• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple Endmember Hyperspectral Sparse Unmixing Based on Improved OMP Algorithm

    2015-07-24 17:34:42,,

    ,,

    (College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)

    Multiple Endmember Hyperspectral Sparse Unmixing Based on Improved OMP Algorithm

    Chunhui Zhao?,Haifeng Zhu,Shiling Cui and Bin Qi

    (College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)

    In conventional linear spectral mixture analysis model,a class is represented by a single endmember. However,the intra-class spectral variability is usually very large,which makes it difficult to represent a class,and in this case,it leads to incorrect unmixing results.Some proposed algorithms play a positive role in overcoming the endmember variability,but there are shortcomings on computation intensive,unsatisfactory unmixing results and so on.Recently,sparse regression has been applied to unmixing,assuming each mixed pixel can be expressed as a linear combination of only a few spectra in a spectral library.It is essentially the same as multiple endmember spectral unmixing.OMP(orthogonal matching pursuit),a sparse reconstruction algorithm,has advantages of simple structure and high efficiency.However,it does not take into account the constraints of abundance non-negativity and abundance sum-to-one(ANC and ASC),leading to undesirable unmixing results.In order to solve these issues,this paper presents an improved OMP algorithm(fully constraint OMP,F(xiàn)OMP)for multiple endmember hyperspectral sparse unmixing.The proposed algorithm overcomes the shortcomings of OMP,and on the other hand,it solves the problem of endmember variability. The ANC and ASC constraints are firstly added into the OMP algorithm,and then the endmember set is refined by the relative increase in root-mean-square-error(RMSE)to avoid over-fitting,finally pixels are unmixed by their optimal endmember set.The simulated and real hyperspectral data experiments show that FOPM unmixing results are ideally comparable and abundance RMSE reduces much lower than OMP and simple spectral mixture analysis(sSMA),and has a strong anti-noise performance.It proves that multiple endmember spectral mixture analysis is more reasonable.

    hyperspectral image;sparse representation;multiple endmember spectral unmixing;OMP;ANC and ASC

    1 Introduction

    In recent years,hyperspectral remote sensing technology develops rapidly.It has been used successfully in food safety,quality control,and forensic application[1-3].Mixed pixels are widespread in hyperspectral images due to the diversity and complexity of ground and the limitations of the sensor’s spatial resolution.Mixed pixels have a serious impact on the accuracy of subsequent hyperspectral image processing.Therefore,how to solve mixed pixels effectively is one of the most important problems in hyperspectral image analysis[4].Simple linear spectral mixture analysis(sSMA)[5]models a mixed spectrum as a linear combination of pure spectral signatures,weighted by their sub-pixel fractional cover.Once the endmembers have been extracted,sub-pixel cover distribution maps can be generated using approaches like singular value decomposition,Gramm-Schmidt orthogonalization,maximum likelihood or least-squares regression analysis.

    However,the lack of ability to account for sufficient temporal and spatial variability between and among endmember spectra has been acknowledged as a major shortcoming of sSMA approach with fixed endmembers.Over the past decades numerous efforts have been made to circumvent this issue[6].

    One of the first attempts to address endmember variability is Multiple Endmember Spectral Mixture Analysis(MESMA)[7-8]model,which is an iterative mixture analysis algorithm.Monte Carlo spectral unmixing model(AutoMCU)[9]and Bayesian Spectral Mixture Analysis model(BSMA)[10]is in parallel withMESMA.These iterative mixture analysis techniques explore all possible endmember combinations in search for the best solutions and the high number of iterations strongly slows down the analysis.Different spectral feature selections and spectral transformations algorithms have also been proposed to reduce the effect of endmember variability[11-12],for example AutoSWIR and Stable Zone Unmixing(SZU).The SZU has been proved to be good,but the parameters variability affects the unmixing accuracy greatly.For spectral transformations,there are Normalized Spectral Mixture Analysis(NSMA)and Derivative Spectral Unmixing(DSU)in which second derivative endmember spectra are used as inputs into SMA to emphasize the inter-class variability,while reducing the intra-class variability.The physical meaning of these two algorithms is not clear and the unmixing results are unsatisfactory.The other one to reduce the effect of endmember variability is Weighted Spectral Mixture Analysis(wSMA),prioritizing spectral bands less sensitive to endmember variability[13].

    The above spectral unmixing methods have played a positive role in reducing the effect of endmember variability,but there are always limitations.In recent years,with the development of sparse representation theory,scholars have a more profound understanding of sparse unmixing.Beginning in 2009,some scholars try to add sparse constraint to the sSMA,and have achieved certain results,but to our best knowledge,there are almost no studies of adding sparse constraint to multiple endmember spectral mixture analysis. Moreover,most sparse unmixing methods are based on convex relaxation methods,while little attention has been paid to the use of greedy algorithms(GAs). OMP[14-15]is one of the representatives of GAs,with a simple structure and high efficiency,which finds the best matches for each pixel by iteration from the existing library.When applying OMP in hyperspectral image unmixing,every pixel can get its optimal endmember set and their corresponding abundance. Obviously,it is essentially the same as multiple endmember spectral unmixing which iteratively produces the optimization for each pixel.However,there are big drawbacks about OMP that the abundance does not satisfy the ANC and ASC,besides the optimal endmember set is always larger than real situation,leading to accurate unmixing results.

