• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Algebraic Detection Approach for Control Systems under Multiple Stochastic Cyber-attacks

    2015-08-09 02:00:54YumeiLiHolgerVoosMohamedDarouachandChangchunHua
    IEEE/CAA Journal of Automatica Sinica 2015年3期

    Yumei Li,Holger Voos,Mohamed Darouach,and Changchun Hua

    An Algebraic Detection Approach for Control Systems under Multiple Stochastic Cyber-attacks

    Yumei Li,Holger Voos,Mohamed Darouach,and Changchun Hua

    —In order to compromise a target control system successfully,hackers possibly attempt to launch multiple cyberattacks aiming at multiple communication channels of the control system.However,the problem of detecting multiple cyber-attacks has been hardly investigated so far.Therefore,this paper deals with the detection of multiple stochastic cyber-attacks aiming at multiple communication channels of a control system.Our goal is to design a detector for the control system under multiple cyberattacks.Based on frequency-domain transformation technique and auxiliary detection tools,an algebraic detection approach is proposed.By applying the presented approach,residual information caused by different attacks is obtained respectively and anomalies in the control system are detected.Suf fi cient and necessary conditions guaranteeing the detectability of the multiple stochastic cyber-attacks are obtained.The presented detection approach is simple and straightforward.Finally,two simulation examples are provided,and the simulation results show that the detection approach is effective and feasible.

    Index Terms—Cyber-attack detection,control system,multiple stochastic cyber-attacks.

    I.INTRODUCTION

    AS networks become ubiquitous and more and more industrial control systems are connected to open public networks,control systems are increased the risk of exposure to cyber-attacks.Control systems are vulnerable to cyber-threats,and successful attacks on them can cause serious consequences[1-3].Therefore,the security and safety issues in controlled systems have been recently realized and they are currently attracting considerable attention[4-20]. Some researchers focused on the cyber security of water systems[3,6-7].Further works considered cyber-attacks on smart grid systems[4,8-10,12].In order to detect as well as identify and isolate these cyber-attacks as early as possible, different detection approaches were presented.For example [13]investigated the problem of false data injection attacks against state estimation in electric power grids[14]proposed a model predictive approach for cyber-attack detection[15]. presented a stochastic cyber-attack detection scheme based on frequency-domain transformation technique[16].considered robustH∞cyber-attacks estimation for control systems[17].proposed a detection algorithm by investigating the frequency spectrum distribution of the network traf fi c.References [18-20]used consensus dynamics in networked multi-agent systems including malicious agents.As far as we know,no existing literatures deal with the problem of multiple cyberattacks.In practice,however,hackers might attempt to launch multiple attacks aiming at multiple communication channels of a control system in order to create attacks that are more stealthy and thus more likely to succeed.When a hacker launches two or more cyber-attacks against a control process, usually it is claimed that the control system suffers from multiple cyber-attacks.The fact that no research currently deals with the detection of multiple cyber-attacks on a control process motivates our research in detection of multiple cyberattacks.

    This paper deals with the problem to detect multiple stochastic cyber-attacks aiming at multiple communication channels of a control system.We present an algebraic detection approach based on the frequency-domain transformation.The basic idea is to use appropriate observers to generate residual information related to cyber-attacks.An anomaly detector for the control system under multiple stochastic cyber-attacks and stochastic disturbances is derived.The main contributions in the paper are as follows.We fi rst propose a control system with multiple stochastic cyber-attacks that satisfy a Markovian stochastic process.In addition,we also introduce the stochastic attack models that are aiming at a speci fi c controller command input channel or sensor measurement output channel.Second, based on the frequency-domain transformation technique and auxiliary detection tools,the error dynamics of the control system is transformed into algebraic equations.We consider possible cyber-attacks as non-zero solutions of the algebraic equations and the residuals as their constant vectors.By analyzing the ranks of the stochastic system matrix and the auxiliary stochastic system matrices,the residual information caused by attacks from different communication channel is obtained,respectively.Furthermore,based on the obtained residual information,we are able to determine the detectability of these cyber-attacks.The suf fi cient and necessary conditions guaranteeing that these attacks are detectable or undetectable are obtained.Finally,we provide two simulation examples to illustrate the effectiveness of our results.In Example 1,we consider a control system with stochastic noises.We detect possible stochastic cyber-attacks,which are aiming at three different controller command input channels on the actuator. In Example 2,we use the quadruple-tank process(QTP)as described in[21].We also detect two possible cyber-attacks on the QTP.These simulation results show that the proposed attack detection approach is effective and feasible.

    For convenience,we adopt the following notations:E{·}is the mathematical expectation operator;dim(·)denotes the di-mension of given vector;([0,∞);Rn)is the space of nonanticipative stochastic processes.

    II.PROBLEM STATEMENT

    Consider the following control system with multiple stochastic cyber-attacks aiming at speci fi c controller command input channels and sensor measurement output channels.

    wherex(t)∈Rris the state vector,u(t)∈Rmis the control input,y(t)∈Rpis the measurement output,(t)∈R,i=1,...,n1and(t)∈R,j=1,...,n2denote the actuator cyber-attack aiming at thei-th controller command input channel and the sensor cyber-attack aiming at thej-th sensor measurement output channel,respectively.A,B,C,E1andE2are known constant matrices.w(t)andv(t)are stochastic noises(w(t),v(t)([0,∞);Rn)).fiandhjare the attacked coef fi cients.αi(t)andβi(t)are Markovian stochastic processes with the binary state(0 or 1),which satisfy the following probability

    Herein,the eventαi(t)=1(orβj(t)=1)shows that thei-th controller command input channel on the actuator(or thej-th sensor measurement output channel on the sensor) is subject to an actuator cyber-attack(t)(or a sensor cyberattack(t));αi(t)=0(orβj(t)=0)means no attack on thei-th(or thej-th)channel.ρi∈[0,1](orσj∈[0,1])re fl ects the occurrence probability of the event that the actuator(or the sensor)of the system is subject to a cyber-attack(t)(or(t)).αi(t)andβj(t)are independent from each other,they are also independent from the stochastic noisesw(t),v(t)and the initial statex0.

