• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed Secondary Control and Optimal Power Sharing in Microgrids

    2015-08-09 02:00:43GangChenandEningFeng
    IEEE/CAA Journal of Automatica Sinica 2015年3期

    Gang Chen and Ening Feng

    Distributed Secondary Control and Optimal Power Sharing in Microgrids

    Gang Chen and Ening Feng

    —We address the control problem of microgrids and present a fully distributed control system which consists of primary controller,secondary controller,and optimal active power sharing controller.Different from the existing control structure in microgrids,all these controllers are implemented as local controllers at each distributed generator.Thus,the requirement for a central controller is obviated.The performance analysis of the proposed control systems is provided,and the fi nite-time convergence properties for distributed secondary frequency and voltage controllers are achieved.Moreover,the distributed control system possesses the optimal active power sharing property.In the end,a microgrid test system is investigated to validate the effectiveness of the proposed control strategies.

    Index Terms—Microgrid,droop control,distributed control, optimal control.

    I.INTRODUCTION

    CONCERNS about increased energy demand,energy reliability,and environmental pollution have increased interest in the application of renewable energy.The traditional electrical power grid will undergo some structural change with the penetration of renewable energies.The renewable energies are often widely distributed.A promising solution to interfacing the distributed energy with grid is the microgrid paradigm[1-2]. A microgrid may comprise a cluster of loads and a variety of inverter-interfaced distributed generation systems such as photovoltaic arrays,wind turbines,fuel cells,and geothermal energy.Microgrid can be operated either in grid connected or islanded(autonomous)modes[2].

    The distributed renewable resources generate either variable frequency AC power or DC power,and are interfaced with a synchronous AC grid via power electronic AC/DC/AC or DC/AC inverters.In islanded operation,inverters generally operate as voltage source inverters.Each distributed generator (DG)is connected to the microgrid through a voltage source inverter.The main challenge for autonomous microgrid is the coordination of the generators for the active and reactive power sharing and the control of system voltage and frequency.The early work[2-5]introduced the concept of conventional frequency and voltage droop control to microgrid in inductive networks.The droop control is a proportional control law and enables good sharing for loads[2-3].To enhance redundancy and enable plug-and-play functionality of microgrids,the decentralized droop control has been extensively studied[4-8].Once a microgrid is islanded from themain power grid,the primary droop control cannot avoid voltage and frequency deviations from nominal values.A way to restore the microgrid voltage and frequency is to employ the secondary integral control schemes[9-12].The conventional secondary control system is centralized such that complicated communication networks are required to collect information globally and a powerful central controller is used to process the huge amount of data[10,13].To minimize the communication complexity and allow the plug-and-play operation of microgrids,the distributed secondary control schemes are proposed and investigated in recent years.The work in [12]presented a distributed averaging-proportional-integral controller to regulate the system frequency by applying the ideas from multi-agent systems[14-18].The work in[9,14] formulated the secondary control problem of microgrids as a tracking synchronization problem of multi-agent systems where the voltages and frequencies of distributed generators are required to track their nominal values.The above work only considered the case that the inverters share the total load proportionally according to their power ratings.To guarantee the lowest operating cost while maintaining system generationdemand balance constraints,we need to fi nd an optimal power output combination of all generators.That is,a highlevel tertiary controller should be designed to facilitate an economical operation.The tertiary controllers in the traditional power systems are implemented in a centralized computing unit.Considering the fl exibility structure and plug-and-play property of microgrids,decentralized optimal control is more preferable.

    Although signi fi cant progress has been made for the microgrid control system design,several important issues left to be further considered include the following:1)designing a fully distributed control system that allows a plug-and-play operation;2)achieving the distributed and optimal power sharing control among the distributed generators;3)guaranteeing the prescribed control performance for the distributed secondary control and the optimal power sharing properties.

    Comparison with existing work in the literature:Motivated by the hierarchical structure of power systems,we consider a totally distributed implementation of the primary,secondary, and tertiary control levels.The hierarchical structure proposed in[10,13]needs a central controller.In contrast,the central controller is not required in our work.The distributed secondary strategies presented in[9,12]only guarantee the asymptotical voltage and frequency restoration control.Our strategy achieves the fi nite-time voltage and frequency restoration control.Compared with the works in[9,12,14]where only the proportional power sharing property is guaranteed, our method achieves the optimal power sharing.The major contributions of this paper can be summarized as follows.

    1)We present a new control system for autonomous microgrid,where the primary control,secondary control,and tertiary control are locally implemented at each DG.In contrast to the existing literatures[1-14],the proposed control schemes arefully distributed.

    2)A distributed architecture for optimal dispatch of generations in microgrids is proposed.Each generator only communicates with its neighbors to achieve a minimal generation cost while satisfying the demand constraint.

    3)A class of distributed secondary controllers,which possess the fi nite-time convergence property,are presented in this paper.The convergence performances of the secondary control are improved.

    The rest of the paper is organized as follows.Section II gives the microgrid structure.Distributed secondary voltage and frequency control is presented in Section III.Distributed and optimal active power sharing scheme is developed in Section IV.To demonstrate the effectiveness of the proposed algorithms,numerical examples are presented in Section V. Finally,we conclude the paper in Section VI.

    II.MICROGRID STRUCTURE

    Since the centralized control structure in microgrids requires a central controller,this structure decreases the systems reliability and scalability.A solution to this problem is to employ the distributed control structure which has the capability of enhancing redundancy and enabling plug-and-play function in microgrids.Inspired by the hierarchical control scheme of microgrids,we present a fully distributed control structure as shown in Fig.1.The microgrid system,which is a typical cyber-physical system,comprises the physical electric power network(see Fig.1(a))and the cyber communication network(see Fig.1(b)).The control structure(see Fig.1(c)) consists of the primary controller,the secondary voltage and frequency controller,and the active power sharing controller. Different from the traditional hierarchical control scheme of microgrids,the primary,secondary,and tertiary controllers are implemented as the local controllers at each DG.We fi rst analyze the primary controller.The other control modules will be discussed in the subsequent sections.

