• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    表面改性鋅鎂鋁三元類水滑石的摩擦性能及抗磨機(jī)理

    2014-07-13 01:30:14白志民
    硅酸鹽學(xué)報(bào) 2014年10期
    關(guān)鍵詞:志民中國地質(zhì)大學(xué)類水

    李 碩,白志民,趙 棟

    (中國地質(zhì)大學(xué)材料科學(xué)與工程學(xué)院,北京100083)

    1 Introduction

    Friction and wear can lead to materials failure and energy consumption and emission problems.It is difficult for some conventional liquid lubricants to satisfy the modern demands of economic and environmental benefits.Nanoparticles as lubricant additives,such as metal,[1]graphite,[2]metal sulfide,[3]oxide,[4--5]carbonate,[6]rare earth compound,[7]and serpentine powders,[8--9]have attracted considerable attention due to their excellent friction-reducing,anti-wear,load-carrying and self-repairing properties under boundary lubrication condition in the past decades.

    Layered double hydroxides(LDHs),also known as anionic clays or hydrotalcite-like compounds(HTlcs),are a family of layered mineral materials,which contain positively charged brucite-like metal hydroxide layers and charge-balancing anions located in the interlayer.Partial divalent metal cations are substituted by trivalent metal cations,leading to surplus positive charges on layers,which are compensated by interlayer anions.[10]The general formula of LDHs can be expressed by[M2+1-xM3+x(OH)2]x+(An-)x/n·mH2O,where xis the molar ratio of trivalent cations M3+/(M2++M3+),An-is the exchangeable anion and mis the amount of water molecule in the interlayer gallery.LDHs have been broadly studied for their applications in the areas of catalysts,absorbents,anion exchange and biosensors[10--12]and will expand their potential uses due to the variability of layer cations and interlayer anions.

    In our previous work on the tribological properties of different types of LDHs nanoparticles(Co/Al-LDHs,Mg/Al-LDHs,Zn/Mg/Al-LDHs,etc)as lubricant additives,[13--17]LDHs can reduce friction and wear effectively.Therefore,LDHs are a potential lubricant additive with superior lubricity.In tthis paper,surface-modified Zn/Mg/Al-CO2-3

    LDHs(SMZMAC-LDHs)with the average size of 179.4nm were synthesized,and the tribological properties of oil containing LDHs under different loads and rotational speeds were further investigated in a four-ball friction tester.In addition,the anti-wear mechanism was also discussed.

    2 Experimental

    2.1 Synthesis of LDHs

    All raw materials(Zn(NO3)2·6H2O,Mg(NO3)2·6H2O,Al(NO3)3·9H2O,NaOH and Na2CO3,oleic acid)used for the synthesis of SMZMAC-LDHs were analytically pure without further purification.Deionized water was prepared in the laboratory.The Zn/Mg/Al-CO2-3LDHs(ZMAC-LDHs)were synthesized by a coprecipitation method.[15]NaOH and Na2CO3were dissolved in deionized water and then the alkaline solution(n[OH-]=0.8mol/L)was added in dropwise to a salt solution of Zn(NO3)2·6H2O,Mg(NO3)2·6H2O and Al(NO3)3·9H2O with n(Zn)/n(Mg)/n(Al)molar ratio of 1∶1∶1(n[Zn2+]+n[Mg2+]+n[Al3+]=0.4mol/L)until the pH reached 10under stirring at the room temperature for 1h.The mother solution was moved to an autoclave and aged for 14hat 100℃.The ZMAC-LDHs precipitate was centrifuged and washed for several times with deionized water when pH reached 7.Afterwards,the neutral precipitate was dispersed in the stirred deionized water until it turned into a homogeneous slurry and then added indropwise mixed solution of oleic acid to the slurry under ultrasound for 20min.Finally,the SMZMAC-LDHs precipitate was filtered and washed for several times with deionized water and absolute ethanol,and dried at 80℃for 12h.

    The crystal structure of LDHs samples was characterized by X-ray diffraction(XRD)with a Rigaku diffractometer(CuKαsource,λ=0.154 06 nm,operated at 40kV and 100mA,scanning rate 8(°)/min from 3°to 70°(2θ)).The images for the morphology were obtained on a model BCPCAS4800 field emission scanning electron microscope(SEM)at an acceleration voltage of 15.0kV.The particle size distribution of LDHs was obtained by Zetasizer(Nano ZS90,Malvern,UK).The chemical composition of LDHs was identified by a wavelength dispersive X-ray fluorescence(WD-XRF,Rigaku ZSX PrimusⅡ).The infrared spectra were recorded in a model NICOLET750 Fourier transform infrared(FTIR)spectrometer at 4 000--450cm--1with KBr sheet.

    2.2 Tribological test and worn surface analysis

    The friction performance was examined in a model MS-10JR four-ball friction tester,and the balls used are GCr15 steel(AISI 52100 steel,0.95%--1.05% C,1.30%--1.65% Cr,0.15%--0.35%Si,0.25%--0.45%Mn,≤0.027%P,≤0.02%S,≤0.23%Ni,≤0.25%Cu,diameter of 12.70mm and hardness of 64--66 HRC),which were cleaned with petroleum ether under absolute ethanol ultrasound for 10min before the test.The diesel engine oil(CD15W-40)was used as a base oil with the viscosity of 15.02mm2/s at 100℃and 110.60mm2/s at 40 ℃,viscosity index of 228,open flash-point temperature of 228℃and boiling point of 300 ℃.The base oil with 0.5%in mass SMZMAC-LDHs particles were stirred at a high rotational speed of 10 000r/min and under ultrasound to disperse the LDHs particles in the base oil.The base oil with SMZMAC-LDHs was put in a 50mL tube at room temperature to examine its suspension stability.The tribological property of oil containing LDHs was measured at various loads(i.e.,100,200,300and 400N)and rotational speeds(i.e.,600,1 200and 1 800r/min),respectively.The friction coefficient was recorded in a computer.The average friction coefficient for each experimental condition was calculated,and the average wear scar diameter of 3lower balls was determined by an optical microscopy.