    Given the shortcomings of the above overcoming intra-class spectral variability algorithms and the consistency of the iterative multiple endmember spectral unmixing and the OMP unmixing,this paper presents an improved OMP algorithm(called fully constraint OMP,F(xiàn)OMP)in multiple endmember spectral unmixing,which adds two constraints to the original OMP algorithm,and then finds the optimal number of endmembers for each pixel by the relative increase in RMSE to prevent over-fitting and increase the unmixing accuracy.

    2 OMP Sparse Unmixing of Hyperspectral Image

    Spectral unmixing aims at estimating the fractional abundances of pure spectral signatures in each mixed pixel.The linear mixing model assumes that the observed spectrum of a pixel can be expressed as a linear combination of the spectra of the endmembers presented in the respective pixel[16-17].It can be expressed mathematically as follows:

    whereyis an observation mixed pixel;Ais the endmember collection and the total amount isM;xis the corresponding fractional abundance,andnrepresents the error term.ANC and ASC are usually applied to the abundance.

    The linear sparse unmixing model[18-19]assumes that the observed spectrum of a mixed pixel can be expressed as a linear combination of only a few spectral signatures selected from a library known in advance.As the number of endmembers involved in a mixed pixel is usually very small compared with the dimensionality of the spectral library,the vector of fractional abundancesxis sparse.

    Without considering the two constraints in Eqs.(4)and(5),the optimization problem of sparse unmixing is then:

    Three kinds of methods can solve this problem,namely,greedy algorithms(GAs),convex relaxation methods,and sparse Bayesian methods.Convex relaxation methods and sparse Bayesian methods are far more complicated than the GAs.OMP,a typical GA,has been utilized to solve theP0problem.OMP is simple,with high efficiency,making it more practical in real applications.OMP iteratively selects at each step the member in the spectral library best correlated with the residual part of the mixed pixel.Then,it produces a new approximation by projecting the spectral vector of the mixed pixel onto the potential endmembers which have already been selected.

    3 Fully Constraint OMP Algorithm

    In this section,we firstly propose the concrete mathematical expression of linear multiple endmember spectral mixture analysis model,and then analyze the unmixing process in detail.The endmember matrix in the sSMA is fixed,however,in fact,the number and types of endmember are allowed to vary for different pixels.If we unmix the pixels by fixed endmember set,the unmixing abundance results are inaccurate. Apparently multiple endmember spectral mixture analysis is more reasonable.

    The linear multiple endmember spectral mixture analysis is as follows:

    wherenis the total number of hyperspectral image pixels andqdenotes a constant,whereq=1 denotes the endmember belongs to the pixel,otherwiseq=0 denotes the endmember does not belong to the pixel;is thek-th pixel andMis the total number of endmembers;Nidenotes the number of spectra in thei-th intra-class;ei,jdenotes thej-th spectrum in thei-th intra-class;denotes the spectral abundance of thej-th endmember in thei-th intra-class,andεkdenotes an additive perturbation.

    OMP iteratively selects at each step the member in the spectral library best correlated with the residual part of the mixed pixel.It finds the optimal set of endmember for each pixel from the spectral library,and then unmixes each pixel by the endmember set. We can see that it is the same as the multiple endmember spectral mixture analysis.So we combine the two algorithms.However,OMP does not take into account the two constraints,which leads to negative abundance.

    The unmixing residuals can be written as Eq.(8):

    Then,Eq.(8)can be restated as Eq.(10):

    Eq.(9)is unconstrained least squares abundance inversion,which leads to negative abundance. According to convex geometry theory,the mixed pixels locate inside the simplex composed of the related endmembers.If a mixed pixel is inside the simplex, unconstrained least squares and fully constraint least squares get the same optimal solution.The opposite condition,if a mixed pixel lives outside the simplex,unconstrained least squares will get unreasonable consequence compared to fully constraint least squares. So we take full constraint least squares instead.By doing so,residuals will not orthogonal to the selected set of endmembers,to solve which,we project the residuals to the orthogonal subspace of the already selected set of endmembers.

    Eq.(8)can be rewritten as follows:

    However,OMP often leads to more endmembers than actually present within a pixel.If more endmembers are used than required,the RMSE values may indeed be smaller,yet the fractional error will be higher.To deal with this,we refine the endmember set by calculating the relative increase in RMSE,reducing the number of endmembers by one.For each pixel,K-,(K-1)-,…,2-and 1-endmember reconstruction RMSE are compared[20-21].The relative increase in RMSE by going fromK-to(K-1)-endmember and from 2-to 1-endmember are calculated as follows Eqs.(14)and(15):

    whereRMSE(k-1_EM)is the reconstruction RMSE of(k-1)-endmember andRMSE(k_EM)is the reconstruction RMSE ofk-endmember;Lis the number of bands;yiis a pixel andis its estimation.If theΔRMSEis less than a predefined threshold,it means that the extra endmember makes little contribution to the pixel,so the less endmembers are selected to unmix the corresponding pixels,otherwise,the more endmembers are selected.

    FOMP algorithm procedure is as follows:

    Input:

    Dictionary:A=[a1,a2,…,aM]

    Signals to represent:y

    Sparsity:K

    Initialization:

    Residual:r0=y(tǒng)

    Iteration counter:k=1;

    Procedure:

    Iteration,in thekth cycle,run the following 1)-6).

    If the maximum occurs for multiple indices,break the tie deterministically.

    2)Augment the index set:

    3)Update residuals:

    Of which hyperFcls means fully constraint least squares abundance inversion.

