• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experiment on Adiabatic Film Cooling Effectiveness in Front Zone of Effusion Cooling Configuration*

    2014-05-05 22:55:40YangZhimin楊志民ZhangJingzhou張靖周
    關(guān)鍵詞:志民

    Yang Zhimin(楊志民),Zhang Jingzhou(張靖周)

    1.School of Energy and Power Engineering,Beihang University,Beijing,100191,P.R.China;2.Shenyang Engine Design and Research Institute,Aviation Industry Corporation of China,Shenyang,110015,P.R.China;3.Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;4.Collaborative Innovation Center of Advanced Aero-engine,Beijing,100191,P.R.China

    1 Introduction

    As a matter of fact,the inlet and exit temperature levels are progressively getting higher in modern gas-turbine combustors while the percentage of compressed air available for cooling purpose becomes more limited.Undoubtedly,the decrease of the quantity of cooling air available and the increase of the gas temperature in the combustor are contradictory elements of the problem,which presents a great challenge for engineers to design an efficient cost-effective cooling system to meet combustor durability requirement.

    In order to improve the reliability of the combustor liner exposed to hot gas,two technical routes are obligatory for satisfying this requirement.One is to improve the combustor liner material characteristics,and the other is to develop advanced combustor liner cooling configuration.As far as the latter is concerned,effusion cooling or fully coverage film cooling has shown advantage to protect and increase the lifetime of combustor liner for contributing high cooling effectiveness,aswell as uniform temperature distribution[1-4].

    A lot of investigations on the mechanism of enhanced cooling of an effusion cooling scheme have been performed by many researchers.In reality,an effusion cooling scheme consists of three cooling effects:(1)the reduction of the wall temperature for an adiabatic wall as a direct result of the coolant jets;(2)the conduction of heat through the wall due to the thermal conductivity of the wallmaterial and the heat transfer to the backside flow;(3)the heat trans-fer to the coolant flow from the inner surface of the injection holes when coolant passes through the holes.The relative importance of each effect depends critically on the geometrical features of the wall and the operating conditions of the cooling system.

    Although many studies have been conducted to investigate the effects of main geometric and aerothermal factors on the thermal and aerodynamic performances of effusion cooling scheme[5-16],such as the arrangement of effusion holes,hole shape,hole diameter and hole inclination angle,and blowing ratio,etc.,there is few concentration on the cooling characteristics in the front zone of effusion configuration.Previous works have shown that the forming of“continuous”or“developed”coverage film layer comes through a developing process of the coolant jets injected from the front rows of film holes[17-19].The effusion cooling feature in the developing zone is significantly different from that in the developed zone.Themotivation of the presented experimental study is to explore the cooling characteristics in the front zone of effusion configuration.Effects of blowing ratio,multi-holes arrangementmode,hole-to-hole pitch and jet orientation angle on the adiabatic film cooling effectiveness are concentrated on.

    2 Experimental Procedures

    2.1 Experimental setup

    Fig.1 Schematic diagram of experimental setup

    The experimental setup is sketched in Fig.1.The primary stream comes from compressed air supply(0.8 MPa)and passes through a calibrated orifice flow meter,after being heated by a 60 kW heater,which can heat the air to a free-stream temperature of 80 °C.The heated stream is then routed through a section with baffles to ensure adequate mixing of the hot air to obtain a uniform temperature at the crosssection of 150 mm width and 60 mm height.This cross-section makes the primary stream flow at25 m/s.The primary stream temperature is continuously monitored at the inlet of the test section by a thermocouple.The secondary stream or coolant air is provided from a separate compressed air supply and routed through a buoyage flow meter,which is controlled by a gate valve and introduced into the plenum cavity.To eliminate the impingement effect of the coolant air at the plenum inlet,multiple layers of grids are placed in the plenum cavity.The coolant stream is then ejected through the effusion cooling holes into the primary flow passage.The test section ismade of transparent plastic plate with thickness of 5 mm.The length of the test section is300 mm.An infrared viewing window,which is 80 mm wide and 120 mm long,ismounted on the test section for directly viewing themeasured surface by an infrared camera.

    2.2 Experimentalmodels

    The experimental model for an effusion cooling configuration is shown in Fig.2(a).The effusion plate ismade of epoxy resin with thickness of 3 mm.The holes inside the perforated plate are arranged in the staggered mode or the inline mode,as shown in Figs.2(b,c).In the present study,the effusion holes have the same diameter(d=2 mm).The streamwise pitch ratio(S/d)and spanwise pitch ratio(P/d)are varied from 3 to 5.The inclined angle(α)is setas35°and 90°,respectively.The effusion plate has length of 120 mm and width of 150 mm,which ismounted inside the test section.

    The geometries of the effusion plates are summarized in Table 1.