    Droop control is widely used in the control of large-scale power networks.This technique has been adapted to inverterbased microgrids[2-5].The power controller,shown in Fig.2, is based on microgrid frequency and voltage droop method. Droop technique gives a relation between the active power and the frequency and a relation between the reactive power and the voltage magnitude.Let the output voltage be expressed in the direct-quadratic(d-q)reference frame.The output voltage magnitude reference is aligned to the d-axis.The q-axis reference is set to zero.As in[2,9],the frequency and voltage droop characteristics can be expressed as:

    Fig.1.A fully distributed microgrid control system.

    whereωiandare the reference frequency and magnitude of DG output voltage,respectively.mPiandnQiare the droop coef fi cients.ωniandVniare the primary control references.PiandQiare the measured active and reactive powers at the DGs terminal,which are generated by a low pass fi lter with cutoff frequency equal toωci.The differential equation of the power controller can be written as

    wherevodi,voqi,iodi,andioqiare the direct and quadratic components of output voltage and output current,respectively.

    Fig.2.Power controller.

    Remark 1.The cyber communication network can be different from the physical electric power network.A sparse communication network can be designed such that the complexity of the whole systems is reduced.The sparse commu-nication network is accommodated by utilizing the following distributed secondary and tertiary control strategies.

    III.DISTRIBUTED SECONDARY VOLTAGE AND FREQUENCY CONTROL

    A.Distributed Secondary Voltage Control

    Since the dynamics of the voltage and current controllers are much faster than the dynamics of the power controller[5,9], the voltage droop characteristics can be written as

    The amplitude of the DG output voltage is

    Thus,the synchronization of the voltage amplitude can be achieved by choosing the control inputVni,such thatvodi→vref,wherevrefis the output voltage magnitude reference.

    Differentiating the voltage-droop characteristic in(6)yields

    whereuiis an auxiliary controller to be designed.The secondary voltage control inputVnican be calculated based on the auxiliary control inputui.Since the microgrid structure is distributed and there is no central controller,only a subset of DGs has access to the voltage magnitude reference.To achieve the synchronization forvodi,the distributed cooperative control schemes are applied such that the auxiliary controller is constructed by only using the own information of each DG and the information of its neighbors.The distributed algorithm can realize the plug-and-play capability of microgrid.A graph is used to describe the communication topology in microgrids. DGs are considered as the nodes of the communication graph. The edges of the graph denote the communication links.A graph is usually expressed asG=(ν,ε,A)with a non-empty fi nite set ofnnodes,a set of edgesε?ν×ν,and the associated adjacency matrixA=[aij]∈Rn×n,whereaii=0 andaij≥0 for all.aij>0 if and only if there is an edge between vertexjand vertexi.Ni={j∈ν:(j,i)∈ε}denotes the set of the neighbors of nodei.A diagonal matrixD=diag{di}withdi=Pj∈Niaijis called a degree matrix ofG.The matrixL=D-Ais called the Laplacian matrix. A path is a sequence of edges of the form(i1,i2),(i2,i3),...,whereij∈ν.A graph is called connected if there exists a path between any distinct pair of nodes.

    Let the node with index 0 denote the virtual leader which provides the voltage reference value.According to(8),we have

    Letsig(x)α=sign(x)|x|α,wherex∈R,α>0, and sign(·)denotes the signum function.For any vectorsp=(p1,p2,...,pn)Tandq=(q1,q2,...,qn)T,denotep⊙q=(p1q1,p2q2,...,pnqn)T.For a vectorx=(x1,...,xn)T,sig(x)α=sign(x)⊙|x|αwith sign(x)= (sign(x1),sign(x2),...,sign(xn))Tand|x|α=(|x1|α,|x2|α,...,|xn|α)T.Note thatsig(x)αis a continuous function with respect toxwhenαis bigger than 0.

    To guarantee the fi nite-time synchronization of the voltage control systems,the following distributed controller is proposed

    wherebi≥0 is the weight of the edge by which thei-th DG has access to the voltage reference.Let

    Furthermore,we have

    wherey=(y1,y2,...,yn)T,vod=(vod1,vod2,...,vodn)T,B=diag{bi}is a diagonal matrix with thei-th entry beingbi,and 1ndenotes then-th vector with all the entries being 1.

    The following lemmas are required in the subsequent analysis.

    Lemma 1[15].If the graphGis undirected and connected, thenL+Bis positive de fi nite.

    Lemma 2[18].Let the graphGbe connected andB/=0. Then

    withσmin(L+B)as the minimum singular value ofL+B, andy=0 if and only if the output voltages of each DG synchronize,that is,vod=1nvref.

    Lemma 3[19].Letr1,r2,...,rn≥0 and let 0<ρ≤1, then

    Lemma 4[20].Consider the continuous function˙x=f(x) withf(0)=0.Suppose that there isC1functionV(x)de fi ned on a neighborhood of the origin,and there are real numbersc>0 and 0<α<1 such thatV(x)>0 and˙V(x)+cVα(x)≤0.Then the origin of the system is locally fi nitetime stable.Moreover,the settling time,depending on the initial statex(0)=x0,satis fi esT(x0)

    Now we give one of the main results.

    Theorem 1.Consider the secondary voltage control system (8).Let the communication topology be connected andbi/=0 for at least one DG.Under the auxiliary control inputuigiven in(10),the output voltage direct termvodiof each DG synchronizes with the reference valuevrefin fi nite time.