    The orthogonal subspace of the selected endmember is as follows:

    4)ComputeΔRMSEfor each pixel.

    5)Find the optimal number of endmembers byΔRMSEkfor each pixel.

    6)Incrementk=k+1,and return to Step 1)ifk<K.

    Output:

    Index set:Λ

    Sparse coefficient:α=hyperFcls(E,y)

    4 Experiments

    4.1 Experiments of Simulated Hyperspectral Data

    In order to verify the effectiveness of the algorithm,two experiments are made in this section. We select five mineral spectra from the United States Geological Survey(USGS)library to form simulated hyperspectral data.These spectra are Almandine WS477(A1),Almandine WS478(A2),Nontronite GDS41(N3),Buddingtonite GDS85 D-206(B4)and Buddingtonite NHB2301(B5)and the dictionary is the USGS library.

    4.1.1 The first experiment

    The first set of experimental data is constituted randomly of the fiver mineral spectra above and the numbers is 10 000.Besides,35 dB Gaussian white noise is added.

    Table 1 gives a quantitative evaluation about the abundance RMSE of the five endmembers.We can find that the RMSE of FOMP is the lowest among all,besides,F(xiàn)OMP and OMP perform beyond the sSMA,which means they can address the endmember variability issue to some degree.

    Fig.1 gives the abundance error histograms of the three methods at 35 dBSNR sceneries.It gives a direct comparison between these three methods.FOMP algorithm abundance error is mostly clustered around the value 0,while the other algorithms error distributions are scattered.

    Table 1 Unmixing abundance RMSE contrast

    Fig.1 Histograms of abundance error

    4.1.2 The second experiment

    In thesecond experiment,we form 3 000 mixed pixels in which the 1 th-1 000 th pixels are made up ofA1andN3by random proportion satisfying the ANC and ASC.The 1 001th-2 000th pixels are constituted byA1andB5and the remaining pixels are composed byA2,N3andB4in which the random proportion is made in the same manner as the former.In order to verify theanti-noise performance,30-55 dB Gaussian white noise are added.

    Table 2 gives a quantitative evaluation of the RMSE for the five endmembers between the real endmember abundance and the estimated endmember abundance at different SNR(signal to noise ratio). Longitudinal view,we can find that the RMSE of FOMP is the lowest among all,where abundance RMSE is reduced about 90%and 40%compared to sSMA and OMP,besides,F(xiàn)OMP and OMP perform beyond the sSMA,which means they can address the endmember variability issue to some degree.Lateral view,the abundance error ofN3is much smaller than the others,we know that synthetic data only involve one spectrum of this mineral class,so we can get that intra-class spectral variability indeed affect the accuracy of unmixing results.

    Table 2 Unmixing abundance RMSE contrast at different SNR

    Fig.2 intuitively shows the average unmixing abundance RMSE as a function of SNR.As shown,all the algorithms get worse performance with the SNR getting lower,but our proposed algorithm can obtain the best estimation of the average abundance at different noise scenarios among all the methods. However,when introducing the random noise,although the accuracy of FOMP decreases,its curve is the most flat one,meaning that it possesses the best anti-noise performance.Meanwhile,OMP and sSMA are sensitive to noise.

    Fig.3 gives the abundance error histograms of the three methods at 30 dB,40 dB,50 dB SNR sceneries. It gives a direct comparison between these three methods.FOMP algorithm abundance error is mostly clustered around the value 0,while the error distributions of the other algorithms are scattered.With the decline of SNR,all these methods’number of pixels deviation gradually from 0 value increases,but FOMP algorithm is always better than the other algorithms.

    Fig.2 Average unmixing abundance RMSE as a function of SNR

    Fig.3 Histograms of abundance error

    4.2 Experiments of Real Hyperspectral Data

    Our proposed method has been applied to a hyperspectral image taken over northwest Indiana’s Indian Pine Test Site shown in Fig.4.The data consist of 145×145 pixels with 220 bands which are initially reduced to 200 by removing bands,covering water absorption as well as noisy bands and the total number of endmember class is 16.Three typical types of crops:hong-windrowed,woods and corn,respectively 489,1 294,834 sample points are chosen because they can best verify the effectiveness of the improved algorithm. Their spatial distribution of the label figures are shown in Fig.5(a).We randomly select ten spectra from the total sixteen classes to form the dictionary.So the dictionary contains 160 spectra.

    Table 3 gives a quantitative evaluation about the abundance RMSE of the ten endmembers for the three crops.It can be seen that FOMP performs the lowest RMSE compared with others.In the unmixing distribution maps,the brighter gray represents the abundance of the corresponding categories in the mixed pixels the greater,and vice versa.

    Fig.4 Pseudocolor composed map

    Table 3 Unmixing abundance RMSE contrast

    Fig.5 shows a more intuitive representation.FOMP algorithm represents the three crops better,and the unmixing results are much closer to the true spatialdistribution.Meanwhile,the other algorithms unmixing results are vague and cannot distinguish different crops effectively.However,F(xiàn)OMP and OMP are better than the sSMA in both the average RMSE and the unmixing distribution maps.Above all,except for sSMA,they all have played a positive role in overcoming the intra-class spectral variability and implying multiple endmember spectral mixture analysis is more reasonable.

    Fig.6 shows the abundance error histograms of the three methods.It gives a direct comparison between these three methods.FOMP algorithm abundance errors are mostly clustered around the value 0,while the error distribution of other algorithms is scattered.