    Fig.2 Schematic diagram of effusion cooling scheme

    Table 1 Effusion plate geometries

    2.3 M easurement and parameter definition

    To study the effect of various amount of coolant flow on the film cooling for a fixed mainstream flow,a parameter known as the blowing ratio(M)is defined as

    whereρcand ucare the density and velocity of the secondary flow or coolant flow at the effusion hole exit,respectively;and ρ∞and u∞are the density and velocity of the primary flow,respectively.

    The adiabatic wall cooling effectiveness(ηad)is defined as

    where Tcis the coolant flow temperature,T∞the primary flow temperature,T∞the primary flow temperature,Tawthe adiabatic wall temperature at the effusion surface suffering the primary flow.Since the thermal conductivity of effusion plate is about 0.4 W/(m·K),the heat transfer on the backside surface and inside effusion holes of the effusion plate is very weak.Therefore,the temperature on the effusion surface may be regarded approximately as the adiabatic temperature.

    The temperature distributions on the face of the effusion plate aremeasured by an infrared camera operating in themiddle infrared band(8~14 m)of the infrared spectrum.The test surface is viewed through the infrared camera window(Fig.1).The infrared camera calibration is conducted using a series of thermocouples placed on the black painted test surface to act as the benchmark[20-22].These thermocouples are used to estimate the emissivity of the test surface.The emissivity of the black painted test when viewed without thewindow is about0.96.The calibrated transmissivity for the infrared camera window is about0.85.

    To eliminate the effect of the edge area on the data treatment,the laterally-averaged adiabatic cooling effectiveness is determined on the centric zone of effusion plate.

    Experimental uncertainty in the overall film effectiveness measurement is estimated to be about ± 8.4%using the methodology of Moffat[23].The individual uncertainties of primary mainstream temperature(T∞),coolant temperature(Tc),and surface temperature(Taw)are ±1 °C,±0.5 °C,±2.0 °C,respectively.

    3 Results and Discussion

    Fig.3 presents the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction at different blowing ratios.Here the original coordinate is located at the centre of the first row film holes.

    For either the staggered mode or inline mode,the film flow displays an obvious“developing”feature in the front zone of effusion cooling configuration.The film outflows injected from the front rows do notmerge together to form a uniform film layer,therefore the laterally-averaged adiabatic cooling effectiveness increases or the adiabatic temperature decreases rapidly along the streamwise direction.By comparison,the varying gradient of the laterally-averaged adiabatic cooling effectiveness along the streamwise direction is greater in the staggered mode than that in the inline mode.Thismeans that the staggered mode will benefit the development of film flow and is capable of achieving full film coverage by fewer number of effusion cooling-holes rows.

    For the staggered arrangement,the laterally-averaged adiabatic film cooling effectiveness originated from the first few rows is higher under the lower blowing ratio,which agrees well with the results of discrete film cooling from early studies[24,25].Under a lower blowing ratio,the coolant jet has the lower penetration capacity,which is helpful tomake the coolant jet covering the downstream surface of the holes.But formulti-rows of film cooling holes,themaintainance capacity of jet spreading along streamwise direction under lower blowing ratio is also lower,thus leading to a slower growth of film layer.Also,the vigorous film layer is provided with the ability of suppressing coolant jet penetration.Therefore,the laterally-averaged adiabatic film cooling effectiveness originated from the last few rows is higher under a bigger blowing ratio.

    For the inline arrangement,the film coverage in the lateral direction is seriously weaker than that of the staggered mode.The inlinemode thus needs longer developing stage to realize the full film coverage.The laterally-averaged adiabatic film cooling effectiveness in the front zone of effusion cooling configuration decreases with the increase of blowing ratio.

    Fig.3 Laterally-averaged adiabatic cooling effectiveness distributions at different blowing ratios

    Fig.4 presents the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction under different multi-hole arrangements.As discussed in the above,the varying gradient of the laterally-averaged adiabatic cooling effectiveness along the streamwise direction is obviously lower for the inline arrangement than that for the corresponding staggered arrangement.The laterally-aver-aged adiabatic cooling effectiveness for the staggered mode is also higher than that for the corresponding value of inlinemode at the same blowing ratio.

    Fig.4 Laterally-averaged adiabatic cooling effectiveness distributions under different hole arrangements

    Fig.5 shows the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction under different jet orientation angles.Either for the staggered mode or the inlinemode,the laterally-averaged adiabatic cooling effectiveness with jet orientation angle of 35°is greater than that of 90°angle.As the coolant is discharged with a certain inclined angle,the coolant flow velocity components from effusion holes can be divided into two parts,i.e.,the tangent velocity and the normal velocity.In the tangential direction,the coolant is forced to flow downstream the film hole,which is also called aswall jet.From the view of enhancing film cooling effectiveness,the greater tangent velocity is expected tomaintain wall jet momentum along the streamwise direction.While in the normal direction,it is the opposite case.The coolant flow penetrates the primary flow and lifts off the surface.As expected,the lower coolant jet penetration along normal direction and the higher spread along streamwise direction with the inclined discharge are to benefit the film cooling effectiveness.

