• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-PSRR High-Order Curvature-Compensated CMOS Bandgap Voltage Reference

    2015-07-24 17:34:23YunsongLiJinzhaoLinYuPangandWeiLuo
    關(guān)鍵詞:國際形勢社保費常務(wù)會議

    ,Yunsong Li,Jinzhao Lin,,Yu Pangand Wei Luo

    (1.Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;2.College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;3.School of Electronic Information and Automation,Sichuan University of Science and Engineering,Zigong Sichuan 643000,China)

    High-PSRR High-Order Curvature-Compensated CMOS Bandgap Voltage Reference

    Qianneng Zhou1?,Yunsong Li1,Jinzhao Lin1,Hongjuan Li2,Yu Pang1and Wei Luo3

    (1.Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;2.College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;3.School of Electronic Information and Automation,Sichuan University of Science and Engineering,Zigong Sichuan 643000,China)

    A high-PSRR high-order curvature-compensated CMOS bandgap voltage reference(BGR),which has the performances of high power supply rejection ratio(PSRR)and low temperature coefficient,is designed in SMIC 0.18 μm CMOS process.Compared to the conventional curvature-compensated BGR which adopted a piecewise-linear current,the temperature characterize of the proposed BGR is effectively improved by adopting two kinds of current including a piecewise-linear current and a current proportional 1.5 party to the absolute temperatureT.By adopting a low dropout(LDO)regulator whose output voltage is the operating supply voltage of the proposed BGR core circuit instead of power supply voltageVDD,the proposed BGR with LDO regulator achieves a well PSRR performance than the BGR without LDO regulator.Simulation results show that the proposed BGR with LDO regulator achieves a temperature coefficient of 2.1×10-6/℃with a 1.8 V power supply voltage and a line regulation of 4.9 μV/V at 27℃.The proposed BGR with LDO regulator at 10 Hz,100 Hz,1 kHz,10 kHz and 100 kHz have the PSRR of-106.388,-106.388,-106.38,-105.93 and -88.67 dB respectively.

    bandgap voltage reference;low dropout regulator;temperature coefficient;power supply rejection ratio

    1 Introduction

    Voltage reference is a fundamental building block in many analogue and mixed signal electronic systems[1-3],such as data converter,phase lock loop,power management,and so on.The demand for voltage reference should be independent of temperature,power supply and process.In fact,bandgap voltage reference(BGR)is one of the most popular voltage references in analogue and mixed-signal integrated circuits. Conventional BGR,which is inspired by Widlar[4]and Brokaw[5],is first-order temperature compensation.The basic idea of BGR is a weighted sum of the base-emitter voltageVBEof NPN bipolar transistor and the thermal voltageVT.Due to the nonlinearity ofVBE,first-order BGR has relatively high temperature coefficient(TC)in the whole temperature range,and it is not suited for the requirements of high precision circuits.However,the demand for high-accuracy low-TC BGR is increasing in many industries such as medical electronics,consumer electronics,portable instruments,and so on.

    To achieve high-accuracy low-TC BGR,many temperature compensation techniques have been developed[6-15],such as temperature-dependent resistor ratio technique,resistor-less technique,exponential curvature compensation technique,piecewise compensation technique,and so on.These reported techniques focuse on cancelling the nonlinear dependence of base-emitter voltage to some degree,but their outputs have a relative low power supply rejection ratio(PSRR)in the low frequency.Regarding modern SoC design,there is a growing trend of designing BGR with a high PSRR performance even at high frequency range to reject noise from high speed digital circuits.In the recent past,many approaches have been developed to improve the PSRR of BGR[16-27].Those reported BGRs with improvement PSRR technique have achieved well PSRR performance,but they have a relatively high TC.So,the high PSRR and low-TC BGR should be still analyzed and designed for the requirements of high precision circuits.

    This paper proposes a high-PSRR high-order curvature-compensated CMOS BGR by employing a LDO regulator,a piecewise-linear current and a current proportional 1.5 party to the absolute temperatureT.By adopting two kinds of current which are a piecewise-linear current and a current proportional 1.5 party to the absolute temperatureT,the proposed BGR achieves a well temperature performance than the conventional curvaturecompensated BGR which adopted only a piecewiselinear current.The proposed BGR achieves a well PSRR performance in a wide frequency range by adopting the technique of LDO regulator than the designed BGR without LDO regulator.And then the proposed high-PSRR high-order curvature-compensated BGR is discussed.

    2 Design and Analysis of Proposed BGR

    Fig.1 shows the proposed high-order curvaturecompensated BGR without LDO regulator in this paper. Compared to the conventional curvature-compensated BGR by adopting a piecewise-linear current,the proposed high-order curvature-compensated BGR without LDO regulator achieve a lower TC bandgap voltageVREFby adopting a piecewise-linear current and a current proportional 1.5 party to the absolute temperatureT.The operating supply voltage of the BGR shown in Fig.1 is the power supply voltageVDD,so the BGR shown in Fig.1 has a relative low PSRR in the low frequency.

    Fig.1 Improved high-order curvature-compensated BGR without LDO regulator

    To improve the PSRR performance of the proposed BGR in this paper,an improved high-PSRR high-order curvature-compensated BGR with LDO regulator is designed by adopting the technique of LDO regulator on the basis of the BGR circuit shown in Fig.1 and is shown in Fig.2.The proposed BGR with LDO regulator shown in Fig.2 consists of a bias circuit,a LDO regulator and a BGR core circuit.The function of the bias circuit will provide a reference voltage,which is independent of power supply voltage and is also the input voltage of LDO regulator.The BGR core circuit shown in Fig.2(c)is entirely the same as the BGR shown in Fig.1,but the operating supply voltage of the BGR core circuit shown in Fig.2(c)is the output voltageVREGof LDO regulator instead of power supply voltageVDD.Therefore,the proposed BGR with LDO regulator shown in Fig.2 will achieve a well PSRR performance than the BGR without LDO regulator shown in Fig.1.At the same time,the temperature performance of the BGR without LDO regulator shown in Fig.1 is similar to that of the BGR core circuit shown in Fig.2(c).Therefore,to simplify the analysis of the proposed BGR,this paper will analysis and discuss performances of the proposed BGR with LDO regulator.

