supervised FCM(SS-FCM)algorithm was introduced by Li et al.[7], which provided a new iterative procedure to calculate the membership labeled and unlabeled samples with the drawback of the complex calculation.It is noted that the above mentioned FCM clustering methods fail to computer the nonrobust Euclidean distance,and cannot reject noises which are inconvenient in practical applications.

    Although FCM has been successfully applied in many fi elds,it is unable to select the fuzzy weighting exponent and to determine the priori knowledge of the cluster prototype. An example for an approach is hierarchical multi-relational clustering algorithm[8],which is adopted to solve one-to-many relationship of dataset classi fi cation.The order production scheduling method has been employed based on the subspace clustering mixed model(SCMM)[9],and the kernel method was a feasible direction for the dataset classi fi cation.Kernel fuzzy c-means(KFCM)with automatic variable weighting was investigated,which uses the adaptive distances to learn the weights of the variables during the clustering[10].Krinidis et al.,according to the window size information,presented a robust fuzzy local information c-means(FLICM)clustering algorithm[11].However,the noises were ampli fi ed due to the window size information.To extend FLICM to the higher dimensions,Krinidis et al.introduced a generalization clustering algorithm based on the fuzzy local information c-means (GFLIM)[12].On the basis of FLICM,Gong et al.developed a trade-off weighted fuzzy factor for controlling adaptively the local spatial relationship[13].To detect the moving objects, Chiranjeevi et al.used multi-channel kernel fuzzy correlogram based on background subtraction[14].Alipour et al.proposed a fast spatial kernel fuzzy c-means(FKFCM)to realize automatic medical image segmentation by connecting it with level set method[15].This FKFCM summarizes that kernel function attaches more weight to nearer pixels.Lu et al.reported amodi fi ed fuzzy c-means algorithm which involves a novel density-induced distance metric based on the relative density degree to improve classi fi cation[16].Qiu et al.introduced an enhanced interval type-2 fuzzy c-means(EIT2FCM)algorithm with improved initial center[17].In the aspect of robustness estimation[18-21],the theory and analysis processing were described.Nevertheless,these FCM algorithms based on kernel are dif fi cult to reduce the time consumption and optimize data center resources.

    To deal with the above mentioned problems,a new robust dataset classi fi cation approach is presented based on neighbor searching and kernel fuzzy c-means(NSKFCM).The approach fi rst adopts the neighbor searching method with the dissimilarity matrix to normalize the dataset,and the number of clusters is determined by controlling clustering shape.To ensure the stability and consistency of classi fi cation,the maximum peak method is then used to initialize the membership and the cluster prototype.The adaptive distance kernel function is next employed to get the variable weights,followed by the convergence analysis of the objective function.Because dataset classi fi cation is an essential fundament of computational intelligence in CPS,numerical experiments are validated from practical MEMS accelerometer and the image segmentation to reduce the impact of parameters uncertainties with the complex datasets.The experimental results demonstrate the feasibility and robustness of NSKFCM.

    The remainder of the paper is organized as follows.Section II brie fl y describes the fundamental kernel FCM algorithms. The NSKFCM approach and robustness estimation are described in Section III.Experimental results and comparative analysis are given in Section IV and the conclusions are summarized in Section V.

    II.KERNEL FUZZY C-MEANS ALGORITHM

    This section presents the notion of the fundamental kernel fuzzy c-means(KFCM)clustering algorithms[14].

    A.Clustering Objective Function

    LetR={x1,x2,...,xn}be a dataset,the objective function based on fuzzy clustering is[2]

    where the arrayU={uik}represents a membership matrix satisfying

    andV=denotes the vector of the cluster prototype. The parameterm∈(1,∞)is the weighting exponent,which determines the fuzziness number of classi fi cation.dikis the distance measure betweenxkandvi,de fi ned by

    Here,[A]n×nis a symmetric positive de fi nite matrix.IfAis a unit matrix,the distance measure denotes the Euclidean distance.

    FCM is non-robust because it ignores spatial contextual information and uses Euclidean distance.The feature space is then investigated,which uses a nonlinear mapping Φ from the input space datasetR={x1,x2,...,xn}to a higherdimensional space datasetF.So that the nonlinear mapping is simply represented by Φ:R→F.Since the key idea of kernel method is unnecessary to explicitly specify Φ,the objective function of KFCM in feature space(KFCM-F)is expressed by[22]

    The kernel functionKis symmetric(i.e.,K(xk,xi)=K(xi,xk)),andK(xk,xi)=Φ(xk)TΦ(xi).Settingd(xk,vi)Δ=‖Φ(xk)-Φ(vi)‖,the objective function of KFCM-F is equal to

    B.Membership and Cluster Prototype

    For anyi∈{1,2,...,c},uikis the fuzzy membership degree and it satis fi esP=1.Based on the FCM membership[22]uik,which is given by

    The KFCM-F membership degree is de fi ned as follow:

    The cluster prototypeviis obtained as

    Note that the KFCM algorithm based on Gaussian kernel function is sensitive to the noise.

    III.THE ROBUST DATA CLASSIFICATION APPROACH

    Several methods based on FCM need to determine the number of clusters,the iterations and the membership initialized randomly,in advance.Although it is dif fi cult to exactly determine these parameters,they have a great effect on the results. Zhang et.al.[23]adopt the weighted and hierarchical af fi nity propagation(WAP)to detect the changes of the data stream in real time,but the robustness does not be veri fi ed.Taking into account these reasons,a robust dataset classi fi cation approach is proposed based on neighbor searching and kernel FCM (NSKFCM).

    A.Neighbor Searching

    De fi nition 1.The dissimilarity matrix(also called distance matrix)[24]describes pairwise distinction betweennobjects.It is a square symmetricaln×nmatrix and can be represented by[d(i,j)]n×n,whered(i,j)≥0,d(i,i)=0 andd(i,j)=d(j,i).

    If an asymmetrical relation exists between two objects(i.e.xiandxj),employing a simplicial scalar(such as distance) is insuf fi cient to further analyze the correlation between these two objects.The dissimilarity matrix is thus introduced to the initial data in NSKFCM approach.Given a datasetR={x1,x2,...,xn}consisting ofnobjects,max(x)and min(x)represent the maximum and minimum of the dataset, respectively.xi′represents the normalized object ofxi,which is de fi ned asIt represents the relative location ofxibetween the maximum and minimum. Hence the dissimilarity distanced(i,j)is given asd(i,j)=whereαis the positive weighting coef fi cient. The dissimilarity matrixDis accordingly structured as

    Equation(10)establishes the relative distance of the distinct objects,but it is dif fi cult to make the subsequent clustering analysis.In order to facilitate the subsequent analysis,the dissimilarity matrix needs to be normalized.Based on the dissimilarity distance,the Jaccard measure[25-26]is used for interpreting the similarity of the distinct objects.The normalization matrix[G]n×nis then speci fi ed as

    here the mean distance of the normalized objects is involved, which can better demonstrate the object’s detailed information.The normalization matrix is a symmetric matrix,which takes values from 0 to 1,and it contains the relationship ofGi,j=Gj,i.With the similarity matrix,the original datasetRis normalized by[G]n×n.