    Fig.5 Laterally-averaged adiabatic cooling effectiveness distributions under different jet orientation angles

    Fig.6 Laterally-averaged adiabatic cooling effectiveness distributions under different hole-to-hole pitches

    Fig.6 presents the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction under different hole-to-hole pitches.According to the work of Yang and Zhang[19]on the cooling film development of staggered arrangement,the development of film layer of the effusion cooling scheme could be divided into three stages.Firstly,the film cooling effectiveness increases rapidly along streamwise direction in the front rows of multi-holes where the film layer is undergoing a developing stage.Then the laterally averaged adiabatic film cooling effectiveness increases tardily in the middle rows of multi-hole where the film layer is undergoing a transition stage.Finally,once the effusion film layer is developed,the laterally averaged adiabatic film cooling effectiveness should trend to be constant.Generally,the transition stage is accomplished in the 17th row.For the small pitches(such as S/d=P/d=3),this feature iswell demonstrated.While for the large pitches,film layer is undergoing the developing stage.The holes array arranged with small pitches is in favor of obtaining a developed film layer.

    According to the varying trend of the laterally-averaged adiabatic film cooling effectiveness along streamwise direction for the inline arrangement,it is deduced that the film layer developmentwill be very slower than that for the staggered arrangement.The reason has been discussed in the above.

    4 Conclusions

    (1)The varying gradientof the laterally-averaged adiabatic cooling effectiveness along the streamwise direction in the front zone of effusion cooling configuration is greater for the staggered mode than that of the inline mode.The laterally-averaged adiabatic cooling effectiveness for the staggered mode is higher than the corresponding value of inline mode at the same blowing ratio.(2)For the staggered multi-holes mode,the laterally-averaged adiabatic film cooling effectiveness originated from the first few rows is higher under the lower blowing ratio.While for the last few rows,the higher film cooling effectiveness is achieved under a bigger blowing ratio.The holes array arranged with small hole-to-hole pitches is in favor of obtaining developed film coverage layer rapidly.(3)Either for the staggered arrangement or the inline arrangement,the laterally-averaged adiabatic cooling effectiveness with inclined jet orientation angle of 35°is greater than the corresponding value of normal orientation angle at the same blowing ratio.The lower coolant jet penetration along the normal direction and higher spread along the streamwise direction with the inclined discharge is benefit to the film cooling effectiveness.

    [1] Leger B,Miron P,Emidio JM.Geometric and aerothermal influences onmultiholed plate temperature:application on combustor wall[J].International Journal of Heat and Mass Transfer,2003,46:1215-1222.

    [2] Jeromin A,Eichler C,Noll B,et al.Full 3D conjugate heat transfer simulation and heat transfer coefficient prediction for the effusion-cooled wall of a gas turbine combustor[R].ASME GT2008-50422,2008.

    [3] Andreini A,Bonini A,Caciolli G,et al.Numerical study of aerodynamic losses of effusion cooling holes in aero-engine combustor liners[J].ASME Journal of Engineering for Gas Turbines and Power,2011,133:021901-1-10.

    [4] Krewinkel R.A review of gas turbine effusion cooling studies[J].International Journal of Heat and Mass Transfer,2013,66:706-722.

    [5] Andrews G E,Khalifa IM,Asere A A,etal.Full coverage effusion film cooling with inclined holes[R].ASME Paper 95-GT-274,1995.

    [6] Gustafsson K M,Johansson TG.An experimental study of surface temperature distribution on effusion-cooled plates[J].ASME Journal of Engineering for Gas Turbines and Power,2001,123:308-316.

    [7] Harrington M K,McWaters M A,Bogard D G,et al.Full-coverage film cooling with short normal injection holes[J].Journal of Turbomachinery,2001,123:798-806.

    [8] Lin Yuzhen,Song Bo,Li Bin,et al.Investigation of film cooling effectiveness of full-coverage inclined multihole walls with different hole arrangements[R].ASME GT2003-38881,2003.

    [9] Scrittore JJ,Thole K A,Burd SW.Investigation of velocity profiles for effusion cooling of a combustor liner[J].ASME Journal of Turbomachinery,2007,129:518-526.

    [10] Li Bin,Ji Honghu,Jiang Yijun,et al.Experimental and numerical analysis of temperature distribution on floating-wall flame tube of combustor[J].Journal of Nanjing University of Aeronautics and Astronautics,2007,39(6):771-774.(in Chinese)

    [11] Zhang Jingzhou,Xie Hao,Yang Chengfeng.Numerical study on flow and heat transfer of impingement-effusion cooling[J].Chinese Journal of Aeronautics,2009,22(4):343-348.

    [12] Zhang Chi,Song Bo,Lin Yuzhen,etal.Cooling effectiveness of effusion walls with deflection hole angles measured by infrared imaging[J].Applied Thermal Engineering,2009,29:966-972.