    The morphologies and elements analysis of the worn surface after friction were characterized by scanning electron microscope equipped with energy dispersive Xray spectrometer.An ESCALAB 250X-ray photoelectron spectrometer was utilized to analyze the chemical state of surface elements,using monochromatic Al Kαradiation as the excitation source and the binding energy of C1s(284.6eV)as a reference,at a passing energy of 30eV.

    3 Results and discussion

    3.1 X-ray diffraction and morphology of LDHs

    Figure 1 shows the XRD pattern of ZMACLDHs.There exist typical diffraction peaks of hydrotalcite phase.[10]The(003),(006)and(110)peaks appear at 11.54°,23.36°and 60.36°,respectively,indicating that synthetic ZMACLDHs crystal grains possess a hydrotalcite-like laminated structure.Table 1shows the lattice parameters.From the XRF results as shown in Table 2,the chemical formula of ZMAC-LDHs can be determined as Zn0.37Mg0.27Al0.36(OH)2(CO3)0.18·0.31H2O.

    Fig.1 XRD pattern of ZMAC-LDHs

    Table 1 Lattice parameters of ZMAC-LDHs

    Table 2 Chemical composition of ZMAC-LDHs

    Figure 2shows the SEM image and particle size distribution of SMZMAC-LDHs.From the SEM image,it is seen that the particles have a typical hydrotalcite-like hexagonal lamellar structure and most of the partciels disperse uniformly due to surface modification.The particle size range is 100--325nm and the average size is 179.4nm.

    Fig.2 SEM image and particle size distribution of SMZMAC-LDHs

    3.2 Fourier transform infrared spectra of SMZMACLDHs

    Figure 3shows the FTIR spectra of SMZMACLDHs.The sharp band at 3 451cm--1is attributed to O--H stretching vibration of interlayer water molecular and hydroxyl groups of brucite-like layers.The shoulder observed between 3 150cm--1and 2 980cm--1is assigned to hydrogen bonds between water and,which cause the v3asymmetric stretching vibration of free(v3=1 415cm--1)shifted to the intense band of 1 363cm--1.[13]The v2vibration of interlayercorresponds to 942cm--1.In addition,the bands below 800cm--1can be assigned to the stretching vibration of Zn(Mg,Al)--OH.[14]The asymmetric and symmetric stretching vibrations of C--H of long alkyl chains(2 926cm--1and 2 855cm--1,respectively)demonstrate that oleic acid molecules appear on the surface of LDHs.The band of 1 583cm--1assigning to carboxylate appears,but the carboxyl group-COOH vibration peak of oleic acid spectrum at 1 710cm--1disappears.It indicates that the oleic acid molecules are adsorbed on the surface of ZMAC-LDHs with a monomolecular layer of oleic acid that can improve the suspension stability of LDHs in base oil.[15]The base oil with SMZMAC-LDHs nanoparticles is homogeneous and stable.

    Fig.3 FTIR spectra of SMZMAC-LDHs

    3.3 Friction and wear performance

    3.3.1 Load effect on the tribological properties of LDHs Figure 4shows the friction coefficient of base oil and oil containing LDHs at different loads(i.e.,100,200,300and 400N)for 60min.Compared to base oil,the base oil containing LDHs has little anti-friction effect at 100N.However,the oil containing LDHs has an anti-friction effect and the friction coefficient and fluctuation reduce as the load increases to 200--400N.Figure 5 shows the average friction coefficient of base oil and oil containing LDHs at various loads.It is seen that the friction coefficient decreases gradually in the load range of 100--400N.This phenomena can be explained by the Stribeck curve showing that the friction coefficient(μ)is a function of rotational speed(V),normal force(P)and kinematic viscosity of lubricating oil(η).[18]Under boundary lubrication,the friction coefficient is correlated to the load in a oil used at a certain rotational speed.However,this correlation is not appropriate to the oil containing LDHs since the values ofμat a high load(i.e.,200--400 N)do not increase but decrease instead,compared to that at 100N(see Table 3).Similarly,the wear scar diameters of steel balls lubricated in oil containing LDHs at 200--400Nreduce,compared to the cases in base oil(see Fig.6and Table 4).From the results above,it is indicated that the temperature and pressure between rotating steel balls can promote the nanoparticles to form protective film on the rubbed surfaces to reduce friction and wear at a high load.Besides,there is a competitive relation between the formation and removal of protective film when the load increases.[19--20]Therefore,it can be concluded that LDHs in base oil possess effective anti-friction properties at a high load.

