• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis for Transm ission of Com posite Structure w ith Graphene Using Equivalent Circuit M odel*

    2014-05-05 22:55:38XuBingzheng許秉正GuChangqing顧長青LiZhuo李茁NiuZhenyi牛臻弋
    關(guān)鍵詞:長青

    Xu Bingzheng(許秉正),Gu Changqing(顧長青),Li Zhuo(李茁),Niu Zhenyi(牛臻弋)

    College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China

    1 Introduction

    The applications of periodic structures to control electromagnetic wave propagation have been attracted in various research fields for centuries[1].Many of papers have been published for exploring the theoretical challengeswith the description of the first diffraction grating[2-7].Possible applications of periodic structures include design of frequency selective surfaces(e.g.antenna radome,absorber)[2],artificial high-impedance surfaces(HIS)[3],and photonic band-gap structures(PBG)[4].The periodic structure relies usually on the uses of commercial full-wave electromagnetic solvers,which consume considerable time and computational resources for accurate results.Fortunately,themodeling of periodic structures in the sub-diffraction regime can be carry through very simple models based on the equivalent circuit method(ECM)[5-7].For instance,simple and accurate analytical formulas are introduced for the reflection of the high-impedance surfaces comprising metal strips or patches over ground planes[5].In addition,the transmissivity of electromagnetic waves through stacked two-dimensional printed periodic arrays of square conducting patches is studied and an analytical circuitlike model is used for the analysis[6].Transmission through two-dimensional(2D)periodic metallic meshes are also discussed recently[7].However,to the best of our knowledge,circuitmethods of the composite structures with both patch and mesh layers have rarely been studied yet.It is interesting to consider transmission through composite structure by an efficient equivalent circuit approach.

    On the other hand,graphene has attracted great attention for potential applications in various branches of engineering due to its predominant electronic transport properties[8].One novel area where the property of graphenemay be influential is the dynamic control of the applied bias voltage[9].And graphene sheet can be used to realize the concept of″cloaking by a surface″in the far-infrared and terahertz regime[8].Furthermore,an analyticalmodel is presented for the analysis ofmultilayer wiremedia loaded with 2D HIS such as graphenemonolayer on the thin material terminations,characterized in general by the complex surface conductivity,applied to wideband absorbers[10].The use of periodic graphenemeta-surfaces to dynamically control the electromagnetic wave reflection,absorption,or polarization was reported in recent times[11].For the complexity of the conductivity of graphene,it is necessary to discuss the simple equivalent impedance surfacemodel.

    In this paper,the formalism of the equivalent model is presented for the analysis of the transmission characteristics of the multilayer structure with graphene and metal sheets.It is shown that the electronic gating of a graphene monolayer allows one to change transmission of electromagnetic waves of the structure.The results obtained using the analytical model are validated against computationally intensive finite element commercial electromagnetic solver.

    2 Unit Cell M odel of Com posite Stacked Grids and Patches

    In the infrared and microwave range,graphene monolayer can be described as a complex-valued surface conductivity[8,9]

    whereω is the radian frequency of the plane wave,Γ a phenomenological scattering rate,which is assumed to be independent of energy,T the room temperature,μcthe chemical potential related to the electrostatic biasing,which quantifies the electronic transport properties.Throughout thiswork,we assume T=300 K,Γ =0.43 meV,which corresponds a mean-free path of several hundred nanometers,and set 0.0 —1.0 eV as the chemical potential scope for discussion.In general,graphene layer can reside on substrate,such as a silicon dioxide(SiO2)thin film with relative permittivity ε'=3.9 with the thickness of severalmicrometers.For the thin thickness,the silicon dioxide substrate can be ignored for our analysis.In order to tune the chemical potential of the whole graphene layer by electrostatic gating,graphene layer should be connected,that iswhy we consider2D graphene strips instead of isolated structure such like patch or cross arrays.

    Fig.1 Configuration of transmission structure

    Examples of themultilayer configuration analyzed are depicted in Fig.1,showing that the bilayer configuration is formed with differentmesh grids separated by commercially available dielectric (Roger 3210).The relative permittivity of the dielectric material isεd=10.2 ,and the loss tangent used in the analysis is tanδd≈ 0.003 ,the thickness of the each of the substrate is h=4 mm.The copper cladding with 18μm thicknessisplaced on the top and bottom layer,itisassumed thattheparametersofthemetallayerare the same.And graphene grids are placed between two dielectric slabswith a complex surface conductivity as a thin tunable resistive sheet.Although 6 × 6 unit cells along the x and y directions are shown in Figs.1(a,b),the structure is assumed infinite in the transverse directions.And the lattice constants of both the metallic and the graphene grids are p=2 mm,much smaller than the wavelength in the dielectric slabs at the operation frequency.And the width of the metal and graphene strips is g1=0.1 mm and g2=0.05 mm(see Figs.1(c,d,e)).For the symmetric of the structure,the structure is not sensitive to the polarization angle of the incidentelectromagnetic wave.When a uniform transverse plane electromagnetic wave incident to the structure,themodel of themetallic or graphene strips with sub-wavelength period and dimensions has been proposed for the transmission properties.

