• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Water Supply Networks as Cyber-physical Systems and Controllability Analysis

    2015-08-09 02:00:39YongsongWeiandShaoyuanLi
    IEEE/CAA Journal of Automatica Sinica 2015年3期
    關(guān)鍵詞:底子爹爹有錢人

    Yongsong Wei and Shaoyuan Li

    Water Supply Networks as Cyber-physical Systems and Controllability Analysis

    Yongsong Wei and Shaoyuan Li

    —Cyber-physical systems(CPS)is a system of systems which consists of many subsystems that can stand alone in an individual manner and can be taken as a typical complex network. CPS can be applied in the critical infrastructures such as water supply networks,energy supply systems,and so on.In this paper, we analyze the structure of modern city water supply networks from the view of CPS theory.we use complex network theory to build an undirected and unweighted complex network model for the water supply networks to investigate the structural properties, and present the structure of the water supply networks and detect communities by a spectral analysis of the Laplacian matrix.Then, we analyze the structure and controllability of water supply networks by the structural controllability method.The results show the feasibility and effectiveness of the proposed complex network model.

    Index Terms—Cyber-physical system(CPS),water supply networks,spectral information,controllability

    I.INTRODUCTION

    Nowadays,certain infrastructures,such as water supply system,energy supply system,and transportation system,etc are consisted as the keystone and critical infrastructures of society development.The quality of the normal city life depends on these critical infrastructures.Critical infrastructures are increasing in complexity,because of the successful application of information and communication technologies.The current water supply system is a large and distributed network,and it is expanding rapidly to meet the increasing demands from industry and normal life in the bigger cities.These integrated systems are not only traditional embedded systems but also cyber-physical systems(CPSs).CPSs mainly take into account the interaction between the physical elements in the real world and the computing elements in the cyber space[1-4]. As described in[1],there are three key characteristics of CPSs.Firstly,the CPSs is a system of systems which consists of many subsystems that can stand alone in an individual manner.Secondly,there are novel interactions among control,communication,and computation.Last,the computing element in the cyber world should be tightly coupled with the physical systems in the real world.These three key characteristics bring a lot of challenges.Few of the challenges are robustness,safety and security[1,3].

    The intrinsic nature of CPSs can be leveraged by exploiting the physical information on location and timing of the system[1].This paper focuses on the subsystems’interrelationship such as connectivity and controllability.The subsystems in the CPS can be taken as nodes in a complex network. The communications between subsystems can be taken as edges in a complex network.The CPS can be abstracted as a complex network system from the view of the data-accessing perspective of the subsystems.The paper[2]considers vehicular ad hoc networking(VANET)connectivity of platoon-based vehicular cyber-physical systems(VCPSs)where all vehicles drive in platoon-based patterns,which facilitate better traf fi c performance as well as information services.The number of the subsystems in the paper[2]is small and the connectivity condition is simple.In the complex network area,there are lots of results in connectivity and controllability.Capocci et al.[5]proposes a correlation in the spectral methods to detect community in complex network.Diao et al.[6]proposes an approach that could create boundaries for district metered areas automatically on the basis of the community structure of water distribution systems.Sheng et al.[7]improves the Capocci’s method by proposing addimensional eigenvector space.This paper uses complex network theory to analyze the complex network system modeling the water supply networks, and combine Capocci’s method and Sheng’s algorithm to detect communities in different states in a complex network system.

    As it is well known,the CPSs grand challenges are in lots of areas such as biomedical and healthcare systems,nextgeneration air transportation systems and smart grid and renewable energy which are all critical areas.The controllability are the keys to these CPSs.For a classical CPS,it can be abstracted as a complex network system.As is known to all, it is hard to fi nd a suitable way to design controllers for a complex network system[8-9].In the year 2011,Liu et al.[10]developed analytical tools to study the controllability of an arbitrary complex directed network by identifying the set of driver nodes with time-dependent control that can guide the system’s entire dynamics.Liu also found that the number of driver nodes is determined mainly by the network’s degree distribution.Yuan et al.[11]proposes a framework of exact controllability as an alternative to the structural controllability framework,which offers a more general tool to treat the con-trollability of complex networks with arbitrary structures and link weights.In this paper we take a water supply network as an undirected and unweighted complex network and fi nd out driver nodes by Yuan’s method.

    The remainder of this paper is organized as follows.Section II analyzes a cyber-physical system structure for the water supply networks and proposes a complex network model. Section III introduces a spectral analysis method to detect the communities in the complex network,then use this method to detect the water supply networks.Section IV discusses the structural controllability of the water supply networks and design controllers for a complex network system.Section V discusses the limitation and improvement of this research.

    II.PROBLEM STATEMENT

    The area of the Shanghai water supply is more than 190 square kilometres.The length of the pipe network is 2848 kilometres,and the pipe diameter is between 500mm and 2000mm.Main pipes are directly connected to the water distribution system.The water of the Shanghai city is supplied by four water supply companies which are South City Water Supply Company,North City Water Supply Company,Pudong Veolia Water Supply Company and Minhang Water Supply Company.These four companies contain 14 water plants and 51 boostering pumps which can supply 6 million tons water per-day for the whole city.The real water supply network is very complicated as in Fig.1,which is the Shanghai water supply system made up with pipes having diameter over 800mm.In Fig.1,dots represent the main pumps and water plants in the water supply system.

    Fig.1.The geographic information system of Shanghai water supply networks.