    Fig.4 Average friction coefficient of base oil and oil containing LDHs at different loads

    Fig.5 Friction coefficient of base oil and oil containing LDHs at different loads for 60min

    Fig.6 Wear scar diameter of steel balls lubricated by base oil and oil containing LDHs at different loads

    Table 3 Average friction coefficients of base oil and oil containing LDHs at different loads

    Table 4 Wear scar diameters of steel balls lubricated in base oil(A)and oil containing LDHs(B)at different loads

    3.3.2 Rotational speed effect on the tribological properties of LDHs Figure 7shows the effect of rotational speed on the friction coefficient at different loads(i.e.,200,300and 400N).It is seen that the value ofμdecreases continually when the speed increases from 600r/min to 1 800r/min.The results can be explained by the Stribeck curve that at definite load and oil,the friction coefficient(μ)has an inverse correlation with the speed(V)under boundary lubrication condition.[18]The wear scar diameters of steel balls lubricated in oil containing LDHs at 200and 300Ndecrease as the rotational speed increases from 600r/min to 1 200r/min(see Fig.8).A high rotational speed enhances the surface temperature and shearing force between the steel balls and LDHs nanoparticles are easy to deposit and form a protective film on the worn surfaces to reduce the wear.When the speed further increases to 1 800r/min,the diameters of wear scars increase.

    Fig.7 Average friction coefficient of oil containing LDHs at various rotational speeds for 60min

    Fig.8 Wear scar diameter of steel balls lubricated in oil containing LDHs at various rotational speeds

    However,the wear scars become greater at a high load of 400Nas the rotational speed increases from 600r/min to 1 800r/min.It is indicated that LDHs nanoparticles can play superior wear-resisting properties only at an appropriate rotational speed in a certain load range.

    3.4 Worn surface analysis

    Figure 9shows the SEM morphology of worn surfaces lubricated in base oil and oil containing LDHs at various loads of 200,300and 400Nat a rotational speed of 1 200r/min for 60 min.It is seen that the grooves and furrows in sliding direction are wide and deep on the surface lubricated in base oil(see Fig.9(a),(c),(e)and(g)).For the steel balls lubricated in oil containing 0.5%LDHs,the furrows become narrow and shallow with smoother surfaces(see Fig.9(b),(d),(f)and(h)).The metal surface lubricated in base oil with plowing and corrosion is scuffed severely,showing the abrasive and adhesive wear with massive microapertures(see Fig.9(e)and(g)).However,the abrasion of surface lubricated in oil containing LDHs shows mild and smooth wear with tiny scuffing since the nanoparticles form a protective film on the rubbed surfaces(see Fig.9(f)and(h)).Fig.10(b)shows that there exist the elements of Zn,Mg,F(xiàn)e,C,O,Cr and S on the surface lubricated in oil containing LDHs at 400N.It can be deduced that Zn and Mg stem from the LDHs.

    Fig.9 SEM images of worn surface lubricated in(a,c,e and g)base oil and(b,d,f and h)oil containing LDHs at different loads and a rotational speed of 1 200r/min for 60min

    Fig.10 EDS spectra of worn surface lubricated in base oil(a)and oil containing LDHs(b)at a load of 400N

    Figure 11shows the XPS spectra of worn surface lubricated in oil containing LDHs at 400Nand the speed of 1 200r/min.It is seen that the Zn2pspectrum at a binding energy of 1 021.7eV with the two sub-peaks at 1 021.5and 1 022.1eV illustrates the existence of ZnO and ZnS,which the element of S comes from the steel substrate or base oil.[4]Mg 1s peak at 1 303.5eV indicates Mg on the surface in the state of MgO.[21]Al 2pspectrum with only noise signal represents the absence of Al.The Fe 2p3/2spectrum with the four sub-peaks at binding energies of 709.2,710.5,711.4and 713.6eV declares the presence of FeO,F(xiàn)e3O4,F(xiàn)e2O3and Fe-containing organic compounds on the worn surface.[19--20,22--23]C 1s spectrum with three sub-peaks at binding energies of 284.6,285.2and 288.9eV,shows the bonding states of C.A peak at 284.6eV corresponding to CHnor C--C bond reveals long alkyl chains and graphite absorbing on the surface,and peaks at 285.1and 289.0eV demonstrate the presence of C--O and C=O bond of organic compounds.[5,7,19--20,24]The O 1s spectrum with subpeaks at 529.8,531.3and 532.2eV indicates the existence of oxygen that stems from metal oxides(i.e.,zinc oxide,magnesium oxide,iron oxide,etc.)and organic compounds.[6,19--20,24]

    From the results above,the following friction reducing and antiwear mechanisms could be given:

    1)The surface-modified LDHs nanoparticles deposit and fill the grooves of worn surfaces to compensate the wear loss and polish to improve the surface roughness;[19,25]

    2)A hard protective film of oxides,sulfide,graphite and organic compounds with superior antiwear properties can be formed on the rubbed surface.The tribofilm reaction mechanism is similar to that of serpentite.[8--9,19]However,the ceramic phase of alumina in the film formed by serpentite does not exist on the worn surface despite LDHs containing the Al(OH)6octahedron.It could be explained that the temperature between friction pairs is not high enough for the phase transformation from aluminum hydroxides to alumina(i.e.,>1 200℃);[26--27]

    3)Due to the removal of interlayer carbonates and water of LDH particles at high surface temperature[10,28]and the reduction of the particle size during friction,the LDHs nanoparticles deposited on the worn surfaces can act as third bodies to reduce the friction and wear.[9]

    4 Conclusions

    Thick lines represent the XPS spectrum;Thin lines represent the fitted curves.Fig.11 XPS spectra of worn surface lubricated in oil containing LDHs at 400Nand a rotational speed of 1 200r/min

    2)The base oil containing LDHs possessed superior anti-friction properties at high loads(i.e.,200--400N)and an appropriate rotational speed.The reduction of average friction coefficient of oil with LDHs at 400N was optimum and the Stribeck curve could not be used to annlyze the relation between friction coefficient and load due to the addition of LDHs nanoparticles.Besides,there was a competition between the formation and removal of protective film at different loads and rotational speeds.