    3 Analysis and Derivation of Equivalent Circuit M odel

    Now consider a plane wave incident normally on the multilayer structure as shown in Fig.1.It is assumed that each dielectric layer is homogeneous and the wavelength in free space is larger than the period in the transverse direction of the structure under study.The appropriate equivalent circuit of the investigated structure in our simulation is depicted in Fig.2.The impedance Zdaccounts for the inductance of the thin dielectric slab and Z0represents the free space impedance,the expressions for those value of the propagation constants(β0for the air space andβdfor the dielectric region)and impedance for normal incidence are[5-7]

    Fig.2 Equivalent circuit for the composite structure with sub-wavelength periodic elements

    whereλis the incidencewavelength,μ0andε0are the permeability and permittivity in free space,respectively.The shunt impedances of the metal grids or patches in each layer can be expressed asThe lossy resistive sheetusing graphene is represented by impedance Zp.The size of the unit cell considered in our analysis is electrically small,approximate estimations for the grid or patch impedance based on the dynamic solution for some periodic structures(patch arrays,mesh grids,among others)are available in the literature.In the circuitmodel analysis,for g1?p themetallic grids can be simply represented by a reactive loads Zgfor normal incidence[5]

    where the ohmic losses can be neglected for the skin effect penetration depth is much smaller than the thickness of the metal mesh.Similarly,the metal patch grid behavesmainly as a capacitive load,and the analytical expressions for patch arrays can be obtained[5]

    where ″csc″stands for the cosecant function and εeff=(εd+1)/2 stands for the equivalent relative permittivity for the patch located at the upper interface.According to the proposed model,the grid impedance of graphene strips can be obtained as follows

    For simply,it can be equivalent to two terms:the first term represents conduction loss per period due to the presence of graphene,the second term is the approximate grid impedance of themesh array(similar to Eq.(4)).Once the impedance of the metallic or graphenemeshes is derived,the transmission coefficient of the structure is assessed as follows

    the terms A,B,C,D are the elements of the transmission linematrix of the composite structurewhich is evaluated as the product of the five cascaded matrices

    where the transmission linematrix Rg,Rp,Rdcan be expressed as

    In order to present a practical design of the structure,the predictions of ourmodelmust be checked against experimental and numerical results.The forthcoming section will give the numerical and analytic data.

    4 Results and Discussion

    The approximate circuit method here presented allows acquiring a valuable insight into the physical principles of the bilayer structure.The conductivity of graphene corresponds to the surface impedance of a graphenemonolayer Zgr=1/σgr[8],which behaves as a resistive surface due to the small values ofσgratmicrowave frequencies.Fig.3(a)illustrates the input(surface)impedance of the structure(Fig.1(a))with graphenemonolayer in different chemical potential.For uc=0 eV(no bias voltage is loading),the real part of the surface conductivity of graphene is equivalent to 3.23 mS,corresponding to 310 Ω,and for uc=1 eV,the real partof the surface conductivity is about 89.97 mS,corresponding to 11 Ω.For the high impedance the input impedance curve at the frequency range of 0—18 GHz has three high peaks.Apparently,this leads to good matching with the free space impedance at the range of the frequency.Similar simulation has occurred in Fig.3(b)which corresponds to the composite structure in Fig.1(b).Additionally,there is a transmission peak occurring at zero frequency for uc=0 eV.

    Fig.3 Input(surface)impedance with different chemical potential

    In order to validate the effectiveness of the formulas,we present numerical values of the transmissivity(|T|2=|S21|2)of this structure computed with the full-wave results.The full-wave results are calculated by using the electromagnetic finite elements solver HFSS.The results shown in Fig.4 are obtained using different values of chemical potential for normal incidence with the following geometrical and material parameters of the structure in Fig.1(a).There is an agreement between numerical and analytical data from the Fig.4.When uc=0 eV ,the structure exhibit three high-transmission peaks with the resonance frequencies between 2 to 18 GHz.And the structure exhibits a low-pass filter behavior with strong ripples.When the bias voltage changes to 1 eV,only one peak(10 GHz)is found.The formula is applicable in different chemical potential from 0—1 eV.