    Proof.Choose the Lyapunov function

    It is obvious thatV≥0 andV=0 if and only ify=(y1,y2,...,yn)T=0.The time derivative ofVis

    According to Lemma 1,one has thatL+Bis positive de fi nite as long asbi/=0 for at least one DG.Denote thesmallest eigenvalue ofL+Basλ1(L+B).Suppose thatV /=0,i.e.,y/=0.Thus,we have

    B.Distributed Secondary Frequency Control

    The frequency droop characteristic is given by

    whereωniis the primary frequency control reference andmPiis the frequency-active power droop coef fi cient.The secondary frequency control is to design the control referenceωnisuch that the frequency of each DG synchronizes with the nominal valueωref.Differentiating(20)yields

    whereμiis an auxiliary controller to be designed.Similar to the distributed voltage control problem,the distributed frequency control problem can be transformed into the following leader-following problem

    Let the auxiliary control input be

    Applying the same analysis as that in the proof of Theorem 1,we get the following result.

    Theorem 2.Consider the secondary frequency control system(21).Let the communication topology be connected andbi/=0 for at least one DG.Under the auxiliary control inputμigiven in(23),the output frequencyωiof each DG synchronizes with the reference valueωrefin fi nite time.

    Remark 2.The distributed secondary voltage and frequency control schemes are motivated by the cooperative control theory of multi-agent systems[15-18].The droop-based primary control will cause the voltage and frequency deviations from nominal values once a microgrid is islanded.The proposed secondary control schemes can restore the voltage and frequency to their nominal values in fi nite time.

    IV.DISTRIBUTED AND OPTIMAL ACTIVE POWER SHARING SCHEME

    To minimize the total cost of generation while satisfying system active-power balance requirement,we need to schedule each generator’s active power output.The generation cost for thei-th generator can be approximated by[21]

    whereαi,βi,andγiare the cost parameters.Optimization of generation cost in microgrids can be described as

    wherePLjis the power consumed by the loadjandP0denotes the total load in microgrid.The Lagrange function for the optimal problem in(25)can be written as

    whereηis the Lagrange multiplier.

    From the fi rst order optimality conditions,we have

    According to(27),we get the following optimal solution

    i.e.,the optimal dispatch corresponds to the dispatch for which the incremental cost of each generator is equal toη?.

    From(28),we have

    From(30),we see that the optimal value is related to the entire network information.Consider that the microgrid structure is fully distributed.This optimal value cannot be calculated directly.In what follows,we provide a distributed algorithm to solve the optimal problem(25).We fi rst introduce some auxiliary variablesζiand consider the following transformation

    whereaijdenotes the weight of the edge between the generatoriandjanddikrepresents the weight of the edge between the generatorsiand the loadk.dik=1 if the loadkis in the neighborhood of the generatorianddik=0 otherwise.The cyber network is constructed so that a load just communicates with one of the nearest generator.Thus,

    which implies the constraint in(25)is satis fi ed.

    Now we are ready to present one of the main results. The following distributed algorithm is proposed to solve the optimal dispatch problem(25).

    Theorem 3.Let the communication topology among the DGs be connected.The distributed algorithms(34)-(37)solve the optimal dispatch problem(25),i.e.,ηi→η?andPi→(i=1,2,...,n)exponentially.Moreover,the exponential convergence rate is not worse than

    withλ2(L)denoting the smallest nonzero eigenvalue ofL.

    Proof.According to(34)and(36),we have

    Furthermore

    withλ2(L)denoting the smallest nonzero eigenvalue ofL.The norm ofˉδis‖ˉδ‖=‖δ‖cos(θ)withθbeing the angle between the vectorsδandˉδ.Sinceθis not greater than the dihedral angleψwhich is equal to the angle between the normal vectors

    It is shown that the disagreement vectorδexponentially vanishes with a speed of at leastζ.□

    To achieve the optimal active power generation in microgrid, we introduce another auxiliary control inputτi

    V.SIMULATION STUDIES

    The effectiveness of the proposed control scheme is veri fi ed by simulating an islanded microgrid in Matlab/SimPowerSystems.Fig.3 gives a microgrid test system.This microgrid consists of four DGs.The parameters of the test system are shown in Table I.

    Fig.3.Block diagram of the microgrid test system.

    TABLE I PARAMETERS OF THE MICROGRID TEST SYSTEM

    It is assumed that the DGs communicate with each other through the communication topology depicted in Fig.4.The communication topology is chosen based on the geographical location of DGs.The associated adjacency matrix of the graph in Fig.4 is

    DG1 is the only DG that is connected to the virtual leader node with the pinning gain ofb1=1.

    The cost parameters for the DGs are given in Table II.We fi rst calculate the optimal active power generation values for each DG.According to the centralized optimal solution shown in(30),we get the optimal incremental costη?=16.15$/kW. The corresponding optimal active power outputs for the DGs are as follows:=79.44kW,=81.69kW,=64.88kW,and=73.99kW.Next we utilize the distributed optimal dispatch algorithm to solve this economic dispatch problem.Assume that this algorithm is activated att=5s.Fig.5(a)shows the incremental costsηi.It is seen that the incremental costsηiconverge to the same value 16.15.That is,we get the exact optimal solutions by using the proposed distributed algorithms.Fig.5(b)shows that the active power generation references exponentially converge to the optimal values.

    Fig.4.Communication topology 1.

    Fig.5.Distributed solutions for optimal active powers.