    The control input matrixBand the output state matrixCare expressed as the following column vector groups,respectively

    wherebiis thei-th column vector of matrixBandcjis thej-th column vector of matrixC.And the control inputu(t) and the system statex(t)are written as

    A.Modeling a Stochastic Cyber-attacks on a Speci fi ed Communication Channel

    In order to increase the success chance of an attack and to intrude more stealthily,hackers may attempt to launch stochastic cyber-attacks aiming at one or several special communication channels of a control system.In a stochastic data denial-of-service(DoS)attack,the objective of hackers is to prevent the actuator from receiving control commands or the controller from receiving sensor measurements.Therefore,by compromising devices and preventing them from sending data, attacking the routing protocols,jamming the communication channels, fl ooding the communication network with random data and so on,hackers can launch a stochastic data DoS attack that satis fi es Markovian stochastic processes.In a stochastic data deception attack,hackers attempt to prevent the actuator or the sensor from receiving an integrity data by sending false information eu(t)(t)or ey(t)(t)from controllers or sensors.The false information includes:injection of a bias data that cannot be detected in the system,or an incorrect time of observing a measurement;a wrong sender identity, an incorrect control input or an incorrect sensor measurement. The hacker can launch these attacks by compromising some controllers or sensors or by obtaining the secret keys.

    In this work,we model stochastic data DoS attacks and stochastic data deception attacks,which hackers possibly launch on a control system aiming at a speci fi c controller command input channel or sensor measurement output channel.

    1)A stochastic DoS attack preventing the actuators from receiving control command of thei-th control channel can be modelled as

    2)A stochastic DoS attack preventing the sensors from receiving sensor measure of thej-th output channel can be modelled as

    Moreover,if the following conditions are satis fi ed:

    these stochastic attacks mentioned above completely deny the services on the actuator and on the sensors,respectively.

    3)A stochastic data deception attack preventing the actuator from a correct control input of thei-th control channel can be modelled as

    4)A stochastic data deception attack preventing the sensor from a correct sensor measurement of thej-th output channel can be modelled as

    where(t)and(t)are deceptive data that hackers attempt to launch on the actuator and the sensor,respectively.

    Now,let(s)=C(sI-A)-1biwhich is the transfer function from the attack(t)to output measurey(t).When hackers launch a data deception attack(t)=(t)on the actuator to make(s)=0,a zero dynamic attack occurs on the actuator.Obviously,a zero dynamic attack is undetectable. In addition,it is not possible for a hacker to launch a zero dynamic attack on the sensor,since the transfer function from the attack(t)to outputy(t)is(s)=cj0.

    Remark 1.In the stochastic attack models(5)-(10),the attacked coef fi cientsfiandhjare column vectors.Herein only the element in thei-th row is 1 and the rest elements are 0 infi,which implies that only thei-th control channel of a control system is attacked.Similarly,only the element in thej-th row is 1 and the rest elements are 0 inhj,which implies that only thej-th output channel of a control system is attacked.

    Remark 2.To attack a target,hackers may launch multiple attacks aiming at multiple communication channels so that the aggression opportunities are increased and the attack target is compromised,more stealthily and successfully.For example, in order to effectively disturb the formation control of multivehicle systems,a hacker could launch multiple stochastic cyber-attacks,which are respectively aiming at different communication links among these vehicles or aiming at multiple controller command input channels of a single vehicle.Obviously,the detection and isolation of multiple cyber-attacks are very important in the formation control of multi-vehicle systems.Therefore,the research on multiple cyber-attacks is signi fi cant,and requires further research.

    III.MAIN RESULTS

    In this section,we present the approach to the anomaly detection.We assume that the following conditions are satis fi ed: 1)the pair(A,B)is controllable;2)(A,C)is observable. For simpli fi cation of the discussion,we ignore the in fl uence of control inputs in the remainder of this paper because they do not affect the residual when there are no modeling errors in the system transfer matrix.Therefore,system(1)can be rewritten as follows:

    We set up the following anomaly detector:

    whereeBis the detector gain matrix andr(t)represents the output residual.

    Lete(t)=x(t)-ex(t),then we obtain the following error dynamics:

    with the matrices

    and the vectors

    where cyber-attacks(t),(t),i=1,...,nand the vectors describing the attacked coef fi cientsfi,hi,i=1,...,nsatisfy the following conditions

    Before presenting the main results,we give the following de fi nition and lemma.

    De fi nition 1.For anomaly detector error dynamics,if a cyber-attack on a control system leads to zero output residual, then the cyber-attack is undetectable.

    IfTdr(s)=denotes the transfer function from stochastic disturbanced(t)to output residualr(t),the robust stability condition of error dynamic(13)is given in term of the following lemma.

    Lemma 1[16].When all stochastic eventsαi(t)=βi(t)=0 (i=1,...,n),there are the following conclusions:

    1)The error dynamics(13)without disturbances is asymptotically stable,if there exists a symmetric positive de fi nite matrixP>0 and a matrixXsuch that the following linear matrix inequality(LMI)holds

    2)The error dynamics(13)with disturbancesd(t)(0(t)([0,∞);Rn))is robustly stable,if‖Tdr(s)‖∞<1 and if there exists a symmetric positive de fi nite matrixP>0 and a matrixXsuch that the following LMI holds

    When the LMIs above are solvable,the detector gain matrix is given by=P-1X.

    A.Algebraic Detection Scheme for Multiple Stochastic Cyberattacks Aiming at Multiple Communication Channels

    In this section,using the frequency-domain description of the system,we transform the error dynamics(13)into the following equation:

    Further,in order to obtain effective results,we introduce the mathematical expectation of the stochastic matrixQ(s)as follows:

    Remark 3.Here,since the matricesinclude the stochastic parametersαi(t)andβi(t),the system matrixQ(s)correspondingly includes these stochastic parameters, and E(Q(s))and E(Qi(s))include stochastic probabilitiesρiandσias well,which take values in[0,1].Therefore,they are stochastic matrices.

    Remark 4.In this work,we introduce the auxiliary mathematical“tools”(20)and(21).The auxiliary error dynamics (20)represents the fact that the control system is only subjected to a stochastic cyber-attackai(t)on thei-th communication channel.Applying the auxiliary equation(21),we can obtain the information of residualri(t)that is caused by the cyber-attackai(t).In addition,the detector gain matrixeBcan be determined according to Lemma 1.

