• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experiment on Adiabatic Film Cooling Effectiveness in Front Zone of Effusion Cooling Configuration*

    2014-05-05 22:55:40YangZhimin楊志民ZhangJingzhou張靖周
    關(guān)鍵詞:志民

    Yang Zhimin(楊志民),Zhang Jingzhou(張靖周)

    1.School of Energy and Power Engineering,Beihang University,Beijing,100191,P.R.China;2.Shenyang Engine Design and Research Institute,Aviation Industry Corporation of China,Shenyang,110015,P.R.China;3.Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;4.Collaborative Innovation Center of Advanced Aero-engine,Beijing,100191,P.R.China

    1 Introduction

    As a matter of fact,the inlet and exit temperature levels are progressively getting higher in modern gas-turbine combustors while the percentage of compressed air available for cooling purpose becomes more limited.Undoubtedly,the decrease of the quantity of cooling air available and the increase of the gas temperature in the combustor are contradictory elements of the problem,which presents a great challenge for engineers to design an efficient cost-effective cooling system to meet combustor durability requirement.

    In order to improve the reliability of the combustor liner exposed to hot gas,two technical routes are obligatory for satisfying this requirement.One is to improve the combustor liner material characteristics,and the other is to develop advanced combustor liner cooling configuration.As far as the latter is concerned,effusion cooling or fully coverage film cooling has shown advantage to protect and increase the lifetime of combustor liner for contributing high cooling effectiveness,aswell as uniform temperature distribution[1-4].

    A lot of investigations on the mechanism of enhanced cooling of an effusion cooling scheme have been performed by many researchers.In reality,an effusion cooling scheme consists of three cooling effects:(1)the reduction of the wall temperature for an adiabatic wall as a direct result of the coolant jets;(2)the conduction of heat through the wall due to the thermal conductivity of the wallmaterial and the heat transfer to the backside flow;(3)the heat trans-fer to the coolant flow from the inner surface of the injection holes when coolant passes through the holes.The relative importance of each effect depends critically on the geometrical features of the wall and the operating conditions of the cooling system.

    Although many studies have been conducted to investigate the effects of main geometric and aerothermal factors on the thermal and aerodynamic performances of effusion cooling scheme[5-16],such as the arrangement of effusion holes,hole shape,hole diameter and hole inclination angle,and blowing ratio,etc.,there is few concentration on the cooling characteristics in the front zone of effusion configuration.Previous works have shown that the forming of“continuous”or“developed”coverage film layer comes through a developing process of the coolant jets injected from the front rows of film holes[17-19].The effusion cooling feature in the developing zone is significantly different from that in the developed zone.Themotivation of the presented experimental study is to explore the cooling characteristics in the front zone of effusion configuration.Effects of blowing ratio,multi-holes arrangementmode,hole-to-hole pitch and jet orientation angle on the adiabatic film cooling effectiveness are concentrated on.

    2 Experimental Procedures

    2.1 Experimental setup

    Fig.1 Schematic diagram of experimental setup

    The experimental setup is sketched in Fig.1.The primary stream comes from compressed air supply(0.8 MPa)and passes through a calibrated orifice flow meter,after being heated by a 60 kW heater,which can heat the air to a free-stream temperature of 80 °C.The heated stream is then routed through a section with baffles to ensure adequate mixing of the hot air to obtain a uniform temperature at the crosssection of 150 mm width and 60 mm height.This cross-section makes the primary stream flow at25 m/s.The primary stream temperature is continuously monitored at the inlet of the test section by a thermocouple.The secondary stream or coolant air is provided from a separate compressed air supply and routed through a buoyage flow meter,which is controlled by a gate valve and introduced into the plenum cavity.To eliminate the impingement effect of the coolant air at the plenum inlet,multiple layers of grids are placed in the plenum cavity.The coolant stream is then ejected through the effusion cooling holes into the primary flow passage.The test section ismade of transparent plastic plate with thickness of 5 mm.The length of the test section is300 mm.An infrared viewing window,which is 80 mm wide and 120 mm long,ismounted on the test section for directly viewing themeasured surface by an infrared camera.

    2.2 Experimentalmodels

    The experimental model for an effusion cooling configuration is shown in Fig.2(a).The effusion plate ismade of epoxy resin with thickness of 3 mm.The holes inside the perforated plate are arranged in the staggered mode or the inline mode,as shown in Figs.2(b,c).In the present study,the effusion holes have the same diameter(d=2 mm).The streamwise pitch ratio(S/d)and spanwise pitch ratio(P/d)are varied from 3 to 5.The inclined angle(α)is setas35°and 90°,respectively.The effusion plate has length of 120 mm and width of 150 mm,which ismounted inside the test section.

    The geometries of the effusion plates are summarized in Table 1.