    2.1 Design and Analysis of Proposed BGR Core Circuit

    As shown in Fig.2(c),the BGR core circuit consists of transistorsM1-M19,transistorsMS1-MS6,resistorsR1-R5,PNP bipolar transistorsQ1-Q2and amplifiersA1-A2.Compared to the conventional piecewise curvature-compensated BGR,a current proportional 1.5 party to the absolute temperatureTis adopted in the proposed BGR core circuit,which is produced by transistorsM10-M17.In this paper,all MOS transistors adopt the long channel device so that the channel-length modulation effect is negligibly small.There are two possible equilibrium points in the BGR core circuit,so a start-up circuit is necessary.TransistorsMS1-MS6form the start-up circuits. AmplifiersA1andA2are entirely the same,and their dc gainAdhas thatAd?1.Bipolar transistorQ2has an emitter area which is m times that ofQ1.TransistorsM1andM2are entirely the same.AmplifierA1forces the voltages of nodeAand nodeBbe equal,i.e.VA=VB=VEB1.Here,VAandVBare the voltage of nodeAand nodeBrespectively,VEB1is the emitter-base voltage of bipolar transistorQ1.So,the drain currentI2of transistorM2can be expressed as

    Fig.2 Improved high-order curvature-compensated BGR with LDO regulator

    wherekis the Boltzmann’s constant;qis the electronic charge andTis the absolute temperature.Eq.(1)indicates thatI2is a current proportional to the absolute temperatureT.The width-length ratio of transistor M10isK1times that of transistor M2,so the drain currentI10of transistor M10has thatI10=K1I2.Transistor M11operates in the saturation region and transistorM12operates in deep triode region.It is assumed that(W/L)11and(W/L)12are the width-length ratio of transistorsM11andM12respectively.Therefore,the drain-source resistancerds12of transistorM12can be expressed as

    whereμnis electron mobility andCoxis unit area gateoxide capacitance.TransistorsM15andM16are entirely the same and they operate in the saturation region. TransistorsM13andM14operate in sub-threshold region and the channel width-length ratio ofM13isαtimes that ofM14.So the drain currents of transistorsM12-M16have thatI12=I13=I14=I15=I16.In fact,the drain currentIDof MOS operating in the sub-threshold region can be modeled as[28]

    wherenis the sub-threshold slope factor;ID0is a process-dependent parameter;W/Lis the channel width-length andVGSis the gate-source voltage of MOS transistor.According to Eqs.(1)-(3),the drain currentI15of transistorM15can be derived as

    Eqs.(4)and(5)indicate thatI15is a current proportional 1.5 party to the absolute temperatureT.TransistorsM15andM17form the current-mirror pairs,and the channel width-length ratio of transistorM17isK2times that of transistorM15.The drain currentI17of transistorM17has thatI17=K2I15,so it is concluded thatI17is also a current proportional 1.5 party to the absolute temperatureT.AmplifierA2forces the voltages of nodeBand nodeCbe equal,i.e.VB=VC=VEB1.Here,VCis the voltage of nodeC.So,the drain currentI3of transistorM3can be expressed as

    In Eq.(6),VEB1is a voltage with negative temperature coefficient,soI3is a current with negative temperature coefficient.TransistorsM2andM4are entirely the same.TransistorsM5andM6form currentmirror pairs,and the channel width-length ratio of transistorM6isK3times that of transistorM5.So,the drain currentI6of transistorM6has thatI6=K3I2.The channel width-length ratio of transistorM7isK4times that of transistorM3,so the drain current of transistorM7has thatI7=K4I3.

    As shown in Fig.2(c),it can be obtained thatI6=I7+I8=I7whenTless than the reference temperatureTr1by optimizing the parameters ofK3andK4,hereI8is the drain current of transistorM8.TransistorsM8andM9form currentmirror pairs,and the channel width-length ratio of transistorM9isK5times that of transistorM8.So,the drain currentI9of transistorM9can be expressed as

    Eq.(7)indicates thatI9is a current with piecewise-linear temperature coefficient.The aspect ratio of transistorM18isK6times that of transistorM3,so the drain currentI18has thatI18=K6I3.The aspect ratio of transistorM19isK7times that of transistorM2,so the drain currentI19of transistorM19has thatI19=K7I2.According to the above analysis,the output voltageVREFof the improved BGR shown in Fig.2 can be expressed as

    whereVPTATandVCTATare a voltage with positive-and negative-temperature coefficient respectively;VNLis a voltage with piecewise-linear temperature characteristic andVPTAT1.5is a voltage proportional 1.5 party to the absolute temperatureT.Therefore,it is concluded that the weighted sum ofVPTATandVCTATcan form the conventional first-order bandgap voltage,as shown in Fig.3(a).By adding voltagesVNLandVPTAT1.5into the output of BGR,the characteristics of the proposed BGR output voltageVREFcan be changed to Fig.3(b),and whose temperature drift will decrease.So,for the proposed BGR circuit shown in Fig.2,the temperature coefficient ofVREFwill become negligibly small by choosing appropriate values ofR1-R5,K0-K5,mand the width-length ratio of transistorsM11-M12in theory.

    2.2 Analysis of Bias Circuit and LDO Regulator

    As shown in Fig.2(a),the bias circuit will provide reference voltages of LDO regulator,and which is made up of transistorsMSS1-MSS4,MD1-MD5,resistorRD1-RD2and bipolar transistorQ0.The bias circuit has two possible equilibrium points,so a start-up circuit is required.The start-up circuit is made up of transistorsMSS1-MSS4.TransistorsMD1andMD2are entirely the same,and the width-length ratio of transistorMD4isMtimes that of transistorMD3.TransistorsMD2andMD5form current mirror pairs,so the drain voltageVBIASof transistorMD5can be expressed as

    Fig.3 Relation curve of voltages VREF,VPTAT,VNLand VPTAT1.5.

    where(W/L)D2,(W/L)D3and(W/L)D5are the widthlength ratio of transistorsMD2,MD3andMD5respectively andRBIASis the equivalent resistance seen from the drain of transistorMD5to ground.Eq.(8)indicates thatVBIASis independent of the power supply voltageVDD.

    As shown in Fig.2(b),the LDO regulator consists of an error amplifier,a PMOS power transistorMD15and a feedback network.The feedback network consists of resistorsRFB1-RFB2and capacitorCD4.The error amplifier consists of transistorsMD6-MD14,resistorRD1and capacitorCD1,and which compare the reference voltageVBIASwith the feedback voltageVFBand provides an error voltage signalvgate.The error voltage signalvgatewill regulate the over-drive voltage of power transistorMD15and force the output voltageVREGof LDO regulator keep the correct voltage.So,the output voltageVREGof LDO regulator can be expressed as

    According to Eqs.(8)and(9),it is concluded that the voltageVREGis also independent of the power supply voltageVDD.In fact,the LDO regulator can also be viewed as a feedback system consisting of a threestage amplifier driving a capacitive load,which is multiple-pole system.So,the open-loop stable of LDO regulator should be analyzed.To analyze the open-loop stable of LDO regulator,the equivalent topologic architecture of LDO regulator is shown in Fig.4.