    Now,applying the rank of the stochastic matrix,we obtain the following theorem.

    Theorem 1.For system(11),we assume that all of these stochastic matrices E(Q(s))and E(Qi(s))(i=1,...,n) have full column normal rank.All of these cyber-attacksai(s)(i=1,...,n,(0(s))whens=z0are undetectable,if and only if there existsz0∈,such that

    and

    Hereinis a set of undetectable cyber-attacks.

    Proof.(If)Assume that there existsz0∈C such that conditions(22)and(23)hold for allai(z0)it becomes obvious thatz0is an invariant zero[22]of the detector error system(13)and the auxiliary system(20).Then all of the equations in(19) and(20)are homogeneous,i.e.,B(z0)=0 andBi(z0)=0.Therefore,the output residualri(z0)=0,i=1,...,n,andr(z0)==0 as well.By De fi nition 1,all of these cyber-attacksai(s),i...,nwhens=z0are undetectable.

    (Only if)Assume that all of these cyber-attacksai(s),i=1,...,nwhens=z0are undetectable,then there must exist az0∈C such that the residualri(z0)=0 andr(z0) =P=0.Therefore,all of the equations in(19) and(21)are homogeneous.If we assume that all of matrices E(Q(z0))and E(Qi(z0))have full column rank,then all of these homogeneous equations have and only have one zero solution.However,this contradicts with the conditions that

    are solutions to(19)and(21),respectively.Therefore the assumptions are false,only conditions(22)and(23)are true.□

    Theorem 2.For system(11),we assume that all of stochastic matrices E(Q(s))and E(Qi(s))(i=1,...,n)have full column normal rank.All of these cyber-attacksai(s)(i=1,...,n,(0(s)∈G))are detectable,if and only if the following conditions always hold for anyz0∈C:

    and

    HereinGis a set of detectable cyber-attacks.

    Proof.(If)Assuming that conditions(24)and(25)always hold for anyz0∈C,it is obvious that the stochastic matrices E(Q(z0))and E(Qi(z0))(i=1,...,n)have full column rank.Then the equation

    and the auxiliary stochastic equations

    have one and only one solution.In the following,we proof by contradiction.Assume that residualr(z0)=0 andri(z0)=0,i=1,...,n,then equations(26)and(27)has one and only one zero solution,i.e.,

    However,this violates the given condition 0(z0)∈G, i.e.,

    Thereforer(z0)/=0 andri(z0)/=0,i=1,...,n,these cyber-attacksai(s)(0(s)∈G),i=1,...,n,for anys=z0are detectable.

    (Only if)Assume that there exists az0∈C which satis fi es conditions(22)and(23).Since all of the stochastic matrices E(Q(s))and E(Qi(s))(i=1,...,n)have full column ranks, according to Theorem 1,these cyber-attacksai(s),i=1,..., nare undetectable ass=z0.However,this is in contradiction with the given condition that all of these cyber-attacksai(s), i=1,...,nare detectable for anys=z0.Therefore the assumption is false,only

    and

    are true.

    Furthermore,we can obtain the following corollary according to Theorem 1 and Theorem 2.

    Corollary 1.For system(11),assume that all of stochastic matrices E(Q(s))and E(Qi(s))(i=1,...,n)have full column normal rank.If there existsz0∈C,such that

    then there are the following conclusions.

    1)The cyber-attackai(z0)(0(s)∈G)is detectable, if and only if

    2)The cyber-attackaj(z0)(0(s)∈G)is undetectable, if and only if

    IV.SIMULATION RESULTS

    In this section,we provide two simulation examples to illustrate the effectiveness of our results.In Example 1,we consider a control system under three stochastic cyber-attacks and a stochastic noise.We detect two possible stochastic data DoS attacks and a possible stochastic data deception attack, which are aiming at three controller command input channels on the actuator.In Example 2,we use the laboratory process as presented in[21],which consists of four interconnected water tanks.We will also detect possible cyber-attacks on QTP controlled through a wireless communication network.

    Example 1.Consider the following system with a stochastic noisew(t)

    Assume that it is subjected to two stochastic data DoS attacks and a stochastic data deception attack on the actuator aiming at three controller command input channels,i.e.,

    As mentioned before,we ignore the control input,since it does not affect the residual.

    By applying Lemma 1,the robust detector gain matrix can be obtained as follows:

    Set the initial conditions as=[0,0,0,0,0]Tandx(0) =[-0.2,0.4,0.8,-1,0.1]T.When the stochastic eventsα1(t) =α2(t)=α3(t)=0 occur,the system is not under any cyber-attacks.Fig.1 displays the time responses of the residual and the system state under stochastic noisew(t)only, which shows that the system is robustly stable.When the stochastic eventsα1(t)=α2(t)=α3(t)=1 occur,the system is under multiple cyber-attacks.We take the attack probabilitiesρ1=ρ2=0.8 andρ3=0.5,the stochastic matrix rank(E(Q(s)))=9,and rank(E(Q(z0)))=9,rank(E(Qi(z0)))=7(i=1,2,3),which shows that rank(E(Q(z0))),rank(E(Qi(z0)))(i=1,2,3)have always full column rank for anyz0.According to Theorem 2,the three attacks are detectable.Fig.2 displays the noise signal and the attack signals,while Fig.3 shows the time responses of the residual and the system state under three attacks and noise.Fig.4,Fig.5 and Fig.6 give the time responses of the residual under the attackaa1(t),aa2(t)andaa3(t),respectively. Simultaneously,they show the corresponding attack signals. The simulation results underline that these cyber-attacks can be effectively detected if the conditions in Theorem 2 are satis fi ed.

    Example 2.Consider the model of the QTP in[21].

    Fig.1.The time responses of the residual and the system state under the noise.

    Fig.2.The noise signal and the attack signals.

    with the following parameters:

    Assume that it is subjected to two stochastic data deception attacks on the actuator,i.e.,

    and

    Fig.3.The time responses of the residual and the system state under three attacks and noise.