    Fig.2 Schematic diagram of effusion cooling scheme

    Table 1 Effusion plate geometries

    2.3 M easurement and parameter definition

    To study the effect of various amount of coolant flow on the film cooling for a fixed mainstream flow,a parameter known as the blowing ratio(M)is defined as

    whereρcand ucare the density and velocity of the secondary flow or coolant flow at the effusion hole exit,respectively;and ρ∞and u∞are the density and velocity of the primary flow,respectively.

    The adiabatic wall cooling effectiveness(ηad)is defined as

    where Tcis the coolant flow temperature,T∞the primary flow temperature,T∞the primary flow temperature,Tawthe adiabatic wall temperature at the effusion surface suffering the primary flow.Since the thermal conductivity of effusion plate is about 0.4 W/(m·K),the heat transfer on the backside surface and inside effusion holes of the effusion plate is very weak.Therefore,the temperature on the effusion surface may be regarded approximately as the adiabatic temperature.

    The temperature distributions on the face of the effusion plate aremeasured by an infrared camera operating in themiddle infrared band(8~14 m)of the infrared spectrum.The test surface is viewed through the infrared camera window(Fig.1).The infrared camera calibration is conducted using a series of thermocouples placed on the black painted test surface to act as the benchmark[20-22].These thermocouples are used to estimate the emissivity of the test surface.The emissivity of the black painted test when viewed without thewindow is about0.96.The calibrated transmissivity for the infrared camera window is about0.85.

    To eliminate the effect of the edge area on the data treatment,the laterally-averaged adiabatic cooling effectiveness is determined on the centric zone of effusion plate.

    Experimental uncertainty in the overall film effectiveness measurement is estimated to be about ± 8.4%using the methodology of Moffat[23].The individual uncertainties of primary mainstream temperature(T∞),coolant temperature(Tc),and surface temperature(Taw)are ±1 °C,±0.5 °C,±2.0 °C,respectively.

    3 Results and Discussion

    Fig.3 presents the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction at different blowing ratios.Here the original coordinate is located at the centre of the first row film holes.

    For either the staggered mode or inline mode,the film flow displays an obvious“developing”feature in the front zone of effusion cooling configuration.The film outflows injected from the front rows do notmerge together to form a uniform film layer,therefore the laterally-averaged adiabatic cooling effectiveness increases or the adiabatic temperature decreases rapidly along the streamwise direction.By comparison,the varying gradient of the laterally-averaged adiabatic cooling effectiveness along the streamwise direction is greater in the staggered mode than that in the inline mode.Thismeans that the staggered mode will benefit the development of film flow and is capable of achieving full film coverage by fewer number of effusion cooling-holes rows.

    For the staggered arrangement,the laterally-averaged adiabatic film cooling effectiveness originated from the first few rows is higher under the lower blowing ratio,which agrees well with the results of discrete film cooling from early studies[24,25].Under a lower blowing ratio,the coolant jet has the lower penetration capacity,which is helpful tomake the coolant jet covering the downstream surface of the holes.But formulti-rows of film cooling holes,themaintainance capacity of jet spreading along streamwise direction under lower blowing ratio is also lower,thus leading to a slower growth of film layer.Also,the vigorous film layer is provided with the ability of suppressing coolant jet penetration.Therefore,the laterally-averaged adiabatic film cooling effectiveness originated from the last few rows is higher under a bigger blowing ratio.

    For the inline arrangement,the film coverage in the lateral direction is seriously weaker than that of the staggered mode.The inlinemode thus needs longer developing stage to realize the full film coverage.The laterally-averaged adiabatic film cooling effectiveness in the front zone of effusion cooling configuration decreases with the increase of blowing ratio.

    Fig.3 Laterally-averaged adiabatic cooling effectiveness distributions at different blowing ratios

    Fig.4 presents the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction under different multi-hole arrangements.As discussed in the above,the varying gradient of the laterally-averaged adiabatic cooling effectiveness along the streamwise direction is obviously lower for the inline arrangement than that for the corresponding staggered arrangement.The laterally-aver-aged adiabatic cooling effectiveness for the staggered mode is also higher than that for the corresponding value of inlinemode at the same blowing ratio.

    Fig.4 Laterally-averaged adiabatic cooling effectiveness distributions under different hole arrangements

    Fig.5 shows the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction under different jet orientation angles.Either for the staggered mode or the inlinemode,the laterally-averaged adiabatic cooling effectiveness with jet orientation angle of 35°is greater than that of 90°angle.As the coolant is discharged with a certain inclined angle,the coolant flow velocity components from effusion holes can be divided into two parts,i.e.,the tangent velocity and the normal velocity.In the tangential direction,the coolant is forced to flow downstream the film hole,which is also called aswall jet.From the view of enhancing film cooling effectiveness,the greater tangent velocity is expected tomaintain wall jet momentum along the streamwise direction.While in the normal direction,it is the opposite case.The coolant flow penetrates the primary flow and lifts off the surface.As expected,the lower coolant jet penetration along normal direction and the higher spread along streamwise direction with the inclined discharge are to benefit the film cooling effectiveness.