    Fig.4 Comparison between analytical and numerical results for transmissivity(|T|2)of structure in Fig.1(a).

    Here we consider amultilayermetal patches and graphene meshes structure as shown in Fig.1(b).The structure is formed with metal identical patch arrays separated by dielectric slabs.Firstly,F(xiàn)ig.3(b)presents the real part of the input impedance of the structure.From Figs.5(a,b)it can be observed that the transmissivity behavior shows a passband stating from the zero frequency and up to a certain upper frequency.When graphene has no bias voltage,the high impedance surface impedance lead to three peaks at the range between 0—18 GHz.By decreasing the value of the surface impedance of graphene,the real part of input impedance curves changes with the second peaks transmission lost.And in Fig.5(b),the transmission coefficient of the structure have only two peakswhich obtained by the equivalent circuitmethod and HFSS.Again,the results obtained using the ECM are in good agreement with the HFSS results in any value of the bias voltage.

    Fig.5 Comparison between analytical and numerical results for transmissivity(|T|2)of structure in Fig.1(b).

    In the previous example,it has been shown that the ECM is convenient to study the characteristics of the transmission band.For this purpose,we apply the circuitmodel to analysis the transmission characteristics in structures formed by a large number of layers with graphene or metal mesh grids and dielectric slabs.Fig.6 shows the transmission characteristics of a ten-layer structure(graphene sheets biased with the same chemical potential)and all the peaks are within the characteristic frequency band.The structure is formed by a stack of six identicalmetalmesh grids and five graphene mesh grids printed on ten identical dielectric slabs.The substrate has the thickness of h=6 mm,p=5 mm,and g1=g2=0.15 mm.In Fig.6,it can be observed that the structure exhibits a series of band-pass regions separated by the band gaps,similar to the previous examples.The ECM is also applicable to the multilayer case.It should be noted that the bandpass and bandstop behavior is dependenton the geometrical andmaterial parameters of the dielectric slabs and graphene sheets,and the five numbers of transmission peaks of every bandpass regions correspond to the numbers of the graphene layers.

    5 Conclusions

    Fig.6 Transmission spectra obtained for ten dielectric slabs(five graphene mesh layer and six metal mesh layer)

    Transmissivity of electromagnetic waves through stacked 2D dimensional periodic graphene/metal mesh or patch arrays is analyzed at microwave frequencies.The study has been carried using the transfer-matrix approach,and an independent verification has been provided with the computationally intensive finite element commercial electromagnetic solver.In the situation of the transmission bands and the bandgaps are accurately determined bymeans of the ECM.Themodel is valid in the case ofmulti-layers compute structure.In thiswork,we consider only normal incidence of electromagnetic waves,but the approach can be easily extended to an oblique incidence with the TE and TM reflection and transmission coefficients[6].The considered structures with graphenemay be useful in the design of tunable broadband planar filters at microwave frequencies.

    [1] Rittenhouse D.Explanation of an optical deception[J].Transactions of the American Philosophical Society,1786,2:37-42.

    [2] Costa F,Monorchio A.A frequency selective radome with wideband absorbing properties[J].Transactions on Antennas and Propagation,2012,60(6):2740-2746.

    [3] Maci S,Kildal P S.Hard and soft surfaces realized by FSS printed on a grounded dielectric slab[C]∥Proseeding of Antennas and Propagations Society International Symposium.Siena,Italy:IEEE,2004:285-288.

    [4] Yablonovitch E.Inhibited spontaneous emission in solid-state physics and electronics[J].Phy Rev Lett,1987,58(20):2059-2062.

    [5] Luukkonen O,Simovski C,Granet G,et al.Simple and accurate analyticalmodel of planar grids and highimpedance surfaces comprising meta strips or patches[J].Transactions on Antennas and Propagation,2008,56(6):1624-1630.

    [6] Kaipa C SR,Yakovlev A B,Medina F,et al.Transmission through stacked 2D periodic distribution of square conducting patches[J].Journal of Applied Physics,2012,112(3):033101.

    [7] Costa F,Genovesi S,Monorchio A,et al.Circuitmodeling of the transmissivity of stacked two-dimensional metallic meshes[J].Optics Express,2010,18(13):13309-13320.