    Fig.4.The time responses of the residual under attackand the attack signal

    Fig.5.The time responses of the residual under attackand the attack signal

    Fig.6.The time responses of the residual under attackand the attack signal

    Fig.7.The time responses of the residual and the system state without attacks.

    The detector gain matrix can be obtained as follows:

    We set the initial conditions as ex(0)=[0,0,0,0]Tandx(0) =[0.1,-0.4,-0.1,0.5]T.When the stochastic eventsα1(t) =α2(t)=0 occur,Fig.7 visualizes that the system(35) is asymptotically stable.When the stochastic eventsα1(t)=α2(t)=1 occur and the attack probabilities areρ1=0.8,ρ2= 0.5,we have stochastic matrix rank(E(Q(s)))=6,however, there exists az0=0.0127 such that rank(E(Q(z0)))=5 and rank(E(Qi(z0)))=5(i=1,2).Aiming at two different con-trol channels,it is possible for the hacker to launch two stochastic data deception attacks as follows:

    such that the transfer function from attacks to residual is zero. Therefore,it is dif fi cult to detect these stealthy attacks.Fig.8 displays the time responses of the residual and the system state under the two attacks(t)and(t),which shows that these attacks whens=z0=0.0127 could not be detected by original model.However,applying the auxiliary tools(20), (21)and according to Corollary 1,these attacks can also be detected.Fig.9 displays the attack signal(t)and the responses of the residual under this attack.Fig.10 shows the attack signal(t)and the responses of residual under this attack.Obviously,applying Corollary 1,the two stochastic data deception attacks can be detected effectively.

    Fig.8.The time responses of the residual and the system state under attacks(t)and(t).

    Fig.9.The time responses of residual under the attack(t)and the attack signal(t).

    V.CONCLUSION

    Fig.10.The time responses of residual under the attack(t)and the attack signal(t).

    This paper presents a cyber-attack detection approach for control systems under multiple stochastic cyber-attacks and disturbances.The proposed problem is signi fi cant in practice, because hackers might launch multiple attacks aiming at one target so that the aggression opportunities are increased and the attack target can be compromised,more stealthily and successfully.For example,the hacker is able to simultaneously launch DoS attacks,deception attacks and replay attacks that are respectively aiming at different communication channels of a control system.The main work here is focused on novel cyber-attack detection schemes that allow the detection of multiple stochastic attacks in order to protect control systems against a wide range of possible attack models.We give two simulation examples the results of which demonstrate that the detection approaches proposed in this paper are feasible and effective.

    REFERENCES

    [1]Bier V,Oliveros S,Samuelson L.Choosing what to protect:strategic defensive allocation against an unknown attacker.Journal of Public Economic Theory,2007,9(4):563-587

    [2]Amin S,Schwartz G A,Sastry S S.Security of interdependent and identical networked control systems.Automatica,2013,49(1):186-192

    [3]Slay J,Miller M.Lessons learned from the Maroochy water breach.Critical Infrastructure Protection,2007,253:73-82

    [4]Andersson G,Esfahani P M,Vrakopoulou M,Margellos K,Lygeros J,Teixeira A,Dan G,Sanderg H,Johansson K H.Cyber-security of SCADA systems.Session:Cyber-Physical System Security in a Smart Grid Environment,2011.

    [5]Mo Y L,Sinopoli B.False data injection attacks in control systems.In: Proceedings of the 1st Workshop on Secure Control Systems.Stockholm, Sweden,2010.

    [6]Amin S,Litrico X,Sastry S,Bayen A M.Cyber security of water SCADA systems:(I)analysis and experimentation of stealthy deception attacks.IEEE Transactions on Control Systems Technology,2013,21(5):1963-1970

    [7]Eliades D G,Polycarpou M M.A fault diagnosis and security framework for water systems.IEEE Transactions on Control Systems Technology, 2010,18(6):1254-1265

    [8]Metke A R,Ekl R L.Security technology for smart grid networks.IEEE Transactions on Smart Grid,2010,1(1):99-107

    [9]Sridhar S,Hahn A,Govindarasu M.Cyber-physical system security for the electric power grid.Proceedings of the IEEE,2012,100(1):210-224

    [10]Mohsenian-Rad A H,Leon-Garcia A.Distributed internet-based load altering attacks against smart power grids.IEEE Transactions on Smart Grid,2011,2(4):667-674

    [11]Sardana A,Joshi R C.Dual-level attack detection and characterization for networks under DDoS.In:Proceedings of the 2010 International Conference on Availability,Reliability and Security.Krakow:IEEE,2010. 9-16

    [12]Weimer J,Kar S,Johansson K H.Distributed detection and isolation of topology attacks in power networks.In:Proceedings of the 2012 HiCoNS′12.Beijing,China,2012.17-18

    [13]Liu Y,Reiter M K,Ning P.False data injection attacks against state estimation in electric power grids.In:Proceedings of the 2009 ACM Conference on Computer and Communications Security.Chicago,IL, USA:ACM,2009.21-32

    [14]Rosich A,Voos H,Li Y M,Darouach M.A model predictive approach for cyber-attack detection and mitigation in control systems.In:Proceedings of the 52nd Annual Conference on Decision and Control.Firenze: IEEE,2013.6621-6626

    [15]Li Y M,Voos H,Rosich A,Darouach M.A stochastic cyber-attack detection scheme for stochastic control systems based on frequencydomain transformation technique.In:Proceedings of the 8th International Conference on Network and System Security.Xi′an,China:Springer, 2014.209-222

    [16]Li Y M,Voos H,Darouach M.RobustH∞fault estimation for control systems under stochastic cyber-attacks.In:Proceedings of the 33rd Chinese Control Conference.Nanjing,China:ORBilu,2014.3124-3129

    [17]Hashim F,Kibria M R,Jamalipour A.Detection of DoS and DDoS attacks in NGMN using frequency domain analysis.In:Proceedings of the 14th Asia-Paci fi c Conference on Communications.Tokyo:IEEE,2008.1-5

    [18]Sundaram S,Hadjicostis C N.Distributed function calculation via linear iterative strategies in the presence of malicious agents.IEEE Transactions on Automatic Control,2011,56(7):1495-1508

    [19]Teixeira A,Sandberg H,Johansson K H.Networked control systems under cyber attacks with applications to power networks.In:Proceedings of the 2010 American Control Conference.Baltimore,MD:IEEE,2010. 3690-3696

    [20]Pasqualetti F,Bichi A,Bullo F.Consensus computation in unreliable networks:a system theoretic approach.IEEE Transactions on Automatic Control,2012,57(1):90-104

    [21]Johansson K H.The quadruple-tank process:a multivariable laboratory process with an adjustable zero.IEEE Transactions on Control Systems Technology,2000,8(3):456-465

    [22]Zhou K M,Doyle J C,Glover K.Robust and Optimal Control.Upper Saddle River,NJ,USA:Prentice-Hall,Inc.,1996.