    Fig.5 Laterally-averaged adiabatic cooling effectiveness distributions under different jet orientation angles

    Fig.6 Laterally-averaged adiabatic cooling effectiveness distributions under different hole-to-hole pitches

    Fig.6 presents the laterally-averaged adiabatic cooling effectiveness distributions along the streamwise direction under different hole-to-hole pitches.According to the work of Yang and Zhang[19]on the cooling film development of staggered arrangement,the development of film layer of the effusion cooling scheme could be divided into three stages.Firstly,the film cooling effectiveness increases rapidly along streamwise direction in the front rows of multi-holes where the film layer is undergoing a developing stage.Then the laterally averaged adiabatic film cooling effectiveness increases tardily in the middle rows of multi-hole where the film layer is undergoing a transition stage.Finally,once the effusion film layer is developed,the laterally averaged adiabatic film cooling effectiveness should trend to be constant.Generally,the transition stage is accomplished in the 17th row.For the small pitches(such as S/d=P/d=3),this feature iswell demonstrated.While for the large pitches,film layer is undergoing the developing stage.The holes array arranged with small pitches is in favor of obtaining a developed film layer.

    According to the varying trend of the laterally-averaged adiabatic film cooling effectiveness along streamwise direction for the inline arrangement,it is deduced that the film layer developmentwill be very slower than that for the staggered arrangement.The reason has been discussed in the above.

    4 Conclusions

    (1)The varying gradientof the laterally-averaged adiabatic cooling effectiveness along the streamwise direction in the front zone of effusion cooling configuration is greater for the staggered mode than that of the inline mode.The laterally-averaged adiabatic cooling effectiveness for the staggered mode is higher than the corresponding value of inline mode at the same blowing ratio.(2)For the staggered multi-holes mode,the laterally-averaged adiabatic film cooling effectiveness originated from the first few rows is higher under the lower blowing ratio.While for the last few rows,the higher film cooling effectiveness is achieved under a bigger blowing ratio.The holes array arranged with small hole-to-hole pitches is in favor of obtaining developed film coverage layer rapidly.(3)Either for the staggered arrangement or the inline arrangement,the laterally-averaged adiabatic cooling effectiveness with inclined jet orientation angle of 35°is greater than the corresponding value of normal orientation angle at the same blowing ratio.The lower coolant jet penetration along the normal direction and higher spread along the streamwise direction with the inclined discharge is benefit to the film cooling effectiveness.

    [1] Leger B,Miron P,Emidio JM.Geometric and aerothermal influences onmultiholed plate temperature:application on combustor wall[J].International Journal of Heat and Mass Transfer,2003,46:1215-1222.

    [2] Jeromin A,Eichler C,Noll B,et al.Full 3D conjugate heat transfer simulation and heat transfer coefficient prediction for the effusion-cooled wall of a gas turbine combustor[R].ASME GT2008-50422,2008.

    [3] Andreini A,Bonini A,Caciolli G,et al.Numerical study of aerodynamic losses of effusion cooling holes in aero-engine combustor liners[J].ASME Journal of Engineering for Gas Turbines and Power,2011,133:021901-1-10.

    [4] Krewinkel R.A review of gas turbine effusion cooling studies[J].International Journal of Heat and Mass Transfer,2013,66:706-722.

    [5] Andrews G E,Khalifa IM,Asere A A,etal.Full coverage effusion film cooling with inclined holes[R].ASME Paper 95-GT-274,1995.

    [6] Gustafsson K M,Johansson TG.An experimental study of surface temperature distribution on effusion-cooled plates[J].ASME Journal of Engineering for Gas Turbines and Power,2001,123:308-316.

    [7] Harrington M K,McWaters M A,Bogard D G,et al.Full-coverage film cooling with short normal injection holes[J].Journal of Turbomachinery,2001,123:798-806.

    [8] Lin Yuzhen,Song Bo,Li Bin,et al.Investigation of film cooling effectiveness of full-coverage inclined multihole walls with different hole arrangements[R].ASME GT2003-38881,2003.

    [9] Scrittore JJ,Thole K A,Burd SW.Investigation of velocity profiles for effusion cooling of a combustor liner[J].ASME Journal of Turbomachinery,2007,129:518-526.

    [10] Li Bin,Ji Honghu,Jiang Yijun,et al.Experimental and numerical analysis of temperature distribution on floating-wall flame tube of combustor[J].Journal of Nanjing University of Aeronautics and Astronautics,2007,39(6):771-774.(in Chinese)

    [11] Zhang Jingzhou,Xie Hao,Yang Chengfeng.Numerical study on flow and heat transfer of impingement-effusion cooling[J].Chinese Journal of Aeronautics,2009,22(4):343-348.

    [12] Zhang Chi,Song Bo,Lin Yuzhen,etal.Cooling effectiveness of effusion walls with deflection hole angles measured by infrared imaging[J].Applied Thermal Engineering,2009,29:966-972.