    3)The anti-wear mechanism of LDHs could be described as follows:the particles polished the worn surfaces;a hard protective tribo-film containing metal oxides,sulfide,graphite and organic compounds was form;and the nanoparticles acted as third bodies to reduce the friction and wear.

    Acknowledgment

    Thanks for guidance of XPS analysis from research fellow Bin Cheng of Beijing University of Chemical Technology.

    Reference:

    [1] TARASOV S,KOLUBAEV A,BELYAEV S,et al.Study of friction reduction by nanocopper additives to motor oil[J].Wear,2002,252(1/2):63-69.

    [2] HUHANG H D,TU J P,GAN L P,et al.An investigation on tribological properties of graphite nanosheets as oil additive[J].Wear,2006,261(2):140-144.

    [3] TANNOUS J,DASSENOY F,LAHOUIJ I,et al.Understanding the tribochemical mechanisms of IF-MoS2nanoparticles under boundary lubrication[J].Tribol Lett,2011,41(1):55-64.

    [4] LIU W M,CHEN S.An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin[J].Wear,2000,238(2):120-124.

    [5] XUE Q J,LIU W M,ZHANG Z J.Friction and wear properties of a surface-modified TiO2nanoparticle as an additive in liquid paraffin[J].Wear,1997,213(1/2):29-32.

    [6] ZHANG M,WANG X B,F(xiàn)U X S,et al.Performance and anti-wear mechanism of CaCO3nanoparticles as a green additive in poly-alpha-olefin[J].Tribol Int,2009,42(7):1029-1039.

    [7] ZHANG Z F,YU L G,LIU W M,et al.The effect of LaF3nanocluster modified with succinimide on the lubricating performance of liquid paraffin for steel-on-steel system[J].Tribol Int,2001,34(2):83-88.

    [8] YU H L,XU Y,SHI P J,et al.Microstructure,mechanical properties and tribological behavior of tribofilm generated from natural serpentine mineral powders as lubricant additive[J].Wear,2013,297(1/2):802-810.

    [9] YU H L,XU Y,SHI P J,et al.Tribological behaviors of surface-coated serpentine ultrafine powders as lubricant additive[J].Tribol Int,2010,43(3):667-675.

    [10] CAVANI F,TRIFIRò F,VACCARI A.Hydrotalcite-type anionic clays:preparation,properties and applications[J].Catal Today,1991,11(2):173-301.

    [11] MEYN M,BENEKE K,LAGALY G.Anion-exchange reactions of layered double hydroxides[J].Inorg Chem,1990,29(26):5201-5207.

    [12] SHAN D,COSNIER S,MOUSTY C.Layered double hydroxides:an attractive material for electrochemical biosensor design[J].Anal Chem,2003,75(15):3872-3879.

    [13] BAI Z M,WANG Z Y,ZHANG T G,et al.Synthesis and characterization of Co-Al-CO3layered double-metal hydroxides and assessment of their friction performance[J].Appl Clay Sci,2012,59/60:36-41.

    [14] WANG X B,BAI Z M,ZHAO D,et al.New synthetic route to Mg-Al-CO3layered double hydroxide using magnesite[J].Mater Res Bull,2013,48(3):1228-1232.

    [15] LI S,BAI Z M,ZHAO D.Characterization and friction performance of Zn/Mg/Al-CO3layered double hydroxides[J].Appl Surf Sci,2013,284:7-12.

    [16] FU F,BAI Z M,YANG N,et al.Preparation and tribological proporties of intercalated Cu-Mg-Al hydrotalcite[J].J Chin Ceram Soc,2012,40(1):165-169.

    [17] ZHAO D,BAI Z M.Ni/Al-NO3-LDHs intercalated with dodecanoic acid and its tribological characteristics[J].J Chin Ceram Soc,2012,40(5):769-775.

    [18] TALKE F E.A review of‘contact recording’technologies[J].Wear,1997,207(1/2):118-121.

    [19] ZHANG B S,XU Y,GAO F,et al.Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive[J].Appl Surf Sci,2011,257(7):2540-2549.

    [20] ZHANG B S,XU B S,XU Y,et al.Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel-steel contacts[J].Tribol Int,2011,44(7/8):878-886.

    [21] QI X W,LU L,JIA Z N,et al.Comparative tribological properties of magnesium hexasilicate and serpentine powder as lubricating oil additives under high temperature[J].Tribol Int,2012,49:53-57.

    [22] MCINTYRE N S,ZETARUK D G.X-ray photoelectron spectroscopic studies of iron oxides[J].Anal Chem,1977,49(11):1521-1529.

    [23] YAMASHITA T,HAYES P.Analysis of XPS spectra of Fe2+and Fe3+ions in oxide materials[J].Appl Surf Sci,2008,254(8):2441-2449.

    [24] POTTIRAYIL A,KAILAS S V,BISWAS S K.Lubricity of an oil in water emulsion in metal cutting:The effect of hydrophilic/lypophilic balance of emulsifiers[J].Colloids Surf A,2011,384(1/3):323-330.

    [25] XU T,ZHAO J Z,XU K.The ball-bearing effect of diamond nanoparticles as an oil additive[J].J Phys D-Appl Phys,1996,29:2932-2937.

    [26] LI J G,SUN X D.Synthesis and sintering behavior of a nanocrystallineα-alumina powder[J].Acta Mater,2000,48(12):3103-3112.