    The city water supply networks contain water plants,pump stations,reservoirs and pipes shown in Fig.2.In the water plant,the raw water undergoes a process of pretreatment, dosing,precipitation, fi ltration and advanced treatment,then the pure water is stored in the reservoir of the water plants. The high power pump stations transport the pure water to the water supply network.In the network,there are lots of pump stations which can guarantee the pipe pressure at a suitable level which can supply water to every customer,considering the loss of water head.

    Supervisory control and data acquisition(SCADA)systems are widely used in the modern water supply system.Fig.3 shows the interactions between distributed areas and SCADA systems.Based on the information from the SCADA systems, we can get the node model and the predictive instantaneous demand,then the optimal setpoints can be sent to the distributed areas via SCADA systems.

    Fig.2.Distributed network of water supply networks.

    Fig.3.SCADA information structure of water supply networks.

    A water supply system is a critical infrastructure which can be modeled as a complex network of pipelines CPS.The distribution center contains an embedded computer that coordinates directly with physical components such as actuators via actuating signals to maintain control over the pipeline shown in Fig.4.An embedded computer comprises long-term control and automation control subsystems.The long-term control is used to communicate with neighboring distribution areas and coordinate the distributed setpoints of water.There areNdistributed areas in the water supply network.

    Fig.4.Interactions with in pipelines network with cooperating distributed areas.

    In the complex network theory,we use lots of symbols from the graph theory to describe a complex network.LetG=(V,E)be an undirected graph withnnodes andmundirected edges.

    N={1,2,...,n}denotes the sets of all vertices andL={l1,l2,...,lm}denotes the sets of all edges.For an edgelconnecting nodeiand nodej,we de fi ne a column vectoral∈Rn,whereali=1,alj=1,and other elements are zeros. We can get an adjacency matrixAwhich is used to illustrate the connection of a graph.Generally,there are lots of nodes or subsystems in the CPS,we take those nodes or subsystems as nodes in a complex network.

    According to these de fi nitions,we can get a complex network system from a water supply system which is a part of water supply networks in the Shanghai city shown in Fig.5. There are 198 nodes and 298 edges in Fig.2.The nodes which have the same color has the same degree.Actually,in the real water supply system,most links are bilateral except a small number of inlet branches.In order to simplify the network,all bilateral links are taken as unilateral shown in Fig.5,which is the ForceAtlas2 layout graph[12].Each node has a unique ID number.

    In order to get more topological information,we need the Laplacian matrix of the complex network.Laplacian matrixLis de fi ned as follows:

    whereAis the adjacency matrix of the topology which can be written as

    Dis the diagonal matrix which can be written as

    Fig.5.The complex network of pipeline CPSs.

    diis the degree of the nodeiwhich means the connection from nodeito other nodes.

    The spectrum of Laplacian matrix contains much topological information of the complex network.We de fi ne the eigenvalues of the Laplacian matrix asλ(L)=λ1,λ2,...,λn. Without loss the generality,we assumeλ1≤λ2≤λ3≤···≤λn.Then we can get some properties of the Laplacian matrix[7].

    1)Lhas only real eigenvalues;

    2)λ1=0 andλ2≥0 if and only if the graph is full connected;

    3)λ1=0 and its corresponding eigenvector is constant (all components of this vector are the same).The multiplicity of zero eigenvalues is determined by the number of splitting components of the graph.

    In the complex network like Fig.2,we can getλ1=0 andλ2=0.0127,other eigenvalues are real.According to the properties of the Laplacian matrix,the graph is full connected, and has no isolation part.

    III.SPECTRAL ANALYSIS OF THE PIPELINESCPSOF WATER SUPPLY NETWORKS

    A.Spectral Analysis Theory

    The traditional spectral bisection method is based on that components in the eigenvectors corresponding nonvanishing eigenvalues have approximately equal value corresponding nodes in the same community.It is very useful to have a clear partition in the network.As long as the partition is suf fi ciently sharp,the components in the eigenvectors are step-like.

    However,in the real large complex network systems,there is no clear partitioning and the precise value of the eigenvectorcomponents is of little use.In the pipelines CPS,the typical eigenvector pro fi le is not step-like[5].However,such characteristic patterns are much clear ind(d≥2)dimensional eigenvector space,which is consisted ofdeigenvectors of the fi rstdnonvanishing eigenvalues[7].Then we can get the community detection algorithm as follows:

    Step 1.Use the data of the pipelines CPS network,and transfer the real network to the complex network.

    Step 2.Get the adjacency matrixAand the Laplacian matrixL.

    Step 3.Get the eigenvalues of the Laplacian matrixL:λ(L) =λ1,λ2,...,λn.

    Step 4.If the multiplicity of vanishing eigenvalues of the Laplacian matrixLis 1,then there is no isolated community in the network.Get the fi rst 2 dimensional eigenvector space,and identify the communities in the network.Then the algorithm is done.If the multiplicity of vanishing eigenvalues is not 1, then there is isolated community.Identify communities,and fi nd potential communities.Go to the Step 2.

    Remark 1.If the graph of the network is not full connected or there are some isolate nodes,the multiplicity of vanishing eigenvalues of the matrixLis bigger than 1 via the properties of the Laplacian matrix,we should choose the eigenvector space of the fi rst 2 nonvanishing eigenvalues.All isolate nodes are at the(0,0)in the eigenvector space.

    B.The Application of Spectral Analysis Theory:the Pipelines CPS of Water Supply Networks

    We take the pipelines CPS of part of water supply networks in the Shanghai city as an example.We assume two states of the pipelines CPS:the original state,and state 2(edgel177,145and edgel127,112burst in an unexpected event.That means communications between distribution area 177 and distribution area 145,distribution area 127 and distribution area 112 have got broken).The proposed algorithm is applied to detect isolated communities.