    De fi nition 2.For the datasetR={x1,x2,...,xn}and any objectxi,2≤i≤n-1,objectsxi-1andxi+1are called the neighbors ofxi.Ifi=1,the neighbor ofx1isx2,and ifi=n,the neighbor ofxnisxn-1.

    De fi nition 3.Referring to[27-28],for a datasetR={x1,x2,...,xn},setting the objectyand the distancer,if any objectxisatis fi esd(xi,y)≤r,thenxiis the direct neighbor ofy.The entire neighbors set of objectyare represented byDy,and 0≤r≤1 adopts the Jaccard coef fi cient.It is the maximum distance if two objects are neighbors.

    As shown in Fig.1,the given dataset is divided into two clusters,A={a,b,c,...}andB={f,...}.

    Fig.1.Clustering example.

    The neighbor searching method is able to traverse the objects.Ifd(x,y)≤r,the objectxandyare neighbor in the same neighbor set.Supposingr=0.65,d(a,b)=0.50,d(b,c)=0.60,d(c,d)=0.63,d(d,e)=0.50 andd(e,f)= 0.62,the objectsb,c,d,eandfwill be sequentially merged intoA={a,b,c,d,e,f,...}.Considering this,the neighbor searching depending only on the distance cannot be properly achieved.The parameter of controlling cluster shape is then presented in De fi nition 4.

    De fi nition 4.Given a datasetA={x1,x2,...,xm}includesmobjects,andyis another object,ifd(xi,y)≤r, thenXi=1,elseXi=0.The other objectyis merged intoAsatisfying/m≥ξ[28].ξis named the parameter of controlling clustering shape and 0≤ξ≤1.

    Considering the above de fi nitions and Fig.1,the neighbor sets ofa,bandcare expressed asDa,DbandDc,respectively. The given three neighbors havem=3.The analysis forecan be merged intoAare shown as follows.

    1)Ifξm=1,then=1,i.e.,d(a,e)≤r, ord(b,e)≤r,ord(c,e)≤r.The condition ise∈(Da∪Db∪Dc).

    2)Ifξm=2,then=2,i.e.,d(a,e)≤r∩d(b,e)≤r,ord(b,e)≤r∩d(c,e)≤r,ord(c,e)≤r∩d(a,e)≤r.The condition satis fi ese∈((Da∩Db)∪(Db∩Dc)∪(Da∩Dc)).

    3)Ifξm=3,thenP=3,i.e.,d(a,e)≤r,d(b,e)≤randd(c,e)≤r,satisfyinge∈(Da∩Db∩Dc).

    The analysis indicates that ifξis larger,the clustering region is smaller,and the number of clusters is more.The neighbor searching method is used to ascertain the number of clusters.

    B.Initialization of Membership and Cluster Prototype

    The majority of FCM clustering algorithms employ the membership initialized randomly,the clustering result is then varied each time.NSKFCM involves the maximum peak method to search the cluster prototype.Given a datasetR={x1,x2,...,xn},the maximum peak method,whose dataset is de fi ned asP={p1,p2,...,pk},will be executed in the following steps.

    1)Searchthemaximumpeakbypk= argmaxx{xi-1,xi,xi+1}?P,2≤i≤n-1,herekexpresses the number of maximum peak.

    2)Calculate the sum of each neighbor set.

    3)Remove the minimum peak.cis the number of clusters withc∈[1,n].Ifk>c,the minimum peak is removed fromP.Set ask=k-1 and return to 2).

    4)Con fi rm the initialized cluster prototype.Ifk=c,it is de fi ned as

    wheretis the interval of every cluster prototype.

    5)Calculate the initialized membership given in(6), whereinrepresents the distance. The cluster prototype vector and membership matrix have been initialized,consequently,they are the fi xed values to ensure the stability of classi fi cation.

    C.Optimization of Membership and Cluster Prototype

    The traditional kernel clustering methods do not take into account the relevance weights of the variables[14].NSKFCM adapts the Gaussian kernel function to apply each variable. The kernel function is written as(14).

    The approach investigates an optimized adequacy criterion of objective function,which can be de fi ned as

    In accordance with the dissimilarity matrix,φ2(xk,vi)is equal to

    Proposition 1.For the distance function(16),and ifK(·,·) is the Gaussian kernel,then with fi xedVandλ,the fuzzy membershipdegreeuik(k=1,2,...,n,i=1,2,...,c), which minimizes the objective functionO(U,V,λ)given in (17),underuik∈[0,1],?i,kandP=1,?k,satis fi es the local optimum expressed by

    The proof is given in Appendix A.

    Proposition 2.For the distance function(16),andK(·,·) as the Gaussian kernel,and with fi xedUandλ,then the cluster prototypevij(i=1,2,...,c,j=1,2,...,t),which minimizes the objective functionO(U,V,λ)given in(17), is optimized by the following expression:

    The proof is given in Appendix B.

    NSKFCM based on adaptive distances is used for determining the weights of the variables.Having fi xed the fuzzy membership matrixUand cluster prototype vectorV,minimizing the objective functionO(U,V,λ)is constrained by the weights of the variables.

    Proposition 3.If the adaptive distance function is given by(16),the vector of weightλ=(λ1,λ2,...,λt),which minimizes the objective function(17)underλj>0,?jand=1,λj(j=1,2,...,t)is updated according to the following expression:

    The proof is achieved in Appendix C.

    Remark 1.It is important to note that NSKFCM converges to a local minimum or a saddle point.

    Considering the convergence theory for fuzzy c-means[29], the relationship of the objective function(17)between neighboring objects,under Propositions 1,2,and 3 given in(18), (19),and(20),is presented as the following form:

    This conclusion holds that the bounded objective functionO(U,V,λ)is a decreasing function during iteration.NSKFCM will eventually converge to a local minimum or a saddle point.

    D.Robustness Estimation

    An excellent clustering algorithm should be robust to reject the ubiquitous exogenous noises with the uncertain outliers[18-19].Since the objective functions of NSKFCM probably have several local optimums,it is necessary to establish robust estimator for evaluating the impacts of the critical parameters.The considered fundamental robust estimator is M-estimator,which can facilitate an optimizer for the objective function[30].

    Given a random dataset asR={xi,i=1,2,...,n},with the aid of M-estimator,the estimation parameterθis designed as

    whereFX(x)represents the distribution function ofX.The in fl uence function is the important measure of robustness,and if the estimator is bounded,the parameters uncertainties are robust.

    Based on(18)-(20),it is concluded that the uni fi ed form (i.e.,(xkj-vij))can be involved in the Gaussian kernel. Therefore,according to the NSKFCM approach,an arbitrary uncertain functionF(θ)is considered as

    The functionφ(x-θ)with(26)is bounded and continuous.It is proved that the involved M-estimator designs a bounded and continuous in fl uence function,and the impacts of parameters uncertainties are robust.