    TABLE II THE DG COST PARAMETERS

    The nominal values for the terminal voltagevrefof DGs and the frequencyωrefare set as 380V and 314.16rad/s, respectively.It is assumed that the microgrid is operated in an autonomous mode.Firstly,only the primary controllers are used.As seen from Fig.6,the values of the direct terms of the DG output voltagevodiand the DG terminal voltage amplitudevoiare less than the nominal referencevref.The primary voltage controller cannot avoid the deviations from the nominal values.To regulate the microgrid voltage to the nominal values,the distributed secondary voltage controllers are utilized att=3s.The direct and quadratic terms of the DG output voltages,vodiandvoqi,synchronize with the nominal values 380V and 0V in fi nite time,respectively.The DG terminal voltage amplitude returns to 380V ast≥3.5s.Fig.7 shows the frequency of each DG before and after applying the distributed secondary frequency control.As seen from Fig.7, once the proposed secondary frequency controller is applied, the operating frequencies of the DGs converge toωrefast≥3.5s.Fig.8 gives the active power outputs of the DGs. Although the demand-generation balance is guaranteed,theactive power outputs of the DGs are not optimal before the optimal dispatch algorithms are activated.After the optimal dispatch algorithms are applied,we can see that the DG active power outputs converge to the optimized references in fi nite time.

    Fig.6.DG output voltage values.

    Fig.7.The frequency of each DG.

    In the above case,the parameterαin the secondary controllers is set as 1/2 such that the fi nite-time convergence is achieved.To give a comparison,another set of simulation is made under the same parameter settings except that the parameterαis set as 1.In this case,only the asymptotical convergence property is guaranteed.The tracking performance is shown in Fig.9.Compared with Fig.6(c)and Fig.7,the tracking performance has become slower.

    Fig.8.The active power output of each DG.

    Fig.9.The asymptotical tracking performance.

    The communication topology also affects the tracking performance of the secondary control systems.We assume that only DG2 has access to the reference trajectory.Fig.10 shows the communication topology.Under this scenario,the voltage output is given in Fig.11.The convergence performance is different from Fig.6(c)because of the change of the smallest eigenvalueλ1(L+B)for the Laplacian matrixL+B.

    Fig.10.Communication topology 2.

    Fig.11.The voltage tracking performance.

    VI.CONCLUSION

    A new control structure for autonomous microgrid was proposed in this paper.The distributed secondary voltage control module,the optimal active power sharing module, and the distributed secondary frequency control module were proposed to enable plug-and-play functionality of microgrids. The whole system was fully distributed such that each generator only requires its own information and the information of its neighbors.Different from the previous work,the optimal power sharing properties of the primary droop controllers are achieved and the satisfactory dynamic performances of the secondary controllers are guaranteed.

    REFERENCES

    [1]Lasseter R H,Paigi P.Microgrid:a conceptual solution.In:Proceedings of the 35th IEEE Annual Power Electronics Specialists Conference. Aachen,Germany:IEEE,2004,6:4285-4290

    [2]Lasseter R H,Piagi P.Control and Design of Microgrid Components. Project Report,New York:Power Systems Engineering Research Center Publication,2006.

    [3]Chandorkar M C,Divan D M,Adapa R.Control of parallel connected inverters in standalone AC supply systems.IEEE Transactions on Industry Applications,1993,29(1):136-143

    [4]Mohamed Y A-R I,El-Saadany E F.Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids.IEEE Transactions on Power Electronics,2008,23(6):2806-2816

    [5]Pogaku N,Prodanovi M,Green T C.Modeling,analysis and testing of autonomous operation of an inverter-based microgrid.IEEETransactions on Power Electronics,2007,22(2):613-625

    [6]Peas Lopes J A,Moreira C L,Madureira A G.De fi ning control strategies for microgrids islanded operation.IEEE Transactions on Power Systems, 2006,21(2):916-924

    [7]Li Y W,Kao C N.An accurate power control strategy for power electronics-interfaced distributed generation units operating in a lowvoltage multibus microgrid.IEEE Transactions on Power Electronics, 2009,24(12):2977-2988

    [8]Marwali M N,Jung J W,Keyhani A.Stability analysis of load sharing control for distributed generation systems.IEEE Transactions on Energy Conversion,2007,22(3):737-745

    [9]Biddram A,Davoudi A,Lewis F L,Qu Z H.Secondary control of microgrids based on distributed cooperative control of multi-agent systems.IET Generation,Transmission and Distribution,2013,7(8):822-831

    [10]Guerrero J M,Vasquez J C,Matas J,de Vicu?na L G,Castilla M. Hierarchical control of droop-controlled AC and DC microgrids-a general approach toward standardization.IEEE Transactions on Industrial Electronics,2011,58(1):158-172

    [11]Savaghebi M,Jalilian A,Vasquez J C,Guerrero J M.Secondary control scheme for voltage unbalance compensation in an islanded droopcontrolled microgrid.IEEE Transactions on Smart Grid,2010,3(2):797-807

    [12]Simpson-Porco J W,D¨or fl er F,Bullo F.Synchronization and power sharing for droop-controlled inverters in islanded microgrids.Automatica, 2013,49(9):2603-2611

    [13]Ilic M D,Liu S.Hierarchical Power Systems Control:Its Value in a Changing Industry.London:Springer,1996.

    [14]Xin H H,Qu Z H,Seuss J,Maknouninejad A.A self-organizing strategy for power fl ow control of photovoltaic generators in a distribution network.IEEE Transactions on Power System,2011,26(3):1462-1473

    [15]Ren W,Beard R W.Distributed Consensus in Multi-vehicle Cooperative Control.Berlin:Springer,2008.