    [13] Yang Chengfeng,Zhang Jingzhou,YangWeihua.Effect of the holes array arrangement on the full coverage film cooling characteristics[J].Journal of Aerospace Power,2010,25(7):1524-1529.(in Chinese)

    [14] Yang Weihua,Peng Jianyong,Cao Jun,et al.Experimental study on cooling effectiveness of compound cooling configurations in reverse flow combustor[J].Journal of Nanjing University of Aeronautics and Astronautics,2012,44(6):769-774.(in Chinese)

    [15] Xie Jie,Zhang Jingzhou.Numerical simulation on cooling characteristics of effusion wall with deflection film outflow[J].Journal of Nanjing University of Aeronautics and Astronautics,2013,45(2):157-161.(in Chinese)

    [16] Yang Qian,Lin Yuzhen,Zhang Chi,et al.Cooling effectiveness comparison between effusion cooling and impingement/effusion cooling[J].Journal of Aerospace Power,2014,28(2):268-275.(in Chinese)

    [17] Bohn D,Moritz N.Influence of hole shaping of staggered multi-hole configurations on cooling film development[R].AIAA Paper 2000-2579,2000.

    [18] Petre B,Dorignac E,Vullierme J J.Study of the influence of the number of holes rows on the convective heat transfer in the case of full coverage film cooling[J].International Journal of Heat and Mass Transfer,2003,46:3477-3496.

    [19] Yang Chengfeng,Zhang Jingzhou.Influence of multihole arrangement on cooling film development[J].Chinese Journal of Aeronautics,2012,25:182-188.

    [20] Carlomagno G M,Cardone G.Infrared thermography for convective heat transfermeasurements[J].Experiments in Fluids,2010,49:1187-1218.

    [21] Yang Chengfeng,Zhang Jingzhou.Experimental investigation on film cooling characteristics from a row of holes with ridge-shaped tabs[J].Experimental Thermal and Fluid Science,2012,37:113-120.

    [22] Yu Yezheng,Zhang Jingzhou,Xu Huasheng.Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs[J].International Journal of Heat and Mass Transfer,2014,72:222-233.

    [23] Moffat R J.Describing the uncertainties in experimental results[J].Experimental Thermal and Fluid Science,1988,1:3-17.

    [24] Schmidt D L,Sen B,Bogard D G.Film cooling with compound angle holes:adiabatic effectiveness[J].ASME Journal of Turbomachinery,1996,118:807-813.

    [25] Gritsch M,Schulz A,Wittig S.Adiabatic wall effectivenessmeasurements of film cooling holeswith expanded exits[J].ASME Journal of Turbomachinery,1998,120:549-556.