    We use the software“Gephi”and“Pajek”to get the adjacency matrixAand the Laplacian matrixL,which have 198×198 dimension.Then,we use Matlab to get the eigenvalues and the eigenvectors of the Laplacian matrixL.According to the algorithm,λ1=0 andλ2=0.0127,and the multiplicity of vanishing eigenvalues of the Laplacian matrixLis 1.Then, we get the 2 dimensional eigenvector space made up with two eigenvectors according to the fi rst 2 nonvanishing eigenvalues shown in Fig.6.

    In the original state of the pipelines shown in Fig.6,we can get three areas roughly according to the spectral distribution shown in Table I.There are 80 nodes in Area1,67 nodes in Area2,and 51 nodes in Area3.All the three areas are connected.

    In the state 2,l177,145andl127,112burst in an unexpected event[13].By the same method,we can get the spectral information shown in Fig.6.From the eigenvalues of the Laplacian matrixL,we can see the multiplicity of vanishing eigenvalues of the Laplacian matrixLis 2 so that there is an isolated community,which are the spot(0,0)in Fig.7.There are 80 nodes in the new isolated community.The details about the new Area1 are shown in Table II.

    Fig.6.Original state of the pipelines.

    Fig.7.State 2 of the pipelines.

    The spectral analysis can provide a deep analysis of the pipelines including the structural connectivity and the vulnerability,and it is also useful to devise countermeasures when unexpected events happen.The spectral analysis can also be suitable for other CPSs.

    IV.STRUCTURAL CONTROLLABILITY OF THE PIPELINE CPSOF WATER SUPPLY NETWORKS

    A.Structural Controllability of Complex Networks

    Consider a network ofNnodes described by the following set of ordinary differential equations:

    where the vectorxxstands for the states of nodes,A∈RN×Nstands for adjacent matrix of the network,in whichaijrepresents the weight of a directed link from the nodeitoj(for undirected unweighted network,aij=aji=1).uuis the controller.Bis control matrix.The standard way to address the controllability problem is to fi nd a suitable control matrixBof a minimum number of driver nodes so as to satisfy the stability condition[10-11].

    TABLE I SPECTRAL INFORMATION OF ORIGINAL STATE

    TABLE II SPECTRAL INFORMATION OF STATE 2

    Yuan et al.[11]developed a general theory to calculate the minimum numberNDof independent drivers or controllers based on the Popov-Belevitch-Hautus(PBH)rank condition (ND=min{rank(B)}).For arbitrary matrixA,the minimum numberNDis determined by the maximum geometric multiplicityμ(λi)of the eigenvalueλiofA.From the idea in the paper[11],we can get the algorithm as follows:

    Step 1.Get the adjacency matrixAand eigenvalues of the adjacency matrix.

    Step 2.Get theA-λi×IN,λiis the eigenvalue which has the algebraic multiplicity bigger than one.Convert theA-λi×INto the column canonical form by Gaussian elimination method.Find the maximum geometric multiplicityμ(λM).

    Step 3.Find the minimum driver node or controllers by linearly dependent rows in theA-λM×IN.

    Remark 2.By the algorithm,we can get the minimum number of the driver nodes for a complex network and the driver nodes set which contains all possible driver nodes. Without loss of generality,we get the driver nodes group as one of the groups in the driver nodes set in the sequel.

    羅爹爹說:“有錢了也要對我們窮人好呀。不能光是屁顛屁顛地跟在有錢人后面跑,是不是?不說別的,那個 樣子都蠻掉底子?!?/p>

    B.Structural Controllability of the Pipelines CPS of Water Supply Networks

    To count the algebraic multiplicity,we set a small threshold 10-8.If the absolute difference between two eigenvalues is less than threshold,the two are regarded as identical.We use the original state of part of Shanghai pipelines system as the control plant.We can get eigenvalues of the adjacency matrixA.

    There are two eigenvalues 1 and-1 which have the algebraic multiplicity bigger than 1.The algebraic multiplicity of the eigenvalue 1 is two,and the other is four.By the algorithm mentioned,the geometric multiplicity of the eigenvalue 1 is two,the geometric multiplicity of the eigenvalue-1 is four shown in Fig.8(the arrow points out four nodes).So we can get that

    Fig.8.Original eigenvalues of the pipelines.

    The maximum geometric multiplicityμ(λM)is four.So we can get the column canonical form of matrixA-λM×INand fi nd linear dependent rows:149,185,194,195.The number 149 is the node 149 in the pipelines system,others are,251, 215,196 as shown in Fig.9.

    In the original state,the node 40,149 and 251 are in Area3, the node 215 is in Area2,and the node 196 is in Area1.These four nodes are minimum drivers nodes.The minimum driver nodes set is the same as in the original state when we use the algorithm to analyze the state 2 in which there is an isolatedcommunity while the edgel177,145and the edgel127,112are out of order.

    Fig.9.Driver nodes in the complex network of the pipelines.

    In the state 2,there are 80 nodes in the isolated community as shown in Table II.we use the algorithm to analyze the 80 nodes,and get the driver nodes 196,215 which are the same as two driver nodes in the original state with 198 nodes(the number of the driver nodes is the same and the driver nodes are not the same,we pick the same driver nodes from the driver nodes set).

    In order to testify whether we can control all of the 80 nodes with the driver node 196 and 215,we choose the system which has the discrete state spaceA80×80just as the same as the structural matrix formed by the topology in Table II.