    To qualitatively evaluate the robustness against the parameters uncertainties,the impact ofρ(x-θ)is analyzed by the following numerical examples.

    The calculated results of prototype function and M-estimator are illustrated in Figs.2(a)and 2(b),respectively. Fig.2(a)shows that the maximum ofρ(x-θ)is existed and bounded.Fig.2(b)demonstrates that the parameterθfl uctuates smoothly due to limx→∞φ(x-θ)=0 and the evolution curve converges to the equivalent point 0.From (18)-(20),it indicates that the proposed method re fl ects the good robustness against the parameters uncertainties ofuij,vijandλj.

    Fig.2.Convergence effect analysis.

    E.NSKFCM Approach Steps

    The proposed NSKFCM approach is executed as the following steps.

    Algorithm 1.NSKFCM algorithm.

    Input.The distancerand the factor for controlling cluster shapeξ;

    The kernel method parameterσ;

    The stop thresholdεand fuzzy weighting exponentm;

    Output.

    The fuzzy membership matrixU,the cluster prototype vectorVand the objective valueO(U,V,λ);

    1)Determine the number of clusters by settingrandξadopting to the neighbor searching method.

    2)InitializeUandVin thei-th cluster dataset,under(6),(13) and the number of clusters.

    3)Set the bandwidth parameterσand the fuzzy weighting exponentm,with 0<ε?1.

    4)UpdateUin accordance with(18).

    5)UpdateVaccording to(19).

    6)Updateλdepending on(20).

    7)If the stopping criterion satis fi esthen stop the iteration,and output the fuzzy membership matrixUand cluster prototype vectorV.Otherwise,set asiter=iter+1 and return to 4).

    8)returnU,VandO(U,V,λ).

    IV.EXPERIMENT VERIFICATION

    The experiment section will describe the dataset classi fi cation approach which is achieved to the dynamic behavior of MEMS accelerometer and the landscape images segmentation.

    A.Experiment 1:MEMS Accelerometer Dataset

    MEMS accelerometer is a kind of sensor.The top view of the accelerometer is shown as Fig.3 The accelerometer is an ARM Cortex-M3 microcontroller.

    Fig.3.The detectable direction.

    The datasets achieved from the MEMS accelerometer are three matrices on theX/Y/Zaxes directions.The dynamics in the horizontal and vertical orientations are shown in Fig.4, which represents the movement time and acceleration,respectively.From a large number of experiments,the movement directions including horizontal,vertical,up and down,are obtained,whereas the runtime of the accelerometer is 5 minutes.

    NSKFCM is able to solve how to classify the dataset from noises and error values.A group of experiments are performed to compare NSKFCM with other methods,including AFCM[3], EnFCM[6],KFCM[14],FKFCM[15],FLICM[11].

    The parameters are set in accordance with a large number of veri fi cations,in general,given the weighting exponentm=2, the stop thresholdε=1×10-5,the bandwidth parameterσ=15,the maximum of iterationiter=200,and the number of clusters=4.In addition,for the NSKFCM, when the critical parameterrandξare set as different values, the number of clusters is different.The numerical experiments are shown as Figs.5(a)-(h).

    Comparing the experimental results of the six methods,the classi fi cation effects are re fl ected by the following aspects.

    1)AFCM employs a new metric distance whose value is less than 1 during iteration.The dataset is classi fi ed to one class, consequently,the algorithm cannot accomplish the dataset classi fi cation for the accelerometer dynamic behavior.

    Fig.4.The dynamic behavior onYaxis.

    2)EnFCM is ef fi cient,which involves the biased solution toward piecewise homogeneous labeling.Since the result is piecewise partition according to the label interval,the algorithm does not distinguish the dynamic behavior of acceleration dataset.

    3)The distance metric of KFCM adopts the space data kernel function.This factor depends on the spatial symmetry data,so that the classi fi cation is in fl uenced by more noises and outliers.

    4)The major characteristic of the FKFCM is the kernel function which has given greater weight value to the neighbor data.However,the number of clusters needs to be judged based on experience.

    5)More local context information are used to reduce the iterations for FLICM algorithm.However,the local coef fi cient of variation is unreasonable to ignore the in fl uence of spatial constraints.

    6)NSKFCM sets three groups of parameters.Given differentrandξ,the dataset are divided into different classes.The clustering results are accurate.MEMS accelerometer dataset is able to be automatically judged by the number of clusters and accurately classi fi ed the dynamic behavior of acceleration dataset on different times.

    The optimal effectiveness indicators(OEI)are proposed to analyze the robustness.It expresses the average of the correctly classi fi ed data,OEI is greater as well as the classi fi cation is more accurate.

    Table I shows the quantitative comparison indicators of the experiments on the MEMS accelerometer dataset for the accuracy of the dataset classi fi cation.

    From the measures of Table I,it indicates that NSKFCM is superior to the other compared algorithms on the aspects of OEI,the time consumption and the number of iterations. The results illustrate that the proposed NSKFCM approach possesses the optimal performance index for dataset classi fication.

    Fig.5.The dataset classi fi cation of each algorithm.

    TABLE I NUMERICAL RESULTS ON THE PRACTICAL MEMS DATASET

    B.Experiment 2:Landscape Images Segmentation

    The dataset classi fi cation is applied to CPS.In the computer vision,the 2D dataset fromX/Yaxis of accelerometer is similar to the 2D image.Therefore,these data are treated as classi fi cation for image segmentation.

    In the coming experiments,four methods are applied to three landscape images.The fi rst natural image contains mountain and cloud,with 304×208 pixels.

    The number of clusters is 4 as shown as Figs.6(b)-(d), which are the segmentation results obtained by EnFCM, KFCM and FLICM,respectively.Figs.6(e)-(f)display the NSKFCM segmentation results.The numbers of clustering are 2 and 4,whenr=0.5,ξ=0.4 andr=0.5,ξ=0.7. The image segmentation results illustrate that the proposed approach is robust and maintains the clear image edges and the more details.

    Fig.6.The segmentation result of original landscape contains mountain and cloud.

    Fig.7(a)shows the original landscape image containing cloud,plain and forest,with 308×200 pixels.Figs.7(b)-(d) demonstrate the segmentation results,the number of clusters is 4.For NSKFCM,whenr=0.6,ξ=0.3 andr=0.6,ξ=0.7, the numbers of clustering are 3 and 7.From Figs.7(e)-(f),the experiment results show that NSKFCM is able to reject noises while preserving signi fi cant image details and obtain superior performance.In particular,it is relatively independent of the type of textures.

    Fig.7.The segmentation result of original landscape contains cloud, plain and forest.

    Finally,Figs.8(a)-(f)validate the segmentation results of original landscape image including cloud,mountain,plain and tree,with 308×207 pixels.Figs.8(b)-(d)are the segmentation results obtained by EnFCM,KFCM and FLICM.Shown in Figs.8(e)-(f),the factors are modi fi ed asr=0.6,ξ=0.5 andr=0.6,ξ=0.9,the segmentation results are 4 classes and 7 classes,respectively.The clear image edges are obtained and the landscape types are segmented.