    Holger Voos studied electrical engineering at Saarland University,Germany,and received his Ph.D. degree in automatic control from the Technical University of Kaiserslautern,Germany,in 2002. He is currently a professor at the University of Luxembourg in the Faculty of Science,Technology and Communication,Research Unit of Engineering Sciences.He is the head of the Automatic Control Research Group and of the Automation and Robotics Research Group at the Interdisciplinary Centre of Security,Reliability and Trust(SnT)at the University of Luxembourg.His research interests include distributed and networked control,model predictive control,and safe and secure automation systems with applications in mobile and space robotics,energy systems and biomedicine.

    Mohamed Darouach graduated from Ecole Mohammadia d’Ingnieurs,Rabat,Morocco,in 1978, and received the Docteur Ingnieur and Doctor of Sciences degrees from Nancy University,France,in 1983 and 1986,respectively.From 1978 to 1986 he was associate professor and professor of automatic control at Ecole Hassania des Travaux Publics, Casablanca,Morocco.Since 1987 he is a professor at University de Lorraine.He has been a vice director of the Research Center in Automatic Control of Nancy(CRAN UMR 7039,Nancy-University, CNRS)from 2005 to 2013.He obtained a degree Honoris Causa from the Technical University of IASI and Since in 2010.He is a member of the Scienti fi c Council of Luxembourg University.Since 2013 he is a vice director of the University Institute of Technology of Longwy(University de Lorraine). He held invited positions at University of Alberta,Edmonton.His research interests include span theoretical control,observers design,and control of large-scale uncertain systems with applications.

    Changchun Hua received his Ph.D.degree from Yanshan University,China,in 2005.He was a research fellow in National University of Singapore Carleton University,Canada and University of Duisburg-Essen,Germany.Now he is a professor at Yanshan University,China.His research interests include nonlinear control systems,control systems design over network,teleoperation systems,and intelligent control.

    received her Ph.D.degree in control theory and control engineering from Yanshan University,China,in 2009.She is currently a research associate at the Interdisciplinary Centre of Security, Reliability and Trust(SnT)at the University of Luxembourg.Her research interests include intelligent control and stochastic systems,secure and resilient automation control systems,distributed control,and cooperative control of multiagent system.Corresponding author of this paper.

    Manuscript received September 30,2014;accepted January 24,2015.This work was supported by the Fonds National de la Recherche,Luxembourg (CO11/IS/1206050(SeSaNet))and National Natural Science Foundation of China(61273222).Recommended by Associate Editor Xinping Guan.

    :Yumei Li,Holger Voos,Mohamed Darouach,Changchun Hua. An algebraic detection approach for control systems under multiple stochastic cyber-attacks.IEEE/CAA Journal of Automatica Sinica,2015,2(3):258-266

    Yumei Li and Holger Voos are with the Interdisciplinary Centre for Security Reliability and Trust(SnT),University of Luxembourg,Luxembourg L-2721, Luxembourg(e-mail:yumei.li@uni.lu;holger.voos@uni.lu).

    Mohamed Darouach is with the Centre de la Recherche en Automatique de Nancy(CRAN),Universite de Lorraine,Longwy 54400,France(e-mail: modar@pt.lu).

    Changchun Hua is with the Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China(e-mail:cch@ysu.edu.cn).