    [16]Chen G,Lewis F L,Xie L H.Finite-time distributed consensus via binary control protocols.Automatica,2011,47(9):962-1968

    [17]Chen G,Yue Y L,Lin Q.Cooperative tracking control for networked Lagrange systems:algorithms and experiments.Acta Automatica Sinica, 2014,40(11):2563-2572

    [18]Chen G,Lewis F L.Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems.IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2011,42(3):805-816

    [19]Hardy G H,Littlewood J E,P′olya G.Inequalities.Cambridge:Cambridge University Press,1952.

    [20]Bhat S P,Bernstein D S.Finite-time stability of continuous autonomous systems.SIAM Journal on Control and Optimization,2000,38(3):751-766

    [21]Wood A J,Wollenberg B F.Power Generation,Operation,and Control. New York,NY,USA:Wiley,1996.

    received his Ph.D.degree in control engineering from Zhejiang University,China,in 2006.From 2009 to 2010,he has been a visiting scholar with the Automation and Robotics Research Institute,University of Texas at Arlington.He is currently a professor at the College of Automation, Chongqing University.His research interests include distributed control,cooperative control,intelligent control,cyber-physical system,power system,nonlinear control and control applications.Corresponding author of this paper.

    Manuscript received October 8,2014;accepted March 10,2015.This work was supported by National Natural Science Foundation of China(61273108), the Fundamental Research Funds for the Central Universities(106112013CDJZR175501),and the Scienti fi c Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry.Recommended by Associate Editor Jiming Chen.

    :Gang Chen,Ening Feng.Distributed secondary control and optimal power sharing in microgrids.IEEE/CAAJournalofAutomaticaSinica, 2015,2(3):304-312

    Gang Chen and Ening Feng are with the Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education and the College of Automation,Chongqing University,Chongqing 400044,China (e-mail:chengang@cqu.edu.cn;fengening@cqu.edu.cn).

    Ening Feng graduated from Xinyang Normal University,China,in 2012.He is currently a master student at the College of Automation,Chongqing University.His research interests include cooperative control,cyber-physical system,and power system.