    In order to evaluate the performance of these four methods and analyze the robustness,some optimal indicators are introduced.The reconstruction rate(RR)de fi nes the image reconstructed indicator as

    Average max membership(AMM)is expressed as

    Fig.8.The segmentation result of original landscape contains cloud, mountain,plain,and tree.

    The quality(Q)of the image segmentation is described as

    The average of membership variance(AMV)is represented as

    The average of the membership difference between maximum value and current value(AMD)is shown

    Table II compares the quantitative comparison indicators of the experiments on three natural images for the accuracy of image segmentation.From the performance parameters shown in Table II,NSKFCM adopts the neighbor searching method with the dissimilarity matrix,and the adaptive distance kernel function is employed to evolve the variable weights.It does not require a preset the number of clusters,which is determined byrandξ.Furthermore,kernel function performs a nonlinear data transformation into high dimensional feature space,it increases the probability of the linear segmentation within the transformed space.To ensure the stability and consistency of the classi fi cation,the maximum peak method is used for initializing the membership degree and cluster prototype.The segmentation results of NSKFCM possesses more excellent performance,less iterations number,lower time consumption and higher ef fi ciency than the other methods.

    V.CONCLUSION

    With the aid of neighbor searching and kernel fuzzy c-means methods,the corresponding dataset classi fi cation application for CPS is discussed in this work.A novel robust dataset classi fi cation approach is investigated for accurately classifying the complex dataset of CPS.Compared with the existing literatures,the proposed method shows better adaptiveness and robustness in complex dataset classi fi cation.As a theoreticalresult,the dynamic behavior of acceleration dataset is improved and the impact of parameters uncertainties is reduced. In numerical validations,several images-induced datasets are employed,and the results show that the desired image edges are clari fi ed and texture details are effectively obtained.Based on this paper,our future work will concentrate on further improving the accuracy of the accelerometer,the high-dimension dataset classi fi cation,and the 3D segmentation for spatial points and images.

    TABLE II NUMERICAL RESULTS OF THE FOUR METHODS ON THREE LANDSCAPE IMAGES

    APPENDIX A PROOF OFPROPOSITION1

    Similarly,usinguhk,h=1,2,...,creplacesuik,and the restricted condition is satis fi ed by

    Based on the matrix theory,the Hessian matrixH(φ(U))is a diagonal matrix.Due tom>1 and 0≤uik≤1,H(φ(U)) is a symmetric positive de fi nite matrix.□

    APPENDIX B PROOF OFPROPOSITION2

    For the distance function(16),andK(·,·)as the Gaussian kernel,and with fi xedUandλ,then the cluster prototypevij(i=1,2,...,c,j=1,2...,t),which minimizes the objective functionO(U,V,λ)given in(17),is optimized by the following expression:

    Proof.The Lagrange equation is constructed depending on the objective function

    In order to prove the suf fi cient condition,the Hessian matrix is involved.Settingφ(V)=O(U,V,λ),the Hessian matrixH(φ(V))corresponding toφ(V)is shown referring to(B.1), (B.2)and(B.3)

    It is obtained thatH(φ(V))is a diagonal matrix,from(B.4), and also a symmetric positive de fi nite matrix.□

    APPENDIX C PROOF OFPROPOSITION3.

    If the adaptive distance function is given by(16),the vector of weightλ=(λ1,λ2,...,λt),which minimizes the objective function(17)underλj>0,?jand=1,λj(j=1,2,...,t)is updated according to the following expression:

    if max(λi1,λi2,...,λit)=(1,1,...,1),(C.6)is replaced by (C.7)

    Therefore,the extremum is the minimizing objective function.The vector of weightλjis updated by the following expression

    ACKNOWLEDGEMENT

    The authors would like to thank SENODIA Technologies Incorporation for providing the MEMS accelerometer sensor.

    REFERENCES

    [1]Dunn J.A graph theoretic analysis of pattern classi fi cation via Tamura’s fuzzy relation.IEEE Transactions on Systems,Man,and Cybernetics, 1974,SMC-4(3):310-313

    [2]Bezdek J C.Pattern Recognition with Fuzzy Objective Function Algorithms.New York:Springer,1981.

    [3]Wu K L,Yang M S.Alternative c-means clustering algorithms.Pattern Recognition,2002,35(10):2267-2278

    [4]Ahmed M N,Yamany S M,Mohamed N,Farag A A,Moriarty T. A modi fi ed fuzzy c-means algorithm for bias fi eld estimation and segmentation of MRI data.IEEE Transactions on Medical Imaging, 2002,21(3):193-199

    [5]Chen S C,Zhang D Q.Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure.IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics, 2004,34(4):1907-1916

    [6]Szilagyi L,Benyo Z,Szilagyi S M,Adam H S.MR brain image segmentation using an enhanced fuzzy c-means algorithm.In:Proceedings of the 25th Annual International Conference on Engineering in Medicine and Biology Society.Cancun,Mexico:IEEE,2003.724-726

    [7]Li C F,Liu L Z,Jiang W L.Objective function of semi-supervised fuzzy c-means clustering algorithm.In:Proceedings of the 6th IEEE International Conference on Industrial Informatics.Daejeon,Korea: IEEE,2008.737-742

    [8]Huang S B,Cheng Y,Wan Q S,Liu G F,Shen L S.A hierarchical multi-relational clustering algorithm based on IDEF1x.Acta Automatica Sinica,2014,40(8):1740-1753(in Chinese)

    [9]Wang L,Gao X W,Wang W,Wang Q.Order production scheduling method based on subspace clustering mixed model and time-section ant colony algorithm.Acta Automatica Sinica,2014,40(9):1991-1997(in Chinese)

    [10]Ferreira M R,De Carvalho F D A T.Kernel fuzzy c-means with automatic variable weighting.Fuzzy Sets and Systems,2014,237:1-46

    [11]Krinidis S,Chatzis V.A robust fuzzy local information c-means clustering algorithm.IEEE Transactions on Image Processing,2010,19(5): 1328-1337

    [12]Krinidis S,Krinidis M.Generalised fuzzy local information c-means clustering algorithm.Electronics Letters,2012,48(23):1468-1470

    [13]Gong M G,Liang Y,Shi J,Ma W P,Ma J J.Fuzzy c-means clustering with local information and kernel metric for image segmentation.IEEE Transactions on Image Processing,2013,22(2):573-584

    [14]Chiranjeevi P,Sengupta S.Detection of moving objects using multichannel kernel fuzzy correlogram based background subtraction.IEEE Transactions on Cybernetics,2014,44(6):870-881

    [15]Alipour S,Shanbehzadeh J.Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method.Machine Vision and Applications,2014,25(6):1469-1488

    [16]Lu C H,Xiao S Q,Gu X F.Improving fuzzy c-means clustering algorithm based on a density-induced distance measure.The Journal of Engineering,2014,1(1):1-3