    4.3 Analysis of Unmixing Results

    By comparing the experimental results above,we can get that FOMP algorithm is better than the other algorithms in unmixing abundance error,which takes ANC and ASC into account and adoptsΔRMSEto refine the optimal endmember set to avoid over-fitting where the number of endmembers is greater than the actual number in each pixel.sSMA gets the worst unmixing results without considering the intra-class spectral variability.OMP algorithm does not consider ANC and ASC,causing negative abundance,besides,the iterative optimization process of OMP results in over-fitting.Although the reconstruction error is cut down,the unmixing abundance error increases.OMP may not accurately unmix some signals with low SNR or measured insufficiently.Besides,it is strict to build a dictionary because of its use of orthogonalization.

    Fig.5 Unmixing distribution maps of hong-windrowed,woods and corn

    5 Conclusions

    This paper has proposed a multiple endmember hyperspectral sparse unmixingmethod based on the improved OMP algorithm.It firstly adds ANC and ASC to the OMP algorithm to receive reasonable abundance,and then finds the optimal number of endmembers for each pixel by the relative increase in RMSE to avoid over-fitting.The simulated and real hyperspectral image data experimental results have showed that FOMP is superior to the other two and is effective in overcoming intra-class spectral variability.We can see that multiple endmember spectral mixture analysis is more reasonable.Since the introduction of fully least squares abundance inversion,the computation is large,how to improve its efficiency is the focus of our future work.

    [1]Zhao Chunhui,Cheng Baozhi,Yang Weichao.Algorithm for hyperspectral unmixing using constrained nonnegative matrix factorization.Journal of Harbin EngineeringUniversity,2012,33(3):377-382.(in Chinese)

    [2]Cheng Baozhi,Zhao Chunhui.A particle swarm optimization clustering-based approach for hyperspectral image anomaly targets detection.Journal of Optoelectronics Laser,2013,24(10):2047-2054.(in Chinese)

    [3]Wang Liguo,Zhang Jing.An improved spectral unmixing modeling based on linear spectral mixing modeling.Journal of Optoelectronics Laser,2010,21(8):1222-1226.(in Chinese)

    [4]Zhang Bing,Gao Lianru.Hyperspectral Image Classification and Target Detection.Beijing:Science Press,2011.201-213.(in Chinese)

    [5]WangLiguo,Liu Danfeng,Wang Qunming.Geometric method of fully constrained least squares linear spectral mixture analysis.IEEE Transactions on Geoscience And Remote Sensing,2013,51(6):3558-3566.

    [6]Wang Liguo,Zhao Chunhui.Processing Techniques of Hyperspectral Imagery.Beijing:National Defense Industry Press,2013.13-17.(in Chinese)

    [7]SomersB,Asner G P,Tits L,et al.Endmember variability in spectral mixture analysis:a review.Remote Sensing of Environment,2011,115(7):1603-1616.

    [8]Roberts D A,Gardner M.Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models.Remote Sensing of Environment,1998,65(3):267-279.

    [9]Asner G P,Lobell D B.A biogeophysical approach for automated SWIR unmixing of soils and vegetation.Remote Sensing of Environment,2000,74(1):99-112.

    [10]Rao Yuhan,Chen Jin,Chen Xuehong.Quantitative assessment of the different methods addressing the endmember variability.IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Piscataway:IEEE,2013.3317-3320.

    [11]Somers B,Delalieux S,Verstraeten W W.An automated waveband selection technique for optimized hyperspectral mixture analysis.International Journal of Remote Sensing,2010,20(31):5549-5568.

    [12]ShiChen,Wang Le.Incorporating spatial information in spectral unmixing:A review.Remote Sensing Environment,2014,149:70-87.

    [13]Song Meiping,Zhang Yongrong,An Jubai,et al.Effective endmember based bilinear unmixing mode.Spectroscopy and Spectral Analysis,2014,34(1):196-200.(in Chinese)

    [14]Raksuntorn N,Du Qian,Younan N,et al.Orthogonal matching pursuit for nonlinear unmixing of hyperspectral imagery.2014 IEEE China Summit&International Conference on Signal and Information Processing(ChinaSIP).Piscataway:IEEE,2014,7:157-161.

    [15]IordacheM D,Bioucas-Dias J M,Plaza A.Sparse unmixing of hyperspectral data.IEEE Transactions on Geoscience And Remote Sensing,2011,49(6):2014-2039.

    [16]Ding Haiyong,Shi Wenzhong.Fast N-FINDR algorithm for endmember extraction based on chi-square distribution. Journal of Remote Sensing,2013,17(1):130-137.(in Chinese)

    [17]ZareA,Ho K C.Endmember variability in hyperspectral analysis.IEEE Signal Processing magazine,2014,31(1):95-104.

    [18]Gharavi-Alkhansari M,Huang T S.A Fast orthogonal matching pursuit algorithm.IEEE International Conference on Speech and Signal Processing,1998,3,1389-1392.

    [19]Shi Zhenwei,Tang Wei,Duren Zhana,et al.Subspace matching pursuit for sparse unmixing of hyperspectral data. IEEE Transactions on Geoscience And Remote Sensing,2014(52):3256-3274.

    [20]Wu Bo,Zhou Xiaocheng,Zhao Yindi.Study on the relationships between endmember variance and decomposition accuracy of mixture pixel.Remote Sensing Information,2007(3):3-7.(in Chinese).