    一个人看视频在线观看www免费 | 99riav亚洲国产免费| 一个人免费在线观看电影 | 精品福利观看| 色播亚洲综合网| 国产乱人伦免费视频| 欧美黑人巨大hd| 搞女人的毛片| 国产精品自产拍在线观看55亚洲| 看片在线看免费视频| 亚洲国产欧美人成| 国产1区2区3区精品| 九九热线精品视视频播放| 一级毛片精品| 日韩欧美三级三区| 国产探花在线观看一区二区| 亚洲熟妇熟女久久| 99久久精品一区二区三区| 午夜福利免费观看在线| 久久精品国产综合久久久| 国产精品精品国产色婷婷| 久久久久免费精品人妻一区二区| 日本免费a在线| 无限看片的www在线观看| 日本a在线网址| 国产毛片a区久久久久| 18美女黄网站色大片免费观看| 久久国产精品影院| 亚洲色图av天堂| 国产精品一区二区三区四区免费观看 | tocl精华| 欧美日本亚洲视频在线播放| 99热这里只有精品一区 | 国产一区二区激情短视频| 在线观看舔阴道视频| 狠狠狠狠99中文字幕| 在线观看免费视频日本深夜| 最近在线观看免费完整版| 午夜福利在线在线| 色av中文字幕| 日本在线视频免费播放| 久久久久精品国产欧美久久久| 亚洲成人久久爱视频| 成人午夜高清在线视频| 男女床上黄色一级片免费看| 国产野战对白在线观看| 亚洲美女黄片视频| 国产高清三级在线| 国产精品精品国产色婷婷| 亚洲精品一卡2卡三卡4卡5卡| 一级作爱视频免费观看| 丁香欧美五月| 国产高清videossex| 国产精品日韩av在线免费观看| 久久精品亚洲精品国产色婷小说| 亚洲精华国产精华精| 1000部很黄的大片| 又爽又黄无遮挡网站| 丰满人妻一区二区三区视频av | 久久中文字幕人妻熟女| 国产精品一区二区精品视频观看| 亚洲国产色片| 丁香欧美五月| 亚洲在线观看片| 制服丝袜大香蕉在线| 亚洲国产高清在线一区二区三| 免费在线观看成人毛片| 亚洲美女视频黄频| 亚洲 欧美一区二区三区| 欧美日韩乱码在线| 亚洲中文字幕日韩| 神马国产精品三级电影在线观看| 久久精品国产99精品国产亚洲性色| 香蕉av资源在线| 欧美高清成人免费视频www| 色精品久久人妻99蜜桃| 一区二区三区高清视频在线| 国产成人一区二区三区免费视频网站| 男人舔女人下体高潮全视频| 免费在线观看日本一区| 国产成人精品无人区| 悠悠久久av| 色综合欧美亚洲国产小说| 国产成年人精品一区二区| 又黄又粗又硬又大视频| 亚洲成av人片免费观看| 日韩成人在线观看一区二区三区| 久久热在线av| 少妇裸体淫交视频免费看高清| 熟女电影av网| 国产精品亚洲av一区麻豆| 亚洲av美国av| www日本在线高清视频| av女优亚洲男人天堂 | 亚洲欧美日韩高清专用| 精华霜和精华液先用哪个| 国产aⅴ精品一区二区三区波| 黄频高清免费视频| ponron亚洲| 级片在线观看| 一夜夜www| 国产爱豆传媒在线观看| 久久久久精品国产欧美久久久| 国产精品女同一区二区软件 | 国产视频一区二区在线看| 欧美3d第一页| АⅤ资源中文在线天堂| 一级黄色大片毛片| 欧美丝袜亚洲另类 | 国产亚洲精品久久久久久毛片| 国产97色在线日韩免费| 一二三四社区在线视频社区8| 欧美日韩瑟瑟在线播放| 99久久国产精品久久久| 美女高潮喷水抽搐中文字幕| 成人高潮视频无遮挡免费网站| 熟女人妻精品中文字幕| 一本一本综合久久| 国产精品 欧美亚洲| 天堂av国产一区二区熟女人妻| 午夜精品久久久久久毛片777| 草草在线视频免费看| 99国产精品一区二区三区| 国产v大片淫在线免费观看| 日日夜夜操网爽| 可以在线观看毛片的网站| 国产精品一区二区免费欧美| 亚洲精品乱码久久久v下载方式 | 亚洲国产中文字幕在线视频| а√天堂www在线а√下载| 人人妻人人澡欧美一区二区| 真人做人爱边吃奶动态| 真人一进一出gif抽搐免费| 他把我摸到了高潮在线观看| 成人国产综合亚洲| 久久久久国产一级毛片高清牌| 亚洲狠狠婷婷综合久久图片| 国产爱豆传媒在线观看| 国产精品电影一区二区三区| 精品国内亚洲2022精品成人| 在线观看舔阴道视频| 亚洲国产日韩欧美精品在线观看 | www.熟女人妻精品国产| 精品久久久久久久久久久久久| 九色国产91popny在线| 后天国语完整版免费观看| 19禁男女啪啪无遮挡网站| 黄色 视频免费看| 高潮久久久久久久久久久不卡| 欧美乱妇无乱码| 国产高清视频在线观看网站| 全区人妻精品视频| 中文在线观看免费www的网站| 丝袜人妻中文字幕| 国产私拍福利视频在线观看| av天堂中文字幕网| 亚洲第一电影网av| 一边摸一边抽搐一进一小说| 亚洲激情在线av| 国产亚洲精品久久久久久毛片| 午夜久久久久精精品| 免费观看的影片在线观看| 99热只有精品国产| 国产极品精品免费视频能看的| 久久午夜综合久久蜜桃| 桃红色精品国产亚洲av| 亚洲精品色激情综合| 色哟哟哟哟哟哟| 国产伦精品一区二区三区四那| 国产麻豆成人av免费视频| 久久久久久大精品| 男女午夜视频在线观看| 亚洲专区字幕在线| 欧美成人免费av一区二区三区| 日韩av在线大香蕉| 久久这里只有精品中国| 国产精品一区二区精品视频观看| 高清在线国产一区| 午夜免费激情av| 亚洲18禁久久av| 大型黄色视频在线免费观看| 久久精品国产综合久久久| 99久久精品国产亚洲精品| 亚洲av第一区精品v没综合| 午夜福利欧美成人| 一二三四在线观看免费中文在| 中文字幕最新亚洲高清| 精品欧美国产一区二区三| 视频区欧美日本亚洲| 村上凉子中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看| 91麻豆av在线| 性色avwww在线观看| 久久久水蜜桃国产精品网| 欧美+亚洲+日韩+国产| 国产精品99久久久久久久久| 校园春色视频在线观看| 男女视频在线观看网站免费| 亚洲激情在线av| 欧美一区二区精品小视频在线| 国产亚洲精品av在线| 欧美一级毛片孕妇| www.www免费av| 国产亚洲欧美在线一区二区| 在线视频色国产色| 又紧又爽又黄一区二区| 99精品在免费线老司机午夜| 美女高潮的动态| 