    Fig.4 Topologic architecture of LDO regulator

    The conventional three-stage amplifier is made up of gain stagesAv1,Av2and power transistorMD15,which provides high dc gain.Gain stageAcand capacitorCD1form the damping-factor-control compensation stage. Gain stageAv1consists of transistorsMD6-MD10,and gain stageAv2consists of transistorsMD13-MD14.Gain stageAcconsists of transistorsMD11-MD12.gmd9,gmd11andgmd13are the equivalent input transconductance of gain stagesAv1,AcandAv2respectively.gmd15is the equivalent transconductance of power transistorMD15.ro1,ro2androfare the equivalent output resistance of gain stagesAv1,Av2,andAcrespectively.Co1andCo2are the equivalent parasitic capacitance at the output ofAv1andAv2respectively.CD1andCD2are compensation capacitor.RLis the equivalent load resistance,andCeq-out=CD3+CL.Here,CLis the equivalent load capacitance.In order to analyze the stability of the LDO regulator,the following assumptions are made:(1)gmd(9,13)ro(1,2),gmd(9,11)rofandgmd15RL?1;(2)CD(1,2)andCeq-out?Co1;(3)Ceq-out?CD(1,2),Ceq-out?Co2andRFB(1,2)?RL.These assumptions simplify the transfer function without losing accuracy with the goal of providing a clearer insight into the designed structure.Based on the above assumptions,the loop small-signal transfer function of the LDO regulator can be expressed as

    whereCD2-eq=CD2+Co2.To cancel the effect of nondominant poles in the designed LDO regulator,the zerozfshould be placed lower frequency than the polesp1andpf,so the feedback resistorRFB2should be much smaller than feedback resistorRFB1.The effect of the polep1can be cancelled by the zerozfby optimizing transconductancegmd11,resistorRFB1and compensation capacitorsCD(1,4).At the same time,CD1andCD4are the compensation capacitor,it is practical to take the assumption ofz1<pfby optimizing compensation capacitorsCD(1,4)and resistorsRFB(1,2).TransistorMD15is the power transistor and has a large channel widthlength ratio,so the zeroz2can be pushed to higher frequency than gain-bandwidth product(GBW). Therefore,Eq.(10)can be approximated to

    Eq.(11)shows that the loop transfer function of the designed LDO regulator is approximated to two poles system,so the phase margin(PM)can be approximately expressed by

    whereGBW=Adc×p-3dB.To ensure the stability of the designed LDO regulator,it should have a phase margin of at least 45°,with 60°preferable in most situations. Therefore,the polep2should be located at higher frequency than GBW,and the following expression can be given as

    Fig.5 shows the simulated loop-frequency response of the designed LDO regulator.Simulation results show that the loop of LDO regulator achieves a phase margin of 58°,GBW of 12.16 MHz and dc gain of about 97.7 dB,which is sufficient to ensure the loop stability of LDO regulator.

    Fig.5 Simulation open-loop frequency response of LDO regulator

    2.3 Analysis of PSRR

    As shown in Fig.2,the function of LDO regulator provides a stable output voltageVREGwhich is the operating supply voltage of the improved BGR core circuit instead of power supply voltageVDD.Compared to the proposed BGR without LDO regulator shown in Fig.1,the high-PSRR high-order curvature-compensated BGR shown in Fig.2 will achieve a well PSRR performance by adopting the LDO regulator,whose PSRR will be quantitatively analyzed as follows.

    It is assumed that power supply voltageVDDhas an incremental voltage variationvddand there is an incremental voltage variationvregat the output of LDO regulator.For convenience,it is assumed thatgmj,rojandijare the transconductance,channel resistance and the small-signal drain current of transistorMjrespectively,herej=1,2,…,19 andD1,D2,…,D15.Then,

    TransistorsMD5andMD2form current-mirror pairs,and the channel width-length ratio of transistorMD5is theGtimes that of transistorMD2.Therefore,the incremental voltage variationvbiasat the gate of transistorMD8can be derived as

    whereRbiasis the equivalent resistance seen from the drain of transistorMD5to ground.

    At the same time,the output of LDO regulator has a variation voltagevreg,so the feedback voltage variationvfbcan be derived as

    9月18日,國務(wù)院總理李克強主持召開國務(wù)院常務(wù)會議。會議強調(diào),在當前國際形勢錯綜復(fù)雜情況下,要進一步激發(fā)我國市場活力,一個關(guān)鍵舉措是要加大簡政減稅降費力度。要把減稅降費措施切實落實到位,對落實情況開展檢查核實,決不允許拖延和打折扣,決不允許自行其是。要按照國務(wù)院明確的“總體上不增加企業(yè)負擔(dān)”的已定部署,在機構(gòu)改革中確保社保費現(xiàn)有征收政策穩(wěn)定,有關(guān)部門要加強督查,嚴禁自行對企業(yè)歷史欠費進行集中清繳,違反規(guī)定的要堅決糾正,堅決查處征管中的違法違紀行為。同時,要抓緊研究提出降低社保費率方案,與征收體制改革同步實施。

    As shown in Fig.2,transistorsMD6-MD14and compensation capacitorCD1form the error amplifier of LDO regulator,and it is assumed thatAeis the dc gain of the error amplifier andAe?1.Therefore,the gate voltage variationvgpassof power transistorMD15has thatvpgate≈Ae(vfb-vbias).It is assumed thatRLeqis the equivalent resistance seen from the output of LDO regulator to ground.According to the Kirchhoff current law(KCL)at the output of LDO regulator,the relationvregandvddcan be derived as

    At the same time,it is assumed thatva,vb,v1andv2are,respectively,the variation voltages of nodeA,nodeB,node 1 and node 2.TransistorsM1andM2are entirely the same,and their transconductance are equal,i.e.gm1=gm2.AmplifierA1andA2are entirely the same,and their dc gainAdhas thatAd?1.So,va,vbandv1have thatva≈gm1(vreg-v1)ra,vb≈gm1(vregv1)rbandv1≈Ad(vb-va).Here,raandrbare theequivalent resistor seen from nodeAand nodeBto ground respectively.Therefore,the small-signal currenti2of transistorM2can be derived as

    In the similar way,the small-signal currenti3of transistorM3can be derived as

    As shown in Fig.2,transistorsM2andM4are entirely the same.The channel width-length ratio of transistorM6isK3times that of transistorM5,and the channel width-length ratio of transistorM7isK4times that of transistorM3.The channel width-length ratio of transistorM9isK5times that of transistorM8,so the small-signal currenti9of transistorM9has thati9≈K5K3i2-K5K4i3.TransistorsM12-M15are long channel device.For the convenience of analysis,it is assumed that the channel-length modulation effect of transistorsM12-M15is negligibly small.The channel width-length ratio of transistorM10isK1times that of transistorM2.TransistorsM15andM17form current-mirror pairs,and the channel width-length ratio of transistorM17isK2times that of transistorM15.Therefore,the small-signal currenti17of transistorM17can be approximated to