    [17]Qiu C Y,Xiao J,Han L,Naveed Iqbal M.Enhanced interval type-2 fuzzy c-means algorithm with improved initial center.Pattern Recognition Letters,2014,38:86-92

    [18]Cand′es E J,Li X D,Ma Y,Wright J.Robust principal component analysis.Journal of the ACM(JACM),2011,58(3):Article No.11

    [19]Yang M S,Lai C Y,Lin C Y.A robust EM clustering algorithm for Gaussian mixture models.Pattern Recognition,2012,45(11):3950-3961

    [20]Elhamifar E,Vidal R.Robust classi fi cation using structured sparse representation.In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Providence,RI,USA:IEEE, 2011.1873-1879

    [21]Xie X M,Wang C M,Zhang A J,Meng X F.A robust level set method based on local statistical information for noisy image segmentation.Optik-International Journal for Light and Electron Optics,2014,125(9): 2199-2204

    [22]Filippone M,Camastra F,Masulli F,Rovetta S.A survey of kernel and spectral methods for clustering.Pattern Recognition,2008,41(1): 176-190

    [23]Zhang J P,Chen F C,Li S M,Liu L X.Data stream clustering algorithm based on density and af fi nity propagation techniques.Acta Automatica Sinica,2014,40(2):277-288(in Chinese)

    [24]Kantardzic M.Data Mining:Concepts,Models,Methods,and Algorithms.Second Edition.New York:John Wiley&Sons,2011.249-259

    [25]Anderson M J,Ellingsen K E,McArdle B H.Multivariate dispersion as a measure of beta diversity.Ecology Letters,2006,9(6):683-693

    [26]AndersonMJ,Santana-GarconJ.Measuresofprecisionfor dissimilarity-based multivariate analysis of ecological communities.Ecology Letters,2015,18(1):66-73

    [27]Cormen T H,Leiserson C E,Rivest R L,Stein C.Introduction to Algorithms.Cambridge:MIT Press,2001.1-7

    [28]Qian J B,Dong Y S.A clustering algorithm based on broad fi rst searching neighbors.Journal of Southeast University(Natural Science Edition),2004,34(1):109-112(in Chinese)

    [29]Bezdek J C,Hathaway R J,Sabin M J,Tucker W T.Convergence theory for fuzzy c-means:counterexamples and repairs.IEEE Transactions on Systems,Man,and Cybernetics,1987,17(5):873-877

    [30]Shahriari H,Ahmadi O.Robust estimation of the mean vector for high-dimensional data set using robust clustering.Journal of Applied Statistics,2015,42(6):1183-1205

    [31]Kinoshita N,Endo Y.EM-based clustering algorithm for uncertain data.Knowledge and Systems Engineering,2014,245:69-81

    [32]Gao J,Wang S T.Fuzzy clustering algorithm with ranking features and identifying noise simultaneously.Acta Automatica Sinica,2009,35(2): 145-153(in Chinese)

    Li Liu Ph.D.candidate at the School of Mechatronic Engineering and Automation,Shanghai University, China.She received the B.Sc.degree from Qufu Normal University,China in 2004.She received the M.Sc.degree from Dalian Maritime University, China in 2007.She is also a lecturer at the School of Information Science and Electrical Engineering, Ludong University,China.

    Her research interests include machine vision and image processing.

    His research interests include cooperative control of multiagents,formation fl ight control of unmanned aerial vehicles,image processing and machine vision,and wireless networked control systems.Corresponding author of this paper.

    Wenju Zhou received the Ph.D.degree from Shanghai University,China,in 2014.He received the B.Sc. degree and M.Sc.degree from Shandong Normal University,China,in 1990 and 2005,respectively. He is currently a robotic engineer at the School of Computer Science and Electronic Engineering, University of Essex UK,and the associate professor at the School of Information and Electronic Engineering,Ludong University,China.

    His research interests include intelligent control, machine vision,and the industry applications of the automation equipment.

    Xiaofeng Zhang received the Ph.D.degree from the School of Computer Science and Technology, Shandong University,China,in 2014.He received the M.Sc.degree from the School of Computer and Communication,Lanzhou University of Technology, China in 2005.Now he is a lecturer at the School of Information and Electrical Engineering,Ludong University,China.

    His research interests include medical image segmentation,pattern recognition,etc.

    Minrui Fei Professor at Shanghai University,vicechairman of Chinese Association for System Simulation,and standing director of China Instrument& Control Society.He received the B.Sc.,M.Sc.and Ph.D.degrees all from Shanghai University,China, in 1984,1992,and 1997,respectively.

    His research interests include networked advanced control and system implementation,distributed and fi eldbus control systems,key technology and applications in multi- fi eldbus conversion and performance evaluation,as well as the application of virtual reality and digital simulation in industry.

    Xiaowei Tu received the Ph.D.degree from University of Technology of Compiegne(UTC),France in 1987.He worked as professor in UTC,and later he became a researcher in French National Research Center(CNRS)in early 1990s.Since 1997,he has been working also as a researcher and R&D project manager in different Canadian research institutes.He is currently a professor at the School of Mechatronic Engineering and Automation,Shanghai University, China.

    His research interests include robotic vision,industrial inspection,and industrial automation.

    g

    the Ph.D.degree in intelligent system and control from Queen’s University Belfast, UK in 2012,the M.Sc.degree in control theory and control engineering from Shanghai University, China in 2009,and the B.Sc.degree in electronic engineering from Hubei University of Technology, China,in 2004.He is currently a lecturer at the School of Mechatronic Engineering and Automation, Shanghai University,China.

    Manuscript received October 10,2014;accepted April 28,2015.This work was supported by National Natural Science Foundation of China (61403244,61304031),Key Project of Science and Technology Commission of Shanghai Municipality(14JC1402200),the Shanghai Municipal Commission of Economy and Informatization under Shanghai Industry-University-Research Collaboration(CXY-2013-71),the Science and Technology Commission of Shanghai Municipality under‘Yangfan Program’(14YF1408600), National Key Scienti fi c Instrument and Equipment Development Project (2012YQ15008703),and Innovation Program of Shanghai Municipal Education Commission(14YZ007).Recommended by Associate Editor Jiming Chen.

    :Li Liu,Aolei Yang,Wenju Zhou,Xiaofeng Zhang,Minrui Fei,Xiaowei Tu.Robust dataset classi fi cation approach based on neighbor searching and kernel fuzzy C-means.IEEE/CAAJournalofAutomaticaSinica, 2015,2(3):235-247

    Li Liu,Aolei Yang,Minrui Fei,and Xiaowei Tu are with Shanghai Key Laboratory of Power Station Automation Technology,School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200072,China (e-mail:liulildu@163.com;aolei.yang@gmail.com;mrfei888@x263.net;xiaoweitu@hotmail.com).

    Wenju Zhou is with the School of Computer Science and Electronic Engineering,University of Essex,Colchester CO4 3SQ,UK(e-mail: wzhoua@essex.ac.uk).

    Xiaofeng Zhang is with the School of Information Science and Electrical Engineering,Ludong University,Yantai 264025,China(e-mail: iamzxf@126.com).