    [27] HE J,LIU W,ZHU L H,et al.Phase transformation behaviors of aluminum hydroxides to alpha alumina in air and molten salt[J].J Mater Sci,2005,40(12):3259-3261.

    [28] RIVES V.Characterisation of layered double hydroxides and their decomposition products[J].Mater Chem Phys,2002,75(1/3):19-25.

    猜你喜歡
    志民中國地質(zhì)大學(xué)類水
    強(qiáng)化三種意識(shí),引領(lǐng)向量解題
    毛竹C4H基因的鑒定及其表達(dá)模式分析
    中國地質(zhì)大學(xué)(北京)土地利用與生態(tài)修復(fù)課題組
    中國地質(zhì)大學(xué)(北京)珠寶學(xué)院2020屆本科生畢業(yè)作品展
    中國寶玉石(2020年3期)2020-08-08 02:58:10
    不尋常的“石頭”——探訪中國地質(zhì)大學(xué)逸夫博物館
    羅云 中國地質(zhì)大學(xué)(北京)教授、博士生導(dǎo)師
    安全(2020年3期)2020-04-25 06:53:50
    浙江麗水:打好劣V類水剿滅戰(zhàn)
    熒光類水滑石的細(xì)菌檢測(cè)及殺菌性能
    十四烷酸插層稀土類水滑石的合成及其對(duì)PVC的熱穩(wěn)定作用
    中國塑料(2015年6期)2015-11-13 03:03:11
    PA6/類水滑石納米復(fù)合材料的制備與性能研究
    中國塑料(2015年5期)2015-10-14 00:59:49
    国产久久久一区二区三区| 99国产精品一区二区蜜桃av| 日本 欧美在线| 日本撒尿小便嘘嘘汇集6| 国产成人av激情在线播放| 免费在线观看视频国产中文字幕亚洲| 日韩精品青青久久久久久| 宅男免费午夜| 母亲3免费完整高清在线观看| 99热6这里只有精品| 欧美最黄视频在线播放免费| 欧美不卡视频在线免费观看| 五月伊人婷婷丁香| 黄色视频,在线免费观看| 久久久国产成人免费| 伦理电影免费视频| 免费av不卡在线播放| av天堂在线播放| 成人一区二区视频在线观看| 999精品在线视频| 欧美午夜高清在线| 在线观看午夜福利视频| 欧美黄色淫秽网站| 精品久久久久久久人妻蜜臀av| 国产亚洲av高清不卡| 2021天堂中文幕一二区在线观| 日韩三级视频一区二区三区| 日韩有码中文字幕| 脱女人内裤的视频| 老熟妇仑乱视频hdxx| 深夜精品福利| 久久性视频一级片| 最近最新中文字幕大全电影3| 黄色日韩在线| 一进一出好大好爽视频| 欧美xxxx黑人xx丫x性爽| 午夜福利成人在线免费观看| 少妇熟女aⅴ在线视频| 国产三级在线视频| 免费看美女性在线毛片视频| 国产亚洲欧美98| 人人妻人人看人人澡| 久久久久久九九精品二区国产| 中文字幕人妻丝袜一区二区| 国产欧美日韩一区二区精品| 少妇的逼水好多| 日韩免费av在线播放| 天堂√8在线中文| 麻豆国产av国片精品| 两个人看的免费小视频| 亚洲精品在线美女| 亚洲av成人av| 女警被强在线播放| 久久久久久久久中文| 国产乱人视频| 亚洲九九香蕉| 精品午夜福利视频在线观看一区| 亚洲色图av天堂| 在线观看一区二区三区| a级毛片在线看网站| 色尼玛亚洲综合影院| 国语自产精品视频在线第100页| 国产一区二区在线观看日韩 | 女人高潮潮喷娇喘18禁视频| 国内毛片毛片毛片毛片毛片| 欧美丝袜亚洲另类 | 九九热线精品视视频播放| 午夜福利视频1000在线观看| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 成人18禁在线播放| 国产美女午夜福利| 哪里可以看免费的av片| 亚洲无线在线观看| 亚洲自拍偷在线| 波多野结衣高清无吗| 丁香欧美五月| 亚洲av成人av| 天天躁日日操中文字幕| 麻豆国产av国片精品| 午夜福利成人在线免费观看| 日韩欧美在线乱码| 亚洲国产高清在线一区二区三| 亚洲av成人不卡在线观看播放网| 国产不卡一卡二| 久久久国产精品麻豆| 亚洲精华国产精华精| 亚洲成a人片在线一区二区| 老司机福利观看| 91在线观看av| 国内精品美女久久久久久| 日本精品一区二区三区蜜桃| 欧美日韩一级在线毛片| 国产1区2区3区精品| 亚洲专区中文字幕在线| 香蕉丝袜av| 老司机午夜福利在线观看视频| 国产精品一区二区免费欧美| 午夜福利高清视频| 亚洲国产欧美人成| 真人一进一出gif抽搐免费| 99精品在免费线老司机午夜| 久久人人精品亚洲av| 日本a在线网址| www.