    The aspect ratio of transistorM19isK7times that of transistorM2,and the aspect ratio of transistorM18isK6times that of transistorM3.So,it is concluded thati19=K7i2andi18=K6i3.Here,i18andi19are the small-signal current of transistorsM18andM19respectively.It is assumed thatAdgm1(rb-ra)?1,Adgm3rc?1 andAdgm1rb?1.According to the circuit shown in Fig.2 and the above analysis,the relation ofvregand the output voltage variationvrefof proposed BGR can be derived as

    So,the PSRR of the proposed BGR with LDO regulator shown in Fig.2 can be derived as

    According to Eqs.(12)-(14),it is concluded that the PSRR of the proposed BGR with LDO regulator can efficiently be improved by adopting the technique of LDO regulator.

    3 Simulation Results

    The improved high-PSRR high-order curvaturecompensated BGR is designed and simulated in SMIC 0.18 μm CMOS process with a 1.8 V power supply voltage.

    Fig.6 shows the simulated temperature property of high-order curvature-compensated BGR with-and without-LDO regulator.When temperature changes from-55℃to 125℃,the proposed high-PSRR highorder curvature-compensated BGR with LDO regulator achieves a temperature coefficient of 2.1×10-6/℃. And,the high-order curvature-compensated BGR without LDO regulator achieves a temperature coefficient of 2.54×10-6/℃.

    Fig.6 Simulated temperature dependency of proposed BGR with-and without LDO regulator

    Fig.7 shows the simulated PSRR of high-order curvature-compensated BGR with-and without-LDO regulator.The proposed high-order curvaturecompensated BGR with LDO regulator at 10 Hz,100 Hz,1 kHz,10 kHz,100 kHz and 1 MHz achieves the PSRR of-106.388,-106.388,-106.38,-105.93,-88.67 and-44.28 dB respectively.High-order curvature-compensated BGR without LDO regulator at 10 Hz,100 Hz,1 kHz,10 kHz,100 kHz and 1 MHz achieves the PSRR of -64.01,-64.01,-64,-63.5,-53.2 and -27.3 dB respectively.Simulation results show that the PSRR of high-PSRR high-order curvaturecompensated BGR with LDO regulator can efficiently be improved by adopting the technique of LDO regulator.

    Fig.8 shows the simulated line-regulation of highorder curvature-compensated BGR with-and without-LDO regulator.When power supply voltageVDDchanges from 1.7 V to 2.5 V,the output voltageVREFof highorder curvature-compensated BGR with LDO regulator has only a deviation of about 3.92 μV,but the outputvoltageVREFof high-order curvature-compensated BGR without LDO regulator has a deviation of about 617.6 μV.Simulation results show that the proposed high-order curvature-compensated BGR with LDO regulator achieves a well line-regulation by adopting the technique of LDO regulator.

    Finally,the performances of high-PSRR highorder curvature-compensated BGR are summarized in Table 1.As shown in Table 1,the temperature coefficient of the improved high-PSRR high-order curvature-compensated BGR in this paper has a commensurate level with those BGRs reported in Refs.[6,14,26-27].However,by adopting the technique of LDO regulator in this paper,the improved high-PSRR high-order curvature-compensated BGR achieves well performance of PSRR and line-regulation than those reported in Refs.[6,14,26-27].

    Fig.7 Simulated PSRR of proposed BGR with-and without LDO regulator

    Fig.8 Simulated line-regulation of proposed BGR withand without LDO regulator

    Table 1 Performance summary of BGR

    4 Conclusions

    A high-PSRR high-order curvature-compensated BGR is designed and analyzed by adopting a LDO regulator and two kinds of current which are a piecewise-linear current and a current proportional 1.5 party to the absolute temperatureT.respectively.Low TC is achieved by adopting two kinds of currents including a piecewise-linear current and a current proportional 1.5 party to the absolute temperatureT.The high-PSRR performance is achieved by adopting the LDO regulator whose output voltage is the operating supply voltage of BGR core circuit instead of power supply voltageVDD.Simulation results show that the improved high-PSRR high-order curvature-compensated BGR with LDO regulator achieves an output voltage with excellent stability,a low TC and high PSRR performance.It is well suited for analogue and mixed signal electronic systems.

    [1]Osaki Y,Hirose T,Kuroki N,et al.1.2-V supply,100-nW,1.09-V bandgap and 0.7-V supply,52.5-nW,0.55-V subbandgap reference circuits for nanowatt CMOS LSIs. IEEE Journal of Solid-State Circuits,2013,48(6):1530-1538.

    [2]Yi-Chun Shih,Brian P O.An inductorless DC-DC converter for energy harvesting with a 1.2 μW bandgapreferenced output controller.IEEE Transactions on Circuits and Systems-II:Express Briefs,2011,58(12):832-836.

    [3]Cao Yijiang,Xiao Fei,Zhang Erdong.A band-gap voltage reference for interface circuit of microsensor.Journal of Harbin Institute of Technology(New Series),2010,17(4):497-500.

    [4]Widlar R J.New developments in IC voltage regulators. IEEE Journal of Solid-State Circuits,1971,SSC-6(1):2-7.

    [5]Brolaw A P.A simple three-terminal IC bandgap reference. IEEE Journal of Solid-State Circuits,1974,SSC-9(6):388-393.

    [6]Bill M,F(xiàn)engqi Y.A novel 1.2-V 4.5-ppm/IC curvaturecompensated CMOS bandgap reference.IEEE Transactions on Circuits and Systems-I:Regular Papers,2014,61(4):1026-1035.

    [7]Lam Yathei,Ki Winghung.CMOS bandgap references with self-biased symmetrically marched current-voltage mirror and extension of sub-1-V design.IEEE Transactions on Very Large Scale Integration Systems,2010,18(6):857-865.

    [8]Ker Mingdou,Chen Jungsheng.New curvature-compensation technique for CMOS bandgap reference with sub-1V operation.IEEE Transactions on Circuits and Systems-II:Express Briefs,2006,53(8):667-671.

    [9]Zhou Zekun,Shi Yue,Huang Zhi,et al.A 1.6-V 25-μA 5-ppm/℃curvature-compensated bandgap reference.IEEE Transactions on Circuits and Systems-I:Regular Papers,2012,59(4):677-684.