    免费av观看视频| 亚洲国产欧美人成| 男女啪啪激烈高潮av片| 国产黄色免费在线视频| 91久久精品电影网| 亚洲国产高清在线一区二区三| 男的添女的下面高潮视频| 夫妻性生交免费视频一级片| 国产成年人精品一区二区| 国产精品99久久久久久久久| 精品国产一区二区三区久久久樱花 | 波野结衣二区三区在线| 日本-黄色视频高清免费观看| 男女啪啪激烈高潮av片| 日本wwww免费看| 日韩强制内射视频| 国内精品宾馆在线| 九九爱精品视频在线观看| 日日摸夜夜添夜夜添av毛片| 建设人人有责人人尽责人人享有的 | 国产综合懂色| 亚洲三级黄色毛片| 人妻制服诱惑在线中文字幕| 美女脱内裤让男人舔精品视频| 亚洲精品日韩av片在线观看| 男女边吃奶边做爰视频| 综合色丁香网| 最近中文字幕高清免费大全6| 能在线免费观看的黄片| 日韩欧美国产在线观看| 久久亚洲国产成人精品v| 亚洲经典国产精华液单| 国产精品久久久久久久电影| 国产亚洲5aaaaa淫片| 午夜日本视频在线| 黄色配什么色好看| 老司机影院毛片| 十八禁网站网址无遮挡 | 中文字幕久久专区| 亚洲av在线观看美女高潮| 超碰97精品在线观看| 久久久久精品性色| 亚洲婷婷狠狠爱综合网| 国产亚洲午夜精品一区二区久久 | 婷婷色麻豆天堂久久| 全区人妻精品视频| 欧美激情久久久久久爽电影| 91精品一卡2卡3卡4卡| 国产一区有黄有色的免费视频 | 成人综合一区亚洲| 国产v大片淫在线免费观看| 精品一区二区三区视频在线| 午夜老司机福利剧场| 国精品久久久久久国模美| 欧美性猛交╳xxx乱大交人| 久久人人爽人人爽人人片va| 最新中文字幕久久久久| 精品熟女少妇av免费看| 国产男女超爽视频在线观看| www.av在线官网国产| 亚洲欧美日韩东京热| 国产精品不卡视频一区二区| 亚洲三级黄色毛片| 大又大粗又爽又黄少妇毛片口| 极品少妇高潮喷水抽搐| 狂野欧美白嫩少妇大欣赏| 能在线免费看毛片的网站| 亚洲aⅴ乱码一区二区在线播放| 99九九线精品视频在线观看视频| 久久久精品94久久精品| 国产精品三级大全| 亚洲精品色激情综合| 丰满人妻一区二区三区视频av| 日日撸夜夜添| 九九久久精品国产亚洲av麻豆| 欧美日韩精品成人综合77777| 国产精品福利在线免费观看| 亚洲av国产av综合av卡| 天天躁夜夜躁狠狠久久av| av.在线天堂| 国产不卡一卡二| 国产成人免费观看mmmm| 久久久久久久午夜电影| 91在线精品国自产拍蜜月| 国语对白做爰xxxⅹ性视频网站| 免费观看的影片在线观看| 欧美xxxx性猛交bbbb| 成年免费大片在线观看| 欧美丝袜亚洲另类| 日韩 亚洲 欧美在线| 午夜激情福利司机影院| 97精品久久久久久久久久精品| 51国产日韩欧美| 国产麻豆成人av免费视频| 免费黄色在线免费观看| 乱码一卡2卡4卡精品| 黄色一级大片看看| 久久99蜜桃精品久久| 偷拍熟女少妇极品色| 国产黄色视频一区二区在线观看| 91精品国产九色| 免费观看精品视频网站| 亚洲欧美日韩东京热| 神马国产精品三级电影在线观看| 国产一区亚洲一区在线观看| 国精品久久久久久国模美| 久久人人爽人人爽人人片va| 69av精品久久久久久| 97精品久久久久久久久久精品| 青春草视频在线免费观看| av天堂中文字幕网| 少妇人妻一区二区三区视频| 一个人免费在线观看电影| 美女高潮的动态| 亚洲,欧美,日韩| 久久久午夜欧美精品| 又爽又黄a免费视频| av专区在线播放| 男女啪啪激烈高潮av片| 淫秽高清视频在线观看| 国产乱来视频区| 高清视频免费观看一区二区 | 国产视频内射| 伊人久久精品亚洲午夜| 欧美bdsm另类| 国产高清有码在线观看视频| 亚洲人成网站在线播| 网址你懂的国产日韩在线| av播播在线观看一区| 91在线精品国自产拍蜜月| 欧美成人午夜免费资源| 亚洲成人av在线免费| 我的女老师完整版在线观看| 婷婷色综合www| 成人美女网站在线观看视频| 国产爱豆传媒在线观看| 嫩草影院精品99| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 黄片wwwwww| 日韩欧美精品免费久久| 国产一区有黄有色的免费视频 | 狂野欧美激情性xxxx在线观看| 精品人妻熟女av久视频| 免费人成在线观看视频色| 永久网站在线| 在线免费观看的www视频| 精品久久久精品久久久| 久久精品国产亚洲av天美| 国产成人精品福利久久| 3wmmmm亚洲av在线观看| 午夜亚洲福利在线播放| 干丝袜人妻中文字幕| 亚洲国产日韩欧美精品在线观看| 亚洲精品亚洲一区二区| 亚洲国产欧美人成| 国产麻豆成人av免费视频| 国产在线男女| 男女边摸边吃奶| 色综合站精品国产| 久99久视频精品免费| 看黄色毛片网站| 边亲边吃奶的免费视频| 日韩制服骚丝袜av| 国产综合精华液| av女优亚洲男人天堂| 乱码一卡2卡4卡精品| 三级经典国产精品| 国产 一区精品| 久久久精品欧美日韩精品| 国产精品久久久久久精品电影小说 | 久久久亚洲精品成人影院| 亚洲av免费在线观看| 一级毛片我不卡| 精品亚洲乱码少妇综合久久| 国产精品.久久久| 黄片wwwwww| 国产精品熟女久久久久浪| 99久久精品一区二区三区| 国产女主播在线喷水免费视频网站 | 欧美丝袜亚洲另类| 国产精品一二三区在线看| 成人二区视频| 久久久久免费精品人妻一区二区| 国产乱人视频| 午夜激情久久久久久久| 亚洲四区av| 成人美女网站在线观看视频| 全区人妻精品视频| 一级毛片 在线播放| 欧美xxxx黑人xx丫x性爽| 直男gayav资源| 国产精品一区二区在线观看99 | av卡一久久| 特大巨黑吊av在线直播| 精品少妇黑人巨大在线播放| 亚洲国产精品sss在线观看| 天美传媒精品一区二区| 成人二区视频| 精品人妻偷拍中文字幕| 日韩欧美精品免费久久| 国内精品一区二区在线观看| 成人特级av手机在线观看| 高清毛片免费看| 亚洲激情五月婷婷啪啪| 午夜精品在线福利| 白带黄色成豆腐渣| 最近视频中文字幕2019在线8| 别揉我奶头 嗯啊视频| 亚洲精品乱码久久久久久按摩| 91精品伊人久久大香线蕉| 久久这里有精品视频免费| 美女主播在线视频| 青春草国产在线视频| 国产av码专区亚洲av| 最近视频中文字幕2019在线8| 极品少妇高潮喷水抽搐| 蜜臀久久99精品久久宅男| 国语对白做爰xxxⅹ性视频网站| 91精品一卡2卡3卡4卡| 日韩大片免费观看网站| 欧美高清性xxxxhd video| 男女边摸边吃奶| videossex国产| 欧美高清成人免费视频www| www.