    猜你喜歡
    志民
    強(qiáng)化三種意識(shí),引領(lǐng)向量解題
    基于混合FE-SEA方法的加筋板寬頻隔聲預(yù)計(jì)
    毛竹C4H基因的鑒定及其表達(dá)模式分析
    外源水楊酸對(duì)鹽脅迫高羊茅生長(zhǎng)和生理的影響
    “紡織之光”賦能行業(yè)科技十余載——訪紡織之光科技教育基金會(huì)理事長(zhǎng)葉志民
    民警安志民的“第二職業(yè)”是什么?
    Sharma-Tasso-Olver方程的新精確解研究
    寶貝兒回家
    生死兄弟情
    表面改性鋅鎂鋁三元類水滑石的摩擦性能及抗磨機(jī)理
    我的老师免费观看完整版| 亚洲成人免费电影在线观看| 午夜精品久久久久久毛片777| 精品久久久久久久久av| 97人妻精品一区二区三区麻豆| 九九爱精品视频在线观看| 久久精品国产亚洲av香蕉五月| 亚洲精品久久国产高清桃花| 国产精品国产高清国产av| 日本爱情动作片www.在线观看 | 一夜夜www| 国产免费男女视频| 免费观看人在逋| 欧美+日韩+精品| 搡老妇女老女人老熟妇| 国产探花极品一区二区| 天美传媒精品一区二区| 国产探花极品一区二区| 99国产精品一区二区蜜桃av| 99久久无色码亚洲精品果冻| 97热精品久久久久久| 午夜福利在线观看吧| 很黄的视频免费| 很黄的视频免费| 少妇人妻一区二区三区视频| 亚洲欧美激情综合另类| 亚洲av中文av极速乱 | 亚洲国产精品合色在线| 欧美激情在线99| 久久午夜亚洲精品久久| 国产亚洲av嫩草精品影院| 免费观看在线日韩| 国产淫片久久久久久久久| 久久久久久九九精品二区国产| 国产精品美女特级片免费视频播放器| 12—13女人毛片做爰片一| bbb黄色大片| 国产淫片久久久久久久久| 身体一侧抽搐| 成人性生交大片免费视频hd| 黄色日韩在线| 亚洲四区av| 男女啪啪激烈高潮av片| 国产日本99.免费观看| 此物有八面人人有两片| 美女高潮的动态| 国产不卡一卡二| 女的被弄到高潮叫床怎么办 | 欧美成人性av电影在线观看| 一个人看的www免费观看视频| 日本一二三区视频观看| 99视频精品全部免费 在线| 久久午夜亚洲精品久久| 亚洲av中文av极速乱 | 两人在一起打扑克的视频| 3wmmmm亚洲av在线观看| 中文字幕免费在线视频6| www.色视频.com| 亚洲av成人精品一区久久| 日日夜夜操网爽| 久久久久精品国产欧美久久久| av黄色大香蕉| 高清毛片免费观看视频网站| 悠悠久久av| 国内精品久久久久久久电影| 亚洲乱码一区二区免费版| 国产精品永久免费网站| 天堂√8在线中文| 亚洲最大成人av| 午夜福利在线观看吧| 久久国内精品自在自线图片| 全区人妻精品视频| 可以在线观看的亚洲视频| 国产一区二区三区av在线 | 在线观看66精品国产| 午夜精品久久久久久毛片777| 精品人妻视频免费看| 天堂影院成人在线观看| 国产一区二区亚洲精品在线观看| 国产探花极品一区二区| 午夜福利视频1000在线观看| 久久久午夜欧美精品| 国产精品久久电影中文字幕| 国产男人的电影天堂91| 少妇的逼水好多| 日日干狠狠操夜夜爽| 亚洲一区二区三区色噜噜| 成年免费大片在线观看| 免费av毛片视频| 赤兔流量卡办理| 欧美成人一区二区免费高清观看| 亚洲最大成人手机在线| x7x7x7水蜜桃| 日本欧美国产在线视频| 男插女下体视频免费在线播放| 搡老妇女老女人老熟妇| 精品久久久久久久久av| 九九久久精品国产亚洲av麻豆| 亚洲av中文av极速乱 | 精品久久久久久久久亚洲 | 国产主播在线观看一区二区| netflix在线观看网站| 国产精华一区二区三区| 亚洲成人中文字幕在线播放| 窝窝影院91人妻| 亚洲精品影视一区二区三区av| 人人妻人人澡欧美一区二区| 大又大粗又爽又黄少妇毛片口| 春色校园在线视频观看| 变态另类丝袜制服| 99国产极品粉嫩在线观看| 中文亚洲av片在线观看爽| 久久精品国产亚洲av涩爱 | 精品一区二区三区人妻视频| 国产精品久久电影中文字幕| 超碰av人人做人人爽久久| 国内少妇人妻偷人精品xxx网站| 国内久久婷婷六月综合欲色啪| 成人鲁丝片一二三区免费| aaaaa片日本免费| 国产av一区在线观看免费| 看黄色毛片网站| 国产黄片美女视频| 日韩精品青青久久久久久| 不卡视频在线观看欧美| 少妇人妻精品综合一区二区 | 久久精品国产清高在天天线| 两性午夜刺激爽爽歪歪视频在线观看| 嫁个100分男人电影在线观看| 少妇人妻一区二区三区视频| 国产亚洲精品综合一区在线观看| 成年人黄色毛片网站| 亚洲成人中文字幕在线播放| 亚洲成av人片在线播放无| 欧美色视频一区免费| 日日撸夜夜添| 国产毛片a区久久久久| 在线免费观看不下载黄p国产 | 久久精品综合一区二区三区| 欧美日韩综合久久久久久 | 亚洲天堂国产精品一区在线| 99国产精品一区二区蜜桃av| 国产精品无大码| 在线观看舔阴道视频| 日韩高清综合在线| 久久这里只有精品中国| 韩国av一区二区三区四区| 国产精华一区二区三区| 一进一出好大好爽视频| 成年女人看的毛片在线观看| 他把我摸到了高潮在线观看| 国产精品精品国产色婷婷| 国产淫片久久久久久久久| 深夜精品福利| .