    The control matrixB80×2is constructed by the method mentioned in the supplementary material of the Yuan et al.[11]. Using the nonsingular transformation

    The system can be rewritten in the following Jordan form:

    Based on the method mentioned in the supplementary material of the Yuan et al.[11],we can get the simplestQand constructQby assigning value one to the row ofQcorresponding to the last row of every Jordan sub-block ofJ(λi).Then,we can get the complete structure information ofBby the following

    For a node in a CPS network of water supply system,the node dynamic process system can be described as follows:

    wherexxiis the node state,yyiis the node output,andfi(xx) is a linear or nonlinear function.According to the network,a node’s output may be the neighbor nodes’input.The dynamic process system for a node in the CPS network can be written:

    wherec>0 is the coupling strength between nodes,lijis the element of the Laplacian matrixLmentioned above.

    C.Simulations for the Application of Structural Controllability

    Without loss of generality,we choosefi(xx)=xxi,c=1,H(xxi)=1 to show the structural controllability of the CPS network here.Then,we can design controllers to control all 80 nodes according to the system parametersAandB.As we know,there are two driver nodes in the 80 nodes,we just need to design a controller to control two nodes.The number of the controllers are causal,one can choose a single controller or any number of controllers.In order to show the result is feasible,we design two PID controllers for the system shown in the Fig.10.There are two closed loops in order to control two nodes’state respectively.

    Fig.10.The control block diagram with two driver nodes.

    Based on the state matrixA,each node is an integrator. The connectivity relationship between nodes are also described in the state matrixA.The driver nodes 196 and 215 are nodes 36 and 37 in Fig.10 which are controlled by two PID controllers.We regulate some PID parameters to get appropriate performance as shown in Fig.11.Fig.12 shows that non-driver nodes can be stable while the two diver nodes are stable.

    Remark 3.According to the algorithm,we can get the minimum number of driver nodes in the pipelines CPS of water supply networks and speci fi c driver nodes set.Choosing appropriate control inputs can guarantee the structural controllability of the CPS network.If the systemAis in canonical Jordan form,we can see the difference between the driver nodes and normal nodes obviously.The result of the driver nodes is useful for engineers to design the controllers and choose the control inputs in the pipelines CPS of water supply networks or other CPSs networks.

    Fig.11.Simulation results of driver nodes with two PID controllers.

    Fig.12.Simulation results with two PID controllers.

    V.CONCLUSION

    In this paper,we use the complex network and graph theory to analyze the structural properties of the pipelines CPS of water supply networks.We build a complex network model for the pipelines CPS of water supply networks,and use some metrics mentioned above to investigate the structural properties of the pipelines CPS,which can be used to guide the construction of the of water supply networks and improve the robustness of water supply networks.The algorithms mentioned in the paper are also useful for complex networks of other CPSs.

    REFERENCES

    [1]Park K J,Zheng R,Liu X.Cyber-physical systems:milestones and research challenges.Computer Communications,2012,36(1):1-7

    [2]Jia D Y,Lu K J,Wang J P.On the network connectivity of platoonbased vehicular cyber-physical systems.Transportation Research Part C: Emerging Technologies,2014,40:215-230

    [3]Akella R,Tang H,McMillin B M.Analysis of information fl ow security in cyber physical systems.International Journal of Critical Infrastructure Protection,2010,3(3-4):157-173

    [4]Park S,Kim J H,Fox G.Effective real-time scheduling algorithm for cyber physical systems society.Future Generation Computer Systems, 2014,32:253-259

    [5]Capocci A,Servedio V D P,Caldarelli G,Colaiori F.Detecting communities in large networks.Physica A:Statistical Mechanics and Its Applications,2005,352(2-4):669-676

    [6]Diao K G,Zhou Y W,Rauch W.Automated creation of district metered area boundaries in water distribution systems.Journal of Water Resources Planning and Management,2012,139(2):184-190

    [7]Sheng N,Jia Y W,Xu Z,Ho S L,Kan C W.A complex network based model for detecting isolated communities in water distribution networks.Chaos:An Interdisciplinary Journal of Nonlinear Science,2013,23(4): 043012

    [8]Lombardi A,H¨ornquist M.Controllability analysis of networks.Physical Review E,2007,75(5):056110

    [9]Nepusz T,Vicsek T.Controlling edge dynamics in complex networks.Nature Physics,2012,8(7):568-573

    [10]Liu Y Y,Slotine J J,Barab′asi A L.Controllability of complex networks.Nature,2011,473(7346):167-173

    [11]Yuan Z Z,Zhao C,Di Z R,Wang W X,Lai Y C.Exact controllability of complex networks.Nature Communications,2013,4:Article number: 2447,doi:10.1038/ncomms3447

    [12]Jacomy M,Heymann S,Venturini T,Bastian M.Forceatlas2,a continuous graph layout algorithm for handy network visualization.Medialab Center of Research,2011,560-1-22

    [13]Wang S L,Hong L,Ouyang M,Zhang J H,Chen X G.Vulnerability analysis of interdependent infrastructure systems under edge attack strategies.Safety Science,2013,51(1):328-337

    Wei

    the B.Sc.and M.Sc.degrees from Shanghai Jiao Tong University,China in 2008 and 2013,respectively.Now he is a Ph.D. candidate in the Department of Automation,Shanghai Jiao Tong University,China.His research interests include distributed model predictive control and large-scale systems.

    Manuscript received November 3,2014;accepted February 9,2015.This work was supported by National Natural Science Foundation of China(612 33004,61221003,61374109,61104091,61304078,61473184),National Basic Research Program of China(973 Program)(2013CB035500),the International Cooperation Program of Shanghai Science and Technology Commission(12230709600),the Higher Education Research Fund for the Doctoral Program of China(20120073130006,20110073110018),and the China Postdoctoral Science Foundation(2013M540364).Recommended by Associate Editor Xinping Guan.