色视频.com| 禁无遮挡网站| 黄色欧美视频在线观看| 国产真实伦视频高清在线观看| 免费看美女性在线毛片视频| 狠狠精品人妻久久久久久综合| 欧美精品一区二区大全| 18禁裸乳无遮挡免费网站照片| 日日摸夜夜添夜夜添av毛片| 日韩三级伦理在线观看| 亚洲国产精品国产精品| 久久99蜜桃精品久久| 男人和女人高潮做爰伦理| 日本熟妇午夜| 丰满乱子伦码专区| 联通29元200g的流量卡| 国产精品国产三级国产av玫瑰| 亚洲精品456在线播放app| 国产免费一级a男人的天堂| 69av精品久久久久久| 欧美变态另类bdsm刘玥| xxx大片免费视频| 国产91av在线免费观看| 91av网一区二区| 日韩 亚洲 欧美在线| 精品国产一区二区三区久久久樱花 | 成人毛片a级毛片在线播放| 日日摸夜夜添夜夜爱| 人人妻人人看人人澡| 久久久久久久久大av| 99热这里只有是精品在线观看| 大话2 男鬼变身卡| 一本久久精品| 大陆偷拍与自拍| 嫩草影院新地址| 少妇的逼水好多| 成人国产麻豆网| 成年免费大片在线观看| 国产黄色免费在线视频| 乱系列少妇在线播放| 插逼视频在线观看| av卡一久久| 高清视频免费观看一区二区 | 人妻制服诱惑在线中文字幕| 国产综合精华液| 秋霞伦理黄片| 天堂√8在线中文| av黄色大香蕉| www.色视频.com| 嘟嘟电影网在线观看| 久久精品人妻少妇| 成人性生交大片免费视频hd| 国产免费一级a男人的天堂| 大片免费播放器 马上看| 欧美人与善性xxx| 夫妻午夜视频| 日韩一区二区视频免费看| 国产成人91sexporn| 一级av片app| 男女边摸边吃奶| 2021少妇久久久久久久久久久| 三级经典国产精品| 午夜福利视频精品| 免费无遮挡裸体视频| 欧美日韩视频高清一区二区三区二| 秋霞伦理黄片| 国产亚洲午夜精品一区二区久久 | 亚洲av日韩在线播放| 国产精品久久视频播放| 亚洲av二区三区四区| 一个人免费在线观看电影| 少妇的逼水好多| 一级片'在线观看视频| av黄色大香蕉| 亚洲av男天堂| 国产在视频线在精品| 男人舔女人下体高潮全视频| 欧美成人精品欧美一级黄| 2022亚洲国产成人精品| 99热6这里只有精品| 午夜福利网站1000一区二区三区| 男人和女人高潮做爰伦理| 久久久久久久久久人人人人人人| 一个人观看的视频www高清免费观看| 国产午夜精品论理片| 国国产精品蜜臀av免费| 成年女人在线观看亚洲视频 | 男人爽女人下面视频在线观看| 国产av码专区亚洲av| av卡一久久| 久久鲁丝午夜福利片| 乱人视频在线观看| 日韩在线高清观看一区二区三区| 激情 狠狠 欧美| 国产欧美日韩精品一区二区| 麻豆国产97在线/欧美| 国产日韩欧美在线精品| 欧美精品国产亚洲| 午夜精品一区二区三区免费看| 我的女老师完整版在线观看| 国产色爽女视频免费观看| 国产伦精品一区二区三区视频9| 欧美 日韩 精品 国产| 久久99蜜桃精品久久| 免费在线观看成人毛片| 神马国产精品三级电影在线观看| 人妻系列 视频| 国产永久视频网站| 免费黄色在线免费观看| 日产精品乱码卡一卡2卡三| 国产黄色视频一区二区在线观看| 亚洲精品自拍成人| 51国产日韩欧美| 久久热精品热| 久久精品国产亚洲网站| 国产亚洲5aaaaa淫片| 一级黄片播放器| 中文字幕av成人在线电影| 简卡轻食公司| 神马国产精品三级电影在线观看| 韩国高清视频一区二区三区| 美女大奶头视频| 久久精品久久久久久久性| 亚洲真实伦在线观看| 狂野欧美白嫩少妇大欣赏| 国产永久视频网站| 久久人人爽人人片av| 亚洲av中文av极速乱| 狂野欧美白嫩少妇大欣赏| 久久久亚洲精品成人影院| 午夜爱爱视频在线播放| 日韩欧美 国产精品| 精品欧美国产一区二区三| 大话2 男鬼变身卡| 国产精品美女特级片免费视频播放器| 亚洲av中文av极速乱| 三级毛片av免费| 亚洲激情五月婷婷啪啪| 韩国高清视频一区二区三区| 哪个播放器可以免费观看大片| 国产单亲对白刺激| 男人舔女人下体高潮全视频| 伊人久久国产一区二区| 日韩大片免费观看网站| 大又大粗又爽又黄少妇毛片口| 久久人人爽人人爽人人片va| 午夜视频国产福利| av在线天堂中文字幕| 国产亚洲精品av在线| 噜噜噜噜噜久久久久久91| 欧美高清成人免费视频www| 舔av片在线| 日韩成人伦理影院| 日本免费a在线| 天天一区二区日本电影三级| 卡戴珊不雅视频在线播放| 看免费成人av毛片| 毛片一级片免费看久久久久| 三级男女做爰猛烈吃奶摸视频| 丰满少妇做爰视频| 寂寞人妻少妇视频99o| 男人和女人高潮做爰伦理| 永久免费av网站大全| 简卡轻食公司| 自拍偷自拍亚洲精品老妇| 美女高潮的动态| 哪个播放器可以免费观看大片| 国产精品蜜桃在线观看| 亚洲av成人精品一二三区| 日日啪夜夜爽| 午夜激情久久久久久久| 国产精品人妻久久久久久| 美女xxoo啪啪120秒动态图| 亚洲,欧美,日韩| 久久精品久久精品一区二区三区| av福利片在线观看| 久久久色成人| 亚洲精品乱码久久久久久按摩| a级毛色黄片| 久久国产乱子免费精品| 免费黄网站久久成人精品| 久久久久久伊人网av| 久久久久久久亚洲中文字幕| 有码 亚洲区| kizo精华| 国产黄色小视频在线观看| 看免费成人av毛片| 亚洲va在线va天堂va国产| 国产有黄有色有爽视频| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜添av毛片| 亚洲欧美日韩卡通动漫| 亚洲色图av天堂| 偷拍熟女少妇极品色| 亚洲av中文字字幕乱码综合| 日本av手机在线免费观看| 国内精品一区二区在线观看| 亚洲va在线va天堂va国产| 麻豆久久精品国产亚洲av| 国产精品一区www在线观看| 午夜福利在线在线| 欧美极品一区二区三区四区| 久久久久久伊人网av| 欧美一级a爱片免费观看看| 欧美另类一区| 日韩,欧美,国产一区二区三区| 91久久精品国产一区二区成人| .