    [8] Chen P Y,Alu A.Atomically thin surface cloak using graphene monolayers[J].ACS Nano,2011,5(7):5855-5863.

    [9] Xu H J,Lu W B,Jiang Y,et al.Beam-scanning planar lens based on graphene[J].Applied Physics Letters,2012,100:051903.

    [10] Padooru Y R,Yakovlev A B,Kaipa C SR,et al.New absorbing boundary conditions and analytical model for multilayeredmushroom-typemetamaterials:Applications to wideband absorbers[J].Transactions on Antenna Propagation,2012,60(12):5727-5742.

    [11] Fallahi A,Perruisseau-Carrier J.Design of tunable biperiodic graphenemetasurfaces[J].Physical Review B,2012,86(19):195408.

    猜你喜歡
    長青
    閃念大柳塔
    淺談“長青壺”的藝術(shù)風(fēng)格
    山東陶瓷(2021年5期)2022-01-17 02:35:54
    長青開啟中馬圓夢之旅
    長青《敗者為王》萬人首映創(chuàng)紀(jì)錄
    李宗偉為長青代言
    長青 首涉電影殺青
    長青 邁步環(huán)保公益
    長青 快樂活動(dòng)進(jìn)萬家
    長青榮耀三十載
    以精品工程 打造基業(yè)長青
    精品福利观看| 深夜精品福利| 琪琪午夜伦伦电影理论片6080| 两个人视频免费观看高清| 免费看十八禁软件| svipshipincom国产片| 搞女人的毛片| 我的老师免费观看完整版| 国产一区二区在线观看日韩 | 每晚都被弄得嗷嗷叫到高潮| 日韩 欧美 亚洲 中文字幕| 中文字幕熟女人妻在线| 精品一区二区三区视频在线 | 老熟妇乱子伦视频在线观看| 午夜福利欧美成人| 亚洲精品中文字幕一二三四区| 狂野欧美白嫩少妇大欣赏| 两个人看的免费小视频| 亚洲熟女毛片儿| 男女做爰动态图高潮gif福利片| 精品久久久久久久毛片微露脸| 最近在线观看免费完整版| 国产av一区在线观看免费| 欧美日韩瑟瑟在线播放| 国产精品av视频在线免费观看| 性色av乱码一区二区三区2| 中文字幕精品亚洲无线码一区| 怎么达到女性高潮| 18禁观看日本| 国产高清视频在线观看网站| 亚洲精品久久国产高清桃花| 国产av一区在线观看免费| 亚洲色图av天堂| 精华霜和精华液先用哪个| 极品教师在线免费播放| 性欧美人与动物交配| 色综合婷婷激情| 日韩免费av在线播放| 国产精品一区二区三区四区久久| 一级作爱视频免费观看| 美女被艹到高潮喷水动态| 不卡一级毛片| 女生性感内裤真人,穿戴方法视频| 成年人黄色毛片网站| 中文在线观看免费www的网站| 成年版毛片免费区| 1024香蕉在线观看| 男人的好看免费观看在线视频| 国产精品 欧美亚洲| 曰老女人黄片| 在线永久观看黄色视频| a在线观看视频网站| 成人18禁在线播放| 曰老女人黄片| 黄片小视频在线播放| 欧美成人一区二区免费高清观看 | 宅男免费午夜| 精品国产乱码久久久久久男人| 亚洲aⅴ乱码一区二区在线播放| 91久久精品国产一区二区成人 | а√天堂www在线а√下载| 亚洲人与动物交配视频| 亚洲精品乱码久久久v下载方式 | 成熟少妇高潮喷水视频| 中出人妻视频一区二区| 波多野结衣巨乳人妻| 久久久久久人人人人人| 欧美性猛交╳xxx乱大交人| 国产成人一区二区三区免费视频网站| 