    [10]Huang Hongyi,Wang Rujie,Hsu Shihchiang.Piecewise linear curvature-compensated CMOS bandgap reference. Proceedings of the 15th IEEE International Conference on Electronics,Circuits and Systems.Piscataway:IEEE,2008.308-311.

    [11]Song Ying,Jia Song,Zhao Baoying.A precise curvature compensated CMOS bandgap voltage reference with sub 1 V supply.Proceedings of 2006 8th International Conference on Solid-State and Integrated Circuit Technology. Piscataway:IEEE,2006.1754-1756.

    [12]David C W N,David K K K,Ngai Wong.A sub-1V,26 μW,low-output impedance CMOS bandgap reference with a low dropout or source follower mode.IEEE Transactions on Very Large Scale Integration Systems,2011,19(7):1305-1309.

    [13]Ming Xin,Ma Yingqian,Zhou Zekun,et al.A highprecision compensated CMOS bandgap voltage reference without resistors.IEEE Transactions on Circuits and Systems-II:Express Briefs,2010,57(10):767-771.

    [14]Charalambos M A,Savvas Koudounas,Julius Georgiou,A novel wide-temperature-range,3.9 ppm/°C CMOS bandgap reference circuit.IEEE Journal of Solid-State Circuits,2012,47(2):574-581.

    [15]Ka N L,Philip K T M,Chi Y L.A 2-V 23-μA 5.3 ppm/° C curvature-compensated CMOS bandgap voltage reference. IEEE Journal of Solid-State Circuits,2003,38(3):561-564.

    [16]Tham Khongmeng,Nagaraj Krishnaswamy.A low supply voltage high PSRR voltage reference in CMOS process. IEEE Journal of Solid-State Circuits,1995,30(5):586-590.

    [17]Mehrmanseh S,Vhidfar M B,Aslanzadeh H A,et al.A 1-volt,high PSRR,CMOS bandgap voltage reference. Proceedings of the 2003 International Symposium on Circuits and Systems.Bangkok:The Mahanakorn University of Technology,2003.I-381-I-384.

    [18]Hu Yamum,Sawan Mohamad.A 900 mV 25 μW high PSRR CMOS voltage reference dedicated to implantable micro-devices.Proceedings of the 2003 International Symposium on Circuits and Systems.Bangkok:The Mahanakorn University of Technology,2003.I-373-I-376.

    [19]Xiao Du,Li Weimin,Zhu Xiaofei,et al.A curvaturecompensated bandgap reference with improved PSRR. Proceedings of 2005 6th International Conference on ASIC. Shanghai:Fudan University,2005.548-551.

    [20]Ning Zhihua,He Lenian,Wang Yi,et al.A novel high PSR voltage reference with secondary temperature compensation.Proceedings of 2010 International Conference on Electrical and Control Engineering.Piscataway:IEEE,2010.3200-3203.

    [21]Kang Xiaozhi,Tang Zhangwen.A novel high PSRR bandgap over a wide frequency range.Proceedings of 2010 10th International Conference on Solid-State and Integrated Circuit Technology.Piscataway:IEEE,2010.418-420.

    [22]Yu Jian,Zhao Yuanfu,Wang Zongmin,et al.A curvaturecompensated bandgap reference with high PSR.Proceedings of 2008 IEEE International Conference on Granular Computing.Piscataway:IEEE,2008.752-755.

    [23]Zhang Huiyuan,Chan P K,Tan M T.A high PSR voltage reference for DC-to-DC converter applications.Proceedings of 2009 IEEE International Symposium on Circuits and Systems.Piscataway:IEEE,2009.816-819.

    [24]Abhisek Dey,Tarun K B.A CMOS bandgap reference with high PSRR and improved temperature stability for systemon-chip applications.Proceedings of 2011 IEEE International Conference of Electron Device and Solid-State Circuits.Piscataway:IEEE,2011.1-2.

    [25]Cao Tianlin,Liu Xiaopeng,Luo Hao,et al.A 0.9-V high-PSRR bandgap with self-cascode current mirror. Proceedings of 2012 IEEE International on Circuits and Systems.Piscataway:IEEE,2012.267-271.

    [26]Lei Liao,Lukas Lohaus,Aytac Atac,et al.A low power bandgap voltage reference circuit with PSRR enhancement. Proceedings of 8th Conference on Ph.D.Research in Microelectronics and Electronics.Piscataway:IEEE,2012. 213-216.

    [27]Keith R F,Jefferson A H.Very low bandgap voltage reference with high PSRR enhancement stage implemented in 90nm CMOS process technology for LDO application. Proceedings of 2012 IEEE International Conference on Electronics Design,Systems and Applications.Piscataway:IEEE,2012.216-220.

    [28]Razavi B.Design of Analog CMOS Integrated Circuits.New York:McGraw-Hill,2001.27-28.

    TN432

    :1005-9113(2015)05-0116-09

    10.11916/j.issn.1005-9113.2015.05.018

    2014-07-10.

    Sponsored by the National Natural Science Foundation of China(Grant No.61471075),the 2013 Program for Innovation Team Building at Institutions of Higher Education in Chongqing(The Innovation Team of Smart Medical System and Key Technology).

    ?Corresponding author.E-mail:zhouqn@cqupt.edu.cn.