    [21]Demarchi L,Canters F,Chan J C-W,et al.Mapping sealed surfaces from CHRIS/Proba data:a multiple endmember unmixing approach.Hyperspectral Image and Signal Processing:Evolution in Remote Sensing(WHISPERS),2010.1-4.

    TN911.73

    :1005-9113(2015)05-0097-08

    10.11916/j.issn.1005-9113.2015.05.015

    2014-07-07.

    Sponsored by the National Natural Science Foundation of China(Grant No.61405041,61571145),the Key Program of Heilongjiang Natural Science Foundation(Grant No.ZD201216),the Program Excellent Academic Leaders of Harbin(Grant No.RC2013XK009003),the China Postdoctoral Science Foundation(Grant No.2014M551221)and the Heilongjiang Postdoctoral Science Found(Grant No.LBH-Z13057).

    ?Corresponding author.E-mail:zhaochunhui@hrbeu.edu.cn.

    亚洲精品自拍成人| 婷婷色综合大香蕉| 少妇的逼好多水| 国产av国产精品国产| 久久久久网色| 观看免费一级毛片| 亚洲色图av天堂| 精品人妻偷拍中文字幕| 成人特级av手机在线观看| 精品久久久久久久末码| 国产在线一区二区三区精| 十八禁网站网址无遮挡 | 日韩成人伦理影院| 亚洲精品日韩在线中文字幕| 狂野欧美激情性xxxx在线观看| 高清欧美精品videossex| 免费看日本二区| 美女被艹到高潮喷水动态| 一级毛片黄色毛片免费观看视频| 亚洲综合色惰| 高清欧美精品videossex| 尤物成人国产欧美一区二区三区| 国产高清不卡午夜福利| 99久久中文字幕三级久久日本| 色播亚洲综合网| 成人二区视频| 三级经典国产精品| 丰满人妻一区二区三区视频av| 天天躁日日操中文字幕| 又爽又黄a免费视频| 看十八女毛片水多多多| 亚洲国产精品专区欧美| 亚洲高清免费不卡视频| 别揉我奶头 嗯啊视频| 久久精品国产亚洲av涩爱| 永久免费av网站大全| 免费电影在线观看免费观看| 99久国产av精品国产电影| 精品久久久久久久久久久久久| 成年版毛片免费区| 亚洲av男天堂| 99久国产av精品国产电影| 国产精品麻豆人妻色哟哟久久 | 亚洲成人久久爱视频| 亚洲三级黄色毛片| 1000部很黄的大片| 激情五月婷婷亚洲| 最近的中文字幕免费完整| 一级毛片aaaaaa免费看小| 寂寞人妻少妇视频99o| 亚州av有码| 18禁裸乳无遮挡免费网站照片| 国产久久久一区二区三区| 欧美激情久久久久久爽电影| 亚洲成人中文字幕在线播放| 91在线精品国自产拍蜜月| 婷婷色av中文字幕| h日本视频在线播放| 久久精品国产自在天天线| 嫩草影院新地址| 婷婷色av中文字幕| 老司机影院毛片| 亚洲av成人精品一二三区| 国产免费视频播放在线视频 | 亚洲精品色激情综合| 婷婷色综合www| 老女人水多毛片| 在线天堂最新版资源| 一级毛片 在线播放| 成人无遮挡网站| 国产在线一区二区三区精| av天堂中文字幕网| 777米奇影视久久| 国产成人a∨麻豆精品| 亚洲精品国产成人久久av| 色综合色国产| 成人毛片60女人毛片免费| 日本-黄色视频高清免费观看| 久久鲁丝午夜福利片| 色5月婷婷丁香| 99re6热这里在线精品视频| 色综合色国产| 久久久亚洲精品成人影院| 草草在线视频免费看| 久久久久久久午夜电影| 午夜福利在线观看吧| 人妻系列 视频| 男女那种视频在线观看| 亚洲,欧美,日韩| 1000部很黄的大片| 亚洲美女视频黄频| 亚洲av电影在线观看一区二区三区 | 白带黄色成豆腐渣| 免费观看a级毛片全部| 久久99热这里只频精品6学生| 蜜桃亚洲精品一区二区三区| 精品国产露脸久久av麻豆 | 亚洲不卡免费看| 国产老妇女一区| 亚洲一级一片aⅴ在线观看| 春色校园在线视频观看| 人人妻人人看人人澡| 自拍偷自拍亚洲精品老妇| 国产综合精华液| 欧美日韩亚洲高清精品| 国产精品一区二区在线观看99 | 中文字幕免费在线视频6| av天堂中文字幕网| 日本猛色少妇xxxxx猛交久久| 国产成人aa在线观看| 亚洲精华国产精华液的使用体验| 男女下面进入的视频免费午夜| 97热精品久久久久久| 国产综合懂色| 久久99精品国语久久久| 一夜夜www| 99热这里只有精品一区| 亚洲国产高清在线一区二区三| 亚洲国产欧美在线一区| 成人av在线播放网站| 国产又色又爽无遮挡免| 日本午夜av视频| 免费观看无遮挡的男女| 夜夜爽夜夜爽视频| 97人妻精品一区二区三区麻豆| 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| 我的老师免费观看完整版| 精品久久久久久久久av| 日本黄色片子视频| 熟女电影av网| 噜噜噜噜噜久久久久久91| 亚洲精品中文字幕在线视频 | 免费大片18禁| 亚洲av电影不卡..