    :Yongsong Wei,Shaoyuan Li.Water supply networks as cyberphysical systems and controllability analysis.IEEE/CAA Journal of Automatica Sinica,2015,2(3):313-319

    Yongsong Wei and Shaoyuan Li are with the Department of Automation, Shanghai Jiao Tong University,and Key Laboratory of System Control and Information Processing,Ministry of Education of China,Shanghai 200240, China(e-mail:yswei@sjtu.eud.cn;syli@sjtu.edu.cn).

    Shaoyuan Li received the B.Sc.and M.Sc.degrees in the Department of Automatic Control, Hebei University of Technology in 1987 and 1992, respectively,and the Ph.D.degree from Nankai University in 1997,all in China.He is currently a Distinguished Professor with the Department of Automation,Shanghai Jiao Tong University,China. His research interests include distributed predictive control,networked control systems,dynamic system optimization,and performance assessment.Corresponding author of this paper.

    猜你喜歡
    底子爹爹有錢人
    老爹爹和酒
    『有錢人』迷惑行為大賞
    老爹日記
    6月,鳥語蟬鳴綠樹成蔭
    37°女人(2019年6期)2019-06-10 08:48:11
    為什么日本有錢人開的都是很一般的車
    要面子,更要底子
    美文(2017年4期)2017-02-23 14:35:37
    一紙財產(chǎn)協(xié)議化解“黃昏戀糾紛”
    中老年健康(2016年8期)2016-10-17 01:44:49
    底子和面子
    視野(2016年13期)2016-07-04 19:06:39
    金玉良言
    視野(2016年9期)2016-05-14 07:25:57
    有錢人
    日日摸夜夜添夜夜爱| 神马国产精品三级电影在线观看| 精品酒店卫生间| 午夜免费男女啪啪视频观看| 精品久久久久久久久久久久久| 青春草国产在线视频| av女优亚洲男人天堂| 国产免费视频播放在线视频 | 精品亚洲乱码少妇综合久久| 三级国产精品片| 国产成人aa在线观看| 高清欧美精品videossex| 国产精品久久久久久av不卡| 久久久精品94久久精品| 亚洲国产欧美在线一区| 99热网站在线观看| 男人舔女人下体高潮全视频| 亚洲欧美精品专区久久| 久久精品人妻少妇| 插逼视频在线观看| 三级经典国产精品| 内射极品少妇av片p| 国产精品不卡视频一区二区| 夜夜爽夜夜爽视频| 国产日韩欧美在线精品| 亚洲天堂国产精品一区在线| 国产精品久久久久久久久免| 亚洲精品日本国产第一区| 午夜福利在线观看吧| 性插视频无遮挡在线免费观看| 男女视频在线观看网站免费| 一个人免费在线观看电影| 免费观看性生交大片5| 亚洲av电影在线观看一区二区三区 | 中文字幕亚洲精品专区| 国产精品美女特级片免费视频播放器| 最近手机中文字幕大全| 性插视频无遮挡在线免费观看| 男女视频在线观看网站免费| xxx大片免费视频| 亚洲乱码一区二区免费版| 午夜视频国产福利| 青春草视频在线免费观看| 天堂网av新在线| 亚洲人成网站高清观看| 丝袜喷水一区| 国产亚洲av片在线观看秒播厂 | 亚洲在久久综合| 在线播放无遮挡| 午夜免费男女啪啪视频观看| 91精品一卡2卡3卡4卡| 赤兔流量卡办理| 日韩一区二区视频免费看| 秋霞伦理黄片| 国产伦精品一区二区三区四那| 国产淫语在线视频| 成人一区二区视频在线观看| 精品国内亚洲2022精品成人| 黄色欧美视频在线观看| av在线老鸭窝| av在线老鸭窝| 成人综合一区亚洲| 久久精品熟女亚洲av麻豆精品 | 国产伦一二天堂av在线观看| 97超碰精品成人国产| 亚洲av中文字字幕乱码综合| 国产欧美日韩精品一区二区| 美女被艹到高潮喷水动态| 精品久久久久久久人妻蜜臀av| 久久久欧美国产精品| 国产成人午夜福利电影在线观看| 亚洲欧美成人精品一区二区| av在线亚洲专区| 精品少妇黑人巨大在线播放| 亚洲在久久综合| 日韩,欧美,国产一区二区三区| 91狼人影院| 91精品一卡2卡3卡4卡| 搞女人的毛片| 国产成人freesex在线| 黄色配什么色好看| 人妻制服诱惑在线中文字幕| 色综合色国产| av福利片在线观看| .