    xxxhd国产人妻xxx| 在线免费观看的www视频| 日韩欧美免费精品| 免费不卡黄色视频| 精品国产国语对白av| 国产99白浆流出| 他把我摸到了高潮在线观看| 午夜福利在线观看吧| 亚洲欧美精品综合久久99| 中文字幕av电影在线播放| 亚洲 欧美 日韩 在线 免费| 亚洲第一青青草原| 男人操女人黄网站| 窝窝影院91人妻| 九色亚洲精品在线播放| 男人舔女人下体高潮全视频| 色精品久久人妻99蜜桃| 成人18禁高潮啪啪吃奶动态图| 亚洲自偷自拍图片 自拍| 伊人久久大香线蕉亚洲五| 亚洲久久久国产精品| 视频在线观看一区二区三区| 丰满迷人的少妇在线观看| 欧美精品亚洲一区二区| 国产一卡二卡三卡精品| 国产精华一区二区三区| 精品一区二区三区av网在线观看| 少妇粗大呻吟视频| 成人免费观看视频高清| 99久久精品国产亚洲精品| 免费在线观看日本一区| 激情视频va一区二区三区| 色哟哟哟哟哟哟| 80岁老熟妇乱子伦牲交| 欧美日韩中文字幕国产精品一区二区三区 | 不卡av一区二区三区| 人人妻,人人澡人人爽秒播| 国产三级黄色录像| 亚洲成a人片在线一区二区| 久久久久久久久中文| 老汉色∧v一级毛片| 亚洲av美国av| 在线观看免费午夜福利视频| 91九色精品人成在线观看| 亚洲精品在线观看二区| 一夜夜www| 女人被狂操c到高潮| 女人爽到高潮嗷嗷叫在线视频| www.自偷自拍.com| 欧美日韩乱码在线| 在线av久久热| 欧美 亚洲 国产 日韩一| 国产亚洲精品第一综合不卡| 俄罗斯特黄特色一大片| 成人三级做爰电影| 麻豆成人av在线观看| 婷婷六月久久综合丁香| 桃红色精品国产亚洲av| 国产在线精品亚洲第一网站| 纯流量卡能插随身wifi吗| 欧美日本中文国产一区发布| 国产av又大| 国产成人av激情在线播放| 欧美日韩黄片免| 中文字幕人妻丝袜一区二区| 美女 人体艺术 gogo| 91精品国产国语对白视频| 日韩免费av在线播放| 黄色视频不卡| 国产欧美日韩综合在线一区二区| 欧美乱色亚洲激情| 亚洲精品久久成人aⅴ小说| 免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 精品电影一区二区在线| 免费观看人在逋| 亚洲成国产人片在线观看| 一本综合久久免费| 黄色女人牲交| 99精品久久久久人妻精品| 丁香六月欧美| 天天躁狠狠躁夜夜躁狠狠躁| 狠狠狠狠99中文字幕| 亚洲成国产人片在线观看| 国产成人精品久久二区二区免费| 国产成人欧美| 久久久久国产精品人妻aⅴ院| 午夜日韩欧美国产| 欧美乱色亚洲激情| 国产激情久久老熟女| 女人爽到高潮嗷嗷叫在线视频| 成人国产一区最新在线观看| 久久精品国产清高在天天线| 性色av乱码一区二区三区2| 亚洲免费av在线视频| 99久久综合精品五月天人人| 日韩精品中文字幕看吧| 亚洲国产毛片av蜜桃av| 久久人妻福利社区极品人妻图片| 夜夜夜夜夜久久久久| 成人精品一区二区免费| 久久婷婷成人综合色麻豆| 免费在线观看完整版高清| 啪啪无遮挡十八禁网站| 可以免费在线观看a视频的电影网站| 久久精品亚洲精品国产色婷小说| 久久久久久免费高清国产稀缺| 午夜福利欧美成人| 国产一区二区三区在线臀色熟女 | 无限看片的www在线观看| 午夜视频精品福利| 日韩欧美一区二区三区在线观看| av在线天堂中文字幕 | 看黄色毛片网站| 午夜两性在线视频| 99re在线观看精品视频| 免费高清在线观看日韩| 真人一进一出gif抽搐免费| 午夜成年电影在线免费观看| 精品福利观看| 国产真人三级小视频在线观看| 久久精品国产清高在天天线| 高清黄色对白视频在线免费看| 日韩有码中文字幕| 国产高清videossex| 又黄又粗又硬又大视频| 成人av一区二区三区在线看| 91麻豆精品激情在线观看国产 | 免费在线观看视频国产中文字幕亚洲| 麻豆久久精品国产亚洲av | 国产高清videossex| 超碰成人久久| 伊人久久大香线蕉亚洲五| 99国产精品免费福利视频| 这个男人来自地球电影免费观看| 美女扒开内裤让男人捅视频| 超碰成人久久| 亚洲av美国av| 国产97色在线日韩免费| 精品福利观看| 男女床上黄色一级片免费看| 最新在线观看一区二区三区| 亚洲 欧美 日韩 在线 免费| 一夜夜www| 天堂影院成人在线观看| 久久欧美精品欧美久久欧美| 免费看十八禁软件| 咕卡用的链子| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| av免费在线观看网站| 一二三四社区在线视频社区8| 久久久精品国产亚洲av高清涩受| 九色亚洲精品在线播放| 亚洲狠狠婷婷综合久久图片| 91大片在线观看| 欧美日韩亚洲高清精品| 夜夜爽天天搞| 99久久99久久久精品蜜桃| 国产又色又爽无遮挡免费看| 国产国语露脸激情在线看| 亚洲专区字幕在线| 99在线人妻在线中文字幕| 亚洲成a人片在线一区二区| 国产精品98久久久久久宅男小说| 久久久水蜜桃国产精品网| 日韩一卡2卡3卡4卡2021年| 亚洲国产精品合色在线| av有码第一页| www.精华液| 12—13女人毛片做爰片一| 日韩欧美免费精品| 看免费av毛片| 一区二区日韩欧美中文字幕| 在线观看日韩欧美| 日日爽夜夜爽网站| 老汉色∧v一级毛片| 国产又色又爽无遮挡免费看| 日韩欧美免费精品| 久久这里只有精品19| 在线观看免费高清a一片| 嫩草影视91久久| 99国产综合亚洲精品| www国产在线视频色| 色播在线永久视频| 午夜精品国产一区二区电影| 电影成人av| 国产99久久九九免费精品| 99国产极品粉嫩在线观看| 母亲3免费完整高清在线观看| 亚洲欧美日韩高清在线视频| 搡老岳熟女国产| 欧美乱妇无乱码| 国产伦一二天堂av在线观看| 欧美激情 高清一区二区三区| 性少妇av在线| 亚洲精品国产区一区二| 免费女性裸体啪啪无遮挡网站| 国产精品一区二区在线不卡| 亚洲精品一区av在线观看| a级毛片在线看网站| 啦啦啦在线免费观看视频4| 亚洲国产精品999在线| 国产成人影院久久av| 亚洲av成人一区二区三| 老汉色av国产亚洲站长工具| 99香蕉大伊视频| 国产99久久九九免费精品| 