亚洲黑人精品在线| 在线免费观看的www视频| 嫩草影视91久久| 757午夜福利合集在线观看| 欧美大码av| 非洲黑人性xxxx精品又粗又长| 欧美成人性av电影在线观看| 美女黄网站色视频| 久久久久亚洲av毛片大全| 精品福利观看| 成人欧美大片| 日本黄色片子视频| www.www免费av| 露出奶头的视频| 热99在线观看视频| 国产精品综合久久久久久久免费| 特级一级黄色大片| 国产在线精品亚洲第一网站| aaaaa片日本免费| 久久中文看片网| 亚洲精品在线观看二区| 国语自产精品视频在线第100页| 夜夜躁狠狠躁天天躁| 亚洲精品456在线播放app | 国产精品,欧美在线| 国产精品久久久久久亚洲av鲁大| 在线永久观看黄色视频| 国产精品久久视频播放| 在线观看免费午夜福利视频| 99久国产av精品| 亚洲人成网站高清观看| 国产成人精品久久二区二区免费| 少妇熟女aⅴ在线视频| 成人欧美大片| 最近最新中文字幕大全电影3| 亚洲成a人片在线一区二区| 香蕉国产在线看| 亚洲aⅴ乱码一区二区在线播放| 欧美一区二区国产精品久久精品| 最新中文字幕久久久久 | 国产不卡一卡二| 91字幕亚洲| 女同久久另类99精品国产91| 欧美日韩国产亚洲二区| 日韩精品中文字幕看吧| 久久婷婷人人爽人人干人人爱| 久久九九热精品免费| 国产激情偷乱视频一区二区| www.自偷自拍.com| 午夜亚洲福利在线播放| 国产久久久一区二区三区| 欧美三级亚洲精品| 99国产综合亚洲精品| 午夜福利成人在线免费观看| 一区二区三区激情视频| 亚洲性夜色夜夜综合| 一卡2卡三卡四卡精品乱码亚洲| 女同久久另类99精品国产91| 国产精品九九99| 首页视频小说图片口味搜索| 网址你懂的国产日韩在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美乱妇无乱码| 看片在线看免费视频| 国产成人系列免费观看| 最近最新免费中文字幕在线| 99精品在免费线老司机午夜| 亚洲成人久久性| 成在线人永久免费视频| 成人三级做爰电影| 黑人巨大精品欧美一区二区mp4| 男女床上黄色一级片免费看| 熟女人妻精品中文字幕| 黑人操中国人逼视频| 亚洲国产看品久久| 男人和女人高潮做爰伦理| 一区二区三区国产精品乱码| 少妇人妻一区二区三区视频| 久久九九热精品免费| 久久久久免费精品人妻一区二区| 中文字幕人成人乱码亚洲影| 国产精品久久视频播放| 免费在线观看日本一区| 巨乳人妻的诱惑在线观看| 国产成人影院久久av| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| 毛片女人毛片| 亚洲国产欧美网| 国产精品久久久av美女十八| 成年人黄色毛片网站| 久久久久免费精品人妻一区二区| 午夜福利在线在线| 亚洲七黄色美女视频| 亚洲欧美日韩高清在线视频| 欧美av亚洲av综合av国产av| 色精品久久人妻99蜜桃| 国产成人精品久久二区二区免费| 欧美日本亚洲视频在线播放| 最近最新免费中文字幕在线| 国产伦精品一区二区三区四那| 日本 av在线| 俺也久久电影网| 好看av亚洲va欧美ⅴa在| 在线免费观看的www视频| xxxwww97欧美| 亚洲专区国产一区二区| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 国产一级毛片七仙女欲春2| 日韩欧美免费精品| 久久人妻av系列| 久久久久久九九精品二区国产| 免费电影在线观看免费观看| 一级作爱视频免费观看| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| aaaaa片日本免费| 在线a可以看的网站| 亚洲精品美女久久av网站| xxxwww97欧美| 久久国产精品影院| 色综合站精品国产| 色av中文字幕| 成人av一区二区三区在线看| 欧美日韩乱码在线| xxx96com| 男女午夜视频在线观看| www.www免费av| netflix在线观看网站| 99久久精品热视频| 免费在线观看成人毛片| 曰老女人黄片| 久久精品综合一区二区三区| 午夜日韩欧美国产| 国产精品女同一区二区软件 | 99热只有精品国产| 久久久精品大字幕| 亚洲熟妇熟女久久| 亚洲av中文字字幕乱码综合| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 一个人免费在线观看的高清视频| 看黄色毛片网站| 午夜免费观看网址| 欧美丝袜亚洲另类 | 国产又色又爽无遮挡免费看| 午夜激情福利司机影院| 熟妇人妻久久中文字幕3abv| 2021天堂中文幕一二区在线观| 午夜免费激情av| 国产成+人综合+亚洲专区| 亚洲av成人av| xxxwww97欧美| 日韩中文字幕欧美一区二区| 51午夜福利影视在线观看| 亚洲欧美日韩高清在线视频| 久久国产乱子伦精品免费另类| 成人无遮挡网站| 窝窝影院91人妻| 亚洲真实伦在线观看| 国产亚洲精品久久久com| 熟妇人妻久久中文字幕3abv| 五月玫瑰六月丁香| 99久国产av精品| 国产欧美日韩精品一区二区| 99国产极品粉嫩在线观看| 老鸭窝网址在线观看| 欧美一级a爱片免费观看看| 色在线成人网| 精品欧美国产一区二区三| 一个人看视频在线观看www免费 | 国产高清激情床上av| 在线观看免费午夜福利视频| 婷婷亚洲欧美| АⅤ资源中文在线天堂| 亚洲第一电影网av| 999久久久国产精品视频| 精品久久久久久久末码| 搞女人的毛片| 欧美黑人欧美精品刺激| 99久久精品国产亚洲精品| 国产午夜福利久久久久久| 日韩欧美免费精品| 久久久精品大字幕| 一区福利在线观看| 老司机午夜十八禁免费视频| 久久香蕉精品热| 欧美日韩乱码在线| 一级毛片精品| 宅男免费午夜| 精品午夜福利视频在线观看一区| 999久久久国产精品视频| 又大又爽又粗| 亚洲最大成人中文| 亚洲av日韩精品久久久久久密| 久久国产精品人妻蜜桃| 18禁黄网站禁片免费观看直播| 国产美女午夜福利| 亚洲成人免费电影在线观看| 亚洲欧美一区二区三区黑人| 日韩欧美在线乱码| 国产欧美日韩精品亚洲av| 