国产精品久久| 精品国产露脸久久av麻豆 | 亚洲乱码一区二区免费版| 国产真实伦视频高清在线观看| 哪个播放器可以免费观看大片| 少妇丰满av| 日日撸夜夜添| 国产男人的电影天堂91| 有码 亚洲区| 久久久精品欧美日韩精品| 欧美性感艳星| 一个人观看的视频www高清免费观看| av卡一久久| 美女cb高潮喷水在线观看| 成年人午夜在线观看视频 | 精品久久久噜噜| 国产激情偷乱视频一区二区| 亚洲性久久影院| 国产精品.久久久| 插逼视频在线观看| 国产女主播在线喷水免费视频网站 | 又大又黄又爽视频免费| 九九久久精品国产亚洲av麻豆| 99热网站在线观看| 久久人人爽人人爽人人片va| 国产精品日韩av在线免费观看| 噜噜噜噜噜久久久久久91| 一个人免费在线观看电影| 毛片一级片免费看久久久久| 99久久精品国产国产毛片| 国产精品美女特级片免费视频播放器| 久久99热6这里只有精品| 久热久热在线精品观看| 亚洲av在线观看美女高潮| 真实男女啪啪啪动态图| 天堂av国产一区二区熟女人妻| 看黄色毛片网站| 99re6热这里在线精品视频| 少妇高潮的动态图| 亚洲电影在线观看av| 在线观看av片永久免费下载| 欧美日韩精品成人综合77777| 亚洲av.av天堂| 麻豆国产97在线/欧美| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜爱| 婷婷色综合www| 亚洲成人久久爱视频| 少妇人妻一区二区三区视频| 七月丁香在线播放| 又粗又硬又长又爽又黄的视频| 久久精品综合一区二区三区| 一夜夜www| 丰满少妇做爰视频| 乱系列少妇在线播放| 晚上一个人看的免费电影| 天堂影院成人在线观看| 大又大粗又爽又黄少妇毛片口| 看黄色毛片网站| 黄色一级大片看看| 精品国产露脸久久av麻豆 | 国产精品人妻久久久影院| 欧美精品国产亚洲| 国产成年人精品一区二区| 最近最新中文字幕免费大全7| 精品久久久久久久久av| 18禁在线播放成人免费| 久久韩国三级中文字幕| 男人和女人高潮做爰伦理| 国产麻豆成人av免费视频| 国产精品久久久久久久久免| 丝袜喷水一区| 亚洲无线观看免费| 99视频精品全部免费 在线| 22中文网久久字幕| 日本色播在线视频| 美女国产视频在线观看| 国产av不卡久久| 日韩成人av中文字幕在线观看| 午夜老司机福利剧场| 日韩 亚洲 欧美在线| 中文字幕制服av| 国产日韩欧美在线精品| 中国美白少妇内射xxxbb| 网址你懂的国产日韩在线| 男女啪啪激烈高潮av片| 国产精品av视频在线免费观看| 国产成年人精品一区二区| 97热精品久久久久久| 国产成人aa在线观看| 99久久人妻综合| 国产精品人妻久久久久久| 成人亚洲欧美一区二区av| 午夜日本视频在线| 亚洲av男天堂| 青春草亚洲视频在线观看| 2021少妇久久久久久久久久久| 三级国产精品片| 高清在线视频一区二区三区| 国产激情偷乱视频一区二区| h日本视频在线播放| 日韩精品青青久久久久久| 日韩不卡一区二区三区视频在线| 激情五月婷婷亚洲| 亚洲婷婷狠狠爱综合网| 97精品久久久久久久久久精品| 久久精品国产鲁丝片午夜精品| 少妇的逼水好多| 国产精品一区二区在线观看99 | 国产精品久久久久久精品电影| 综合色av麻豆| 最近手机中文字幕大全| 亚洲一区高清亚洲精品| 老女人水多毛片| 亚洲无线观看免费| 午夜福利在线观看免费完整高清在| 美女大奶头视频| 国产成年人精品一区二区| 综合色丁香网| 亚洲欧美清纯卡通| 成年免费大片在线观看| 国产色婷婷99| 三级经典国产精品| 久久久午夜欧美精品| 日日撸夜夜添| 嫩草影院新地址| 亚洲欧美中文字幕日韩二区| 国产在线一区二区三区精| 国产毛片a区久久久久| 精品人妻偷拍中文字幕| 久久久久久久久大av| 亚洲av一区综合| 大香蕉97超碰在线| 嘟嘟电影网在线观看| 午夜免费观看性视频| 国产高清不卡午夜福利| 国产真实伦视频高清在线观看| 国产亚洲午夜精品一区二区久久 | 观看美女的网站| 成人av在线播放网站| 内地一区二区视频在线| 日韩,欧美,国产一区二区三区| 国产爱豆传媒在线观看| 丰满人妻一区二区三区视频av| 少妇裸体淫交视频免费看高清| 久久久久网色| av线在线观看网站| 国产伦理片在线播放av一区| 日本黄大片高清| 免费观看a级毛片全部| 丰满乱子伦码专区| av国产久精品久网站免费入址| 嘟嘟电影网在线观看| av专区在线播放| 全区人妻精品视频| 亚洲真实伦在线观看| 国产亚洲91精品色在线| 欧美激情在线99| 国模一区二区三区四区视频| 高清欧美精品videossex| 免费黄网站久久成人精品| 国产探花在线观看一区二区| 国产黄片美女视频| 神马国产精品三级电影在线观看| 色吧在线观看| 亚洲av福利一区| 成人午夜高清在线视频| 最近2019中文字幕mv第一页| 日日啪夜夜爽| 人妻一区二区av| 日本免费在线观看一区| 国产真实伦视频高清在线观看| 亚洲熟妇中文字幕五十中出| 亚洲精品影视一区二区三区av| 韩国av在线不卡| 亚洲三级黄色毛片| 亚洲人与动物交配视频| 