    猜你喜歡
    國際形勢社保費常務(wù)會議
    市政府召開常務(wù)會議
    市政府召開常務(wù)會議
    市政府召開常務(wù)會議
    用人單位不參加社?;蛭窗磿r繳費,會有什么后果
    皖江城市帶社保費征管機制優(yōu)化研究
    市政府召開常務(wù)會議
    當前國際形勢和我國外交條法工作
    社保費征管:由“二元”邁進“一元”
    歐洲國家社保費怎么征管
    淺談我國外交政策與經(jīng)濟發(fā)展關(guān)系
    卷宗(2016年10期)2017-01-21 01:23:43
    国产av精品麻豆| 国产亚洲精品第一综合不卡| 国产精品久久久久成人av| 露出奶头的视频| 成人免费观看视频高清| 高潮久久久久久久久久久不卡| 久久天堂一区二区三区四区| 国产老妇伦熟女老妇高清| 国产精品一区二区在线不卡| 无人区码免费观看不卡 | avwww免费| 91麻豆av在线| 国产三级黄色录像| av欧美777| 亚洲伊人色综图| 日日摸夜夜添夜夜添小说| 老司机福利观看| 热99re8久久精品国产| 欧美人与性动交α欧美精品济南到| 99精品欧美一区二区三区四区| 丝袜喷水一区| 黑人巨大精品欧美一区二区蜜桃| 99国产精品一区二区三区| 91精品国产国语对白视频| 最新美女视频免费是黄的| 老司机福利观看| 精品久久蜜臀av无| 成人国产av品久久久| 国产精品免费大片| 十分钟在线观看高清视频www| 波多野结衣一区麻豆| 久久热在线av| 一级a爱视频在线免费观看| av不卡在线播放| 一区二区三区国产精品乱码| 黄色a级毛片大全视频| 欧美中文综合在线视频| 国产单亲对白刺激| 在线av久久热| 久久这里只有精品19| 大型av网站在线播放| 精品免费久久久久久久清纯 | 国产精品免费视频内射| 国产成人啪精品午夜网站| 亚洲国产欧美在线一区| 亚洲伊人久久精品综合| 在线永久观看黄色视频| 国产xxxxx性猛交| 丁香欧美五月| 97在线人人人人妻| 久久人人97超碰香蕉20202| 婷婷成人精品国产| 激情视频va一区二区三区| 精品少妇一区二区三区视频日本电影| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利乱码中文字幕| 国产不卡一卡二| 免费黄频网站在线观看国产| 亚洲伊人色综图| 嫩草影视91久久| 精品亚洲乱码少妇综合久久| 老熟妇仑乱视频hdxx| 久久婷婷成人综合色麻豆| 建设人人有责人人尽责人人享有的| 精品福利观看| 成人特级黄色片久久久久久久 | 国产日韩欧美在线精品| 国产精品麻豆人妻色哟哟久久| 亚洲少妇的诱惑av| 18禁观看日本| 妹子高潮喷水视频| 999久久久精品免费观看国产| 激情视频va一区二区三区| 丰满饥渴人妻一区二区三| 在线观看免费视频日本深夜| 欧美成人午夜精品| 激情视频va一区二区三区| 成人特级黄色片久久久久久久 | 久久精品熟女亚洲av麻豆精品| 亚洲第一av免费看| 国产又爽黄色视频| 亚洲精品久久成人aⅴ小说| kizo精华| 黄片小视频在线播放| 人妻一区二区av| 91精品三级在线观看| 中文字幕人妻丝袜一区二区| 亚洲 国产 在线| 亚洲精品成人av观看孕妇| 怎么达到女性高潮| 在线观看免费高清a一片| 成人精品一区二区免费| 丁香六月欧美| 欧美乱码精品一区二区三区| av不卡在线播放| 国产精品1区2区在线观看. | 欧美成人免费av一区二区三区 | 性色av乱码一区二区三区2| 欧美午夜高清在线| 午夜福利视频精品| 看免费av毛片| 黑人操中国人逼视频| 久久精品亚洲精品国产色婷小说| 丰满迷人的少妇在线观看| 色婷婷久久久亚洲欧美| 天天躁夜夜躁狠狠躁躁| 97在线人人人人妻| 日本欧美视频一区| 久久毛片免费看一区二区三区| 午夜福利乱码中文字幕| 国产一卡二卡三卡精品| 国产精品.久久久| 久久国产精品大桥未久av| 黄色视频,在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品无人区| 亚洲精华国产精华精| 嫁个100分男人电影在线观看| 午夜精品久久久久久毛片777| 精品国产一区二区久久| 十分钟在线观看高清视频www| 亚洲欧洲日产国产| 免费av中文字幕在线| 黄片播放在线免费| 亚洲色图综合在线观看| 亚洲午夜理论影院| 成年版毛片免费区| 动漫黄色视频在线观看| 国产深夜福利视频在线观看| 精品亚洲成a人片在线观看| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av香蕉五月 | 麻豆乱淫一区二区| 婷婷成人精品国产| 久久精品国产a三级三级三级| 天天影视国产精品| 亚洲第一青青草原| 国产亚洲欧美在线一区二区| 欧美日韩亚洲综合一区二区三区_| 亚洲av第一区精品v没综合| 麻豆av在线久日| 别揉我奶头~嗯~啊~动态视频| 性少妇av在线| 法律面前人人平等表现在哪些方面| 欧美久久黑人一区二区| 久久国产亚洲av麻豆专区| 在线 av 中文字幕| 999久久久精品免费观看国产| 午夜精品国产一区二区电影| 国产精品香港三级国产av潘金莲| 亚洲视频免费观看视频| 视频区欧美日本亚洲| 久久久久久久精品吃奶| 国产黄频视频在线观看| av片东京热男人的天堂| 一级毛片电影观看| 一区二区三区乱码不卡18| 在线观看免费视频日本深夜| 伊人久久大香线蕉亚洲五| 国产精品香港三级国产av潘金莲| 精品少妇黑人巨大在线播放| 国内毛片毛片毛片毛片毛片| 一级片免费观看大全| 日本av免费视频播放| 桃花免费在线播放| 国产日韩一区二区三区精品不卡| 国产成人精品久久二区二区免费| 亚洲午夜精品一区,二区,三区| 999久久久精品免费观看国产| 在线观看人妻少妇| 精品人妻在线不人妻| 大香蕉久久网| 中亚洲国语对白在线视频| 男人操女人黄网站| 老司机午夜福利在线观看视频 | 亚洲欧美日韩另类电影网站| 女人高潮潮喷娇喘18禁视频| 久久久精品免费免费高清| 亚洲精品粉嫩美女一区| 欧美精品一区二区大全| 99精品久久久久人妻精品| 欧美国产精品一级二级三级| 大片免费播放器 马上看| 少妇 在线观看| 免费黄频网站在线观看国产| 国产精品二区激情视频| 国产伦人伦偷精品视频| 国产精品成人在线| 