在线观看| 麻豆久久精品国产亚洲av| 欧美另类一区| 欧美高清性xxxxhd video| 精品国产露脸久久av麻豆 | 老女人水多毛片| ponron亚洲| 春色校园在线视频观看| 国产欧美日韩精品一区二区| 国产精品福利在线免费观看| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 国产午夜精品久久久久久一区二区三区| 两个人视频免费观看高清| 99久久人妻综合| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站| 亚洲国产成人一精品久久久| 美女脱内裤让男人舔精品视频| 99热网站在线观看| 国产av国产精品国产| 亚洲精品国产成人久久av| 在线a可以看的网站| 永久网站在线| 九草在线视频观看| 永久免费av网站大全| 日韩精品有码人妻一区| 超碰av人人做人人爽久久| 丰满少妇做爰视频| 亚洲欧洲日产国产| 亚洲国产最新在线播放| 十八禁国产超污无遮挡网站| www.av在线官网国产| 久久国产乱子免费精品| 国产黄色小视频在线观看| 日本黄色片子视频| 天天一区二区日本电影三级| 免费播放大片免费观看视频在线观看| 听说在线观看完整版免费高清| 青春草国产在线视频| 国产午夜精品论理片| 国产女主播在线喷水免费视频网站 | 精品人妻视频免费看| 欧美性猛交╳xxx乱大交人| 女人被狂操c到高潮| 99re6热这里在线精品视频| freevideosex欧美| 一级片'在线观看视频| 啦啦啦中文免费视频观看日本| 精品欧美国产一区二区三| 久99久视频精品免费| 免费看av在线观看网站| av线在线观看网站| 亚洲国产高清在线一区二区三| 日韩制服骚丝袜av| 免费观看性生交大片5| 狂野欧美白嫩少妇大欣赏| 国产乱人偷精品视频| 在线播放无遮挡| 国产爱豆传媒在线观看| 亚州av有码| 亚洲一级一片aⅴ在线观看| 色综合站精品国产| 高清欧美精品videossex| 国产单亲对白刺激| 亚洲欧美一区二区三区国产| 99热这里只有是精品50| 国产精品一区二区在线观看99 | 日韩人妻高清精品专区| 国产精品国产三级国产av玫瑰| 久久精品久久久久久噜噜老黄| 日本午夜av视频| 久久久久久国产a免费观看| 99热网站在线观看| 久久久久久国产a免费观看| 性色avwww在线观看| 国产高清国产精品国产三级 | 午夜免费男女啪啪视频观看| 国产在视频线在精品| 人妻制服诱惑在线中文字幕| 日本熟妇午夜| 欧美不卡视频在线免费观看| 91aial.com中文字幕在线观看| www.色视频.com| 爱豆传媒免费全集在线观看| 亚洲精品日韩av片在线观看| 中国国产av一级| 国产亚洲精品久久久com| 久久6这里有精品| 99热6这里只有精品| 天堂网av新在线| 亚洲精品中文字幕在线视频 | 91在线精品国自产拍蜜月| 午夜精品在线福利| 日日啪夜夜爽| 欧美成人精品欧美一级黄| 国产 一区 欧美 日韩| 国产白丝娇喘喷水9色精品| 国产成人freesex在线| 亚洲国产高清在线一区二区三| 成人国产麻豆网| 日韩伦理黄色片| 亚洲国产欧美在线一区| 最近中文字幕高清免费大全6| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人综合一区亚洲| 欧美潮喷喷水| 午夜福利网站1000一区二区三区| 久久久久久九九精品二区国产| 汤姆久久久久久久影院中文字幕 | 国产精品一二三区在线看| 国产探花在线观看一区二区| 你懂的网址亚洲精品在线观看| 在线免费观看的www视频| 日韩不卡一区二区三区视频在线| 欧美97在线视频| 在线a可以看的网站| 深夜a级毛片| 成人漫画全彩无遮挡| 国产精品久久视频播放| 午夜福利视频精品| 九九爱精品视频在线观看| 高清毛片免费看| 亚洲不卡免费看| 日韩,欧美,国产一区二区三区| 国产精品99久久久久久久久| 日韩国内少妇激情av| 蜜臀久久99精品久久宅男| 精品久久久久久久久av| av又黄又爽大尺度在线免费看| 国语对白做爰xxxⅹ性视频网站| 欧美成人午夜免费资源| 亚洲欧美日韩东京热| 老司机影院毛片| 人人妻人人澡人人爽人人夜夜 | 亚洲18禁久久av| 床上黄色一级片| 男人和女人高潮做爰伦理| 国产久久久一区二区三区| 在线观看人妻少妇| 97超碰精品成人国产| 亚洲精品乱码久久久久久按摩| 