精华液| 又紧又爽又黄一区二区| 美女黄网站色视频| 中国美女看黄片| 久久久久精品国产欧美久久久| 国产视频一区二区在线看| 99热只有精品国产| 成人性生交大片免费视频hd| 亚洲国产欧美网| 99国产极品粉嫩在线观看| 国产精品精品国产色婷婷| 欧美黄色淫秽网站| 在线观看66精品国产| 香蕉av资源在线| 久久九九热精品免费| 亚洲天堂国产精品一区在线| 一级黄色大片毛片| 久久99热这里只有精品18| av视频在线观看入口| www国产在线视频色| 天天一区二区日本电影三级| 他把我摸到了高潮在线观看| 热99re8久久精品国产| 好看av亚洲va欧美ⅴa在| 一a级毛片在线观看| 99riav亚洲国产免费| 中文字幕久久专区| 亚洲欧美日韩无卡精品| 国产精品久久久久久人妻精品电影| www.熟女人妻精品国产| ponron亚洲| 黄色视频,在线免费观看| 老司机福利观看| 全区人妻精品视频| 亚洲av电影在线进入| 国产单亲对白刺激| 一二三四在线观看免费中文在| 老司机福利观看| 黄色日韩在线| 国产精品九九99| 午夜激情福利司机影院| 免费看光身美女| 国产免费av片在线观看野外av| 午夜福利在线观看吧| 亚洲在线自拍视频| 欧美日本亚洲视频在线播放| 夜夜爽天天搞| 国产在线精品亚洲第一网站| 国产成人系列免费观看| a级毛片在线看网站| 亚洲人成网站高清观看| 午夜福利18| a级毛片在线看网站| 日韩大尺度精品在线看网址| 丁香欧美五月| 国产美女午夜福利| 亚洲午夜精品一区,二区,三区| 1024香蕉在线观看| 夜夜夜夜夜久久久久| 成人国产综合亚洲| 亚洲,欧美精品.| 热99re8久久精品国产| 色老头精品视频在线观看| 国产私拍福利视频在线观看| 免费在线观看亚洲国产| 小说图片视频综合网站| 成在线人永久免费视频| 蜜桃久久精品国产亚洲av| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 国产成人啪精品午夜网站| 国产午夜福利久久久久久| a级毛片a级免费在线| 欧美成人免费av一区二区三区| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 老熟妇仑乱视频hdxx| 两个人视频免费观看高清| 精品久久久久久久久久免费视频| 亚洲国产精品999在线| www.www免费av| 人人妻人人看人人澡| 久久精品夜夜夜夜夜久久蜜豆| 美女cb高潮喷水在线观看 | 国产一区二区在线av高清观看| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 亚洲性夜色夜夜综合| 黄色丝袜av网址大全| 老熟妇仑乱视频hdxx| 国产成人精品无人区| 精品久久久久久久久久免费视频| 色噜噜av男人的天堂激情| 1024手机看黄色片| 国产精品乱码一区二三区的特点| 床上黄色一级片| 精品午夜福利视频在线观看一区| 97碰自拍视频| 中国美女看黄片| 亚洲av片天天在线观看| 国产精品一及| 免费看日本二区| 亚洲 欧美 日韩 在线 免费| 岛国在线免费视频观看| 人妻丰满熟妇av一区二区三区| 亚洲美女黄片视频| 好男人在线观看高清免费视频| 特级一级黄色大片| 19禁男女啪啪无遮挡网站| 精品日产1卡2卡| 色哟哟哟哟哟哟| 亚洲七黄色美女视频| 最新美女视频免费是黄的| 村上凉子中文字幕在线| 最近在线观看免费完整版| 两性午夜刺激爽爽歪歪视频在线观看| 成人特级av手机在线观看| 日本在线视频免费播放| 国产男靠女视频免费网站| 免费看十八禁软件| 香蕉久久夜色| 女生性感内裤真人,穿戴方法视频| 99热这里只有精品一区 | 亚洲精品久久国产高清桃花| 熟妇人妻久久中文字幕3abv| 国产一区二区激情短视频| 一卡2卡三卡四卡精品乱码亚洲| 国内少妇人妻偷人精品xxx网站 | 99国产极品粉嫩在线观看| 亚洲精品久久国产高清桃花| 国产精品一区二区三区四区免费观看 | 18禁国产床啪视频网站| 女人被狂操c到高潮| 999精品在线视频| 色播亚洲综合网| 成人精品一区二区免费| 久久中文看片网| 精品无人区乱码1区二区| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久毛片微露脸| 高清在线国产一区| 啦啦啦免费观看视频1| 午夜精品久久久久久毛片777| 国内精品一区二区在线观看| 国产精品女同一区二区软件 | 国产精品av久久久久免费| 观看免费一级毛片| 热99在线观看视频| 日本黄色片子视频| 欧美一区二区精品小视频在线| 欧美在线一区亚洲| 搡老熟女国产l中国老女人| 国产高清视频在线观看网站| 制服人妻中文乱码| 少妇丰满av| 99精品久久久久人妻精品| 成人高潮视频无遮挡免费网站| 国产午夜精品久久久久久| www.