欧美日韩国产亚洲二区| 美女午夜性视频免费| 亚洲欧美一区二区三区黑人| 日本在线视频免费播放| 亚洲人成网站在线播放欧美日韩| 欧美黑人欧美精品刺激| 一本一本综合久久| 91老司机精品| 午夜免费成人在线视频| 两个人视频免费观看高清| 精品久久久久久成人av| 黑人巨大精品欧美一区二区mp4| 国产精品一及| 99在线视频只有这里精品首页| 国产成人av激情在线播放| 成年女人看的毛片在线观看| 长腿黑丝高跟| 亚洲人成伊人成综合网2020| 欧美日韩瑟瑟在线播放| 99热只有精品国产| 熟女人妻精品中文字幕| 无限看片的www在线观看| 日韩欧美精品v在线| 日本免费a在线| 少妇的丰满在线观看| 欧美绝顶高潮抽搐喷水| 国产精品av视频在线免费观看| 又大又爽又粗| 可以在线观看毛片的网站| 999久久久国产精品视频| 精品国产美女av久久久久小说| 他把我摸到了高潮在线观看| 宅男免费午夜| av在线天堂中文字幕| av视频在线观看入口| 青草久久国产| 两人在一起打扑克的视频| www.熟女人妻精品国产| 亚洲欧美精品综合一区二区三区| 最好的美女福利视频网| 午夜免费观看网址| 哪里可以看免费的av片| 欧美黄色片欧美黄色片| 国产蜜桃级精品一区二区三区| 国产精品精品国产色婷婷| 亚洲欧美日韩高清专用| 欧美绝顶高潮抽搐喷水| 久久99热这里只有精品18| 性色av乱码一区二区三区2| 99久久无色码亚洲精品果冻| 精品熟女少妇八av免费久了| 国产av一区在线观看免费| 国产在线精品亚洲第一网站| 国产av麻豆久久久久久久| 亚洲中文字幕日韩| 精品国产美女av久久久久小说| 精品国产乱码久久久久久男人| 国产精品 国内视频| 亚洲欧美激情综合另类| 日韩大尺度精品在线看网址| 久久久久精品国产欧美久久久| 日韩大尺度精品在线看网址| 国产精品99久久99久久久不卡| 人人妻,人人澡人人爽秒播| 一进一出好大好爽视频| 少妇裸体淫交视频免费看高清| 99久久国产精品久久久| 99久久成人亚洲精品观看| 黄色成人免费大全| 国产三级黄色录像| 99久国产av精品| 亚洲国产精品合色在线| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产 | 日韩欧美免费精品| 真实男女啪啪啪动态图| 日韩欧美国产一区二区入口| 欧美黑人巨大hd| 久久人妻av系列| 国产高清视频在线播放一区| 国产一区二区三区在线臀色熟女| 日本在线视频免费播放| av天堂在线播放| 国产精品久久久久久人妻精品电影| 精品久久久久久久久久久久久| 亚洲成人免费电影在线观看| 宅男免费午夜| 亚洲专区中文字幕在线| 成年女人毛片免费观看观看9| 麻豆国产av国片精品| 人妻久久中文字幕网| 看黄色毛片网站| 亚洲人成网站在线播放欧美日韩| 一a级毛片在线观看| 九九热线精品视视频播放| 亚洲成人久久爱视频| 观看免费一级毛片| 黄色日韩在线| 午夜a级毛片| 桃红色精品国产亚洲av| 久久精品亚洲精品国产色婷小说| 在线免费观看的www视频| x7x7x7水蜜桃| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av在线| 一级黄色大片毛片| 日韩欧美 国产精品| 国产精品香港三级国产av潘金莲| 亚洲国产欧洲综合997久久,| 亚洲精品美女久久久久99蜜臀| 国产激情欧美一区二区| 亚洲天堂国产精品一区在线| 网址你懂的国产日韩在线| 91av网一区二区| 一级a爱片免费观看的视频| 国产欧美日韩一区二区三| 女生性感内裤真人,穿戴方法视频| 男人和女人高潮做爰伦理| 级片在线观看| 国产精品一区二区三区四区免费观看 | 男人和女人高潮做爰伦理| 国产亚洲精品一区二区www| 亚洲美女视频黄频| 在线看三级毛片| 一个人看的www免费观看视频| 国产精品香港三级国产av潘金莲| x7x7x7水蜜桃| 国产极品精品免费视频能看的| 国内毛片毛片毛片毛片毛片| 真实男女啪啪啪动态图| 最好的美女福利视频网| 99精品久久久久人妻精品| 