    [13] Yang Chengfeng,Zhang Jingzhou,YangWeihua.Effect of the holes array arrangement on the full coverage film cooling characteristics[J].Journal of Aerospace Power,2010,25(7):1524-1529.(in Chinese)

    [14] Yang Weihua,Peng Jianyong,Cao Jun,et al.Experimental study on cooling effectiveness of compound cooling configurations in reverse flow combustor[J].Journal of Nanjing University of Aeronautics and Astronautics,2012,44(6):769-774.(in Chinese)

    [15] Xie Jie,Zhang Jingzhou.Numerical simulation on cooling characteristics of effusion wall with deflection film outflow[J].Journal of Nanjing University of Aeronautics and Astronautics,2013,45(2):157-161.(in Chinese)

    [16] Yang Qian,Lin Yuzhen,Zhang Chi,et al.Cooling effectiveness comparison between effusion cooling and impingement/effusion cooling[J].Journal of Aerospace Power,2014,28(2):268-275.(in Chinese)

    [17] Bohn D,Moritz N.Influence of hole shaping of staggered multi-hole configurations on cooling film development[R].AIAA Paper 2000-2579,2000.

    [18] Petre B,Dorignac E,Vullierme J J.Study of the influence of the number of holes rows on the convective heat transfer in the case of full coverage film cooling[J].International Journal of Heat and Mass Transfer,2003,46:3477-3496.

    [19] Yang Chengfeng,Zhang Jingzhou.Influence of multihole arrangement on cooling film development[J].Chinese Journal of Aeronautics,2012,25:182-188.

    [20] Carlomagno G M,Cardone G.Infrared thermography for convective heat transfermeasurements[J].Experiments in Fluids,2010,49:1187-1218.

    [21] Yang Chengfeng,Zhang Jingzhou.Experimental investigation on film cooling characteristics from a row of holes with ridge-shaped tabs[J].Experimental Thermal and Fluid Science,2012,37:113-120.

    [22] Yu Yezheng,Zhang Jingzhou,Xu Huasheng.Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs[J].International Journal of Heat and Mass Transfer,2014,72:222-233.

    [23] Moffat R J.Describing the uncertainties in experimental results[J].Experimental Thermal and Fluid Science,1988,1:3-17.

    [24] Schmidt D L,Sen B,Bogard D G.Film cooling with compound angle holes:adiabatic effectiveness[J].ASME Journal of Turbomachinery,1996,118:807-813.

    [25] Gritsch M,Schulz A,Wittig S.Adiabatic wall effectivenessmeasurements of film cooling holeswith expanded exits[J].ASME Journal of Turbomachinery,1998,120:549-556.