777米奇影视久久| 黑人欧美特级aaaaaa片| 久久国产亚洲av麻豆专区| 国产精品99久久99久久久不卡| 韩国精品一区二区三区| 久热这里只有精品99| 成在线人永久免费视频| 欧美日韩成人在线一区二区| 狂野欧美激情性xxxx| 国产99久久九九免费精品| 久久精品亚洲熟妇少妇任你| 久久婷婷成人综合色麻豆| 99re在线观看精品视频| 国产精品自产拍在线观看55亚洲 | 香蕉丝袜av| 一区二区三区精品91| 国产成人免费观看mmmm| 黄片播放在线免费| 老司机在亚洲福利影院| 三上悠亚av全集在线观看| 国产精品国产av在线观看| 午夜福利在线免费观看网站| 高清毛片免费观看视频网站 | 欧美av亚洲av综合av国产av| 国产精品二区激情视频| 亚洲av第一区精品v没综合| 国产成人影院久久av| 老司机午夜福利在线观看视频 | 一级黄色大片毛片| 免费黄频网站在线观看国产| 日韩三级视频一区二区三区| 亚洲黑人精品在线| 日本vs欧美在线观看视频| 99精品在免费线老司机午夜| 亚洲午夜精品一区,二区,三区| 精品亚洲乱码少妇综合久久| 午夜福利,免费看| 夜夜爽天天搞| aaaaa片日本免费| 国产成人av激情在线播放| 老熟妇乱子伦视频在线观看| 婷婷成人精品国产| 80岁老熟妇乱子伦牲交| 久久人妻福利社区极品人妻图片| 欧美乱妇无乱码| 色综合欧美亚洲国产小说| 中文字幕高清在线视频| 黄网站色视频无遮挡免费观看| 午夜福利视频在线观看免费| 成人亚洲精品一区在线观看| 汤姆久久久久久久影院中文字幕| 亚洲综合色网址| 国产成+人综合+亚洲专区| 精品国产亚洲在线| 两个人免费观看高清视频| 少妇裸体淫交视频免费看高清 | 久久精品人人爽人人爽视色| 免费观看a级毛片全部| 最近最新中文字幕大全电影3 | 91精品三级在线观看| 男女下面插进去视频免费观看| 国产精品美女特级片免费视频播放器 | 久久99热这里只频精品6学生| 精品少妇一区二区三区视频日本电影| 亚洲第一av免费看| 老司机影院毛片| 日本一区二区免费在线视频| 中文字幕最新亚洲高清| 免费日韩欧美在线观看| 亚洲全国av大片| 久久久水蜜桃国产精品网| 久久天躁狠狠躁夜夜2o2o| 多毛熟女@视频| 老司机深夜福利视频在线观看| 老熟女久久久| 五月开心婷婷网| 国产成人影院久久av| 久久久精品94久久精品| 99国产精品一区二区三区| 欧美精品高潮呻吟av久久| 在线天堂中文资源库| 中文欧美无线码| 久久久精品94久久精品| 国产精品国产高清国产av | 亚洲精品中文字幕在线视频| 久久久欧美国产精品| 天天操日日干夜夜撸| 亚洲精品国产一区二区精华液| 亚洲自偷自拍图片 自拍| 侵犯人妻中文字幕一二三四区| 国产真人三级小视频在线观看| 一个人免费在线观看的高清视频| 69精品国产乱码久久久| 最新美女视频免费是黄的| 亚洲欧美激情在线| 亚洲视频免费观看视频| 母亲3免费完整高清在线观看| 欧美成人免费av一区二区三区 | 老鸭窝网址在线观看| 亚洲成国产人片在线观看| 黑人操中国人逼视频| 成人国产一区最新在线观看| 免费在线观看完整版高清| 如日韩欧美国产精品一区二区三区| 久久久精品94久久精品| 久久国产精品影院| 国产xxxxx性猛交| 国产伦人伦偷精品视频| 中文字幕色久视频| 夜夜骑夜夜射夜夜干| 国产亚洲精品第一综合不卡| 老司机影院毛片| e午夜精品久久久久久久| 咕卡用的链子| 新久久久久国产一级毛片| 狠狠婷婷综合久久久久久88av| 精品熟女少妇八av免费久了| 免费在线观看日本一区| 亚洲精品中文字幕在线视频| 亚洲精品美女久久久久99蜜臀| 欧美成狂野欧美在线观看| 91老司机精品| netflix在线观看网站| 国产一卡二卡三卡精品| 麻豆av在线久日| 正在播放国产对白刺激| 一级黄色大片毛片| 宅男免费午夜| 久久免费观看电影| 国产亚洲欧美精品永久| 久久久久网色| 一区二区日韩欧美中文字幕| 国产精品 国内视频| 欧美精品av麻豆av| 黄网站色视频无遮挡免费观看| 人妻一区二区av| 麻豆国产av国片精品| 日日夜夜操网爽| 国产欧美日韩一区二区三区在线| 久久久水蜜桃国产精品网| 国产国语露脸激情在线看| 午夜91福利影院| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| 老司机福利观看| 欧美精品亚洲一区二区| 另类亚洲欧美激情| 久久午夜亚洲精品久久| 脱女人内裤的视频| 午夜精品国产一区二区电影| 亚洲av日韩精品久久久久久密| 亚洲国产av影院在线观看| 精品少妇内射三级| 亚洲成人免费av在线播放| 亚洲欧美一区二区三区黑人| 欧美国产精品一级二级三级| 999久久久精品免费观看国产| 黄色视频不卡| 精品久久久久久电影网| 一本综合久久免费| 国产又色又爽无遮挡免费看| av超薄肉色丝袜交足视频| 国产成人啪精品午夜网站| 在线观看66精品国产| 人人妻人人爽人人添夜夜欢视频| 亚洲五月婷婷丁香| 少妇猛男粗大的猛烈进出视频| 十八禁高潮呻吟视频| 中文字幕另类日韩欧美亚洲嫩草| 国产成人欧美在线观看 | 国产激情久久老熟女| 精品国产亚洲在线| 精品少妇黑人巨大在线播放| 免费不卡黄色视频| 高清欧美精品videossex| av在线播放免费不卡| 免费看十八禁软件| 亚洲欧美日韩高清在线视频 | 欧美成狂野欧美在线观看| 日日爽夜夜爽网站| 天天影视国产精品| 丝袜人妻中文字幕| 精品少妇久久久久久888优播| 韩国精品一区二区三区| 中文字幕人妻丝袜制服| 午夜久久久在线观看| 亚洲欧美激情在线| av有码第一页| 桃花免费在线播放| 美女国产高潮福利片在线看| 久久久欧美国产精品| 一区在线观看完整版| 王馨瑶露胸无遮挡在线观看| 日韩视频在线欧美| 国产色视频综合| 丝袜美足系列| 日韩成人在线观看一区二区三区| 国产精品久久久久久人妻精品电影 | 中文字幕av电影在线播放| 精品亚洲成国产av| a级毛片在线看网站| 50天的宝宝边吃奶边哭怎么回事| 伊人久久大香线蕉亚洲五| 黄频高清免费视频| 国产精品 欧美亚洲| 精品国产亚洲在线| 国产精品.久久久| 色综合欧美亚洲国产小说| 成人特级黄色片久久久久久久 | 欧美人与性动交α欧美精品济南到| 大片免费播放器 马上看| 亚洲美女黄片视频| 免费人妻精品一区二区三区视频| 丝袜美足系列| 日本黄色视频三级网站网址 | www.