国产精品久久| 亚洲av免费高清在线观看| 中文字幕av成人在线电影| 欧美丝袜亚洲另类| 亚洲欧洲国产日韩| 黄色欧美视频在线观看| 成人漫画全彩无遮挡| 国产午夜精品论理片| 搡老乐熟女国产| 亚洲av中文字字幕乱码综合| 又粗又硬又长又爽又黄的视频| 男女那种视频在线观看| 午夜精品在线福利| 女人久久www免费人成看片| 在线观看美女被高潮喷水网站| 波多野结衣巨乳人妻| 床上黄色一级片| 最近最新中文字幕大全电影3| 国产成人91sexporn| 狠狠精品人妻久久久久久综合| 国产一区二区三区av在线| 美女高潮的动态| 只有这里有精品99| 日韩 亚洲 欧美在线| 成人毛片60女人毛片免费| 婷婷色综合www| 久久久久久久久久久免费av| 欧美性感艳星| 亚洲av中文字字幕乱码综合| 国产精品人妻久久久影院| 日韩欧美国产在线观看| 国产精品av视频在线免费观看| 晚上一个人看的免费电影| 日本与韩国留学比较| 51国产日韩欧美| 国产黄a三级三级三级人| 国产日韩欧美在线精品| 国产精品精品国产色婷婷| 99久久九九国产精品国产免费| 男插女下体视频免费在线播放| 男女啪啪激烈高潮av片| 欧美极品一区二区三区四区| 亚洲国产欧美在线一区| 亚洲性久久影院| 亚洲高清免费不卡视频| 国产爱豆传媒在线观看| 国产精品蜜桃在线观看| 国产一区亚洲一区在线观看| 久久久久免费精品人妻一区二区| 欧美xxxx黑人xx丫x性爽| 成人毛片a级毛片在线播放| 干丝袜人妻中文字幕| 亚洲国产精品专区欧美| 天堂av国产一区二区熟女人妻| 超碰av人人做人人爽久久| 在线a可以看的网站| 精品人妻熟女av久视频| 26uuu在线亚洲综合色| 国产成人a区在线观看| 嫩草影院精品99| h日本视频在线播放| 在线免费十八禁| 久久国产乱子免费精品| 一级爰片在线观看| 欧美日韩视频高清一区二区三区二| 国产男女超爽视频在线观看| 三级毛片av免费| 最新中文字幕久久久久| 成人欧美大片| 一二三四中文在线观看免费高清| 午夜福利网站1000一区二区三区| 久热久热在线精品观看| 国产精品人妻久久久影院| 久久久久免费精品人妻一区二区| 一级毛片我不卡| 日韩精品青青久久久久久| 熟妇人妻不卡中文字幕| 亚洲内射少妇av| 日韩,欧美,国产一区二区三区| 国产亚洲精品久久久com| 亚洲精品久久久久久婷婷小说| 熟妇人妻不卡中文字幕| 国国产精品蜜臀av免费| 成人亚洲精品一区在线观看 | 又粗又硬又长又爽又黄的视频| 欧美激情国产日韩精品一区| 国产亚洲精品久久久com| av播播在线观看一区| 乱码一卡2卡4卡精品| 嫩草影院精品99| 色网站视频免费| 国产麻豆成人av免费视频| 国内揄拍国产精品人妻在线| 成人欧美大片| 国产成人a∨麻豆精品| 国产永久视频网站| 欧美成人午夜免费资源| 成人特级av手机在线观看| 一个人看的www免费观看视频| 国产大屁股一区二区在线视频| 日韩三级伦理在线观看| 国产精品99久久久久久久久| 性色avwww在线观看| 国产亚洲5aaaaa淫片| 国产大屁股一区二区在线视频| 听说在线观看完整版免费高清| 美女脱内裤让男人舔精品视频| 久久久久性生活片| 日韩大片免费观看网站| 久久久久久久久久成人| 在现免费观看毛片| 久久精品国产自在天天线| 成年女人在线观看亚洲视频 | 亚洲av在线观看美女高潮| 精品一区在线观看国产| 九九在线视频观看精品| 免费看av在线观看网站| 午夜激情久久久久久久| 国产精品一区二区三区四区免费观看| 亚洲成人久久爱视频| 亚洲国产av新网站| 日韩在线高清观看一区二区三区| 亚洲综合精品二区| 深夜a级毛片| 国产探花在线观看一区二区| 少妇猛男粗大的猛烈进出视频 | 嫩草影院精品99| 在线天堂最新版资源| 亚洲成人一二三区av| 又粗又硬又长又爽又黄的视频| www.av在线官网国产| 日韩 亚洲 欧美在线| 国产成人91sexporn| 国产成人一区二区在线| 国产精品嫩草影院av在线观看| 国产一区二区在线观看日韩| 80岁老熟妇乱子伦牲交| 精品久久久精品久久久| 精品人妻视频免费看| 国产免费又黄又爽又色| 两个人视频免费观看高清| 国产永久视频网站| 精品人妻一区二区三区麻豆| 在线观看美女被高潮喷水网站| av在线蜜桃| 久久久久久久国产电影| 狂野欧美激情性xxxx在线观看| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久久久免| 夫妻午夜视频| 精品国产露脸久久av麻豆 | 久久久久久九九精品二区国产| av线在线观看网站| 国产综合精华液| 一区二区三区高清视频在线| 九九爱精品视频在线观看| 最近视频中文字幕2019在线8| 午夜福利在线观看免费完整高清在| 亚洲国产成人一精品久久久| 91久久精品国产一区二区三区| 国产精品久久久久久久电影| 特大巨黑吊av在线直播| 精品一区在线观看国产| 免费观看在线日韩| 欧美日韩亚洲高清精品| 国产精品爽爽va在线观看网站| 欧美三级亚洲精品| 精品久久久久久成人av| 亚洲av电影在线观看一区二区三区 | 亚洲精品乱码久久久久久按摩| 在线观看人妻少妇| 成人午夜高清在线视频| 午夜福利在线在线| 欧美97在线视频| 欧美xxxx黑人xx丫x性爽| 深夜a级毛片| 赤兔流量卡办理| 一级毛片我不卡| 婷婷色综合大香蕉| 18+在线观看网站| 好男人在线观看高清免费视频| 精品久久久久久电影网| av在线亚洲专区|