    猜你喜歡
    志民
    強(qiáng)化三種意識(shí),引領(lǐng)向量解題
    基于混合FE-SEA方法的加筋板寬頻隔聲預(yù)計(jì)
    毛竹C4H基因的鑒定及其表達(dá)模式分析
    外源水楊酸對(duì)鹽脅迫高羊茅生長(zhǎng)和生理的影響
    “紡織之光”賦能行業(yè)科技十余載——訪紡織之光科技教育基金會(huì)理事長(zhǎng)葉志民
    民警安志民的“第二職業(yè)”是什么?
    Sharma-Tasso-Olver方程的新精確解研究
    寶貝兒回家
    生死兄弟情
    表面改性鋅鎂鋁三元類水滑石的摩擦性能及抗磨機(jī)理
    久久狼人影院| 亚洲av.av天堂| 一本一本综合久久| 久久精品国产鲁丝片午夜精品| 国产精品99久久久久久久久| 在线观看av片永久免费下载| 啦啦啦在线观看免费高清www| 一二三四中文在线观看免费高清| 中文字幕亚洲精品专区| 国产精品99久久久久久久久| 国产极品天堂在线| av又黄又爽大尺度在线免费看| 久久国产亚洲av麻豆专区| a级毛色黄片| 又黄又爽又刺激的免费视频.| 精品酒店卫生间| 亚洲精品亚洲一区二区| 国产视频首页在线观看| 综合色丁香网| 热re99久久精品国产66热6| 成年女人在线观看亚洲视频| 中文天堂在线官网| 欧美另类一区| 建设人人有责人人尽责人人享有的| 秋霞伦理黄片| 国产精品国产三级专区第一集| 国产男女内射视频| 亚洲人与动物交配视频| av专区在线播放| 男女免费视频国产| 亚洲精品乱久久久久久| 中文乱码字字幕精品一区二区三区| 日本91视频免费播放| 国产白丝娇喘喷水9色精品| 免费观看a级毛片全部| 免费大片18禁| 中文字幕亚洲精品专区| 成人亚洲精品一区在线观看| 日韩中字成人| videossex国产| 亚洲人成网站在线播| 一个人看视频在线观看www免费| 欧美亚洲 丝袜 人妻 在线| 国国产精品蜜臀av免费| 曰老女人黄片| 男人添女人高潮全过程视频| 日韩av不卡免费在线播放| 免费久久久久久久精品成人欧美视频 | 晚上一个人看的免费电影| 亚洲无线观看免费| 观看av在线不卡| 欧美日韩视频高清一区二区三区二| 少妇人妻精品综合一区二区| 99re6热这里在线精品视频| 国产精品福利在线免费观看| 少妇猛男粗大的猛烈进出视频| 纯流量卡能插随身wifi吗| 看免费成人av毛片| 久久精品国产自在天天线| 亚洲精品久久午夜乱码| 亚洲av在线观看美女高潮| 日韩熟女老妇一区二区性免费视频| 看非洲黑人一级黄片| 91在线精品国自产拍蜜月| 嘟嘟电影网在线观看| 久久精品国产亚洲av涩爱| 国产精品成人在线| 久久6这里有精品| 欧美日韩亚洲高清精品| 久久久久久久久久人人人人人人| 色吧在线观看| 国产精品一区www在线观看| 久久久精品免费免费高清| 天堂中文最新版在线下载| 五月玫瑰六月丁香| 久久人人爽人人片av| 亚洲欧美成人精品一区二区| 精华霜和精华液先用哪个| 最近中文字幕高清免费大全6| 亚洲精品中文字幕在线视频 | 亚洲内射少妇av| 国产美女午夜福利| 国产精品国产av在线观看| 亚洲av中文av极速乱| 亚洲精品国产色婷婷电影| 午夜激情福利司机影院| 久久亚洲国产成人精品v| 国产精品成人在线| 丰满少妇做爰视频| 日韩一区二区视频免费看| 精品人妻偷拍中文字幕| 成人18禁高潮啪啪吃奶动态图 | 精品人妻一区二区三区麻豆| 亚洲欧美一区二区三区黑人 | 色5月婷婷丁香| 欧美精品一区二区免费开放| 久久99热这里只频精品6学生| 美女视频免费永久观看网站| 人人妻人人澡人人爽人人夜夜| 国产一区二区在线观看av| 国产在视频线精品| 久热这里只有精品99| 亚洲激情五月婷婷啪啪| 欧美性感艳星| 亚洲精品一区蜜桃| av网站免费在线观看视频| 国产亚洲最大av| 国产精品一二三区在线看| 在线精品无人区一区二区三| 色吧在线观看| 国产精品一区www在线观看| 97超碰精品成人国产| 亚洲精品日韩在线中文字幕| 午夜激情久久久久久久| 一级毛片久久久久久久久女| 久久久久久久久久久丰满| 午夜免费男女啪啪视频观看| 久久国产精品大桥未久av | 麻豆成人午夜福利视频| 久久精品国产a三级三级三级| 国产毛片在线视频| 纵有疾风起免费观看全集完整版| 久久久午夜欧美精品| 蜜臀久久99精品久久宅男| 噜噜噜噜噜久久久久久91| 久久国内精品自在自线图片| 久久精品久久久久久久性| 亚洲人成网站在线播| 国产69精品久久久久777片| 赤兔流量卡办理| 大香蕉久久网| 这个男人来自地球电影免费观看 | 在线播放无遮挡| 