欧美日韩国产亚洲二区| 1024香蕉在线观看| 男人的好看免费观看在线视频| 日本一本二区三区精品| 亚洲熟女毛片儿| 免费在线观看亚洲国产| 国产人伦9x9x在线观看| www日本在线高清视频| 最好的美女福利视频网| 午夜福利在线观看吧| 精品国内亚洲2022精品成人| 丰满的人妻完整版| 国产v大片淫在线免费观看| 白带黄色成豆腐渣| 国产不卡一卡二| 亚洲成人精品中文字幕电影| 90打野战视频偷拍视频| 美女 人体艺术 gogo| 91老司机精品| 国产99白浆流出| 宅男免费午夜| 桃红色精品国产亚洲av| 国产又黄又爽又无遮挡在线| 又紧又爽又黄一区二区| 久久久久久久久久黄片| 亚洲人与动物交配视频| 成人永久免费在线观看视频| 亚洲熟女毛片儿| 最新中文字幕久久久久 | 99国产综合亚洲精品| 麻豆成人午夜福利视频| 亚洲专区中文字幕在线| 嫩草影院精品99| 久久久久九九精品影院| 久久伊人香网站| 日韩免费av在线播放| 欧美激情在线99| 亚洲欧美精品综合久久99| 日韩欧美在线二视频| 国产精品av久久久久免费| 桃红色精品国产亚洲av| 国产黄片美女视频| 中文字幕熟女人妻在线| 成人欧美大片| 美女高潮喷水抽搐中文字幕| 亚洲精品乱码久久久v下载方式 | a级毛片a级免费在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人中文字幕在线播放| 国内精品久久久久久久电影| 一区二区三区激情视频| 夜夜爽天天搞| 午夜日韩欧美国产| 麻豆国产97在线/欧美| 丰满人妻熟妇乱又伦精品不卡| 人妻夜夜爽99麻豆av| 夜夜爽天天搞| 国产伦在线观看视频一区| 国产成年人精品一区二区| 久久久国产成人精品二区| 熟女电影av网| 日本 欧美在线| 国产欧美日韩精品一区二区| 国产欧美日韩一区二区三| 性欧美人与动物交配| 国产高清视频在线播放一区| 免费看十八禁软件| 国产精品99久久99久久久不卡| 99国产综合亚洲精品| 一级毛片女人18水好多| 国产91精品成人一区二区三区| 亚洲第一欧美日韩一区二区三区| 一区二区三区激情视频| 性色avwww在线观看| 国产精品99久久久久久久久| 久久精品aⅴ一区二区三区四区| 日韩高清综合在线| 99久久精品国产亚洲精品| 成年女人毛片免费观看观看9| 亚洲无线观看免费| 亚洲国产精品sss在线观看| 男女之事视频高清在线观看| 亚洲一区高清亚洲精品| 手机成人av网站| 国产主播在线观看一区二区| 一本久久中文字幕| 一卡2卡三卡四卡精品乱码亚洲| av福利片在线观看| 免费av毛片视频| 99精品久久久久人妻精品| 韩国av一区二区三区四区| 亚洲成人中文字幕在线播放| a在线观看视频网站| 一级毛片高清免费大全| 精品一区二区三区视频在线观看免费| 久久人人精品亚洲av| 一夜夜www| 国产69精品久久久久777片 | 久久亚洲精品不卡| 亚洲成a人片在线一区二区| 国产一区二区三区视频了| 久久精品91无色码中文字幕| 婷婷亚洲欧美| 日本a在线网址| 亚洲中文日韩欧美视频| 五月伊人婷婷丁香| 日本一二三区视频观看| 欧美黄色淫秽网站| 在线a可以看的网站| 欧美成人性av电影在线观看| 亚洲av片天天在线观看| 视频区欧美日本亚洲| 中文字幕久久专区| 亚洲国产精品999在线| a级毛片在线看网站| 日本三级黄在线观看| 国产一级毛片七仙女欲春2| 国产黄色小视频在线观看| 国产亚洲精品综合一区在线观看| 久久精品综合一区二区三区| 亚洲av中文字字幕乱码综合| 老汉色av国产亚洲站长工具| 淫妇啪啪啪对白视频| 神马国产精品三级电影在线观看| 国产黄色小视频在线观看| 亚洲av电影不卡..