精华液| 午夜影院日韩av| 别揉我奶头~嗯~啊~动态视频| 欧美不卡视频在线免费观看| 日本a在线网址| 成人精品一区二区免费| 十八禁网站免费在线| svipshipincom国产片| 婷婷精品国产亚洲av在线| 又大又爽又粗| 色老头精品视频在线观看| 国产一区二区三区在线臀色熟女| 看免费av毛片| 99精品欧美一区二区三区四区| 99久久综合精品五月天人人| 女人高潮潮喷娇喘18禁视频| 中文字幕精品亚洲无线码一区| 亚洲成人免费电影在线观看| 久久久久国内视频| 曰老女人黄片| 亚洲av第一区精品v没综合| 中文字幕高清在线视频| 麻豆国产97在线/欧美| 国内久久婷婷六月综合欲色啪| 色在线成人网| 色视频www国产| 1000部很黄的大片| 久久九九热精品免费| 国产精品98久久久久久宅男小说| 色播亚洲综合网| 国产伦在线观看视频一区| 亚洲熟妇熟女久久| 啦啦啦观看免费观看视频高清| 久久精品aⅴ一区二区三区四区| 桃色一区二区三区在线观看| 国产免费男女视频| 中文字幕熟女人妻在线| 中文字幕av在线有码专区| 丰满人妻一区二区三区视频av | 窝窝影院91人妻| 少妇丰满av| 首页视频小说图片口味搜索| 伊人久久大香线蕉亚洲五| 后天国语完整版免费观看| 在线观看免费视频日本深夜| 欧美黑人巨大hd| 特级一级黄色大片| 免费观看人在逋| 麻豆一二三区av精品| 岛国视频午夜一区免费看| 日韩欧美在线二视频| 91av网一区二区| 97超级碰碰碰精品色视频在线观看| 12—13女人毛片做爰片一| 又大又爽又粗| 全区人妻精品视频| 日本一二三区视频观看| 老熟妇乱子伦视频在线观看| 日韩av在线大香蕉| 久久久久国产精品人妻aⅴ院| 偷拍熟女少妇极品色| 久久久久久久久中文| 九色成人免费人妻av| 真实男女啪啪啪动态图| 色吧在线观看| 亚洲天堂国产精品一区在线| 黄片小视频在线播放| 99久久成人亚洲精品观看| 久久精品夜夜夜夜夜久久蜜豆| 久久草成人影院| 欧美又色又爽又黄视频| 97超级碰碰碰精品色视频在线观看| 亚洲 国产 在线| 亚洲国产色片| 免费在线观看影片大全网站| 最近在线观看免费完整版| 国产99白浆流出| 黄片大片在线免费观看| 国产极品精品免费视频能看的| 高清毛片免费观看视频网站| 久久香蕉精品热| 国模一区二区三区四区视频 | 亚洲成人久久爱视频| 12—13女人毛片做爰片一| 欧美成狂野欧美在线观看| 精品不卡国产一区二区三区| 国产精华一区二区三区| av在线蜜桃| 美女cb高潮喷水在线观看 | 亚洲人成伊人成综合网2020| 亚洲精品一区av在线观看| 黄色片一级片一级黄色片| 1000部很黄的大片| 国产精品美女特级片免费视频播放器 | 一夜夜www| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩卡通动漫| 亚洲午夜精品一区,二区,三区| 岛国在线免费视频观看| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 黄色成人免费大全| 黄片大片在线免费观看| 老汉色∧v一级毛片| 国产亚洲精品久久久com| 欧美三级亚洲精品| 成年人黄色毛片网站| 夜夜看夜夜爽夜夜摸| 日本一二三区视频观看| 国产高潮美女av| 在线观看免费午夜福利视频| 波多野结衣高清无吗| x7x7x7水蜜桃| 欧美日本亚洲视频在线播放| 色综合欧美亚洲国产小说| 搡老岳熟女国产| 精品日产1卡2卡| 国产精品香港三级国产av潘金莲| 国产高清videossex| 午夜免费观看网址| 日本一本二区三区精品| 亚洲18禁久久av| 国产在线精品亚洲第一网站| 麻豆国产97在线/欧美| 精品久久久久久久人妻蜜臀av| 久久久国产精品麻豆| 亚洲国产欧美网| 舔av片在线| 久久精品国产综合久久久| 国产精品av久久久久免费| 欧美乱色亚洲激情| 最近最新中文字幕大全免费视频| 白带黄色成豆腐渣| 黄片大片在线免费观看| 一进一出抽搐gif免费好疼| 精品熟女少妇八av免费久了| 国产av在哪里看| 国产成人欧美在线观看| 国产高清激情床上av| 国产久久久一区二区三区| 在线永久观看黄色视频| 观看免费一级毛片| 19禁男女啪啪无遮挡网站| 小蜜桃在线观看免费完整版高清| 久久久久久大精品| 国产伦一二天堂av在线观看| 国产成人精品久久二区二区91| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 熟女电影av网| 99在线视频只有这里精品首页| 亚洲中文字幕一区二区三区有码在线看 | 亚洲最大成人中文| 18美女黄网站色大片免费观看| 国产精品久久久久久久电影 | 国产1区2区3区精品| 嫩草影院精品99| 国产亚洲精品一区二区www| 在线观看美女被高潮喷水网站 | 美女扒开内裤让男人捅视频| 国产精品一及| 国产欧美日韩精品一区二区| 国产一区二区三区在线臀色熟女| 在线十欧美十亚洲十日本专区| 69av精品久久久久久| 国语自产精品视频在线第100页| www.www免费av| 三级国产精品欧美在线观看 | 亚洲美女视频黄频| 久久国产精品人妻蜜桃| 麻豆国产97在线/欧美| 黑人操中国人逼视频| 精品免费久久久久久久清纯| 日本成人三级电影网站| 国产欧美日韩一区二区精品| 国产三级在线视频| 亚洲国产精品久久男人天堂| 一二三四社区在线视频社区8| 亚洲中文日韩欧美视频| 两个人视频免费观看高清| av福利片在线观看| 