岛国毛片在线播放| 我的老师免费观看完整版| 3wmmmm亚洲av在线观看| 国产男女内射视频| 精品少妇内射三级| 777米奇影视久久| 一级片'在线观看视频| 热re99久久国产66热| 建设人人有责人人尽责人人享有的| 精品一区二区三卡| 边亲边吃奶的免费视频| 丰满迷人的少妇在线观看| 中文字幕制服av| 欧美日韩一区二区视频在线观看视频在线| 久久ye,这里只有精品| 久热久热在线精品观看| 高清黄色对白视频在线免费看 | 女性生殖器流出的白浆| 97在线视频观看| 国产精品伦人一区二区| 欧美最新免费一区二区三区| 国产男女内射视频| 熟妇人妻不卡中文字幕| 制服丝袜香蕉在线| 久久99热这里只频精品6学生| 涩涩av久久男人的天堂| 黄片无遮挡物在线观看| 国产精品久久久久成人av| 少妇的逼水好多| 成人黄色视频免费在线看| 18禁在线无遮挡免费观看视频| 国产色婷婷99| 欧美日韩精品成人综合77777| 成人无遮挡网站| 青春草视频在线免费观看| 亚洲欧美精品专区久久| 中文乱码字字幕精品一区二区三区| 亚洲无线观看免费| 少妇人妻久久综合中文| 国产精品一二三区在线看| 人人妻人人澡人人爽人人夜夜| 一边亲一边摸免费视频| 九九爱精品视频在线观看| 寂寞人妻少妇视频99o| 久久久久人妻精品一区果冻| 又爽又黄a免费视频| 日韩人妻高清精品专区| 亚洲综合精品二区| 精品少妇黑人巨大在线播放| 最近最新中文字幕免费大全7| 97精品久久久久久久久久精品| 少妇高潮的动态图| 欧美精品国产亚洲| 中文字幕制服av| 大话2 男鬼变身卡| 校园人妻丝袜中文字幕| 久久久精品免费免费高清| 99热国产这里只有精品6| 大香蕉97超碰在线| 看免费成人av毛片| 成人影院久久| 国产日韩欧美在线精品| 亚洲美女视频黄频| 免费看av在线观看网站| 中文天堂在线官网| 一本久久精品| 国产欧美亚洲国产| 我要看日韩黄色一级片| 精品久久久噜噜| 国产黄频视频在线观看| 我要看黄色一级片免费的| 色5月婷婷丁香| 亚洲一级一片aⅴ在线观看| 麻豆乱淫一区二区| 大话2 男鬼变身卡| 午夜91福利影院| 另类亚洲欧美激情| 在线观看三级黄色| 99热这里只有精品一区| 2022亚洲国产成人精品| 久久午夜福利片| 人人妻人人看人人澡| 亚洲国产精品专区欧美| 国产一级毛片在线| 天天操日日干夜夜撸| 国产高清有码在线观看视频| 另类亚洲欧美激情| 国产欧美另类精品又又久久亚洲欧美| 高清毛片免费看| 22中文网久久字幕| 国语对白做爰xxxⅹ性视频网站| 国产又色又爽无遮挡免| 一级毛片 在线播放| 久久精品国产亚洲网站| 国产免费一级a男人的天堂| 国产高清有码在线观看视频| 午夜视频国产福利| 国产一区亚洲一区在线观看| 晚上一个人看的免费电影| 亚洲av欧美aⅴ国产| 国产成人a∨麻豆精品| 国产午夜精品一二区理论片| 99久久精品热视频| 极品教师在线视频| 免费人妻精品一区二区三区视频| 久久久久精品性色| 三级经典国产精品| 视频中文字幕在线观看| 欧美变态另类bdsm刘玥| 色吧在线观看| 亚洲图色成人| 日韩中字成人| 国产无遮挡羞羞视频在线观看| 在线看a的网站| 91精品国产国语对白视频| 两个人免费观看高清视频 | 国产淫语在线视频| 亚洲av成人精品一二三区| 建设人人有责人人尽责人人享有的| 日本-黄色视频高清免费观看| 91在线精品国自产拍蜜月| a级一级毛片免费在线观看| 国产精品秋霞免费鲁丝片| 一级黄片播放器| 欧美日韩一区二区视频在线观看视频在线| 六月丁香七月| 国产在线免费精品| 欧美日韩视频高清一区二区三区二| 男人添女人高潮全过程视频| 亚洲精品乱久久久久久| 又爽又黄a免费视频| 亚洲熟女精品中文字幕| 韩国高清视频一区二区三区| 日韩av在线免费看完整版不卡| 91精品伊人久久大香线蕉| 中文资源天堂在线| 一级片'在线观看视频| 亚洲不卡免费看| 国产极品天堂在线| 久久久久精品性色| 国产精品久久久久久久电影| 毛片一级片免费看久久久久| 大香蕉久久网| 国精品久久久久久国模美| 少妇的逼水好多| 爱豆传媒免费全集在线观看| 乱码一卡2卡4卡精品| 欧美日韩精品成人综合77777| 韩国av在线不卡| 男女免费视频国产| 99九九在线精品视频 | 午夜老司机福利剧场| 精品少妇黑人巨大在线播放| 国产精品一区二区在线不卡| 人人妻人人看人人澡| 国产男人的电影天堂91| 在线观看一区二区三区激情| 99热网站在线观看| 久久精品国产亚洲av天美| 欧美日韩视频精品一区| 国产精品一二三区在线看| 成人毛片a级毛片在线播放| 99九九在线精品视频 | 男人和女人高潮做爰伦理| 