在线观看| 日本成人三级电影网站| 国产精品一及| 最新美女视频免费是黄的| 男女下面进入的视频免费午夜| 两人在一起打扑克的视频| 97碰自拍视频| 久9热在线精品视频| 日韩欧美在线乱码| 国产一区在线观看成人免费| 99riav亚洲国产免费| 亚洲在线自拍视频| 人人妻人人澡欧美一区二区| 久久这里只有精品19| 两个人的视频大全免费| 午夜精品久久久久久毛片777| 精品不卡国产一区二区三区| 国产一区二区三区在线臀色熟女| 欧美国产日韩亚洲一区| 白带黄色成豆腐渣| 亚洲美女视频黄频| av女优亚洲男人天堂 | 午夜免费激情av| 黑人巨大精品欧美一区二区mp4| 日本 欧美在线| 欧美不卡视频在线免费观看| 亚洲精华国产精华精| 老司机在亚洲福利影院| 91av网站免费观看| 啦啦啦观看免费观看视频高清| 嫩草影视91久久| 欧美一区二区国产精品久久精品| 免费在线观看成人毛片| 欧洲精品卡2卡3卡4卡5卡区| 久久久久亚洲av毛片大全| 国产淫片久久久久久久久 | 日韩大尺度精品在线看网址| 国产亚洲欧美在线一区二区| 99久久99久久久精品蜜桃| 淫秽高清视频在线观看| 国产亚洲精品综合一区在线观看| 国内毛片毛片毛片毛片毛片| 欧美日韩瑟瑟在线播放| 免费搜索国产男女视频| 久久久久久久久中文| 久久精品aⅴ一区二区三区四区| 免费看十八禁软件| 免费一级毛片在线播放高清视频| 欧美av亚洲av综合av国产av| 男插女下体视频免费在线播放| 在线观看免费视频日本深夜| 香蕉国产在线看| 日本黄色视频三级网站网址| 午夜精品在线福利| 国产精品亚洲一级av第二区| 亚洲精品中文字幕一二三四区| 国产激情欧美一区二区| 午夜免费成人在线视频| a级毛片在线看网站| 国产黄片美女视频| 午夜免费激情av| 成人18禁在线播放| 日韩欧美精品v在线| 精品熟女少妇八av免费久了| av天堂中文字幕网| 啦啦啦免费观看视频1| 一级作爱视频免费观看| 国产在线精品亚洲第一网站| 国产三级中文精品| 国产成人精品久久二区二区91| 最近最新中文字幕大全电影3| 99热只有精品国产| 成人欧美大片| 久久中文字幕人妻熟女| 99久久99久久久精品蜜桃| av在线天堂中文字幕| 香蕉久久夜色| 九色成人免费人妻av| 制服人妻中文乱码| 国产一区在线观看成人免费| 又大又爽又粗| www日本在线高清视频| 亚洲精品美女久久久久99蜜臀| 国产精品 欧美亚洲| 亚洲一区二区三区色噜噜| 母亲3免费完整高清在线观看| 波多野结衣巨乳人妻| 男女午夜视频在线观看| 午夜免费激情av| 国产精品永久免费网站| 国产99白浆流出| 欧美乱妇无乱码| 一区二区三区高清视频在线| 国产视频内射| 国产不卡一卡二| 久久久久精品国产欧美久久久| 亚洲av免费在线观看| 天堂网av新在线| 国产精品日韩av在线免费观看| 99久久99久久久精品蜜桃| 在线观看美女被高潮喷水网站 | 99热6这里只有精品| 亚洲成人精品中文字幕电影| 成年女人毛片免费观看观看9| 日本五十路高清| 久久午夜亚洲精品久久| 久久久久久久久中文| 亚洲成人中文字幕在线播放| 成人性生交大片免费视频hd| 熟妇人妻久久中文字幕3abv| а√天堂www在线а√下载| h日本视频在线播放| 国产精华一区二区三区| 男人舔奶头视频| 免费看日本二区| 色噜噜av男人的天堂激情| 一本精品99久久精品77| 五月玫瑰六月丁香| bbb黄色大片| 精品福利观看| 男人的好看免费观看在线视频| h日本视频在线播放| 欧美成人性av电影在线观看| 免费在线观看日本一区| 宅男免费午夜| 人妻久久中文字幕网| 亚洲国产精品sss在线观看| 精品久久久久久成人av| 波多野结衣高清作品| 国产1区2区3区精品| 免费观看人在逋| 又黄又爽又免费观看的视频| 亚洲欧美一区二区三区黑人| 黑人操中国人逼视频| 99久久精品热视频| 亚洲av电影不卡..在线观看| 国内揄拍国产精品人妻在线| 亚洲人成网站高清观看| 精品乱码久久久久久99久播| 欧美大码av| 国产欧美日韩一区二区三| 中出人妻视频一区二区| 久久国产乱子伦精品免费另类| xxxwww97欧美| 午夜福利欧美成人| 久久久精品大字幕| 一二三四社区在线视频社区8| 国产aⅴ精品一区二区三区波| 久久精品夜夜夜夜夜久久蜜豆| 国产麻豆成人av免费视频| 精品一区二区三区视频在线观看免费| 亚洲五月天丁香| 手机成人av网站| 老鸭窝网址在线观看| 欧美日韩黄片免| 国产美女午夜福利| 国产三级中文精品| 午夜激情欧美在线| 成人av一区二区三区在线看| 欧美黑人巨大hd| 757午夜福利合集在线观看| 偷拍熟女少妇极品色| 亚洲成av人片在线播放无| 亚洲精品色激情综合| 精品午夜福利视频在线观看一区| 人人妻人人澡欧美一区二区| 黄色片一级片一级黄色片| 12—13女人毛片做爰片一| 国产日本99.