一本一本综合久久| av中文乱码字幕在线| 亚洲人成伊人成综合网2020| 在线观看一区二区三区| 亚洲在线自拍视频| 嫩草影院精品99| 成人高潮视频无遮挡免费网站| 久久精品91无色码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 亚洲性夜色夜夜综合| 久久久久国产精品人妻aⅴ院| 免费看十八禁软件| 久久久久久九九精品二区国产| 两人在一起打扑克的视频| 丁香欧美五月| 观看免费一级毛片| 国产精品爽爽va在线观看网站| 久久精品亚洲精品国产色婷小说| 欧美xxxx黑人xx丫x性爽| 人妻夜夜爽99麻豆av| 国内精品久久久久久久电影| 中文字幕人成人乱码亚洲影| 亚洲av成人精品一区久久| 久久精品综合一区二区三区| 色老头精品视频在线观看| 十八禁人妻一区二区| 日韩免费av在线播放| 狂野欧美激情性xxxx| 欧美午夜高清在线| 小蜜桃在线观看免费完整版高清| 国产成人精品久久二区二区91| 全区人妻精品视频| 免费在线观看成人毛片| 男人舔女人下体高潮全视频| 精品国产乱子伦一区二区三区| 欧美性猛交黑人性爽| 岛国在线观看网站| 香蕉国产在线看| 人人妻,人人澡人人爽秒播| 欧美极品一区二区三区四区| 波多野结衣高清作品| 亚洲国产精品久久男人天堂| 19禁男女啪啪无遮挡网站| 搞女人的毛片| 天天躁日日操中文字幕| 国产爱豆传媒在线观看| 中出人妻视频一区二区| 欧美黑人欧美精品刺激| 看黄色毛片网站| 91在线精品国自产拍蜜月 | 每晚都被弄得嗷嗷叫到高潮| e午夜精品久久久久久久| 精华霜和精华液先用哪个| 别揉我奶头~嗯~啊~动态视频| 麻豆久久精品国产亚洲av| 桃色一区二区三区在线观看| 久久天堂一区二区三区四区| 欧美高清成人免费视频www| 亚洲精品中文字幕一二三四区| 熟女电影av网| xxxwww97欧美| 久久精品国产清高在天天线| 波多野结衣巨乳人妻| 欧美在线一区亚洲| 午夜视频精品福利| 欧美另类亚洲清纯唯美| 麻豆国产97在线/欧美| 国内精品一区二区在线观看| 真人一进一出gif抽搐免费| 日韩成人在线观看一区二区三区| 亚洲天堂国产精品一区在线| 国产精品自产拍在线观看55亚洲| 亚洲专区国产一区二区| 精品一区二区三区四区五区乱码| 亚洲片人在线观看| 麻豆一二三区av精品| 国产精品久久久久久人妻精品电影| 每晚都被弄得嗷嗷叫到高潮| 老司机福利观看| 天堂√8在线中文| 欧美精品啪啪一区二区三区| 黄片大片在线免费观看| 村上凉子中文字幕在线| 国产在线精品亚洲第一网站| 我要搜黄色片| 日本黄大片高清| 久久草成人影院| 十八禁网站免费在线| 日本熟妇午夜| 午夜精品久久久久久毛片777| 国产真人三级小视频在线观看| 国产高清三级在线| АⅤ资源中文在线天堂| 国产1区2区3区精品| 久久精品影院6| 国产成人影院久久av| 国产一区二区三区视频了| 午夜激情欧美在线| 五月伊人婷婷丁香| 伦理电影免费视频| 国产成年人精品一区二区| 看片在线看免费视频| 亚洲av电影在线进入| 国产亚洲精品一区二区www| a级毛片a级免费在线| 99国产精品99久久久久| 亚洲熟妇中文字幕五十中出| 久久国产精品人妻蜜桃| 国产高清激情床上av| www.精华液| 少妇丰满av| 久久久国产成人精品二区| ponron亚洲| 久9热在线精品视频| 12—13女人毛片做爰片一| 国产欧美日韩一区二区精品| 国产极品精品免费视频能看的| 免费观看的影片在线观看| 久久国产精品影院| 在线观看午夜福利视频| 黑人巨大精品欧美一区二区mp4| 精品久久久久久久末码| 国产乱人伦免费视频| 夜夜爽天天搞| 久久国产精品影院| 亚洲黑人精品在线| 欧美三级亚洲精品| 欧美黄色淫秽网站| 在线免费观看的www视频| 韩国av一区二区三区四区| 精品久久久久久久末码| www.自偷自拍.com| 国产人伦9x9x在线观看| 欧美一区二区国产精品久久精品| 亚洲色图av天堂| 可以在线观看的亚洲视频| 欧美+亚洲+日韩+国产| 亚洲人成伊人成综合网2020| 亚洲精品一区av在线观看| 在线免费观看的www视频| 亚洲欧美激情综合另类| www.自偷自拍.com| 亚洲人成伊人成综合网2020| 午夜福利在线在线| 午夜激情福利司机影院| 国产精品久久久久久亚洲av鲁大| 久久这里只有精品19| 女人高潮潮喷娇喘18禁视频| 国产69精品久久久久777片 | 99国产综合亚洲精品| 一本综合久久免费| 夜夜爽天天搞| 欧美不卡视频在线免费观看| 中亚洲国语对白在线视频| 中文亚洲av片在线观看爽| 精品欧美国产一区二区三| 日韩欧美国产一区二区入口| 精品久久蜜臀av无| 国产精品av视频在线免费观看| 一级毛片女人18水好多| 午夜福利免费观看在线| 婷婷亚洲欧美| 真人一进一出gif抽搐免费| 午夜免费成人在线视频| 色av中文字幕| 国产av不卡久久| 日本成人三级电影网站| 久久久久国产一级毛片高清牌| 欧美性猛交黑人性爽| 国产极品精品免费视频能看的| 亚洲国产中文字幕在线视频|