日韩熟女老妇一区二区性免费视频| 18禁在线播放成人免费| 一级毛片aaaaaa免费看小| 亚洲av福利一区| 亚洲图色成人| 国产极品粉嫩免费观看在线 | 三上悠亚av全集在线观看 | 老熟女久久久| 国产精品秋霞免费鲁丝片| 国产一级毛片在线| av免费观看日本| 日韩一区二区三区影片| freevideosex欧美| 免费在线观看成人毛片| 亚洲精品亚洲一区二区| 亚洲精品成人av观看孕妇| 纵有疾风起免费观看全集完整版| 成年人午夜在线观看视频| 国产熟女欧美一区二区| 国产免费视频播放在线视频| 日韩熟女老妇一区二区性免费视频| 在线观看美女被高潮喷水网站| 成人午夜精彩视频在线观看| 国产亚洲欧美精品永久| 男人添女人高潮全过程视频| 九色成人免费人妻av| 国产亚洲av片在线观看秒播厂| 少妇丰满av| 久久99热6这里只有精品| 亚洲激情五月婷婷啪啪| 亚洲精品成人av观看孕妇| 美女大奶头黄色视频| 2021少妇久久久久久久久久久| 色网站视频免费| 男男h啪啪无遮挡| 日本黄色日本黄色录像| 国精品久久久久久国模美| 内射极品少妇av片p| 亚洲av电影在线观看一区二区三区| 成年女人在线观看亚洲视频| 97在线视频观看| 一级毛片aaaaaa免费看小| 亚洲国产欧美在线一区| 中文字幕久久专区| 国产亚洲午夜精品一区二区久久| 80岁老熟妇乱子伦牲交| 成人影院久久| 高清视频免费观看一区二区| 日韩成人av中文字幕在线观看| 免费看不卡的av| 国产精品欧美亚洲77777| 精品久久久噜噜| 爱豆传媒免费全集在线观看| 国产免费又黄又爽又色| 中文精品一卡2卡3卡4更新| 欧美精品高潮呻吟av久久| 99热网站在线观看| 少妇精品久久久久久久| 亚洲自偷自拍三级| 美女中出高潮动态图| 亚洲精品色激情综合| 丁香六月天网| 五月玫瑰六月丁香| 国产欧美日韩精品一区二区| a级毛片免费高清观看在线播放| 人妻 亚洲 视频| √禁漫天堂资源中文www| 精品一区二区三卡| 欧美少妇被猛烈插入视频| 久久婷婷青草| 伦理电影免费视频| 麻豆成人av视频| 免费大片18禁| 九草在线视频观看| 王馨瑶露胸无遮挡在线观看| 熟女电影av网| 一本一本综合久久| 在线观看av片永久免费下载| a级毛色黄片| 国产精品福利在线免费观看| 欧美日韩亚洲高清精品| 草草在线视频免费看| 内地一区二区视频在线| 色吧在线观看| 国产淫语在线视频| av天堂久久9| 91精品一卡2卡3卡4卡| 亚洲av电影在线观看一区二区三区| 国产精品不卡视频一区二区| 久久99热这里只频精品6学生| 久久鲁丝午夜福利片| 中文字幕av电影在线播放| 伦理电影大哥的女人| 六月丁香七月| 久久人妻熟女aⅴ| 五月天丁香电影| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站| 免费人妻精品一区二区三区视频| 国产精品久久久久久精品古装| 免费观看a级毛片全部| 女的被弄到高潮叫床怎么办| 亚洲美女视频黄频| 国产精品麻豆人妻色哟哟久久| 亚洲精品色激情综合| 久久狼人影院| 噜噜噜噜噜久久久久久91| 久久av网站| 最近中文字幕高清免费大全6| 大香蕉久久网| 婷婷色综合www| 高清黄色对白视频在线免费看 | 国产一区二区在线观看日韩| av黄色大香蕉| 国产亚洲91精品色在线| 少妇被粗大的猛进出69影院 | 国产精品偷伦视频观看了| 婷婷色av中文字幕| 国产一区二区在线观看av| 日本91视频免费播放| 国产亚洲91精品色在线| 日韩在线高清观看一区二区三区| 日本爱情动作片www.在线观看| 大香蕉久久网| 高清欧美精品videossex| 亚洲精品aⅴ在线观看| 国产中年淑女户外野战色| 亚洲欧美精品专区久久| 午夜精品国产一区二区电影| 少妇人妻久久综合中文| 国产淫语在线视频| 免费大片18禁| 夫妻性生交免费视频一级片| 在线 av 中文字幕| 久久久午夜欧美精品| 亚洲精品456在线播放app| 人人妻人人澡人人看| 久久久a久久爽久久v久久| 一边亲一边摸免费视频| 麻豆成人av视频| 久久 成人 亚洲| 精品国产露脸久久av麻豆| 国产片特级美女逼逼视频| 日韩一本色道免费dvd| a级毛色黄片| 看非洲黑人一级黄片| 中文字幕人妻熟人妻熟丝袜美| 亚洲自偷自拍三级| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品久久久久久| 久久久久精品性色| 如日韩欧美国产精品一区二区三区 | 国产精品久久久久成人av| 国产永久视频网站| 超碰97精品在线观看| 亚洲av成人精品一二三区| 少妇人妻一区二区三区视频| 