国产精品久久| 欧美另类亚洲清纯唯美| 一个人免费在线观看电影| 神马国产精品三级电影在线观看| av在线亚洲专区| 黄色欧美视频在线观看| 国产成人aa在线观看| 国产精品人妻久久久影院| 黄色欧美视频在线观看| 最近最新免费中文字幕在线| 日韩欧美精品v在线| 亚洲中文日韩欧美视频| 在线免费观看不下载黄p国产 | 一级av片app| 国产伦人伦偷精品视频| av天堂在线播放| av福利片在线观看| 一边摸一边抽搐一进一小说| 亚洲国产欧洲综合997久久,| av天堂中文字幕网| 精品一区二区三区视频在线| 亚洲aⅴ乱码一区二区在线播放| 精品人妻偷拍中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲专区国产一区二区| 白带黄色成豆腐渣| h日本视频在线播放| 午夜免费男女啪啪视频观看 | 他把我摸到了高潮在线观看| 免费看美女性在线毛片视频| 国产大屁股一区二区在线视频| 国语自产精品视频在线第100页| 久久精品夜夜夜夜夜久久蜜豆| 午夜老司机福利剧场| 久久久久久久亚洲中文字幕| 亚洲精品一区av在线观看| 一区二区三区四区激情视频 | 国产日本99.免费观看| 91在线观看av| 久久99热这里只有精品18| 亚洲va在线va天堂va国产| 九色国产91popny在线| 身体一侧抽搐| 亚洲av熟女| 最近最新中文字幕大全电影3| 久久香蕉精品热| 麻豆国产97在线/欧美| 免费看av在线观看网站| 国产精品久久久久久久电影| 久久精品综合一区二区三区| 久久精品国产鲁丝片午夜精品 | 美女高潮的动态| 国产黄片美女视频| 九九热线精品视视频播放| 中出人妻视频一区二区| 91久久精品国产一区二区成人| 久久精品久久久久久噜噜老黄 | 成人欧美大片| 日本在线视频免费播放| 成人美女网站在线观看视频| 可以在线观看毛片的网站| 最近最新中文字幕大全电影3| 亚州av有码| 男女边吃奶边做爰视频| 国产精品av视频在线免费观看| av.在线天堂| 日日摸夜夜添夜夜添av毛片 | 老女人水多毛片| 国产在视频线在精品| 欧美国产日韩亚洲一区| 亚洲avbb在线观看| 麻豆av噜噜一区二区三区| 国产精品美女特级片免费视频播放器| 很黄的视频免费| 亚洲欧美日韩卡通动漫| 日本 av在线| 婷婷精品国产亚洲av在线| 动漫黄色视频在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品一区二区免费欧美| 欧美另类亚洲清纯唯美| 国产亚洲欧美98| 欧美丝袜亚洲另类 | 99热这里只有是精品50| 免费观看精品视频网站| 国产成人a区在线观看| 99久久久亚洲精品蜜臀av| 日韩欧美免费精品| 人妻丰满熟妇av一区二区三区| 日韩人妻高清精品专区| 在线观看午夜福利视频| 久久久久久久久久成人| 国产男人的电影天堂91| 欧美极品一区二区三区四区| 亚洲 国产 在线| 少妇猛男粗大的猛烈进出视频 | 亚洲avbb在线观看| 亚洲乱码一区二区免费版| 国产成人影院久久av| 特级一级黄色大片| 国产精品日韩av在线免费观看| 精品99又大又爽又粗少妇毛片 | 欧美极品一区二区三区四区| 免费看a级黄色片| 午夜福利视频1000在线观看| 精品福利观看| 观看美女的网站| 人妻丰满熟妇av一区二区三区| 色噜噜av男人的天堂激情| 99在线视频只有这里精品首页| 天天一区二区日本电影三级| 国产熟女欧美一区二区| 久久6这里有精品| 美女被艹到高潮喷水动态| 九九久久精品国产亚洲av麻豆| 狂野欧美白嫩少妇大欣赏| 变态另类成人亚洲欧美熟女| 狠狠狠狠99中文字幕| 国产av麻豆久久久久久久| 国产免费av片在线观看野外av| 国产视频内射| 精品一区二区三区视频在线观看免费| 啪啪无遮挡十八禁网站| 欧美激情国产日韩精品一区| 亚洲无线在线观看| 成人欧美大片| 国产欧美日韩精品亚洲av| 色av中文字幕| 亚洲美女黄片视频| 国产人妻一区二区三区在| 特级一级黄色大片| 国产精品精品国产色婷婷| 国产高清三级在线| 九九久久精品国产亚洲av麻豆| 麻豆精品久久久久久蜜桃| 成年女人看的毛片在线观看| 国产精品久久视频播放| 