麻豆av噜噜一区二区三区| 成人一区二区视频在线观看| 白带黄色成豆腐渣| 亚洲成人精品中文字幕电影| 亚洲av福利一区| videossex国产| 一级av片app| 18+在线观看网站| 亚洲欧美一区二区三区黑人 | 内地一区二区视频在线| 波多野结衣巨乳人妻| 全区人妻精品视频| 美女主播在线视频| 国国产精品蜜臀av免费| 能在线免费看毛片的网站| 午夜福利成人在线免费观看| 国产伦精品一区二区三区四那| 日本-黄色视频高清免费观看| 久久久久精品久久久久真实原创| 激情五月婷婷亚洲| 国产精品熟女久久久久浪| 丝瓜视频免费看黄片| 亚洲最大成人中文| 亚洲精品久久久久久婷婷小说| 日韩欧美三级三区| 久久6这里有精品| 国产精品一二三区在线看| 午夜精品一区二区三区免费看| 波野结衣二区三区在线| 黄片无遮挡物在线观看| 国产精品三级大全| 一本久久精品| 高清毛片免费看| 久久久久免费精品人妻一区二区| 国产乱人视频| 亚洲精品乱久久久久久| 欧美一区二区亚洲| 亚洲欧美中文字幕日韩二区| 国产亚洲av片在线观看秒播厂 | 国产精品无大码| 最新中文字幕久久久久| 99热网站在线观看| 在线观看免费高清a一片| 99热6这里只有精品| 特大巨黑吊av在线直播| 狠狠精品人妻久久久久久综合| 亚洲国产精品国产精品| 亚洲在线自拍视频| 久久久久久久久久久免费av| 91aial.com中文字幕在线观看| 舔av片在线| 乱系列少妇在线播放| 日韩视频在线欧美| 精品国产露脸久久av麻豆 | 91久久精品国产一区二区三区| 久久久久网色| 久久久久久久亚洲中文字幕| 国产精品一区二区在线观看99 | 丰满人妻一区二区三区视频av| 欧美成人a在线观看| 18禁动态无遮挡网站| av在线亚洲专区| 神马国产精品三级电影在线观看| 一级片'在线观看视频| 日日摸夜夜添夜夜爱| 久久草成人影院| 亚洲精品一二三| 日韩av不卡免费在线播放| 亚洲内射少妇av| 禁无遮挡网站| 乱码一卡2卡4卡精品| 国产白丝娇喘喷水9色精品| 黄片无遮挡物在线观看| 久久综合国产亚洲精品| 三级毛片av免费| 啦啦啦韩国在线观看视频| 免费观看av网站的网址| 99久久中文字幕三级久久日本| 日本爱情动作片www.在线观看| 国产亚洲一区二区精品| 国产激情偷乱视频一区二区| 国产精品一区二区性色av| 爱豆传媒免费全集在线观看| 午夜老司机福利剧场| 国产乱人偷精品视频| 亚洲欧美成人精品一区二区| 亚洲精品,欧美精品| 淫秽高清视频在线观看| 非洲黑人性xxxx精品又粗又长| 久久精品熟女亚洲av麻豆精品 | 日韩伦理黄色片| 女人十人毛片免费观看3o分钟| 国产精品国产三级国产专区5o| 大又大粗又爽又黄少妇毛片口| 国产成人精品久久久久久| 国产一区亚洲一区在线观看| 一本一本综合久久| 青春草视频在线免费观看| 中文天堂在线官网| 国产男人的电影天堂91| 国产精品一二三区在线看| 国产伦理片在线播放av一区| 美女大奶头视频| 91久久精品国产一区二区成人| 九九爱精品视频在线观看| 亚洲国产高清在线一区二区三| 热99在线观看视频| 国产精品久久视频播放| 老师上课跳d突然被开到最大视频| 一级毛片黄色毛片免费观看视频| 亚洲自偷自拍三级| 好男人在线观看高清免费视频| 一级毛片aaaaaa免费看小| 91午夜精品亚洲一区二区三区| or卡值多少钱| 国产亚洲一区二区精品| 亚洲av二区三区四区| 日韩大片免费观看网站| 国产精品一区www在线观看| 成人欧美大片| 日韩av在线免费看完整版不卡| 我要看日韩黄色一级片| 超碰97精品在线观看| 成人高潮视频无遮挡免费网站| 日韩制服骚丝袜av| 亚洲va在线va天堂va国产| 精品一区二区三卡| 纵有疾风起免费观看全集完整版 | 99久国产av精品国产电影| 联通29元200g的流量卡| 日韩一本色道免费dvd| 一级毛片电影观看| 亚洲精品中文字幕在线视频 | 熟女人妻精品中文字幕| 国产探花在线观看一区二区| 国产亚洲5aaaaa淫片| 综合色丁香网| 欧美极品一区二区三区四区| 白带黄色成豆腐渣| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲成人av在线免费| 黑人高潮一二区| 国产成人aa在线观看| 国产午夜精品论理片| 五月伊人婷婷丁香| 久久6这里有精品| 尤物成人国产欧美一区二区三区| 免费观看在线日韩| 亚洲内射少妇av| 日韩一区二区三区影片| 亚洲,欧美,日韩| 26uuu在线亚洲综合色| av国产久精品久网站免费入址| 老师上课跳d突然被开到最大视频| 亚洲第一区二区三区不卡| 床上黄色一级片| 麻豆乱淫一区二区| 国产伦理片在线播放av一区| 97人妻精品一区二区三区麻豆| 丝袜美腿在线中文| 精品人妻一区二区三区麻豆| 日本-黄色视频高清免费观看| av一本久久久久| 国产精品国产三级国产专区5o| 特级一级黄色大片| 日韩伦理黄色片| 免费观看的影片在线观看| 中文字幕久久专区| 久久99蜜桃精品久久| av在线播放精品| 在线观看人妻少妇| 国产女主播在线喷水免费视频网站 | 一级毛片久久久久久久久女| 99热这里只有精品一区| 老司机影院毛片| 色哟哟·www| 色视频www国产| 久久久久久久久久久免费av| 国产欧美另类精品又又久久亚洲欧美| 亚洲成人久久爱视频| 国产精品99久久久久久久久| 蜜臀久久99精品久久宅男| 成人午夜高清在线视频| 丝瓜视频免费看黄片| 日本黄大片高清| 偷拍熟女少妇极品色| 亚洲av在线观看美女高潮| 人妻夜夜爽99麻豆av| 国产精品精品国产色婷婷| 亚洲久久久久久中文字幕| 特级一级黄色大片| 国产 一区精品| 91精品伊人久久大香线蕉| 中文字幕久久专区| 麻豆国产97在线/欧美| 亚洲aⅴ乱码一区二区在线播放| 观看免费一级毛片| 国产黄色免费在线视频| 91在线精品国自产拍蜜月| 国产一区有黄有色的免费视频 | 日韩三级伦理在线观看| 秋霞在线观看毛片| 国产精品1区2区在线观看.