国产精品蜜桃在线观看| 亚洲一级一片aⅴ在线观看| 午夜免费观看性视频| 99九九线精品视频在线观看视频| 女性生殖器流出的白浆| 老司机影院成人| 国产极品天堂在线| 亚洲美女搞黄在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人免费无遮挡视频| 国产精品久久久久久久电影| 亚洲精品第二区| 美女主播在线视频| 精品亚洲成a人片在线观看| 2018国产大陆天天弄谢| a级一级毛片免费在线观看| 天美传媒精品一区二区| 久久久久久久久久人人人人人人| 熟女人妻精品中文字幕| 成人黄色视频免费在线看| av黄色大香蕉| a级毛片免费高清观看在线播放| 国产在线视频一区二区| 一本大道久久a久久精品| 一级,二级,三级黄色视频| 欧美成人精品欧美一级黄| av免费在线看不卡| 久久久精品免费免费高清| 免费观看性生交大片5| 国产有黄有色有爽视频| 狂野欧美激情性bbbbbb| 欧美bdsm另类| 精品一区二区三卡| 黄色怎么调成土黄色| 91久久精品国产一区二区成人| 在线天堂最新版资源| 97精品久久久久久久久久精品| 日韩中字成人| 亚洲三级黄色毛片| 校园人妻丝袜中文字幕| 亚洲第一区二区三区不卡| 韩国av在线不卡| 搡女人真爽免费视频火全软件| 国产一区有黄有色的免费视频| av一本久久久久| 伦理电影大哥的女人| 中文乱码字字幕精品一区二区三区| 亚洲欧美精品专区久久| 免费黄频网站在线观看国产| 成人18禁高潮啪啪吃奶动态图 | 久久免费观看电影| 久久久久久人妻| 五月玫瑰六月丁香| 99国产精品免费福利视频| 一级毛片我不卡| 久久热精品热| 亚洲美女搞黄在线观看| 欧美另类一区| 亚洲成色77777| 欧美精品亚洲一区二区| 美女主播在线视频| 男女无遮挡免费网站观看| 国产黄片视频在线免费观看| av.在线天堂| 99热这里只有是精品在线观看| 亚洲国产精品专区欧美| 日韩在线高清观看一区二区三区| 国模一区二区三区四区视频| 2022亚洲国产成人精品| 极品少妇高潮喷水抽搐| 狂野欧美激情性xxxx在线观看| 久久久久久久久久久免费av| 最近2019中文字幕mv第一页| 免费播放大片免费观看视频在线观看| 久久婷婷青草| 久久韩国三级中文字幕| 亚洲激情五月婷婷啪啪| 精品亚洲乱码少妇综合久久| 搡老乐熟女国产| 国产高清不卡午夜福利| 下体分泌物呈黄色| 2022亚洲国产成人精品| 超碰97精品在线观看| 欧美精品一区二区免费开放| 国产日韩欧美视频二区| 亚洲精品视频女| 欧美xxxx性猛交bbbb| 亚洲精品乱码久久久久久按摩| 国产片特级美女逼逼视频| 国内少妇人妻偷人精品xxx网站| 亚洲欧美一区二区三区国产| 少妇人妻 视频| 日韩精品免费视频一区二区三区 | 久久99精品国语久久久| tube8黄色片| 人人妻人人添人人爽欧美一区卜| 欧美日韩一区二区视频在线观看视频在线| 欧美丝袜亚洲另类| 在线观看三级黄色| 岛国毛片在线播放| 亚洲人与动物交配视频| 少妇人妻久久综合中文| 国产伦理片在线播放av一区| 国产亚洲精品久久久com| 国产 一区精品| 免费少妇av软件| 亚洲欧美日韩卡通动漫| 精品人妻偷拍中文字幕| 国产乱人偷精品视频| 亚洲精品国产成人久久av| 免费av不卡在线播放| a级毛色黄片| 七月丁香在线播放| 一个人看视频在线观看www免费| 成年人午夜在线观看视频| 26uuu在线亚洲综合色| 国产在线男女| 亚洲va在线va天堂va国产| 亚洲精品亚洲一区二区| 啦啦啦啦在线视频资源| 大片电影免费在线观看免费| www.av在线官网国产| 最近的中文字幕免费完整| 国产成人免费观看mmmm| 国产成人一区二区在线| 18禁在线无遮挡免费观看视频| av在线观看视频网站免费| 在线观看人妻少妇| 人人妻人人添人人爽欧美一区卜| 亚洲精品aⅴ在线观看| 亚洲图色成人| 亚洲情色 制服丝袜| 插逼视频在线观看| 香蕉精品网在线| 精品久久国产蜜桃| av天堂中文字幕网| 亚洲av综合色区一区| 午夜久久久在线观看| 夫妻性生交免费视频一级片| 热re99久久精品国产66热6| 一级片'在线观看视频| 黄色日韩在线| 热re99久久精品国产66热6| 一边亲一边摸免费视频| 国产男女超爽视频在线观看| 另类精品久久| 精品久久久久久久久av| 黄色日韩在线| 亚洲av综合色区一区| 色哟哟·www| 全区人妻精品视频| 国产精品久久久久久久久免| 又粗又硬又长又爽又黄的视频| 亚洲av二区三区四区| 啦啦啦啦在线视频资源| 午夜久久久在线观看| 国产熟女欧美一区二区| 中文字幕亚洲精品专区| 在线观看国产h片| 永久免费av网站大全|