自偷自拍.com| 露出奶头的视频| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| 露出奶头的视频| 国产亚洲欧美精品永久| 亚洲精品在线美女| 香蕉丝袜av| 欧美大码av| 男人舔女人的私密视频| 国产av精品麻豆| 在线播放国产精品三级| 在线亚洲精品国产二区图片欧美| 肉色欧美久久久久久久蜜桃| 欧美大码av| 国产深夜福利视频在线观看| 久久久久久久久久久久大奶| 国产免费视频播放在线视频| 亚洲第一av免费看| 波多野结衣一区麻豆| 欧美 亚洲 国产 日韩一| 亚洲视频免费观看视频| 老司机午夜十八禁免费视频| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 成年女人毛片免费观看观看9 | 午夜激情久久久久久久| 丝袜在线中文字幕| 免费看十八禁软件| 亚洲午夜理论影院| 国产精品免费一区二区三区在线 | 久久国产精品大桥未久av| 美女扒开内裤让男人捅视频| 黄片小视频在线播放| 肉色欧美久久久久久久蜜桃| 成人18禁高潮啪啪吃奶动态图| 日韩制服丝袜自拍偷拍| 久久久久久久久久久久大奶| 亚洲中文日韩欧美视频| 精品人妻在线不人妻| 亚洲国产av新网站| 精品少妇一区二区三区视频日本电影| 十八禁网站免费在线| 日韩大片免费观看网站| 天堂俺去俺来也www色官网| 欧美日韩亚洲综合一区二区三区_| 人人妻人人添人人爽欧美一区卜| 亚洲欧美色中文字幕在线| 99香蕉大伊视频| 亚洲色图av天堂| 国产精品.久久久| 正在播放国产对白刺激| 人人妻,人人澡人人爽秒播| 一级,二级,三级黄色视频| 91九色精品人成在线观看| 深夜精品福利| av天堂久久9| 亚洲美女黄片视频| 国产av又大| 美女国产高潮福利片在线看| 日韩三级视频一区二区三区| 午夜久久久在线观看| 久久人人97超碰香蕉20202| 麻豆av在线久日| 国产在视频线精品| 天堂动漫精品| 欧美日韩亚洲国产一区二区在线观看 | 90打野战视频偷拍视频| 91大片在线观看| 国产精品久久久av美女十八| 免费人妻精品一区二区三区视频| 不卡av一区二区三区| 国产免费现黄频在线看| 中文字幕最新亚洲高清| 91成人精品电影| 久久香蕉激情| 国产精品98久久久久久宅男小说| 成人免费观看视频高清| 91老司机精品| av欧美777| 国产成人免费观看mmmm| 国产成人欧美| 亚洲精品自拍成人| 超碰成人久久| 国产亚洲欧美在线一区二区| 男女高潮啪啪啪动态图| 亚洲美女黄片视频| 操出白浆在线播放| 亚洲欧美日韩另类电影网站| 18禁美女被吸乳视频| 中文字幕高清在线视频| 亚洲精品一二三| 精品欧美一区二区三区在线| 999久久久国产精品视频| 丝袜人妻中文字幕| 热99国产精品久久久久久7| 日韩熟女老妇一区二区性免费视频| 欧美精品av麻豆av| 男女无遮挡免费网站观看| 日本wwww免费看| 黄色 视频免费看| 亚洲av国产av综合av卡| 岛国在线观看网站| 黑丝袜美女国产一区| 脱女人内裤的视频| 欧美午夜高清在线| 欧美日韩亚洲国产一区二区在线观看 | 桃红色精品国产亚洲av| 国产老妇伦熟女老妇高清| 久久国产精品大桥未久av| 久久国产亚洲av麻豆专区| 十八禁网站免费在线| 久久ye,这里只有精品| 久久亚洲精品不卡| aaaaa片日本免费| 天天躁夜夜躁狠狠躁躁| 久9热在线精品视频| 亚洲精品在线美女| 最近最新免费中文字幕在线| 夜夜骑夜夜射夜夜干| 视频区欧美日本亚洲| 一级毛片女人18水好多| 亚洲视频免费观看视频| 国产激情久久老熟女| 久久国产精品男人的天堂亚洲| 国产麻豆69| 另类精品久久| 国产色视频综合| 黑人巨大精品欧美一区二区mp4| 久久精品91无色码中文字幕| 色婷婷久久久亚洲欧美| 男女之事视频高清在线观看| 香蕉久久夜色| 国产精品一区二区在线观看99| 亚洲欧美日韩高清在线视频 | 在线播放国产精品三级| 午夜福利欧美成人| 中文字幕色久视频| 国产在线一区二区三区精| 99精品久久久久人妻精品| 丰满饥渴人妻一区二区三| 免费看十八禁软件| 激情在线观看视频在线高清 | 丝袜美腿诱惑在线| 看免费av毛片| 人人妻人人爽人人添夜夜欢视频| 国产高清国产精品国产三级| 人妻 亚洲 视频| 成人三级做爰电影| 精品一区二区三卡| 国产精品成人在线| 亚洲国产成人一精品久久久| 欧美人与性动交α欧美精品济南到| 在线观看www视频免费| 日韩大码丰满熟妇| 亚洲av美国av| 国产人伦9x9x在线观看| 成年动漫av网址| 亚洲精品国产一区二区精华液| 国产xxxxx性猛交| 亚洲综合色网址| 国产不卡一卡二| av网站在线播放免费| 欧美精品高潮呻吟av久久| e午夜精品久久久久久久| 午夜免费成人在线视频| av片东京热男人的天堂| videos熟女内射| 国产区一区二久久| 亚洲成人免费av在线播放| 免费黄频网站在线观看国产| 色婷婷av一区二区三区视频| www.自偷自拍.com| 久久久精品国产亚洲av高清涩受| 999久久久国产精品视频| 欧美人与性动交α欧美精品济南到| 亚洲国产欧美日韩在线播放| 成人黄色视频免费在线看| 不卡一级毛片| 麻豆国产av国片精品| 12—13女人毛片做爰片一| 午夜精品久久久久久毛片777| 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 久久久久久久国产电影| 在线观看免费午夜福利视频| 成人av一区二区三区在线看| 波多野结衣一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 久久久久久久国产电影| e午夜精品久久久久久久| 在线观看一区二区三区激情| 久久久久视频综合| av在线播放免费不卡| 久久久久精品国产欧美久久久| 国产精品免费一区二区三区在线 | 母亲3免费完整高清在线观看| 岛国在线观看网站| 啪啪无遮挡十八禁网站| 五月天丁香电影| 久久亚洲真实| 激情视频va一区二区三区| 男人操女人黄网站| 午夜精品国产一区二区电影| 精品一区二区三区四区五区乱码| 国产日韩欧美亚洲二区| 精品欧美一区二区三区在线| 欧美变态另类bdsm刘玥| 黄片播放在线免费| 国产在线免费精品| 欧美日韩国产mv在线观看视频|