成人国产综合亚洲| 午夜亚洲福利在线播放| 在线播放无遮挡| 国产国拍精品亚洲av在线观看| 蜜桃久久精品国产亚洲av| 国产三级在线视频| 午夜激情福利司机影院| 精品人妻偷拍中文字幕| 在线免费十八禁| 精品不卡国产一区二区三区| 色播亚洲综合网| 中文字幕高清在线视频| 亚洲精品色激情综合| 校园春色视频在线观看| 国产 一区精品| 人妻少妇偷人精品九色| 亚洲一区二区三区色噜噜| 欧美黑人巨大hd| 91狼人影院| 国产成人福利小说| 国产色婷婷99| 亚洲av中文av极速乱 | 国产大屁股一区二区在线视频| 亚洲,欧美,日韩| 一区二区三区激情视频| 99久久精品热视频| 最后的刺客免费高清国语| 天堂影院成人在线观看| 国产精品亚洲一级av第二区| 久久亚洲精品不卡| 亚洲精品久久国产高清桃花| 久久国产精品人妻蜜桃| 日本 欧美在线| 久久久久久久久久成人| 偷拍熟女少妇极品色| 波多野结衣巨乳人妻| 亚洲av免费在线观看| 国产久久久一区二区三区| 亚洲欧美日韩无卡精品| 两人在一起打扑克的视频| 精品人妻偷拍中文字幕| 日韩 亚洲 欧美在线| 男女免费视频国产| 亚洲av免费高清在线观看| 美女脱内裤让男人舔精品视频| 少妇猛男粗大的猛烈进出视频| 亚洲在久久综合| 丰满迷人的少妇在线观看| 中文在线观看免费www的网站| 亚洲成人av在线免费| 七月丁香在线播放| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 精品国产一区二区三区久久久樱花 | 日韩电影二区| 国产精品一区二区性色av| 亚洲av男天堂| 亚洲欧美日韩卡通动漫| 熟妇人妻不卡中文字幕| 午夜福利在线观看免费完整高清在| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品日本国产第一区| 国产在线男女| 五月伊人婷婷丁香| 国产精品久久久久久精品电影小说 | 国产精品精品国产色婷婷| av视频免费观看在线观看| 国产精品免费大片| 赤兔流量卡办理| 少妇人妻久久综合中文| 国产精品熟女久久久久浪| 国产欧美亚洲国产| 午夜免费男女啪啪视频观看| 国产综合精华液| 乱系列少妇在线播放| 亚洲欧美日韩另类电影网站 | av在线播放精品| 久久亚洲国产成人精品v| 国产伦理片在线播放av一区| 精品一区在线观看国产| 多毛熟女@视频| 最近最新中文字幕免费大全7| 婷婷色综合大香蕉| 成人国产av品久久久| 十分钟在线观看高清视频www | 亚洲电影在线观看av| 欧美激情极品国产一区二区三区 | 日韩国内少妇激情av| 身体一侧抽搐| 看非洲黑人一级黄片| 中国三级夫妇交换| 久久久久人妻精品一区果冻| 国产免费视频播放在线视频| 韩国高清视频一区二区三区| 亚洲丝袜综合中文字幕| 久久国产精品大桥未久av | 丝袜喷水一区| 亚洲国产日韩一区二区| 99re6热这里在线精品视频| 寂寞人妻少妇视频99o| 搡女人真爽免费视频火全软件| 美女xxoo啪啪120秒动态图| 亚洲国产最新在线播放| 热re99久久精品国产66热6| 亚洲久久久国产精品| 少妇丰满av| 美女福利国产在线 | 欧美日本视频| 久久久久精品久久久久真实原创| 日韩亚洲欧美综合| 精品少妇黑人巨大在线播放| 色吧在线观看| 色视频www国产| 免费观看av网站的网址| 91久久精品国产一区二区三区| 青春草视频在线免费观看| 国产亚洲欧美精品永久| 人妻 亚洲 视频| 欧美另类一区| 久久久欧美国产精品| 舔av片在线| 麻豆成人av视频| 免费观看性生交大片5| 内射极品少妇av片p| 久久99热这里只频精品6学生| 国产在线视频一区二区| 少妇猛男粗大的猛烈进出视频| 五月开心婷婷网| 亚洲高清免费不卡视频| 精品熟女少妇av免费看| 在线免费十八禁| 午夜福利高清视频| 久久久久性生活片| 成人黄色视频免费在线看| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 国产高清三级在线| 国产精品av视频在线免费观看| 久久韩国三级中文字幕| 久久精品国产a三级三级三级| 国产精品国产三级专区第一集| av国产久精品久网站免费入址| 亚洲四区av| 亚洲欧美日韩另类电影网站 | 插逼视频在线观看| 美女国产视频在线观看| 国产爽快片一区二区三区| 日产精品乱码卡一卡2卡三| 在现免费观看毛片| 亚洲欧美清纯卡通| 超碰av人人做人人爽久久| 亚洲精品乱码久久久v下载方式| 成人亚洲欧美一区二区av| 色视频在线一区二区三区| 欧美97在线视频| 搡女人真爽免费视频火全软件| 欧美xxxx性猛交bbbb| 看十八女毛片水多多多| 久久久久人妻精品一区果冻| 欧美一级a爱片免费观看看| 