最近最新中文字幕免费大全7| xxx大片免费视频| 国内精品宾馆在线| 国产淫语在线视频| 久久久久久久久中文| 国产精品一区二区性色av| 精品国产三级普通话版| 久久久成人免费电影| 成人午夜高清在线视频| 国产精品蜜桃在线观看| 亚洲不卡免费看| 亚洲丝袜综合中文字幕| 亚洲欧美一区二区三区黑人 | 狠狠精品人妻久久久久久综合| 欧美日本视频| 亚洲激情五月婷婷啪啪| 久久久亚洲精品成人影院| 黑人高潮一二区| 性插视频无遮挡在线免费观看| 亚洲精品影视一区二区三区av| 人妻少妇偷人精品九色| 天堂av国产一区二区熟女人妻| 搞女人的毛片| 伦理电影大哥的女人| 婷婷六月久久综合丁香| 丰满少妇做爰视频| 男人爽女人下面视频在线观看| 国产 一区 欧美 日韩| 亚洲第一区二区三区不卡| 亚洲精品亚洲一区二区| 久久久久久伊人网av| 国产精品久久视频播放| 国产亚洲av嫩草精品影院| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品av在线| 婷婷色麻豆天堂久久| 精品人妻视频免费看| 国产黄片视频在线免费观看| 日本三级黄在线观看| 中文字幕人妻熟人妻熟丝袜美| 不卡视频在线观看欧美| 日产精品乱码卡一卡2卡三| 亚洲国产精品sss在线观看| 亚洲精品色激情综合| 能在线免费观看的黄片| 久久精品熟女亚洲av麻豆精品 | 日韩欧美 国产精品| 国产精品一区二区三区四区久久| 国产精品精品国产色婷婷| 最后的刺客免费高清国语| 免费黄网站久久成人精品| 午夜免费男女啪啪视频观看| 国产探花极品一区二区| 婷婷色综合大香蕉| 国精品久久久久久国模美| 国国产精品蜜臀av免费| 免费观看性生交大片5| 美女内射精品一级片tv| 亚洲欧美一区二区三区国产| 午夜福利成人在线免费观看| 大陆偷拍与自拍| 丰满乱子伦码专区| 日本av手机在线免费观看| 秋霞在线观看毛片| 国产伦在线观看视频一区| av在线蜜桃| 日韩伦理黄色片| 毛片女人毛片| 午夜免费观看性视频| 99久久九九国产精品国产免费| eeuss影院久久| 亚洲精品国产av成人精品| 又爽又黄a免费视频| 中文资源天堂在线| 日韩精品有码人妻一区| 亚洲四区av| 久久久a久久爽久久v久久| 色5月婷婷丁香| 草草在线视频免费看| 亚洲精品日本国产第一区| 精品久久久久久成人av| 久久久久久久久中文| 草草在线视频免费看| 欧美成人a在线观看| 日韩一区二区三区影片| 人人妻人人看人人澡| 男人舔女人下体高潮全视频| 欧美高清性xxxxhd video| 国产淫语在线视频| 国产 一区精品| 亚洲精品国产av成人精品| 亚洲精品国产av蜜桃| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久| 在现免费观看毛片| 内地一区二区视频在线| 久久久久国产网址| xxx大片免费视频| 婷婷色av中文字幕| 国产探花在线观看一区二区| 纵有疾风起免费观看全集完整版 | 校园人妻丝袜中文字幕| 欧美xxxx性猛交bbbb| 人妻制服诱惑在线中文字幕| 国产精品国产三级国产av玫瑰| 国产精品久久久久久av不卡| 色视频www国产| 三级男女做爰猛烈吃奶摸视频| 日韩大片免费观看网站| 国产精品久久视频播放| 九九爱精品视频在线观看| 夜夜看夜夜爽夜夜摸| 又大又黄又爽视频免费| 日本免费a在线| 亚洲久久久久久中文字幕| 国产精品久久久久久久电影| 少妇被粗大猛烈的视频| 男女视频在线观看网站免费| 联通29元200g的流量卡| 一区二区三区高清视频在线| 在线免费观看的www视频| 国产美女午夜福利| 免费大片黄手机在线观看| 免费观看a级毛片全部| 中国国产av一级| 丝瓜视频免费看黄片| ponron亚洲| 日韩av免费高清视频| 亚洲四区av| 国产一区二区三区综合在线观看 | 欧美日韩在线观看h| 九色成人免费人妻av| 蜜桃亚洲精品一区二区三区| 纵有疾风起免费观看全集完整版 | 久久97久久精品| 老师上课跳d突然被开到最大视频| 国产乱人视频| 2018国产大陆天天弄谢| 一本久久精品| 搞女人的毛片| 亚洲熟妇中文字幕五十中出| 99久久精品国产国产毛片| 欧美高清性xxxxhd video| 亚洲av中文av极速乱| 成人无遮挡网站| 丝瓜视频免费看黄片| 国产精品1区2区在线观看.