| 亚洲国产欧美人成| 国产91av在线免费观看| 在线观看av片永久免费下载| 国产av国产精品国产| 赤兔流量卡办理| 草草在线视频免费看| 男女啪啪激烈高潮av片| 国产免费视频播放在线视频 | 五月伊人婷婷丁香| 一级毛片我不卡| 中国美白少妇内射xxxbb| 亚洲伊人久久精品综合| 国产淫片久久久久久久久| 91精品一卡2卡3卡4卡| 久久这里只有精品中国| 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 国产成人精品婷婷| 免费黄色在线免费观看| 欧美最新免费一区二区三区| 亚洲av成人av| 超碰97精品在线观看| 欧美变态另类bdsm刘玥| 亚洲乱码一区二区免费版| 97热精品久久久久久| 国产亚洲精品av在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品成人久久久久久| 婷婷色综合www| 精品少妇黑人巨大在线播放| 黑人高潮一二区| 久热久热在线精品观看| 亚洲精品aⅴ在线观看| 69人妻影院| 日韩一区二区视频免费看| 成人国产麻豆网| 最近的中文字幕免费完整| 亚洲经典国产精华液单| 丰满乱子伦码专区| 国产乱人偷精品视频| 亚洲真实伦在线观看| 国语对白做爰xxxⅹ性视频网站| 国产精品99久久久久久久久| 国产精品一区二区三区四区久久| 国产69精品久久久久777片| 国产有黄有色有爽视频| 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| 国产午夜精品久久久久久一区二区三区| 禁无遮挡网站| 伦理电影大哥的女人| 国产高清国产精品国产三级 | 搡女人真爽免费视频火全软件| 三级国产精品片| 在线观看av片永久免费下载| 亚洲四区av| 免费av不卡在线播放| 日日干狠狠操夜夜爽| 91狼人影院| 狂野欧美激情性xxxx在线观看| 成人美女网站在线观看视频| 久久久久久伊人网av| 久久久久久久大尺度免费视频| 神马国产精品三级电影在线观看| 麻豆成人午夜福利视频| 一级毛片黄色毛片免费观看视频| 一个人观看的视频www高清免费观看| 久久久久久久久久成人| 久久久久久久午夜电影| 国产成人a区在线观看| 亚洲av男天堂| 日本三级黄在线观看| 久久国产乱子免费精品| 欧美丝袜亚洲另类| 亚洲精品aⅴ在线观看| 免费观看的影片在线观看| 日韩人妻高清精品专区| 午夜精品在线福利| 色网站视频免费| 亚洲高清免费不卡视频| 国产精品99久久久久久久久| 欧美另类一区| 80岁老熟妇乱子伦牲交| 亚洲熟妇中文字幕五十中出| 国产乱人偷精品视频| 九九久久精品国产亚洲av麻豆| 成年av动漫网址| eeuss影院久久| 成人二区视频| 久久99精品国语久久久| 国产精品国产三级国产专区5o| 国产永久视频网站| 免费观看的影片在线观看| 你懂的网址亚洲精品在线观看| 一级毛片我不卡| 九九在线视频观看精品| videossex国产| 亚洲成色77777| 亚洲高清免费不卡视频| 黄色一级大片看看| 亚洲aⅴ乱码一区二区在线播放| www.av在线官网国产| 欧美zozozo另类| 黄色一级大片看看| 国产av国产精品国产| www.av在线官网国产| 日韩av在线大香蕉| 精品酒店卫生间| 性插视频无遮挡在线免费观看| 大香蕉久久网| 69人妻影院| 久久久久国产网址| 91久久精品国产一区二区成人| 久久久久国产网址| 天美传媒精品一区二区| 色5月婷婷丁香| 综合色av麻豆| 国产在线男女| 高清av免费在线| 成人一区二区视频在线观看| 欧美精品国产亚洲| 老师上课跳d突然被开到最大视频| 婷婷六月久久综合丁香| 久久精品国产鲁丝片午夜精品| 26uuu在线亚洲综合色| 又爽又黄无遮挡网站| 国产黄频视频在线观看| 麻豆精品久久久久久蜜桃| 日韩人妻高清精品专区| 人妻少妇偷人精品九色| 一区二区三区高清视频在线| av女优亚洲男人天堂| 国产女主播在线喷水免费视频网站 | 在线免费观看不下载黄p国产| 日韩av在线免费看完整版不卡| 久久久久精品性色| 天天躁夜夜躁狠狠久久av| 成人性生交大片免费视频hd| 午夜福利网站1000一区二区三区| 国产亚洲av嫩草精品影院| 欧美三级亚洲精品| 日本一二三区视频观看| 你懂的网址亚洲精品在线观看| 高清欧美精品videossex| 免费观看在线日韩| 插阴视频在线观看视频| 国产高清不卡午夜福利| 一级毛片我不卡| 你懂的网址亚洲精品在线观看| 久久久久九九精品影院| 欧美激情久久久久久爽电影|