免费观看| 国产高清激情床上av| 国产成人av激情在线播放| 国产精品精品国产色婷婷| 亚洲精品一卡2卡三卡4卡5卡| 国产淫片久久久久久久久 | 国产av麻豆久久久久久久| 一夜夜www| 黑人巨大精品欧美一区二区mp4| 俺也久久电影网| 成人特级黄色片久久久久久久| 午夜免费激情av| av天堂中文字幕网| 欧美成人一区二区免费高清观看 | 久久亚洲真实| 又黄又粗又硬又大视频| 51午夜福利影视在线观看| 国产亚洲精品综合一区在线观看| 99在线人妻在线中文字幕| 欧美最黄视频在线播放免费| 亚洲七黄色美女视频| 国产一区二区三区视频了| 女人被狂操c到高潮| 亚洲,欧美精品.| 色综合婷婷激情| 嫩草影院入口| 又粗又爽又猛毛片免费看| 成熟少妇高潮喷水视频| 国产黄a三级三级三级人| www日本在线高清视频| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩无卡精品| 亚洲在线观看片| 国产精品精品国产色婷婷| 国产亚洲av高清不卡| 免费在线观看成人毛片| 免费av毛片视频| 9191精品国产免费久久| 十八禁人妻一区二区| 亚洲精品一区av在线观看| 色尼玛亚洲综合影院| 淫秽高清视频在线观看| 日本成人三级电影网站| 1024手机看黄色片| 此物有八面人人有两片| 两人在一起打扑克的视频| 免费看a级黄色片| 最新在线观看一区二区三区| 亚洲成人中文字幕在线播放| 国内精品久久久久精免费| 亚洲七黄色美女视频| 亚洲成人久久性| 婷婷丁香在线五月| 国产精品九九99| 免费在线观看视频国产中文字幕亚洲| 亚洲色图 男人天堂 中文字幕| 美女免费视频网站| 国产激情欧美一区二区| a级毛片在线看网站| 国产精品影院久久| 观看免费一级毛片| 一夜夜www| 免费在线观看影片大全网站| 美女扒开内裤让男人捅视频| 久久久国产精品麻豆| 在线观看免费视频日本深夜| 成人鲁丝片一二三区免费| 国产高清视频在线观看网站| 国产精品国产高清国产av| av女优亚洲男人天堂 | 真实男女啪啪啪动态图| 搡老妇女老女人老熟妇| 午夜视频精品福利| 熟女少妇亚洲综合色aaa.| 成人特级av手机在线观看| 国产精品一区二区精品视频观看| 成人无遮挡网站| 三级国产精品欧美在线观看 | 欧美日韩亚洲国产一区二区在线观看| 99在线人妻在线中文字幕| 网址你懂的国产日韩在线| 精品无人区乱码1区二区| 色吧在线观看| 日本熟妇午夜| 国产精品美女特级片免费视频播放器 | 18禁黄网站禁片午夜丰满| 精品国产美女av久久久久小说| 国产伦在线观看视频一区| 国产欧美日韩一区二区精品| 一区福利在线观看| 天堂av国产一区二区熟女人妻| 久久久久国内视频| 国产三级在线视频| 亚洲人成网站高清观看| 91久久精品国产一区二区成人 | 欧美一区二区精品小视频在线| 99久久精品国产亚洲精品| av国产免费在线观看| 精品久久久久久久久久久久久| 国产av不卡久久| 国产激情偷乱视频一区二区| 精品国产乱码久久久久久男人| 日本黄色视频三级网站网址| 特大巨黑吊av在线直播| 久久久久久大精品| 精品国产亚洲在线| 亚洲精品456在线播放app | 国产精品国产高清国产av| 精品一区二区三区四区五区乱码| 免费av毛片视频| 亚洲va日本ⅴa欧美va伊人久久| 国产麻豆成人av免费视频| 国产精品免费一区二区三区在线| 国内精品一区二区在线观看| 中文字幕精品亚洲无线码一区| 亚洲av美国av| 精品福利观看| 首页视频小说图片口味搜索| 国产三级黄色录像| 一区二区三区激情视频| 99热这里只有精品一区 |