| 日韩强制内射视频| 亚洲天堂国产精品一区在线| 国产永久视频网站| 精品久久久久久久久av| 免费看日本二区| 边亲边吃奶的免费视频| 亚洲国产精品成人综合色| 国产91av在线免费观看| 成人亚洲欧美一区二区av| 国产综合精华液| 夜夜爽夜夜爽视频| 亚洲av日韩在线播放| 国产av不卡久久| 熟妇人妻不卡中文字幕| freevideosex欧美| 狂野欧美激情性xxxx在线观看| 最近2019中文字幕mv第一页| 欧美最新免费一区二区三区| 美女xxoo啪啪120秒动态图| 色视频www国产| 十八禁网站网址无遮挡 | 亚洲综合色惰| 亚洲精品第二区| 亚洲欧美精品自产自拍| 色播亚洲综合网| 日日啪夜夜爽| 国产午夜福利久久久久久| 国产高清有码在线观看视频| 80岁老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| av一本久久久久| 在线观看免费高清a一片| 亚洲欧美清纯卡通| 天堂网av新在线| 欧美bdsm另类| 最近2019中文字幕mv第一页| 人人妻人人澡人人爽人人夜夜 | 亚洲国产精品成人综合色| 97超碰精品成人国产| 天堂√8在线中文| 免费黄色在线免费观看| 精品少妇黑人巨大在线播放| 亚洲精品国产成人久久av| 亚洲人成网站高清观看| 精品人妻偷拍中文字幕| 成人漫画全彩无遮挡| 精品国内亚洲2022精品成人| 免费av毛片视频| 国产精品美女特级片免费视频播放器| 18+在线观看网站| 久久久久久久久大av| 中文字幕制服av| 汤姆久久久久久久影院中文字幕 | 熟女人妻精品中文字幕| 国产午夜福利久久久久久| 国产精品久久视频播放| 国产淫语在线视频| 日本与韩国留学比较| 又爽又黄无遮挡网站| 精品国产一区二区三区久久久樱花 | 亚洲av成人av| 午夜精品国产一区二区电影 | 免费少妇av软件| 久久精品夜夜夜夜夜久久蜜豆| 亚洲婷婷狠狠爱综合网| 联通29元200g的流量卡| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 中文欧美无线码| 91精品伊人久久大香线蕉| 黄色欧美视频在线观看| 一级毛片 在线播放| 99热这里只有精品一区| 欧美xxⅹ黑人| 美女xxoo啪啪120秒动态图| 美女被艹到高潮喷水动态| 日韩制服骚丝袜av| 欧美日韩亚洲高清精品| 欧美xxⅹ黑人| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看| 国产亚洲91精品色在线| 久久精品国产亚洲网站| 人妻夜夜爽99麻豆av| 大香蕉97超碰在线| 国产黄片美女视频| 夫妻午夜视频| 免费黄网站久久成人精品| 黄片wwwwww| 超碰97精品在线观看| 人体艺术视频欧美日本| 亚洲最大成人av| 丝袜喷水一区| 美女大奶头视频| 国产黄色视频一区二区在线观看| 国产一区二区三区综合在线观看 | 男女边吃奶边做爰视频| 久热久热在线精品观看| 街头女战士在线观看网站| 一本久久精品| 日韩在线高清观看一区二区三区| 国产亚洲91精品色在线| 亚洲在线自拍视频| 婷婷色综合大香蕉| 在现免费观看毛片| 99久久九九国产精品国产免费| 最近中文字幕高清免费大全6| 国产精品不卡视频一区二区| 亚洲av.av天堂| 国产精品国产三级国产专区5o| 国产女主播在线喷水免费视频网站 | 51国产日韩欧美| 大陆偷拍与自拍| 日韩成人av中文字幕在线观看| 特级一级黄色大片| 欧美性猛交╳xxx乱大交人| 黄色欧美视频在线观看| eeuss影院久久| 天堂俺去俺来也www色官网 | 亚洲av电影在线观看一区二区三区 | 免费大片18禁| 国产亚洲精品av在线| 久久久久久久久久黄片| 亚洲av不卡在线观看| 国产极品天堂在线| 熟女人妻精品中文字幕| 国产高潮美女av| 91精品伊人久久大香线蕉| 亚洲欧美成人精品一区二区| 亚洲精品乱久久久久久| 精品久久久噜噜| 我的女老师完整版在线观看| 女的被弄到高潮叫床怎么办| av在线蜜桃| 国产亚洲av嫩草精品影院| 高清午夜精品一区二区三区| 亚洲高清免费不卡视频| 欧美+日韩+精品| 97在线视频观看| 大又大粗又爽又黄少妇毛片口| 2018国产大陆天天弄谢| 日韩欧美一区视频在线观看 | av又黄又爽大尺度在线免费看| 丝袜喷水一区| 日本wwww免费看| 超碰97精品在线观看| 自拍偷自拍亚洲精品老妇| 国产精品伦人一区二区| 国产真实伦视频高清在线观看| 亚洲精品第二区| 国产女主播在线喷水免费视频网站 | 嘟嘟电影网在线观看| 91aial.com中文字幕在线观看| 国产精品美女特级片免费视频播放器| 夜夜看夜夜爽夜夜摸| 国产亚洲av嫩草精品影院| 国产爱豆传媒在线观看| 少妇熟女欧美另类| 亚洲精品乱码久久久久久按摩| 老司机影院成人| 永久网站在线| 久99久视频精品免费| 久久99精品国语久久久| a级毛色黄片| 亚洲精品自拍成人| 国产精品美女特级片免费视频播放器| 麻豆久久精品国产亚洲av| 国产中年淑女户外野战色| av播播在线观看一区| 成人鲁丝片一二三区免费| 午夜福利在线在线| 国产中年淑女户外野战色| 日本与韩国留学比较| 晚上一个人看的免费电影| 婷婷六月久久综合丁香| 午夜精品国产一区二区电影 | 网址你懂的国产日韩在线| 18禁在线无遮挡免费观看视频| 国产成人freesex在线| 观看美女的网站| 大香蕉久久网| 日本一二三区视频观看| 国产精品综合久久久久久久免费| 国产黄色视频一区二区在线观看| 国产一级毛片七仙女欲春2| 久久国内精品自在自线图片| 午夜福利网站1000一区二区三区| 51国产日韩欧美| 亚洲欧美日韩无卡精品| 国产一级毛片在线| 欧美日韩精品成人综合77777| 特大巨黑吊av在线直播|