身体一侧抽搐| av中文乱码字幕在线| 国产伦人伦偷精品视频| 操美女的视频在线观看| 91精品国产国语对白视频| 亚洲国产欧美日韩在线播放| 99精品欧美一区二区三区四区| 99riav亚洲国产免费| 久久国产精品人妻蜜桃| 日本黄色视频三级网站网址| 深夜精品福利| 91国产中文字幕| 国产99久久九九免费精品| 纯流量卡能插随身wifi吗| 色综合站精品国产| 日本一区二区免费在线视频| 香蕉久久夜色| 精品国产一区二区三区四区第35| 啪啪无遮挡十八禁网站| 国产aⅴ精品一区二区三区波| 丝袜在线中文字幕| 免费搜索国产男女视频| 国产免费男女视频| 91成年电影在线观看| 国产人伦9x9x在线观看| 免费看a级黄色片| 久久精品亚洲av国产电影网| 久热爱精品视频在线9| 成在线人永久免费视频| 免费一级毛片在线播放高清视频 | 最近最新中文字幕大全免费视频| 在线国产一区二区在线| 天堂√8在线中文| 少妇的丰满在线观看| 国产高清视频在线播放一区| 一级片免费观看大全| 成人精品一区二区免费| 亚洲熟妇熟女久久| 两个人看的免费小视频| 精品久久久久久,| 国产av又大| 亚洲色图av天堂| 天天添夜夜摸| 中文字幕av电影在线播放| 少妇被粗大的猛进出69影院| 精品午夜福利视频在线观看一区| 99国产极品粉嫩在线观看| 国产色视频综合| 欧美激情久久久久久爽电影 | 三级毛片av免费| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久毛片微露脸| 制服人妻中文乱码| 一区福利在线观看| 久久久国产成人精品二区 | 老司机午夜福利在线观看视频| 国产精品综合久久久久久久免费 | 美女 人体艺术 gogo| 一区二区三区激情视频| 久久久久久久精品吃奶| 99国产精品一区二区三区| 国产亚洲欧美在线一区二区| 日韩大尺度精品在线看网址 | 高清毛片免费观看视频网站 | 国产精品av久久久久免费| 精品一区二区三区av网在线观看| 欧美老熟妇乱子伦牲交| 天堂影院成人在线观看| 80岁老熟妇乱子伦牲交| av网站在线播放免费| 国产精品影院久久| 黄色片一级片一级黄色片| 女同久久另类99精品国产91| 国产精品久久视频播放| 水蜜桃什么品种好| 亚洲一码二码三码区别大吗| 国产精品乱码一区二三区的特点 | 99久久精品国产亚洲精品| 老司机靠b影院| 中亚洲国语对白在线视频| 久久精品亚洲精品国产色婷小说| 99国产综合亚洲精品| 中文字幕av电影在线播放| 免费在线观看完整版高清| 亚洲国产中文字幕在线视频| 午夜福利欧美成人| 老司机福利观看| 日韩欧美国产一区二区入口| 黄色片一级片一级黄色片| 亚洲精品中文字幕在线视频| 两性夫妻黄色片| 变态另类成人亚洲欧美熟女 | 法律面前人人平等表现在哪些方面| 女人高潮潮喷娇喘18禁视频| 99香蕉大伊视频| 丰满饥渴人妻一区二区三| 亚洲黑人精品在线| 又黄又爽又免费观看的视频| 亚洲av熟女| 一本综合久久免费| 91av网站免费观看| 日日夜夜操网爽| 免费在线观看完整版高清| svipshipincom国产片| 国产在线观看jvid| 狂野欧美激情性xxxx| 婷婷精品国产亚洲av在线| 亚洲人成电影免费在线| 纯流量卡能插随身wifi吗| 香蕉国产在线看| 女同久久另类99精品国产91| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸 | 亚洲自偷自拍图片 自拍| 午夜福利在线免费观看网站| 亚洲午夜理论影院| 亚洲狠狠婷婷综合久久图片| 真人做人爱边吃奶动态| 国产精品爽爽va在线观看网站 | 日本wwww免费看| 老司机靠b影院| 欧美成狂野欧美在线观看| 又紧又爽又黄一区二区| 久久久久九九精品影院| 亚洲精品在线美女| 欧美精品一区二区免费开放| 亚洲精品国产区一区二| 一级作爱视频免费观看| 午夜精品国产一区二区电影| 精品国产一区二区久久| 乱人伦中国视频| 国产国语露脸激情在线看| 一进一出抽搐gif免费好疼 | 精品一品国产午夜福利视频| svipshipincom国产片| av欧美777| 欧美黄色淫秽网站| 成人三级黄色视频| 人妻久久中文字幕网| 欧美在线黄色| 国产激情久久老熟女| 国产不卡一卡二| 色综合欧美亚洲国产小说| 村上凉子中文字幕在线| 性欧美人与动物交配| 久久久国产欧美日韩av| 久久久国产成人精品二区 | 欧美大码av| 丰满的人妻完整版| 国产精品一区二区免费欧美| 中文字幕人妻丝袜一区二区| 亚洲色图综合在线观看| 色综合站精品国产| 精品久久久精品久久久| 性色av乱码一区二区三区2| 中文字幕精品免费在线观看视频| 亚洲一码二码三码区别大吗| 一级a爱视频在线免费观看| 免费人成视频x8x8入口观看| 在线观看66精品国产| 国产精品久久视频播放| 激情视频va一区二区三区| 大型av网站在线播放| 国产成人免费无遮挡视频| 国产亚洲精品第一综合不卡| 久久久久久久午夜电影 | 欧美日韩瑟瑟在线播放| 亚洲久久久国产精品| 亚洲欧美精品综合久久99| 悠悠久久av| 一级片免费观看大全| 黑人操中国人逼视频| 精品乱码久久久久久99久播| 中文字幕色久视频| 亚洲国产欧美日韩在线播放| 一个人观看的视频www高清免费观看 | 另类亚洲欧美激情| 精品国产一区二区久久| 麻豆成人av在线观看| 国产精品爽爽va在线观看网站 | 精品一区二区三区四区五区乱码| 涩涩av久久男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 免费少妇av软件| 一级片'在线观看视频| 男女下面进入的视频免费午夜 | 十八禁人妻一区二区| 亚洲熟女毛片儿| 久久精品亚洲av国产电影网| 三上悠亚av全集在线观看| 操出白浆在线播放| 亚洲精品一区av在线观看| 性欧美人与动物交配| 久久国产精品男人的天堂亚洲| 久久久国产一区二区| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 午夜福利一区二区在线看| 制服人妻中文乱码| 国产午夜精品久久久久久| 中文字幕高清在线视频| 男女之事视频高清在线观看| 黄色成人免费大全| 