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 日本熟妇午夜| 色综合站精品国产| 欧美最黄视频在线播放免费| 国内揄拍国产精品人妻在线| 老司机福利观看| 男女午夜视频在线观看| 午夜精品久久久久久毛片777| 婷婷亚洲欧美| www.999成人在线观看| 午夜成年电影在线免费观看| 人人妻人人澡欧美一区二区| 久久午夜亚洲精品久久| 在线观看66精品国产| 偷拍熟女少妇极品色| 两个人看的免费小视频| 国产成人系列免费观看| 久久这里只有精品19| 1000部很黄的大片| 亚洲aⅴ乱码一区二区在线播放| 久久国产精品人妻蜜桃| 97人妻精品一区二区三区麻豆| 1024手机看黄色片| 欧美日韩精品网址| 香蕉丝袜av| 成人精品一区二区免费| 岛国视频午夜一区免费看| 成人18禁在线播放| 亚洲av成人不卡在线观看播放网| 天天躁日日操中文字幕| 亚洲专区字幕在线| 90打野战视频偷拍视频| 啦啦啦观看免费观看视频高清| 国产蜜桃级精品一区二区三区| 欧美成人免费av一区二区三区| 女人高潮潮喷娇喘18禁视频| 欧美日韩福利视频一区二区| 精品一区二区三区视频在线观看免费| 欧美xxxx黑人xx丫x性爽| 亚洲最大成人中文| 国产精品av久久久久免费| 色综合婷婷激情| 久久久久久久午夜电影| АⅤ资源中文在线天堂| 夜夜躁狠狠躁天天躁| a级毛片a级免费在线| 亚洲自偷自拍图片 自拍| a级毛片在线看网站| 国内精品美女久久久久久| 很黄的视频免费| 中文字幕人成人乱码亚洲影| 黑人欧美特级aaaaaa片| 嫩草影院精品99| 亚洲午夜精品一区,二区,三区| 黄片大片在线免费观看| 日韩欧美国产一区二区入口| 99热这里只有精品一区 | 精品无人区乱码1区二区| 国产真人三级小视频在线观看| 制服人妻中文乱码| 噜噜噜噜噜久久久久久91| 亚洲国产精品合色在线| 一本一本综合久久| 久久国产乱子伦精品免费另类| 日本在线视频免费播放| 国产精品九九99| 一个人看视频在线观看www免费 | 夜夜躁狠狠躁天天躁| 最近视频中文字幕2019在线8| 激情在线观看视频在线高清| 欧美色视频一区免费| 亚洲美女黄片视频| 国产aⅴ精品一区二区三区波| 欧美一区二区国产精品久久精品| 久久久久国产精品人妻aⅴ院| 丝袜人妻中文字幕| 久久欧美精品欧美久久欧美| 日本三级黄在线观看| 18禁国产床啪视频网站| 黑人操中国人逼视频| 99久久无色码亚洲精品果冻| 12—13女人毛片做爰片一| 狂野欧美激情性xxxx| 1024香蕉在线观看| 黑人操中国人逼视频| 久久天躁狠狠躁夜夜2o2o| 久久久久久九九精品二区国产| 中出人妻视频一区二区| 国产高清视频在线观看网站| 欧美日韩国产亚洲二区| 嫁个100分男人电影在线观看| 久久精品人妻少妇| 国产精品 欧美亚洲| 国产一区二区在线av高清观看| 天天一区二区日本电影三级| 久久午夜亚洲精品久久| 国产成人系列免费观看| 亚洲在线观看片| 精品国产乱码久久久久久男人| 国产亚洲av高清不卡| 国内精品久久久久久久电影| 九九久久精品国产亚洲av麻豆 | 日韩欧美三级三区| 国产午夜精品论理片| 波多野结衣巨乳人妻| 亚洲国产精品成人综合色| 12—13女人毛片做爰片一| 99久国产av精品| 中文字幕人妻丝袜一区二区| 99国产精品一区二区三区| 两性夫妻黄色片| 亚洲精品一区av在线观看| av黄色大香蕉| 久久中文字幕人妻熟女| 久久精品91蜜桃| 性欧美人与动物交配| 亚洲av免费在线观看| 亚洲专区字幕在线| 久久午夜亚洲精品久久| 啦啦啦免费观看视频1| 啦啦啦观看免费观看视频高清| 在线观看美女被高潮喷水网站 | 亚洲欧美日韩高清专用| 日韩人妻高清精品专区| 给我免费播放毛片高清在线观看| 大型黄色视频在线免费观看| 日本在线视频免费播放| 舔av片在线| 亚洲成人免费电影在线观看| 色视频www国产| 亚洲av美国av| 亚洲va日本ⅴa欧美va伊人久久| 久久午夜亚洲精品久久| 五月伊人婷婷丁香| 国内精品久久久久精免费| 日本免费a在线| 国产一级毛片七仙女欲春2| 中出人妻视频一区二区| 久久久水蜜桃国产精品网| 国产精品一区二区三区四区免费观看 | 黄色视频,在线免费观看| 女同久久另类99精品国产91| 国产97色在线日韩免费| 亚洲18禁久久av| 757午夜福利合集在线观看| 99精品久久久久人妻精品| 最新中文字幕久久久久 | www.999成人在线观看| 欧美日韩瑟瑟在线播放| 18禁黄网站禁片午夜丰满| 久久久成人免费电影| 亚洲无线观看免费| 亚洲色图 男人天堂 中文字幕| 日韩 欧美 亚洲 中文字幕| 国产激情偷乱视频一区二区| 麻豆av在线久日| 村上凉子中文字幕在线| 免费观看精品视频网站| 欧美黑人巨大hd| av天堂在线播放| 99热这里只有是精品50| 亚洲aⅴ乱码一区二区在线播放| 亚洲 国产 在线| svipshipincom国产片| 国产精品精品国产色婷婷| 国产极品精品免费视频能看的| 欧美成人免费av一区二区三区| 亚洲中文av在线| 黑人巨大精品欧美一区二区mp4| 欧美丝袜亚洲另类 | 欧美乱色亚洲激情| 99在线视频只有这里精品首页| 久久亚洲精品不卡| 在线观看舔阴道视频| 久久久色成人| 亚洲美女视频黄频| 亚洲无线观看免费| 99在线视频只有这里精品首页| 日本 av在线| 中文资源天堂在线| 毛片女人毛片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成av人片在线播放无| 两性夫妻黄色片| 久久精品夜夜夜夜夜久久蜜豆| 91在线观看av| 国产欧美日韩一区二区精品| 九九久久精品国产亚洲av麻豆 | 成人特级av手机在线观看| 亚洲中文字幕日韩| 欧美日韩亚洲国产一区二区在线观看| 一个人免费在线观看的高清视频| 亚洲精品在线美女| 亚洲av电影不卡..在线观看| 久久久精品欧美日韩精品| 亚洲一区二区三区色噜噜| 亚洲精品乱码久久久v下载方式 | 中出人妻视频一区二区| 欧美性猛交黑人性爽| 国产99白浆流出| 日本在线视频免费播放| 日本免费a在线|