亚洲熟女精品中文字幕| 日本一二三区视频观看| 亚洲在久久综合| 亚洲av欧美aⅴ国产| 国产免费福利视频在线观看| 久久影院123| 新久久久久国产一级毛片| 日韩中字成人| 2021少妇久久久久久久久久久| 日韩在线高清观看一区二区三区| 国产成人91sexporn| 丝袜脚勾引网站| 国产伦在线观看视频一区| 亚洲一级一片aⅴ在线观看| 午夜激情福利司机影院| 免费观看在线日韩| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩东京热| 色哟哟·www| 久久精品国产亚洲网站| 国产美女午夜福利| 国产精品一区二区三区四区免费观看| 精品一区在线观看国产| 欧美高清性xxxxhd video| 久久热精品热| 日韩欧美精品免费久久| 国产av码专区亚洲av| 亚洲国产色片| 国产精品无大码| 高清在线视频一区二区三区| 97在线视频观看| 亚洲国产日韩一区二区| av不卡在线播放| 成年av动漫网址| 国产黄频视频在线观看| 久久久久精品性色| 精品国产露脸久久av麻豆| 日韩强制内射视频| 美女中出高潮动态图| 亚洲国产精品专区欧美| 亚洲精品456在线播放app| 日韩欧美 国产精品| 97热精品久久久久久| 岛国毛片在线播放| 舔av片在线| 91精品一卡2卡3卡4卡| 国产精品免费大片| 亚洲av在线观看美女高潮| 免费高清在线观看视频在线观看| 亚洲av免费高清在线观看| 国产高清不卡午夜福利| 在线观看国产h片| 国产av一区二区精品久久 | 各种免费的搞黄视频| 人人妻人人看人人澡| 高清不卡的av网站| 寂寞人妻少妇视频99o| 久久99热6这里只有精品| 国产精品秋霞免费鲁丝片| 国产欧美日韩精品一区二区| 日本爱情动作片www.在线观看| 欧美日韩综合久久久久久| 人妻少妇偷人精品九色| 在线观看一区二区三区| 在线观看一区二区三区激情| 在线观看三级黄色| 成年女人在线观看亚洲视频| 少妇裸体淫交视频免费看高清| 性高湖久久久久久久久免费观看| 久久久色成人| 国产午夜精品久久久久久一区二区三区| 欧美成人午夜免费资源| 亚洲怡红院男人天堂| 欧美高清性xxxxhd video| 亚洲一级一片aⅴ在线观看| 亚洲精品一二三| 国产综合精华液| 久久鲁丝午夜福利片| 91精品国产国语对白视频| 身体一侧抽搐| 国产精品蜜桃在线观看| 国产亚洲欧美精品永久| 九草在线视频观看| 一本一本综合久久| 欧美亚洲 丝袜 人妻 在线| 在线亚洲精品国产二区图片欧美 | 熟女电影av网| 国产精品99久久99久久久不卡 | 精品亚洲乱码少妇综合久久| 一级a做视频免费观看| 亚洲久久久国产精品| 日韩免费高清中文字幕av| 亚洲av国产av综合av卡| 国产深夜福利视频在线观看| 亚洲内射少妇av| 人妻制服诱惑在线中文字幕| 亚洲av免费高清在线观看| 只有这里有精品99| 在线观看人妻少妇| 国产高清国产精品国产三级 | 亚洲综合精品二区| 午夜日本视频在线| 老熟女久久久| 亚洲欧洲日产国产| 黄色一级大片看看| 亚洲精品日本国产第一区| 日本av免费视频播放| 精品人妻一区二区三区麻豆| 国产精品欧美亚洲77777| 看免费成人av毛片| 男人和女人高潮做爰伦理| 中文欧美无线码| 国产欧美日韩一区二区三区在线 | 久久久久精品久久久久真实原创| 国产乱来视频区| av在线观看视频网站免费| 免费看日本二区| 男人舔奶头视频| 麻豆精品久久久久久蜜桃| 亚洲精品,欧美精品| 久热久热在线精品观看| 国产 一区精品| 午夜福利影视在线免费观看| 欧美日韩综合久久久久久| 亚洲高清免费不卡视频| 插逼视频在线观看| 亚洲av免费高清在线观看| 国产女主播在线喷水免费视频网站| 春色校园在线视频观看| 你懂的网址亚洲精品在线观看| 王馨瑶露胸无遮挡在线观看| 夜夜看夜夜爽夜夜摸| 亚洲欧美中文字幕日韩二区| 国产精品国产三级专区第一集| 晚上一个人看的免费电影| 精品国产乱码久久久久久小说| 熟妇人妻不卡中文字幕| 99热网站在线观看| 免费少妇av软件| 国产亚洲午夜精品一区二区久久| 国产又色又爽无遮挡免| 天堂8中文在线网| 五月开心婷婷网| 亚洲va在线va天堂va国产| 人妻夜夜爽99麻豆av| av女优亚洲男人天堂| 边亲边吃奶的免费视频| 亚洲人与动物交配视频| 国产精品国产三级专区第一集| 久久久久久久国产电影| 日韩av免费高清视频| 国产黄色免费在线视频| 乱码一卡2卡4卡精品| 舔av片在线| 三级国产精品欧美在线观看| 特大巨黑吊av在线直播| 男女国产视频网站| 免费观看在线日韩| 久久久久久久国产电影| 我要看日韩黄色一级片| 免费观看av网站的网址| 成年av动漫网址| 偷拍熟女少妇极品色| 亚洲av欧美aⅴ国产|