真人一进一出gif抽搐免费| 国产欧美日韩一区二区三区在线| e午夜精品久久久久久久| 美女大奶头视频| 成人亚洲精品av一区二区 | 看片在线看免费视频| 免费高清在线观看日韩| 岛国在线观看网站| 日韩高清综合在线| 女人被躁到高潮嗷嗷叫费观| 极品人妻少妇av视频| 欧美av亚洲av综合av国产av| 夫妻午夜视频| www.999成人在线观看| 啦啦啦在线免费观看视频4| 午夜福利在线免费观看网站| 亚洲国产精品合色在线| 1024视频免费在线观看| 欧美亚洲日本最大视频资源| 日本撒尿小便嘘嘘汇集6| 成人三级黄色视频| 天堂影院成人在线观看| 国产精品九九99| 国产熟女xx| 久久精品国产亚洲av高清一级| 亚洲精品一卡2卡三卡4卡5卡| 国产精华一区二区三区| 97碰自拍视频| 精品日产1卡2卡| 国产欧美日韩一区二区三| 黄色怎么调成土黄色| 淫秽高清视频在线观看| 国产精品电影一区二区三区| 国产精品日韩av在线免费观看 | 日韩成人在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看完整版高清| 国产精品野战在线观看 | 亚洲五月色婷婷综合| 久久性视频一级片| 亚洲伊人色综图| 99久久综合精品五月天人人| 亚洲第一青青草原| 色播在线永久视频| 在线看a的网站| 亚洲人成网站在线播放欧美日韩| 欧美人与性动交α欧美精品济南到| 国产深夜福利视频在线观看| 欧美另类亚洲清纯唯美| 91精品三级在线观看| 9191精品国产免费久久| 一级片免费观看大全| 国产一区二区三区视频了| 国产成人一区二区三区免费视频网站| 亚洲国产精品999在线| 伦理电影免费视频| 成人免费观看视频高清| 久久久久国产精品人妻aⅴ院| 亚洲人成电影观看| 嫩草影视91久久| 亚洲欧美精品综合久久99| 亚洲精品一二三| 丁香六月欧美| 亚洲一码二码三码区别大吗| 亚洲精品国产区一区二| 在线av久久热| 国产精品免费一区二区三区在线| 国产成人精品久久二区二区免费| 亚洲黑人精品在线| 少妇粗大呻吟视频| 亚洲欧美精品综合久久99| 亚洲,欧美精品.| 中文字幕高清在线视频| 一个人观看的视频www高清免费观看 | 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩视频精品一区| 午夜影院日韩av| 黄色丝袜av网址大全| 国产午夜精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 好看av亚洲va欧美ⅴa在| 夜夜爽天天搞| ponron亚洲| 欧美成人免费av一区二区三区| 亚洲av美国av| 国产伦一二天堂av在线观看| 午夜免费激情av| 成人国产一区最新在线观看| www.精华液| 黄色视频不卡| 亚洲午夜精品一区,二区,三区| 制服诱惑二区| 搡老岳熟女国产| 久久人人爽av亚洲精品天堂| 露出奶头的视频| 一边摸一边抽搐一进一出视频| tocl精华| 亚洲国产精品sss在线观看 | 国产av一区二区精品久久| 可以在线观看毛片的网站| 欧美成人性av电影在线观看| 悠悠久久av| 91麻豆av在线| 国产一区二区三区综合在线观看| 欧美国产精品va在线观看不卡| 黄片大片在线免费观看| 91成人精品电影| 亚洲精品国产色婷婷电影| 淫秽高清视频在线观看| 亚洲五月色婷婷综合| 精品一区二区三区四区五区乱码| 少妇被粗大的猛进出69影院| 国产亚洲精品综合一区在线观看 | 自线自在国产av| 欧美中文综合在线视频| 久久久久久久午夜电影 | 操出白浆在线播放| 欧美黑人精品巨大| 成人精品一区二区免费| 久久天躁狠狠躁夜夜2o2o| 韩国精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 午夜福利在线免费观看网站| 女同久久另类99精品国产91| 女人精品久久久久毛片| 精品乱码久久久久久99久播| 又黄又粗又硬又大视频| 亚洲色图 男人天堂 中文字幕| 在线观看一区二区三区激情| 黄色怎么调成土黄色| 欧美成人性av电影在线观看| 老熟妇仑乱视频hdxx| 精品久久久久久成人av| 久久精品人人爽人人爽视色| 又紧又爽又黄一区二区| 女人精品久久久久毛片| 99精品欧美一区二区三区四区| 免费在线观看视频国产中文字幕亚洲| 真人一进一出gif抽搐免费| 国产真人三级小视频在线观看| 99精品在免费线老司机午夜| 母亲3免费完整高清在线观看| 大型黄色视频在线免费观看| 伦理电影免费视频| 国产有黄有色有爽视频| 欧美亚洲日本最大视频资源| 美女扒开内裤让男人捅视频| 一进一出好大好爽视频| 久久久久久久久免费视频了| 亚洲精品国产精品久久久不卡| 精品高清国产在线一区| 久久久精品欧美日韩精品| 美国免费a级毛片| 亚洲一码二码三码区别大吗| 国产成人精品久久二区二区免费| 天天添夜夜摸| 一本大道久久a久久精品| 日本免费a在线| 又黄又爽又免费观看的视频| a级毛片在线看网站| 夜夜看夜夜爽夜夜摸 | 一级毛片高清免费大全| 亚洲九九香蕉| 在线十欧美十亚洲十日本专区| 电影成人av| 亚洲精品在线美女| 女警被强在线播放| 亚洲自拍偷在线| 亚洲男人的天堂狠狠| 亚洲成人国产一区在线观看| 看免费av毛片| 久久久精品欧美日韩精品| 国产精品乱码一区二三区的特点 | 99在线视频只有这里精品首页| 乱人伦中国视频| 久久久国产一区二区| 久久精品影院6| 国产精品98久久久久久宅男小说| 亚洲成a人片在线一区二区| 亚洲精品美女久久久久99蜜臀| 精品福利观看| 桃色一区二区三区在线观看| 长腿黑丝高跟| 一二三四在线观看免费中文在| 女人精品久久久久毛片| 久久精品影院6| 变态另类成人亚洲欧美熟女 | 热99国产精品久久久久久7| 欧美日韩一级在线毛片| 1024香蕉在线观看| 色婷婷久久久亚洲欧美| 女警被强在线播放| 亚洲,欧美精品.| 激情在线观看视频在线高清| 免费在线观看亚洲国产| 99精品欧美一区二区三区四区| 成年版毛片免费区| 女人精品久久久久毛片| 19禁男女啪啪无遮挡网站| 久久香蕉精品热| 欧美日韩亚洲国产一区二区在线观看| 免费高清在线观看日韩| 黄色 视频免费看| 天堂影院成人在线观看|